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Abstract
The COVID-19 pandemic presents a remarkable opportunity to put to work all of the 
research that has been undertaken in past decades on the elicitation and structural 
estimation of subjective belief distributions as well as preferences over atemporal 
risk, patience, and intertemporal risk. As contributors to elements of that research 
in laboratories and the field, we drew together those methods and applied them to 
an online, incentivized experiment in the United States. We have two major find-
ings. First, the atemporal risk premium during the COVID-19 pandemic appeared 
to change significantly compared to before the pandemic, consistent with theoreti-
cal results of the effect of increased background risk on foreground risk attitudes. 
Second, subjective beliefs about the cumulative level of deaths evolved dramatically 
over the period between May and November 2020, a volatile one in terms of the 
background evolution of the pandemic.

Keywords  COVID-19 · Risk preferences · Time preferences · Subjective beliefs

JEL Classification  I18 · I12 · C91 · D81 · D83

1 � Motivation

What happened to economic preferences and subjective beliefs during the COVID-
19 pandemic in 2020? Figures 1 and 2 display the striking evolution of the pandemic 
in terms of daily and cumulative infections and deaths, respectively, in the United 
States.1 While this unfolded, were risk and time preferences unconditionally stable, 
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1  Figure A1 in the Online Appendix displays the raw and smoothed data side by side. All data and code 
to replicate our analyses in Stata can be obtained at http://​www.​cear.​gsu.​edu/​gwh/. A larger archive at 
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did they vary with the progress of the pandemic in some stable but conditional man-
ner, or were they apparently disconnected? Did subjective beliefs about the preva-
lence and mortality of the pandemic track the actual progress of the pandemic, the 
projections of widely publicized epidemiological models, or neither? These are core 
questions we evaluated with a series of online experimental waves at monthly inter-
vals between May and November 2020: the vertical gray lines in Figs. 1 and 2 show 
when our waves were conducted.2 Subjects were sampled at random from the same 
population, with no subject asked to participate twice; 598 subjects participated.

Investigating the risk and time attitudes of individuals during COVID-19, and 
their beliefs about COVID-19 prevalence and mortality, is essential for public pol-
icy interventions. For example, if risk and time attitudes differ by demographics, 
then interventions need to take those differences into account. The same holds for 
beliefs, where forecasts of the path of the pandemic, relative confidence, and demo-
graphic differences are crucial for targeting educational interventions. In turn, rigor-
ous, incentivized elicitation is important for reliable estimates of these attitudes and 
beliefs.

Section  2 reviews the preferences we elicited: atemporal risk preferences, time 
preferences, and intertemporal risk preferences. A novel feature of our experiment 
is a recognition that the volatility of the pandemic could impact atemporal and 
intertemporal risk preferences differently. Section  3 reviews the subjective beliefs 
we elicited: belief distributions, to allow measurement of bias and confidence, with 
respect to prevalence and mortality effects of the pandemic. Beliefs were elicited 
for a fixed one-month horizon, as well as for a fixed date of December 1, 2020 that 
implied declining horizons over the waves of our experiment. Another novel feature 
of our experiment is to track the extent to which the bias and confidence of beliefs 
changed as people lived through the striking evolution displayed in Fig. 1. Section 4 
explains the experimental design. Section 5 presents the basic results, tracking the 
trends in preferences and beliefs over the course of the waves of the experiment. 
Section  6 discusses the main results in terms of the conditional stability of pref-
erences and beliefs during the pandemic, as well as some comparisons with pre-
pandemic preferences. Section 7 concludes with some general lessons. An Online 
Supplement at https://​cear.​gsu.​edu/​gwh/​covid​19/ documents additional results, elici-
tation interfaces, choice batteries, and instructions.

We have two major findings. First, atemporal risk preferences during the COVID-
19 pandemic appeared to change significantly compared to before the pandemic, but 
only if one identifies the underlying structure of those preferences to be able to infer 
a shift from “global probability optimism” to “local probability optimism and local 
probability pessimism.” The effect of that change in foreground risk attitude towards 

2  In addition to the incentivized elicitation of preferences and beliefs, we administered a complementary 
series of non-incentivized survey questions. Apart from the usual demographics, we asked about news 
sources and the reliability of information on the pandemic. We asked about anxiety and depression, using 
standard instruments, and about self-assessment of personal risk from the pandemic.

Footnote 1 (continued)
https://​doi.​org/​10.​17605/​OSF.​IO/​4ZVBG also contains the instructions and task parameters documented 
in Harrison et al. (2020a) as well as the software source code used to conduct the experiments in oTree.

https://cear.gsu.edu/gwh/covid19/
https://doi.org/10.17605/OSF.IO/4ZVBG
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Fig. 1   Daily infections and deaths in the United States

Fig. 2   Cumulative infections and deaths
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probabilities is to increase the atemporal risk premium, and is consistent with theo-
retical results of the effect of increased background risk on foreground risk attitudes.

Second, subjective beliefs about the cumulative level of deaths evolved dramat-
ically over the period between May and November 2020, a volatile one in terms 
of the background evolution of the pandemic. Specifically, we observed a marked 
increase between waves 3 and 4 in the confidence with which beliefs were held about 
cumulative COVID-19 deaths by December 1, 2020. We also found statistically 
significant evidence of biased beliefs, in the sense that the mean of the estimated 
belief distributions was below the actual number of COVID-19 deaths in waves 1, 
2, and 6, but above the actual number of deaths in waves 3, 4, and 5. The degree of 
(statistically significant) bias varied across waves, reaching a high in wave 5 and a 
low in wave 6. But given the diffuse nature of beliefs, all estimated belief distribu-
tions include significant probability density around the actual number of COVID-19 
deaths by December 1, 2020, allowing us to assess the “economic significance” or 
“policy significance” of these biases in subsequent work.

Investigating the risk and time attitudes of individuals during COVID-19, and 
their beliefs about COVID-19 prevalence and mortality, is essential for public policy 
interventions. For example, if preferences or beliefs differ by demographics, then 
interventions need to take this heterogeneity into account. This clearly matters for 
evaluating the risk perceptions that led people to take certain actions or, in the case 
of vaccination, not take those actions. Similarly, in §6.A we ask whether the massive 
“background risk” of the pandemic has effects on “foreground risk preferences,” as 
claimed by some literature and a lot of casual empiricism. Knowledge about beliefs 
is likewise important for public policy interventions, because forecasts of the path 
of the pandemic, relative confidence, and demographic differences are crucial for 
targeting educational interventions. Much of §5.D is about whether the subjective 
beliefs of individuals between May and November track the likely state of the pan-
demic as of December 1, 2020: do individuals correctly foresee what is to come? A 
key insight there is that one must account for the understandable lack of confidence 
that our subjects had about those beliefs, particularly earlier in the year, rather than 
just track average beliefs. Of course, rigorous, incentivized elicitation is important 
for reliable estimates of these preferences and beliefs.

2 � Risk and time preferences

We are interested in three broad types of preferences. One is atemporal risk aver-
sion, measuring aversion to stochastic variability of outcomes at some point in time. 
Another is time preference, measuring discounting of time-dated, non-stochastic 
outcomes. And the third is intertemporal risk aversion, measuring aversion to sto-
chastic variability of outcomes over time. Each of these is connected as a matter of 
theory, and intertemporal risk aversion is literally a theoretical interaction of atem-
poral risk preferences and time preferences as defined here.

We are also interested in the structural decomposition of these preferences. For 
atemporal risk aversion, different theories agree on what defines the risk premium, 
but then decompose it differently. Expected Utility Theory (EUT) attributes all of 
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the risk premium to aversion to variability of outcomes, measured by the non-con-
stant marginal utility of outcomes as the level of the outcomes vary. If the risk pre-
mium is positive, and there is risk aversion, this is diminishing marginal utility and 
a concave utility function. Rank-Dependent Utility (RDU), due to Quiggin (1982), 
adds to this account of the risk premium some allowance for various forms of prob-
ability weighting, leading to decision weights on the utilities of outcomes that can 
differ systematically from observed or subjective probabilities. These are just two of 
the most important structural models, and the ones we consider here.3

Similarly, for time preferences, different theories agree on the definition of the 
discount factor, but then decompose it differently. Exponential discounting models 
attribute all of the discount factor to a constant variable (utility) cost of time delay, 
where the variability derives from the time horizon. Quasi-hyperbolic discounting 
models in addition attribute some of the discount factor to a fixed (utility) cost of 
any time delay. These are just two of the more important structural models, and the 
ones we consider here.4

Intertemporal risk preferences are currently modeled in terms of several sharply 
contrasting structural theories. One imposes intertemporal risk neutrality by assum-
ing an additively separable intertemporal utility function. This assumption also ties 
atemporal risk preferences and time preferences at the hip, in the sense that they can-
not be independent of each other. The other theories allow for some non-additivity, 

3  We know of six incentivized experiments eliciting atemporal risk preferences during the COVID-
19 pandemic, and expect that there are others. Li et al. (2020) had subjects complete a single multiple 
price list task, and Shachat et al. (2021a, b) had subjects complete a similar task defined over gains as 
well as one defined over losses from other earnings. Angrisani et al. (2020) had subjects complete the 
“bomb elicitation task.” Guenther et  al. (2021) had subjects complete the “bomb elicitation task” and 
the Binswanger lottery selection task. None of these elicitation methods are designed to allow one to 
infer structural models of risk preferences such as RDU, and allow only limited inferences about intervals 
within which risk attitudes lie if one assumes EUT and a single-parameter utility function. Drichoutis 
and Nayga (2021) elicited risk preferences (and time preferences) using two multiple price lists, with 
one holding constant the lottery outcomes and the other holding constant the probability. They estimated 
structural models of EUT and RDU risk preferences on a pooled basis, following Harrison and Rut-
ström (2008). This elicitation procedure is not designed to make rich inferences at the individual level. 
Gassmann et al. (2020) had subjects complete a multiple price list task, with outcomes ranging between 
€10 and €112. Unfortunately, beyond a €3 participation fee, their subjects only had a 1% chance of being 
selected to be paid for one of many choices; average payments were only €0.27, although expected earn-
ings were €0.71. Although formally incentivized, we view these as hypothetical choices for practical 
purposes. There have also been non-incentivized survey questions about risk preference during the pan-
demic.
4  We know of only one incentivized experiment eliciting time preferences during the COVID-19 pan-
demic: Drichoutis and Nayga (2021). They provided subjects with a single multiple price list of choices 
between a smaller, sooner principal and a larger, later payoff, following Coller and Williams (1999) and 
Harrison et  al. (2002). All of their choices involved a positive “front end delay” on the receipt of the 
sooner payoffs, limiting them from being able to estimate the Quasi-Hyperbolic discounting model as 
an alternative to Exponential discounting. They do, however, consider a smooth, hyperbolic model as 
an alternative to Exponential discounting. And they correctly infer time preferences jointly with infer-
ences about curvature of the utility function based on models of responses to risky lotteries, following 
Andersen et al. (2008). Gassmann et al. (2020) elicited time preferences using two multiple choices lists, 
one with a front end delay and one without that delay, allowing estimation of Quasi-Hyperbolic time 
preferences. Unfortunately, as noted earlier, for all practical purposes their experiments were non-incen-
tivized.
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allowing aversion to stochastic variability over time or a preference for temporally 
correlated variability. The specific alternative that we consider to intertemporal risk 
neutrality only relaxes the additive separability assumption on the intertemporal util-
ity function.5

The concept of intertemporal risk aversion may be less familiar, and arises from 
theoretical deviations from additively separable intertemporal utility functions. 
Define a lottery α as a 50:50 mixture of {xt, Yt+τ} and {Xt, yt+τ}, and another lottery 
ω at the other extreme as a 50:50 mixture of {xt, yt+τ} and {Xt, Yt+τ}, where X > x 
and Y > y. Lottery α is a 50:50 mixture of both bad and good outcomes in time t and 
t + τ; and ω is a 50:50 mixture of only bad outcomes or only good outcomes in the 
two time periods. These lotteries α and ω are defined over all possible “good” and 
“bad” outcomes. If the individual is indifferent between α and ω we say that she is 
neutral with respect to intertemporally correlated payoffs in the two time periods. If 
the individual prefers α to ω we say that she is averse to intertemporally correlated 
payoffs: it is better to have a given chance of being lucky in one of the two peri-
ods than to have the same chance of being very unlucky or very lucky in both peri-
ods. The intertemporally risk averse individual prefers to have non-extreme payoffs 
across periods, just as the atemporally risk averse individual prefers to have non-
extreme payoffs within periods. One can also view the intertemporally risk averse 
individual as preferring to avoid correlation-increasing transformations of payoffs 
in different periods.6 Another glance at Figs. 1 and 2 makes it clear why attitudes 
to risk over time should be important for risk management by individuals over the 
pandemic.

Finally, we are eventually interested in drawing inferences about preferences at 
the level of the individual. This leads us to develop designs and batteries that will 
allow estimation of Bayesian Hierarchical models. But for present purposes we 
focus on representative agent models, albeit conditional on several observable char-
acteristics of individuals: basic demographics, and of course the wave in which the 
preferences were elicited. Conditioning on demographics, and interacting these with 
the study wave, allows for greater comparability across waves for tests of stability.

Our experimental elicitation method for atemporal risk preferences uses unor-
dered binary lottery choices, popularized by Hey and Orme (1994). To elicit time 
preferences we employ the approach of Andersen et  al. (2008, 2014), again with 
binary choices. To elicit intertemporal risk preferences, which are really the concep-
tual interaction of atemporal risk and time preferences, we follow Andersen et  al. 
(2018). The econometric methods we use are explained by Harrison and Rutström 
(2008). Each of these references provide discussion of previous literature, and evalu-
ations of alternative approaches.

5  Epstein and Zin (1989) preferences require a specific, empirically-rejected, non-EUT structure on 
atemporal risk preferences.
6  Given the extremes of correlations of the payouts in the α and ω lotteries, it is easy to see why this 
concept is often referred to as “correlation aversion,” following Epstein and Tanny (1980), as well as 
intertemporal risk aversion.
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3 � Subjective beliefs

We are interested in eliciting subjective belief distributions for individuals with 
respect to the short-term and longer-term progress of the pandemic. We are spe-
cifically interested in beliefs about the levels of infections as well as the levels of 
deaths of the population of the United States,7 because policy interventions need to 
take account of these beliefs and their demographic variation. In short, our focus is 
on beliefs about the outcomes that unfolded over the course of 2020, displayed in 
Fig. 1. The short-term horizon is always one month from the day of elicitation. The 
longer-term horizon was for December 1, 2020, hence a varying-length horizon over 
the waves of the experiment. Figure 2 displays the cumulative levels of infections 
and deaths, derived from the daily data of Fig. 1. Hence Fig. 1 should be viewed as 
the volatile data-generating process behind the cumulative totals about which we 
elicited beliefs.

A key feature of our elicitation method is that we can make statements about the 
bias of beliefs as well as the confidence of beliefs. Bias is just the familiar concept 
from statistical estimation: how different is the weighted average belief from the 
realized event, or some selected econometric or epidemiological model that might 
be influential, or the claims of political leaders? All are actually useful metrics for 
different reasons, so there is not just one measure of bias that is of interest. Confi-
dence is just the familiar concept of imprecision from statistical estimation, most 
commonly captured by the variance of beliefs about their mean. We prefer to think 
of confidence more broadly as reflecting the variability of beliefs, so we can also 
consider skewness and kurtosis, but the point is to pay attention to more than just 
the weighted average or mode of beliefs. One can only characterize bias and con-
fidence if one elicits subjective belief distributions, which of course allow for the 
special case of degenerate beliefs held with certainty. Fully Bayesian epidemiologi-
cal models of COVID-19 infections and deaths provide posterior predictive distribu-
tions of future levels, which can be used to also make determinations of whether 
subjective beliefs are “overconfident” or “insufficiently confident.” Knowing bias 
and confidence are essential for normative educational and policy decisions.

We employ quadratic scoring rules to incentivize subjects to report beliefs over 
various outcomes. Matheson and Winkler (1976) demonstrated how to extend this 
scoring rule to elicit beliefs about continuous distributions, which is an appropriate 
characterization of the COVID-19 outcomes on which we focussed. Harrison et al. 
(2017) developed experimental tools to implement this elicitation approach, using 
discrete approximations to the underlying continuous outcomes. In effect, these 
approximations are akin to eliciting beliefs over histograms defined over the pos-
sible outcomes. Hence subjects could allocate 100 tokens over 10 histogram bins, 
where each bin represented an interval with an upper and lower outcome.

7  We also considered beliefs about infections and deaths of the older segment of the population, 
although that is not a focus of attention here. Also not discussed here is a parallel, multi-wave experiment 
using the same elicitation methods in South Africa, albeit with appropriately different survey questions 
and a slightly different recruitment method.
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The pandemic provides a unique setting over which to bracket the range of pos-
sible COVID-19 prevalence and mortality outcomes given the proliferation of esti-
mates from epidemiological models. We rely on epidemiological models to bound 
prevalence and mortality outcomes for one-month, and December 1, 2020 time hori-
zons. We review these models in Harrison et al. (2021), and develop a method to 
partition these bounds into intervals. We then ask subjects to place bets on these 
intervals, thereby revealing their beliefs. The intervals are constructed such that 
if beliefs are consistent with epidemiological models, subjects are best off betting 
approximately the same amount on every interval. The upshot is that we had four 
“frames” for each belief question, where each frame had slightly different bin labels 
to allow us to bracket a priori likely beliefs. Conditional on these frames, our elicita-
tion methods were conventional (for us).

Figure 3 is a screen shot of the experimental software we developed, and docu-
mented in Harrison et al. (2020a), to elicit the beliefs of each subject about COVID-
19 prevalence and mortality.8 This subjective belief question was presented to sub-
jects during wave 1 of our study, which took place on May 29, 2020. Figure 3 shows 
the actual bets, in the form of a token allocation, of subject #127, and the amount 
to be paid depending on the answer to the question. The answer was verified using 
the first public report provided by the Centers for Disease Control and Prevention 
(CDC) after the date in the question, a reference measure which was explained to 
subjects through audio-visual instructions before they completed the subjective 
beliefs task.

Figure 4 illustrates how these reports allow us to identify bias and confidence of 
beliefs. It compares the realized answer, as reported by the CDC, to the question 
from Fig. 3, and hypothetical bets that vary according to whether they are biased rel-
ative to the number of deaths by December 1, 2020, and the confidence with which 
these beliefs are held. Per the experimental protocol, the official reports from the 
CDC are treated as the correct answer that determine subject payments. The top left 
quadrant of Fig. 4 represents an unbiased, but relatively low confidence, set of bets, 
in the sense that the largest bet was placed on the correct answer, but bets were also 
made on other events. The bottom left quadrant also represents unbiased beliefs, but 
held with a degenerate level of confidence in the sense that all tokens were bet on 
the correct event. The two right quadrants represent biased beliefs because no tokens 
were allocated to the correct event, but clearly differ according to the strength with 
which beliefs were held.

We focus here on beliefs during 2020 about the cumulative level of deaths in the 
United States as of December 1, 2020. A key feature of this horizon, in relation to 

8  Harrison et al. (2020a) documents the online procedures used in these experiments, which have several 
novel features. It does not discuss results. Harrison et al. (2021) examines a specific hypothesis about the 
subjective beliefs we elicited: are they consistent with those from comparable epidemiological models, 
where both the subjective beliefs and the forecasts of the epidemiological models were evolving along 
with the pandemic? The present study examines the effect of the pathway of the pandemic on atemporal 
risk preferences, time preferences, intertemporal risk preferences, and subjective beliefs with respect to 
the mortality effects by the end of the year.
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the dates of elicitation of beliefs, is that in the life-cycle of the COVID-19 pandemic 
these are generally “long-run” beliefs for all but the last one or two waves.

This longer horizon for eliciting beliefs is of some significance because of the 
qualitative evolution of the major epidemiological models over 2020, documented 
well by Avery et al. (2020). This change is reflected in the densities of the bins over 
which our subjects allocated their tokens, as explained by Harrison et al. (2021).

Fig. 3   Illustrative belief elicitation interface

Fig. 4   Bias and confidence in beliefs
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4 � Experimental procedures

For self-evident reasons we needed to conduct an online experiment. This led us to 
translate all of our existing tasks for eliciting preferences and beliefs to a software 
platform that facilitated this, and we selected oTree, developed by Chen et al. (2016). 
Further details of this software aspect of our procedures are given in Harrison et al. 
(2020a), which also documents the choice batteries employed.

4.1 � Sampling

The waves of our experiment were run on May 29, June 30, July 31, August 31, 
September 29 and October 29. One of the benefits of an online experiment is that 
physical lab constraints do not limit the number of subjects on a specific day, which 
also means that we do not have the risk of confounds from day-to-day changes in 
the news surrounding the pandemic. Our overall sample of 598 consisted of distinct 
samples of 112, 130, 117, 99, 81 and 59 in each wave, respectively. The lower sam-
ple size in wave 6 is the direct result of massive power outages in the greater Atlanta 
area due to Tropical Storm Zeta. The long-term horizon for belief elicitation for all 
waves was December 1.

The spacing of the waves was designed to allow a month to pass between each 
wave, so that we get roughly even representation of behavior over the complete hori-
zon of the experiment. The overall sample size was constrained by available budget 
at the time, and by widespread beliefs at the outset that the “next 6 months” would 
be critical for responses to the pandemic. In that belief we were broadly correct, but 
of course it would have been valuable to continue beyond the planned horizon given 
the continued spikes in infections and deaths through January 2021.

We recruited undergraduates from Georgia State University (GSU) for the experi-
ment. We already maintained procedures to contact students, and possess a credible 
reputation amongst these students for paying for their participation. This reputation 
is especially important given the increased social distancing involved with purely 
online activities, and tasks relying upon future payments.

We had access to a recruitment database of current students who are interested in 
taking part in paid research through the Experimental Economics Center (ExCEN) 
at GSU. When registering in this system, students provide their name, campus ID, 
email address, and basic demographic information regarding age, gender, and eth-
nicity. As of May 11, 2020, there was a total of 2497 active subjects in the recruit-
ment database, which is the pool of participants who were invited to take part. The 
average age of the subjects is 21 years, with a standard deviation of 3.5 years.

During our experiment virtually all in-person classes at GSU were conducted 
online. The formal announcement of the closing of all University System of Georgia 
campuses was made on March 16, 2020. Some residence halls at GSU remained 
open, with social distancing, to accommodate a limited number of domestic and 
foreign students who had logistical or financial problems with leaving campus. But 
the vast majority of students were off-campus for the rest of 2020. We have self-
reported information on the country, U.S. state, and county in which they completed 
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the experiment, and 97% completed the experiment in Georgia. In turn the majority 
of those completed it within Greater Atlanta, a collection of 15 counties.

Figures A2 and A3 in the Online Appendix display infection and death rates for 
Georgia and Greater Atlanta, which might have been more salient to our subjects 
than national data. Given the nature of the media coverage at the time, and the focus 
on these numbers because of the political stakes during the year that included a 
Presidential election in early November, we believe that national news on infections 
and deaths dominated attention. However, it is useful to note how different the local 
patterns of deaths were compared to the national pattern. Death rates in Georgia and 
Atlanta were less dramatically spiked in structure than in the U.S. as as whole.

Stratified randomization was applied to the recruitment database. The demo-
graphic variables age, gender, and ethnicity were used to define the multiple strata 
of interest to create a set of balanced lists from which to recruit. The lists were 
defined by two across-subjects treatments: participation payments on offer ($5, $10, 
and $15); and 2 orders of presenting the health survey and the beliefs task. For each 
wave six lists were used for recruitment over the six treatments within a wave (3 par-
ticipation payments × 2 task orders).9 Because no subject took part in the experiment 
more than once, our data are a pseudo-panel, and our analyses of results control for 
basic demographics to make the results more comparable from wave to wave.10

We have pre-pandemic evidence for atemporal risk preferences and time prefer-
ences from subjects drawn from the same population as our estimates during the 
pandemic. In the case of atemporal risk preferences we have choices from Harrison 
et al. (2020d) for 232 subjects that actually participated in our COVID-19 experi-
ment. These choices were made between May and October in 2019, and provide 
excellent comparisons. In the case of time preferences we have unpublished data on 
choices from 2013, with no overlap with the COVID-19 subjects. Although dated, 
this sample was drawn from the same general population, and faced comparable 
choices.11

9  The participation fee treatments are to be used to examine the possible effects that sample selection on 
unobservables might have on inferences about preferences and beliefs. The order effect treatments are to 
be used for more detailed evaluation of the possible “priming effect” of health surveys on elicited beliefs 
about COVID-19.
10  We are careful to only ever claim that we sample at random from the same population, and that we 
attempt, with controls of observable demographic characteristics, to mitigate differences across waves. 
The deeper issue is to control for sample selection effects conditional on unobservables, and evalu-
ate the extent to which they are correlated with the preferences and beliefs we examine. Moreover, we 
would like to know if these potential correlations varied over the pandemic observed across our waves. 
The population of interest here consists of undergraduates at GSU. Our sample was recruited early in 
2019 for general purposes: even that recruitment sample is subject to some potential selection effects, of 
course. But that recruitment sample was in place well before the pandemic, and we randomly sampled 
from it to obtain our samples in each wave. Hence there remains potential for pandemic-specific sample 
selection across waves, particularly given the significant progress of the pandemic over the course of our 
six waves. Variations in participation fees were implemented, following Harrison et al. (2009, 2020b), to 
allow for possible sample selection corrections with respect to unobservable risk preferences.
11  One can also formally consider the effects on atemporal risk preferences and time preferences of sam-
ple attrition from our pre-pandemic sample from 2019 into the follow-up waves of 2020, using the meth-
ods of Harrison et al. (2020b, c).
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4.2 � Payments

When running an experimental session in a physical laboratory, an experimenter 
typically pays each subject in cash at the end of the session. Clearly this is not pos-
sible online, so alternative payment procedures are needed. Additionally, the tem-
poral aspect of our experiment that involved some future-dated payments required 
careful consideration of how to remit payments after specific intervals. For example, 
given the study protocol, it was possible for a participant to be paid over 5 separate 
transactions that could span up to 7 months from their initial participation.12 With 
598 subjects in the sample and up to 5 potential payments per subject over time, the 
logistics of making nearly 3000 payments and recording the transactions, as required 
for filing and reimbursement purposes by GSU, called for an online payment plat-
form to streamline these jobs.

Subjects were able to select their preferred method of payment upon entry into 
the study, with 54% of the subjects selecting PayPal and 46% Venmo. The mean, 
minimum and maximum of subject payments over all tasks were $121.59, $51.19, 
and $231.71, respectively, including non-salient participation fees. Hence total sub-
ject payments were $72,711. Funds of this scale, in the timeframe available, were 
provided by the Center for the Economic Analysis of Risk (CEAR) at GSU and per-
sonal chair funds.

5 � Results

5.1 � Atemporal risk preferences

Figure 5 displays estimates, with 95% confidence intervals, of atemporal risk premia 
across waves of our study, assuming alternatively EUT or RDU. The (atemporal) 
risk premium is just the difference between the expected value of a lottery and its 
certainty equivalent, where a positive risk premium indicates risk aversion. We use 
the equi-probable lottery L = ($5, 1/3; $30, 1/3; $55, 1/3) as the reference lottery 
in the figure and the basis for the calculation of risk premia. This reference lottery 
has an expected value of $30 and is broadly representative of the range of prizes in 
our atemporal risk preference task. The blue and red bars below Fig. 5 are repro-
duced from Fig. 1 to show the evolution of infections (blue) and deaths (red) over 
the course of our study, where darker shades in each bar represent more infections 
and deaths, respectively.

To calculate risk premia we estimate EUT and RDU models pooling data 
across all subjects and waves of our study. We adopt the contextual utility error 

12  For example, subject payments for participation and the incentivized atemporal risk preference task 
are due within 24 hours of successfully completing the study. The payment dates for the other incentiv-
ized tasks vary, over known parameters, after a given session date. Future payments are made between 0 
to 98 days after the session date for the time preference task; 7 to 49 days afterwards for the intertempo-
ral risk aversion task; and the belief task paid out either one month after the session date or December 1, 
2020.
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specification of Wilcox (2011) and assume a constant relative risk aversion (CRRA) 
utility function u(xt) = xt 1−r/(1 − r) for outcomes at time t, for both EUT and RDU. 
Under EUT r > 0 indicates risk aversion, r = 0 implies risk neutrality, and r < 0 indi-
cates risk seeking behavior. For the RDU model we also employ the flexible two-
parameter probability weighting function due to Prelec (1998): ω(p) = exp (-η (-ln 
p)φ), with φ > 0 and η > 0. EUT is nested within RDU when η = φ = 1, but if either or 
both of these conditions fail then r, φ, and η combine to determine risk preferences 
under RDU.

In each of the estimated equations13 we include standard demographic charac-
teristics (e.g., age, gender, and race or ethnicity), subject scores on the Generalized 
Anxiety Disorder 7-item screen developed by Spitzer et  al. (2006), subject scores 
on the Patient Health Questionnaire measure of depression severity due to Kroenke 
et al. (2001), a categorical variable capturing the views of each subject on whether 
the threat of COVID-19 is exaggerated by the media, and dummy variables for each 
wave of the study.

We also interact the wave dummy variables to capture potential differences in 
risk preferences according to gender and ethnicity across waves. This “fixed effect” 
approach to capturing the effects of each wave has the advantage of being agnostic 
about what aspect of the progress of the pandemic, or just time itself, has on atem-
poral risk preferences. So these wave dummies are intended to help us statistically 

Fig. 5   Attemporal risk premium

13  For r under EUT and for r, φ, and η under RDU.
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capture potential changes over time. It follows that one cannot separate out effects 
from the pandemic from other things that might have occurred during the experi-
ment. For example, the concurrent national election campaign generated consider-
able and salient “debate” over the facts and forecasts of the path of the pandemic. 
We refer to this as our baseline statistical analysis.

On the basis of the pooled preference model with dummies for each wave we 
directly estimate the atemporal risk premium of the reference lottery above by sub-
tracting the certainty equivalent estimated assuming EUT or RDU from the expected 
value of the lottery ($30). This approach ensures that any uncertainty in the param-
eter estimates propagates into the calculation and visualization of risk premia.

Figure 5 shows that risk premia for the EUT model are remarkably stable over 
time. The risk premium assuming EUT over our elicitation period is shown in the 
solid black line, with 95% confidence bands. The only statistically significant dif-
ferences in the CRRA parameter r, which uniquely defines the risk premium under 
EUT, are between wave 1 and wave 3 (p = 0.043) and wave 2 and wave 3 (p = 0.049). 
The average risk premium across all waves is approximately $4.60, and similar to 
the risk premium estimated for a sub-sample of the same subjects in 2019, and of 
course pre-pandemic, represented by the solid green bar in Fig. 5.

By contrast, risk premia for the RDU model vary more by wave, reaching a low 
of $3.86 in wave 3 and a high of $5.94 in wave 4, but the estimates are also more 
imprecise, at least relative to EUT. The risk premium assuming RDU over our elici-
tation period is shown in the dashed orange line, also with 95% confidence bands. 
The estimate of the risk premium for wave 3 is significantly lower than wave 1 
(p = 0.046), wave 4 (p = 0.049), and wave 6 (p = 0.062), indicating a decrease in risk 
aversion in this wave. There are no other statistically significant differences in the 
atemporal risk premium across waves of our study.

To get some better sense of the effects of the pandemic, we also consider a com-
plementary statistical analysis that replaces these wave dummies with covariates that 
more precisely reflect the course of the pandemic. We do this by including a covari-
ate for national cumulative deaths, as displayed in Fig. 2. This analysis complements 
the analysis with wave dummies, and is intended to better track the effects of the 
pandemic. A more complete analysis of covariates of this kind is best done with 
estimates of preferences (and beliefs) at the individual level, and should account for 
lagged effects as well as a wider array of potential confounds. Nevertheless, this 
analysis indicates that there were no significant effects of the course of the pan-
demic, over the time period studied, in the atemporal risk preference parameters.14

We can comfortably reject the null hypothesis that EUT best characterizes the 
risk preferences of our sample as a whole, with p-values less than 0.001 for each 
wave when we test for the absence of probability weighting. However, this char-
acterization of the representative agent hides the fact that we know from previous 
research that when risk preferences are estimated at the level of the individual, we 

14  Online Appendix C provides complete estimates, and formal hypothesis tests. Figure A4 in Online 
Appendix A displays point predictions of the effects for each parameter during the path of the pandemic 
that we studied.
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see a predictable split of roughly 50:50 between EUT-consistent and RDU-consist-
ent individuals using conventional significance levels to identify evidence of prob-
ability weighting.15 Calculating risk premia at the individual level on the basis of 
the model of choice under risk that best characterizes that subject’s choices will be 
undertaken in subsequent analyses.

The most striking result comes from comparing the pre-pandemic RDU esti-
mates with the estimates over our waves during the COVID-19 pandemic. The thick 
dashed green line at the bottom of Fig. 5 shows that our pre-pandemic subjects were 
roughly risk neutral overall, with perhaps a slight hint of being risk-loving. This 
is completely different from the overall risk aversion we see during the pandemic, 
from the dashed orange line. Figure 6 shows what is happening here. In the top pan-
els we show the pre-pandemic estimates of the probability weighting function and 
implied decisions weights. These decision weights assume equi-probable lotteries 
with 2, 3 or 4 prizes; RDU applies to non-uniform probabilities as well, of course, 
but this assumption makes it easy to see the pure effect of probability weight-
ing. Pre-pandemic we have significant “probability optimism” leading to decision 
weights that put much greater weight on the better prizes. This is offset by a rela-
tively concave utility function, with CRRA parameter r = 0.71, leading to the proxi-
mate risk neutrality overall that we see in the risk premium in Fig. 5.

Contrast the RDU risk preference estimates in the bottom two panels of Fig. 6, 
from our elicitations during the COVID-19 pandemic, recalling that we have a lit-
eral overlap of 232 subjects pre-pandemic and during the pandemic.16 First, we see 
a decline in the concavity of the utility function, as the CRRA parameter drops from 
0.71 to 0.40: ceteris paribus any probability weighting, this change would make the 
representative subject slightly less risk averse. But the ceteris paribus is violated, 
with probability weighting changing from global probability optimism to “inverse-S” 
probability weighting. In the bottom right panel of Fig. 6 we see the expected pattern 
of decision weights, with greater weights being placed on the extreme outcomes. The 
differential weights on the extremes are roughly symmetric, implying that overall risk 
aversion will be driven generally by the concave utility function. Hence the positive 
risk premium under RDU we find from our estimates during the pandemic.

It is useful to stress that the comparison of atemporal risk preferences before the 
pandemic and during the part of the pandemic we studied refers to a weighted aver-
age of those preferences over our 6 waves. Our complementary analysis of the effect 
of the path of the pandemic did not show any significant changes during the pan-
demic beyond that weighted average change.

15  The same general conclusion of heterogeneity with respect to the type of atemporal risk preference 
that best characterizes individuals is drawn if one uses Bayesian Hierarchical models or finite mixture 
models.
16  Strictly speaking we are comparing the RDU risk preferences of all 598 pandemic subjects with the 
232 of them that made risky choices pre-pandemic. The pandemic RDU risk preferences of the sub-sam-
ple of 232 that participated in experiments during 2019 and 2020 are virtually the same as the pandemic 
RDU risk preferences of the full sample of 598. Indeed, the estimates of r, φ, and η are not statistically 
significantly different for the sub-sample compared to the full sample.
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5.2 � Time preferences

In a similar vein as for atemporal risk preferences, Fig. 7 displays estimates, with 
95% confidence intervals, of the present value of a $50 reward available in 14 days 
across waves of our study. We assume either Exponential or Quasi-Hyperbolic dis-
counting. Using each of these characterizations of time preferences, we calculate the 
present value of $50 in 14 days for two reasons. The amount $50 is representative of 
the larger, later (LL) rewards in our time preference task for the $40 principal, since 
the mean of these LL rewards is $48. The horizon of 14 days, which was one of the 
time horizons in our task, shows the effect of the present-bias parameter β on esti-
mated present values in the Quasi-Hyperbolic model.17

To calculate present values we estimate Exponential and Quasi-Hyperbolic dis-
counting models jointly with the RDU model of risk preferences.18 We pool data 
across subjects and waves, and admit heterogeneity in our estimates by incorporating 

Fig. 6   Probability weighting and Decision weights pre-pandemic and during the pandemic

17  The discount rate of the Quasi-Hyperbolic model asymptotes to the discount rate of the Exponential 
model, represented by the parameter δ, at longer time horizons. This is why the parameter δ in the Quasi-
Hyperbolic or β-δ discounting model is often referred to as the long-term discount rate.
18  Andersen et al. (2008) show how to estimate discounted utility, as opposed to discounted value, by 
incorporating the curvature of the utility function identified by a risk preference task when estimating 
time preferences. Harrison et al. (2018) discuss the importance of accurately characterizing choice under 
risk when drawing inferences about discounting behavior.
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the same set of covariates used in our models of risk preferences. Using the pooled, 
heterogenous preference Exponential and Quasi-Hyperbolic models we then directly 
estimate the present value of $50 in 14 days, so that any uncertainty in the estimates 
propagates into inferences we draw from the data.

Figure 7 shows that present values computed using the Exponential model vary 
slightly over time, but within a very narrow band. Present value estimates for this 
model range from a low of $47.26 in wave 1 to a high of $48.25 in wave 3. The 
solid green bar in Fig. 7 represents comparable Exponential discounting estimates 
obtained in 2013 from a sample drawn from the same population.

Despite varying within a narrow band, there are a number of statistically signifi-
cant differences in the estimated present value of $50 in 14 days. Specifically, the 
estimated present value in wave 1 is significantly lower than wave 2 (p = 0.068), 
wave 3 (p = 0.003), and wave 4 (p = 0.030), indicating greater discounting of delayed 
rewards in wave 1. By contrast, the estimated present value in wave 3 is significantly 
higher than wave 5 (p = 0.023) and wave 6 (p = 0.041), indicating less discounting 
in wave 3. Thus, present value estimates suggest similar levels of discounting in 
waves 2, 3, and 4, and similar, but higher, levels of discounting in waves 1, 5, and 
6. While these present value differences are indeed statistically significant, the only 
statistically significant difference in estimates of δ is between wave 1 and wave 3 
(p = 0.050), leading us to conclude that time preferences, under the assumption of 
Exponential discounting, were relatively stable over the course of the pandemic.

Present values computed assuming Quasi-Hyperbolic discounting exhibit more 
variability relative to the Exponential model, but also more variance: compare the 

Fig. 7   Discounting behavior
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95% confidence intervals of the Quasi-Hyperbolic model to the confidence inter-
vals for the Exponential model. Quasi-Hyperbolic present value estimates, which 
combine the present-bias parameter β and the long-term discount rate δ, range from 
$45.80 in wave 1 to $47.41 in wave 4. The dashed green bar in Fig. 6 represents 
comparable pre-pandemic estimates with the Quasi-Hyperbolic model. The present 
value estimate in wave 1 is significantly lower than waves 2 and 4 (p < 0.05 in both 
comparisons), indicating higher discounting in wave 1 relative to waves 2 and 4. 
There are no statistically significant differences in any of the other present value 
comparisons, demonstrating again the stability of time preferences over the course 
of our study.

The differences in present values calculated assuming the Exponential or Quasi-
Hyperbolic models suggest that present-bias may influence discounting behavior in 
our sample. Indeed, we can comfortably reject the null hypothesis (β = 1) that Expo-
nential discounting best characterizes time preferences for the sample as a whole, 
with p-values less than 0.001 for each wave.19 Again, as with the atemporal risk 
preference results, there is undoubtedly heterogeneity in the model that best char-
acterizes each subject’s discounting behavior, and we plan to explore this, and the 
impact it has on estimated present values, using Bayesian Hierarchical models.

The complementary analysis of the effect of the course of the pandemic over the 
6 waves of our study, as captured by the cumulative level of deaths, indicates that 
the time preference parameter δ did change significantly for the Quasi-Hyperbolic 
model as the pandemic evolved.20 However, the change in δ has a parabolic U-form, 
implying estimates in wave 1 that are similar to estimates in wave 6.

5.3 � Intertemporal risk preferences

Given the popularity of the CRRA function in the microeconomic and macro-
economic literatures, Andersen et  al. (2018) propose this non-additive structural 
specification of the intertemporal utility function: U(xt, xt+τ) = E [(Dt u(xt) + Dt+τ 
u(xt+τ))(1−ρ)/(1 − ρ)], where ρ is the intertemporal relative risk aversion parameter 
(ρ ≠ 1) and Dt = β/(1 + δ)t is the discount factor of the Quasi-Hyperbolic specifica-
tion. This intertemporal utility function is separable but not additive when ρ ≠ 0, and 
collapses to being additively separable and reflecting intertemporal risk neutrality 
at ρ = 0. Hence we can focus our characterization of intertemporal risk preferences 
over the pandemic in terms of the evolution of estimates of ρ.

Inferences about ρ depend on the use of EUT or RDU models for atemporal 
risk preferences, and the use of Exponential or Quasi-Hyperbolic models for time 

19  To the extent that other non-Exponential discounting models characterize the data better than the 
Quasi-Hyperbolic model, the present values generated by the Quasi-Hyperbolic model can be viewed 
as just a descriptive way of documenting varying discount rates by horizon. There is some evidence 
from Andersen et al. (2014) that the Quasi-Hyperbolic model does indeed perform poorly for the Danish 
population when characterizing time preferences compared to the many alternative specifications they 
explore.
20  See Fig. A4 in Online Appendix A, and estimates and hypothesis tests in Online Appendix C.
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preferences, but allow any combination of these and other possible variants. The 
notational extensions can be cumbersome, but are not conceptually difficult: see 
Andersen et al. (2018; §5.4 and §5.5).

If this intertemporal utility function is additively separable, then the inverse of 
the intertemporal elasticity of substitution is equal to the coefficient of atemporal 
risk aversion. This assumption is solely one of parametric convenience and is popu-
lar in models of intertemporal choice. The linear specification of intertemporal util-
ity is then equal to a weighted sum of atemporal utility flows, where the weights are 
determined by discount factors. However, when the intertemporal utility function is 
not additively separable, it is necessary to estimate the extent of intertemporal risk 
aversion (or intertemporal risk seeking) to accurately characterize preferences over 
serially correlated intertemporal lotteries.

Figure 8 shows estimates of the intertemporal risk preference parameter ρ across 
the waves of our study. Figure 8 is derived from an intertemporal risk preference 
model estimated jointly with the RDU model of choice under atemporal risk and the 
Quasi-Hyperbolic discounting specification.21 Again, we pool data across subjects 
and waves, and incorporate heterogeneity in every equation of interest (r, φ, η, β, δ, 

Fig. 8   Intertemporal risk preferences

21  Given that we find statistically significant evidence of RDU and Quasi-Hyperbolic discounting in our 
data, and that they nest the EUT and Exponential alternatives, we use these models in the joint estima-
tion framework for intertemporal risk preferences.
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and ρ) using the same set of covariates and interactions.22 Fig. 8 clearly shows that 
our sample is intertemporally risk averse, with none of the 95% confidence intervals 
spanning zero, indicated by the gray line in the figure. Thus, the standard assump-
tion of an additively separable intertemporal utility function does not hold in our 
sample. Although there appears to be a downward trend in intertemporal risk aver-
sion over time, none of the estimates for ρ are significantly different across waves 
given the large 95% confidence intervals of the estimates. In other words, intertem-
poral risk aversion is stable over time for the period of our elicitations.

The complementary analysis of the effect of the course of the pandemic, over the 
6 waves of our study, indicates that the intertertemporal risk preference parameter ρ 
did not change significantly as the pandemic evolved.23

5.4 � Subjective beliefs

The elicited subjective beliefs tell a major story about the manner in which the 
implications of the COVID-19 pandemic were perceived by the public, as repre-
sented by our sample. We understand well the sample selection processes that led to 
our sample, and the complications of rigorously untangling them to make inferences 
about the population. But for the moment accept that this sample tells us how “The 
Street” perceived the risks of COVID-19.

Figures  9, 10 and 11 display the recovered beliefs24 for cumulative deaths by 
December 1, 2020. Figure 9 shows in detail the elicitation undertaken on May 29, 
2020, wave 1. Figure 10 displays elicitations over all six waves, ensuring compa-
rability across waves by using the same axes for each wave. Figure 11 repeats the 
display from Fig. 9, but for the elicitation undertaken on October 29, 2020, our final 
wave 6. The range of these elicitations was between 0 and 328 million, the U.S. 
population at the time. However, the displays of recovered beliefs focus on the range 
between 0 and 550,000 for Figs. 9 and 10, and then on the smaller range between 
210,000 and 310,000 for wave 6 in Fig. 11. The reason for having a smaller range for 
wave 6 is apparent from inspection of the relatively tight belief distribution for wave 
6 in Fig. 10 in comparison with the belief distributions for waves 1 through 5.

The solid, gray, vertical bar in Figs. 9, 10 and 11 shows the realized outcome for 
deaths up to the day prior to the elicitation. If subjects were paying attention to this 

22  We also estimate behavioral error specifications for atemporal risk preferences, time preferences, and 
intertemporal risk preferences, but these are not equations of interest for present purposes.
23  See Figure A4 in Online Appendix A, and estimates and hypothesis tests in Online Appendix C.
24  Harrison et al. (2017) established that EUT decision-makers, with risk preferences in the range widely 
observed in experiments, will have reports (of token allocations) that provide good approximations to 
recovered beliefs. However, our pooled data indicate RDU decision-makers, and that can generate first-
order changes between reports and recovered beliefs. Harrison and Ulm (2016) provide theoretical 
results that allow exact calibration of recovered beliefs under EUT and RDU if one knows the (point) 
estimates of the relevant structural parameters. Our approach is to use those theoretical results on calibra-
tion to jointly estimate atemporal risk preferences and beliefs, assuming that beliefs are bounded between 
0 and the total U.S. population. We then employ a Beta distribution to constrain beliefs to that interval, 
allowing the mean and standard deviation of the estimated distribution to vary with the same covariates 
used to estimate risk preferences.
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Fig. 9   Beliefs of cumulative deaths by 12/1/2020

Fig. 10   Beliefs of cumulative deaths by 12/1/2020
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outcome, this realized value would then anchor their beliefs on the lower end. The 
red, long-dashed vertical line shows the realized value for cumulative deaths as of 
December 1, 2020 reported by the CDC, which was 269,763, so this was in fact the 
observed outcome over which beliefs were being elicited. The black, short-dashed, 
vertical line is the mean of the estimated Beta distribution of beliefs in that wave. 
Close inspection of the color of the scatter dots allows one to identify the belief elic-
itation bin intervals listed in the legend, to facilitate understanding the translation 
from the belief elicitation interface in Fig. 3 to these inferred beliefs. The numbers 
inside the scatter dots in Figs. 9 and 11 refer to the elicitation frames 0, 1, 2 or 3, as 
documented in Harrison et al. (2021).

Figures 9 and 11 additionally show arrows on the left and right, to visualize the 
lowest elicitation bounds and highest elicitation bounds, respectively. The arrows on 
the left of the display refer to an elicitation bound for bin 1 in Fig. 3 that stretches 
from the numbered scatter dot on the right of the arrow, down to zero on the left of 
the arrow. So we can see in Fig. 9 (11) how these lower bounds varied from each 
other across elicitation frames within wave 1 (wave 6). Similarly, the arrows on the 
right of the displays in Figs.  9 and 11 refer to an elicitation bound for bin 10 in 
Fig. 3 that stretches from the numbered scatter dot on the left of the arrow, up to 328 
million on the right of the arrow. Figure 9 shows that in wave 1 we had similar lower 
bounds for elicitation bin 1 across frames, but much more variability in the upper 
bounds for elicitation bin 10 across frames. Figure 11 shows that in wave 6 we have 
considerable variation in both the lower and upper bounds across frames.

Fig. 11   Beliefs of cumulative deaths by 12/1/2020
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Figure  10 allows us to track the evolution of beliefs over the six waves of our 
experiment. In terms of confidence, subjects held relatively diffuse beliefs during 
waves 1, 2, and 3: the standard deviations are 75,089, 76,610, and 78,246 deaths, 
respectively. But something striking then happened between waves 3 and 4. The 
standard deviation of the belief distribution in wave 4 is only 34,242, implying far 
greater confidence than in the prior 3  months. Confidence relaxed again in wave 
5 (standard deviation = 60,985) compared to wave 4, but then tightened up signifi-
cantly in wave 6 (standard deviation = 10,180). These variations over time lead us 
to measure the extent of the difference in the quality of predictions. Although we 
are limited here to looking at pooled beliefs, albeit adjusted for differences in demo-
graphic characteristics across waves, we infer that there were marked changes in 
confidence over the period of our study.

Inspection of Fig.  1 provides clues as to what led to this revision of beliefs 
between wave 3 and wave 4. Between waves 2 and 3 a spike of infections (on 
a daily basis) was underway in the Southern U.S., where most of our subjects 
were located, and the steady rise in deaths (on a daily basis) was prominent in 
the news. In a related vein, there was considerable media discussion and politi-
cal debate about the implications for continued increases in infections and deaths 
later in the year, as well as recognition that spikes in deaths lagged spikes in 
infections but were positively correlated with infections. One natural hypothesis 
is that the elevated infection level made both infections and deaths more salient, 
leading to the tightening of beliefs evident from wave 4 on.

With regard to bias, Fig. 10 shows that estimates of the mean of the belief dis-
tributions in wave 1 and wave 2 (229,756 and 257,648, respectively) are less than 
the CDC report of 269,763. Although the estimate for wave 1 is significantly less 
than the CDC report (p < 0.001), the estimate for wave 2 is only barely statisti-
cally different to the CDC report at p = 0.088. By contrast, the mean of the belief 
distributions in wave 3 and wave 5 are significantly larger than the CDC report 
(p < 0.001), and the mean for wave 4 is higher than the CDC report, but again 
only barely statistically different at p = 0.082. Finally, Fig.  11 shows that the 
mean of the belief distribution in wave 6 of 264,944 is significantly lower than 
the CDC report (p < 0.001). Comparing the extent of bias across waves, Fig. 10 
clearly shows that bias was greatest in wave 1 and wave 5, with a mean difference 
of 40,007 less deaths in wave 1, and 71,157 more deaths in wave 5, compared to 
the CDC report of 269,763. At the other extreme, bias was clearly smallest in 
waves 4 and 6, with a mean difference of only 5,823 more deaths in wave 4, and 
4,819 less deaths in wave 6, again compared to the CDC report.

The preceding discussion highlights an obvious problem with relying on the 
standard, statistical definition of bias: with a large enough sample, and a small stand-
ard error of the point estimate of the mean of a belief distribution, one will always 
find statistically significant evidence of bias. The estimate for wave 6 exemplifies 
this point: the difference between the mean and the CDC report is the smallest of all 
waves, and yet the difference is statistically significant (p < 0.001). Nevertheless, the 
standard, statistical definition of bias has some value when comparing degrees of 
bias across waves, by focusing solely on the difference between the CDC report and 
the mean of the estimated belief distribution.



818	 G. W. Harrison et al.

1 3

From economic and policy perspectives, a more substantive issue than statistical 
bias is whether estimated belief distributions have “sufficient” density around the 
CDC report, because this will influence risk mitigation efforts of individuals and 
public policy approaches to COVID-19 containment. To draw meaningful inferences 
of this kind, one needs to focus on the standard deviation of the belief distribution 
as opposed to the standard error of the point estimate of the mean of the distribu-
tion. Harrison et  al. (2021) discuss a Bayesian approach that can be used to con-
struct a “region of practical equivalence,” or ROPE, around the CDC report and then 
compare that ROPE to highest density intervals of the estimated belief distributions. 
We will adopt these methods in subsequent work, which will allow us to say more 
than whether beliefs were statistically biased: we can determine if those biases have 
“policy significance.”

The complementary statistical analysis of the effect of the course of the pan-
demic, over the 6 waves of our study, indicates that subjective beliefs did change 
significantly as the pandemic evolved.25 Fig. 12 displays the estimated effects. The 
horizontal axis displays the course of the pandemic, measured by the normalized 
value of cumulative deaths from COVID-19 during the period of our experiments. 
So a value of 1 on the horizontal axis denotes the level of cumulative deaths at the 
time of the final wave, on October 29, 2020. The solid, vertical red line shows the 
first wave, and the dashed, vertical red lines show later waves. For completeness, 

Fig. 12   Predicted subjective beliefs over the path of the pandemic studied

25  See Figure A4 in Online Appendix A, and estimates and hypothesis tests in Online Appendix C.
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we project prior to our first wave, back to the origins of the pandemic when there 
were zero recorded deaths. As one would expect from “out of sample” predic-
tions, the confidence intervals widen when forecasting to before our first wave (the 
same is true, of course, for forecasts to later pandemic outcomes). The results in 
Fig. 12 accord with intuition: as cumulative deaths grew, forecast averages for that 
level grew. And the rationale behind the decline in the standard deviation of beliefs 
around waves 3 and 4 has been just discussed.26

6 � Discussion

The data from our experiment span many preferences and beliefs that are relevant to 
descriptively understanding and normatively evaluating observed responses to the 
pandemic, and to designing appropriate policy. We stress that such analyses should 
exploit the fact that our experimental design provides data for rich, structural infer-
ences at the level of the individual. The present analysis focuses on inferences for 
pooled data, although conditioned on a large set of covariates to mitigate wave-to-
wave sampling variability. We focus here on two clear results from that pooled anal-
ysis, each of which suggest important hypotheses for future evaluation.

6.1 � The effect of background risk on foreground risk aversion

The striking result for atemporal risk preferences appears to be exactly what Quig-
gin (2003) “anticipated” would happen under RDU with additional background 
risk being present.27 The literature on background risk established conditions 
under which a background risk with zero average effect on payouts would be asso-
ciated with a change in foreground risk aversion.28 Intuition allows for any effect, 
and effects that are sensitive to the size of the background risk. Modest increases 
in background risk would presumably lead to more risk aversion over foreground 
choices, termed “risk vulnerability.” On the other hand, the psychological notion of 
“diminished sensitivity” suggests that if an individual is already at a point of suf-
ficiently high (background) risk, the addition of a small amount of (foreground) risk 
will not be particularly salient. And severe, life-threatening background risk can be 
a factor leading to risk-management decisions that appear to be risk-loving behav-
ior, such as the migration patterns observed during times of localized famine (Sen 
(1981)).

26  Figure 12 indicates a smooth reduction in variance, but Fig. 10 suggests that it was a sharper reduc-
tion. These differences are directly due to the use of “fixed effect dummies” for waves in the analyses 
underlying Fig. 10, and the quadratic (or “smooth polynomial”) specification of the path of the pandemic 
used in the analyses underlying Fig. 12.
27  The formal results of Quiggin (2003) were derived assuming the special case of RDU referred to as 
“dual theory,” but readily generalize.
28  Nobody suggests that the pandemic posed zero-mean effects on outcomes for our subjects. This is just 
assumed to identify theoretically the pure mechanisms at work from additional background risk.
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Gollier and Pratt (1996) established conditions, generalized by Eeckhoudt et al. 
(1996), to show that under EUT the risk vulnerability result is associated with all 
weakly decreasing absolute risk averse utility functions, such as the CRRA speci-
fication we employed. Assuming EUT, the results in Fig. 5 would suggest that the 
pandemic did not generate risk vulnerability, since the implied risk premia are 
the same as for our pre-pandemic sample. Quiggin (2003) established more gen-
eral results when one allows for RDU, showing that the effect of background risk 
depends on the nature of probability weighting, with potential contrasts to the pre-
dictions under EUT. Our results confirm the critical importance of the probability 
weighting “pathway” to the risk premium.

Further investigation of this finding will employ a Bayesian Hierarchical model, 
following Gao et al. (2020), to allow inferences about individual RDU risk prefer-
ences, conditioning on pre-pandemic data as well as the evidence from data col-
lected during the pandemic. It will also consider the effect of imposing a dogmatic 
prior that individuals view compound lotteries consistently with the Reduction of 
Compound Lotteries axiom, since the relationship between background risk and 
foreground risk defines a compound lottery.29 These analyses will complement an 
emerging literature on risk preferences in the context of natural disasters and vio-
lence, as reviewed by Drichoutis and Nayga (2021).

6.2 � Evolving subjective beliefs

Our second striking result is the evolution of subjective beliefs about cumulative 
deaths due to the pandemic. We observed, again at a pooled level, considerable 
changes in the average belief over our six waves, as well as considerable changes 
in the confidence of those beliefs. The mere fact that the mean of beliefs is greater 
or smaller than the realized value is not the same as whether these differences have 
“policy significance,” and by itself says nothing about overconfidence or insufficient 
confidence.30

The next step, again, is to examine these evolving beliefs in a Bayesian Hierarchi-
cal model that allows inferences at an individual level, and to consider the effect of 
our rich set of covariates about COVID-19 information sources and credibility. This 
will allow tests of hypotheses about the drivers of any changes in bias and confi-
dence. We can also compare the evolution of these beliefs on “The Street” with the 
evolution of predictions from epidemiological models, as summarized by Harrison 
et al. (2021) using our data.

29  There exist formal structural models, referred to as Recursive RDU models, that relax this axiom but 
maintain the Compound Independence axiom: see Harrison and Ng (2018) for an exposition and applica-
tion.
30  There is a literature that refers to overestimation or overplacement as overconfidence, but that is sim-
ply poor use of statistical terminology. These are measures of bias, and may or may not reflect statis-
tically significant bias depending on the variance of beliefs. The sole measure of overconfidence one 
should use is overprecision: see Harrison and Swarthout (2020; §5) for further discussion of this litera-
ture.
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7 � Conclusions

The COVID-19 pandemic presents a remarkable opportunity to put to work all of 
the research that has been undertaken in past decades on the elicitation and struc-
tural estimation of subjective belief distributions as well as preferences over atem-
poral risk, patience, and intertemporal risk aversion. As contributors to elements 
of that research in laboratories and the field, we drew together those methods and 
applied them to a series of multi-wave, online, incentivized experiments in the 
United States. The resulting data will provide the basis for investigation of several 
hypotheses emerging from our initial evaluation of pooled data, particularly with 
respect to atemporal risk preferences and subjective beliefs.

Supplementary Information  The online version contains supplementary material available at https://​doi.​
org/​10.​1007/​s10683-​021-​09738-3.
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