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Abstract
Hidden colors are a widespread phenomenon in the animal kingdom, particularly in an-
urans. In some cases, hidden colors are suddenly exposed during defensive displays to 
startle predators, others seemingly remain hidden—particularly from researchers. Amazo-
nian species of Neotropical harlequin toads (genus Atelopus) show striking and consistent 
ventral sexual dichromatism where females show and males generally lack melanization. 
Inspired by these observations we undertook a deeper inquiry across this species-rich 
genus. We collected data on ventral sexual dichromatism in Atelopus species and scored 
expression of sex-specific ventral melanization (i.e. black, brown and/or grey coloration). 
Ventral sexual dichromatism was present throughout the entire range of the genus and in 
almost all phylogenetic groups. However, there was a clear geographic signal with this 
trait being most common and widespread in Amazonian Atelopus species. Ventral mela-
nization was correlated with temperature and elevation. Focusing on the Amazonian spe-
cies, we present hypotheses on potential functions of sexually dimorphic ventral patterns 
and sex-specific ventral melanization as a baseline to further investigate the dynamics of 
sexual and natural selection as potential drivers of these traits. Selective pressures on less 
exposed body parts, such as ventral sides, likely differ considerably from those on dorsal 
appearance. Given the amount of research on amphibian coloration, it is remarkable how 
little we know about the evolution, function and underlying mechanisms of ventral appear-
ance. We hope our work will spark more interest in the flip side of amphibians, thereby 
broadening our understanding of animal coloration.

Keywords Hidden colors · Aposematism · Sexual selection · Sexual color dimorphism · 
Natural selection

1 3

http://crossmark.crossref.org/dialog/?doi=10.1007/s10682-024-10288-2&domain=pdf&date_stamp=2024-1-30


Evolutionary Ecology

Introduction

Colors and patterns in amphibians are incredibly diverse and can serve multiple functions 
including intra- and interspecific communication, protection from solar radiation as well 
as thermoregulation (Duellman and Trueb 1986; Wells 2007) and as such are subject to 
both natural and sexual selection. Many anurans such as Neotropical poison frogs (Den-
drobatidae) and Malagasy mantella frogs (Mantellidae) are well-studied for their striking 
(aposematic) coloration deterring potential predators (Summers et al. 2015; Rojas 2016). 
Other anurans are known for rather cryptic coloration by background-matching or disrup-
tion, such as Neotropical dead-leaf pattern toads, genus Rhinella, or Paleotropical mossy 
frogs, genus Theloderma (Toledo and Haddad 2009; Barnett et al. 2021). Moreover, sexual 
dichromatism, where males and females express different coloration, is widespread among 
anuran species (Bell et al. 2017). Classic examples include the temporary color changes of 
male moor frog (Rana arvalis) during the breeding season or the ontogenetic color changes 
in Rhinella icterica with dichromatism appearing at sexual maturity (Bell and Zamudio 
2012; Sztatecsny et al. 2012).

The dorsal coloration in frogs and toads is most frequently studied, while the function 
and evolution of ventral colors and patterns are less well understood, even though they are 
often equally as striking and complex (cf. Wells 2007; Toledo and Haddad 2009; Loeffler-
Henry et al. 2023). Ventral appearance is likely to be under different selective pressures 
compared to dorsal sides due to its concealed nature, being less exposed to environmental 
pressure, predators, conspecifics (and researchers).

Ventral coloration is mostly studied in the context of anti-predatory deimatic displays 
(Bajger 1980; Kariş et al. 2017). For example, the chemically defended fire-bellied toads 
in the genus Bombina and the Neotropical bufonid genus Melanophryniscus, expose their 
conspicuous ventral coloration during a defensive behavior called the unken reflex (Grant 
et al. 2012; Bordignon et al. 2018). In contrast, the influence of environmental variables on 
ventral coloration are less researched, although both color perception and predator commu-
nities may change along environmental gradients.

However, the role of ventral coloration in anurans is probably more complex. An example 
is the species-rich genus of harlequin toads (Atelopus), a group of toxic anurans from Cen-
tral and South America in which an unken reflex has been observed only occasionally (e.g. 
A. exiguus). In many Atelopus species colorful ventral sides have been described (Lötters 
1996; Coloma et al. 2000; Atelopus sp. “wampukrum” in Fig. 1), including patterns of sex-
ual dichromatism: females commonly present dark blotches on the ventral side while males 
usually entirely lack ventral melanization (Fig. 1), as noted in Atelopus pulcher, A. loettersi 
and A. manauensis (Lötters et al. 2002; De la Riva et al. 2011; Jorge et al. 2020). In contrast, 
the reversed pattern, with only males being ventrally melanized, is found in species from the 
Colombian Andes, e.g., in A. nocturnus and A. subornatus (Lötters 1992; Bravo-Valencia 
and Rivera-Correa 2011). Equally, some Atelopus species are sexually monomorphic with 
either no melanized patterns or patterns that are similar between males and females, such 
as A. ardila where the venter is uniform cream in males and females (Coloma et al. 2010).

Here, we record the presence/absence of ventral sexual dichromatism and specifically 
the sex-specific differences of ventral melanization in the genus Atelopus and explore how 
ventral dichromatism is linked to geographic distribution and species-specific environmen-
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Fig. 1 Ventral sexual dichromatism in species of the genus Atelopus, males (right) and females (left). Top, 
Atelopus spumarius sensu stricto from the upper Amazon basin showing ventral sexual dichromatism in 
both color and pattern; middle, Atelopus cf. sonsonensis Pensylvania (sp. 4 sensu Rueda-Almonacid et 
al. 2005) from the Colombian Cordillera Central showing ventral melanization in males only; bottom: 
Atelopus sp. “wampukrum” from the Cordillera del Condor, an example for striking ventral sexual di-
chromatism of coloration, showing melanization in females only. Figure not to scale. Photos: J. Culebras 
and C. Heine
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tal variables. Further, we develop hypotheses exploring potential adaptive functions of sex-
specific ventral coloration.

Methods

We opportunistically extracted information from species descriptions, by visual exami-
nation of available photographs of live or preserved specimens, own observations and 
scientific collections to assess presence/absence of sexual dichromatism based on either 
differences in melanization or other colors between males and females or both. We refrained 
from using image processing software for refined quantification due to the lack of compara-
bility with data necessarily obtained by eye (i.e. species descriptions, field observations). As 
sex-specific differences in melanization appeared to be the most common reason for dichro-
matism, we further scored whether males, females both or neither expressed ventral mela-
nization (Supplementary Table S1). In total, we used information from 131 described and 
undescribed Atelopus species (Lötters et al. 2023; Supplementary Table S1). Species were 
scored based on visual examination as soon as data on a minimum of one individual per 
sex was available to us, particularly because several Atelopus species are known from few 
specimens only (e.g. A. orcesi; Coloma et al. 2010). Ventral sexual dichromatism, which 
was assessed as presence/absence data, was considered present for all species that showed 
distinct patterns and/or colors between sexes on at least one third of their ventral surface in 
all examined specimens of at least one population (we observed within-species variation in 
the presence/absence of this trait in A. limosus only, a species that comprises two distinct 
morphotypes). Sex-specific ventral melanization was scored as present, when all examined 
individuals of at least one population presented at least about 10% of the venter covered in 
dark pattern (black, brown and/or grey blotches, dots, lines or markings). When such mela-
nization was present, we further examined if it was observed in male or female individuals 
only, or if it occurs in both sexes (at least one specimen of each sex). Information for at 
least one adult male and female were available from 94 species regarding ventral sexual 
dichromatism and from 96 regarding ventral melanization. To explore whether there are 
correlations of environmental data with the presence/absence of ventral dichromatism and 
melanization, we derived location-specific environmental data using ArcGIS Pro (ESRI). 
This was based on 596 coordinates for 105 of the 131 species after merging sites with a dis-
tance of < 30 arc seconds to others of the same taxon. For 60 species, information from more 
than one population was available (63.8% of the 94 species known from > 1 locality; Löt-
ters et al. 2023). We used the bioclimatic variable ‘mean annual temperature’ (Bio1) from 
the CHELSA TraCE21k data (Karger et al. 2023), and elevation from the World Elevation 
Terrain digital terrain model (ESRI). All data, sample sizes and data sources are provided in 
Supplementary Table S1. We have intentionally not published locality data from this study 
as doing so could threaten populations due to illegal collecting.

We fitted Generalized Additive Models (GAMs) in R 4.3.0 (R Core Team 2021) using the 
package data.table (Dowle and Srinivasan 2022) to load data, mgcv (Wood 2011, 2017) for 
modelling and itsadug (van Rij et al. 2022) to inspect the results. We visualized results in 
ggplot2 (Wickham 2009). We generated separate models for the dependent variables ventral 
sexual dichromatism and ventral melanization. Ventral melanization was further modelled 
separately for each sex as well as together to account for the differences between sexes. 
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Smooth predictors included locality (latitude and longitude), average temperature, eleva-
tion, and the interaction between the last two as a tensor term. All models had a binomial 
error structure. Since there was almost no variation in temperature and elevation for popula-
tions from the Amazon basin and the Guianas, we removed these observations (any obser-
vation E of 65° W) focusing on the mountain ranges and upper Amazon to elucidate any 
potential effects of temperature and elevation on ventral sexual dichromatism as well as on 
ventral melanization. The code as well as detailed model results and supplementary model 
visualization are provided in Supplementary Data D1.

Results

We identified 26 Atelopus species with ventral sexual dichromatism (27.7% of the 94 spe-
cies with sufficient data on this trait; Fig. 2; Supplementary Table S1). In 41 species, ventral 
melanization was present in at least one sex (42.7% of the 96 species with sufficient data 
on this trait; Fig. 3; Supplementary Table S1). Of these, in 12 only females and in five only 
males possessed ventral melanization. Ventral sexual dichromatism occurred throughout 
almost all major clades, i.e. the carrikeri, the Andean, the flavescens-spumarius, the tri-

Fig. 2 Spatial distribution of ventral sexual dichromatism in the genus Atelopus: black dots = present, 
white dots = absent, grey dots = unknown. Colored polygons indicate the approximate ranges of phylo-
genetic clades: red = Andean clade, pink = cruciger clade, blue = flavescens-spumarius clade, yellow = tri-
color clade, orange = varius clade; the carrikeri clade indicated by an arrow
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color, and the varius clades (Lötters et al. 2011; Böning et al. 2022). The only exception 
where this trait was absent in all species is the cruciger clade (Fig. 2; Supplementary Table 
S1).

The GAMs revealed that geographic location was a significant predictor for the presence 
of ventral dichromatism (Longitude*Latitude: edf = 19.002, Ref.df = 22.646, 𝜒2 = 61.986, 
p < 0.0001), while temperature (edf = 3.024, Ref.df = 3.871, 𝜒2 = 6.775, p = 0.1256), eleva-
tion (edf = 3.857, Ref.df = 4.864, 𝜒2 = 9.447, p = 0.0705) and their interaction (edf = 1, Ref.
df = 1, 𝜒2 = 0.035, p = 0.8509) were not.

Ventral melanization was prominent across all temperatures and elevations, but mainly so 
for the hottest area of each elevational step. This seems to be the case for females, while for 
males even though the general pattern appeared similar, the lowest elevations were almost 
completely devoid of melanization. Specifically, ventral melanization was significantly pre-
dicted by geographic location in males (Longitude*Latitude: edf = 18.9, Ref.df = 22.297, 
𝜒2 = 69.462, p < 0.0001) and females (Longitude*Latitude: edf = 22.054, Ref.df = 25.493, 
𝜒2 = 80.71, p < 0.0001). Relationships with temperature and elevation were significant for 
(i) the interaction of temperature and elevation on male ventral melanization (edf = 1, Ref.

Fig. 3 Spatial distribution of sex-specific ventral melanization in the genus Atelopus: black dots = pres-
ent in both sexes, white dots = absent in both sexes, black triangles = present in females only; black 
squares = present in males only; grey dots = unknown. Colored polygons indicate the approximate ranges 
of phylogenetic clades: red = Andean clade, pink = cruciger clade, blue = flavescens-spumarius clade, yel-
low = tricolor clade, orange = varius clade; the carrikeri clade indicated by an arrow
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df = 1.001, 𝜒2 = 8.544, p = 0.00347); (ii) temperature alone on the presence of female ventral 
melanization (edf = 4.112, Ref.df = 5.354, 𝜒2 = 12.584, p = 0.0379) and (iii) elevation alone 
on the presence of female ventral melanization (edf = 1, Ref.df = 1, 𝜒2 = 5.591, p = 0.0181).

Discussion

Sexual dichromatism of ventral sides was geographically widespread across the distribution 
of the genus Atelopus and was observed in members from all but one clade, including the 
most basal one (carrikeri clade), hinting at this character to potentially be basal in the genus, 
followed by repeated losses. The geographic signal likely mirrors a phylogenetic signal, as 
the different clades occur in allopatry or parapatry (Lötters et al. 2011; Böning et al. 2022). 
However, the most complete published phylogeny covers only few markers and less than 
one fourth of all species, preventing us from phylogenetic mapping of ventral sexual dichro-
matism and sex-specific ventral melanization. We therefore encourage such approaches for 
future studies once a broader molecular sampling has become available.

So far, the function of ventral sexual dichromatism in Atelopus is unknown, likewise 
whether it is shaped by sexual or natural selection or, as seems most likely, by both. Envi-
ronmental parameters investigated did not explain the presence or absence of ventral dichro-
matism in this group.

Sex-specific ventral melanization is widespread, implying that it is a highly conserved 
trait. We found significant relationships of temperature and elevation with ventral mela-
nization. Melanization of ventral sides is consistently prominent in the hottest areas of 
each elevational step with the exception that males show no melanization in the lowest 
elevations. Some studies have found evidence that higher melanization is more prevalent in 
high-altitude species suggesting a role in thermoregulation and protection from UV radia-
tion (Trullas et al. 2007; Alho et al. 2010). The presence of melanization on the ventral 
side, a much less exposed body part, is difficult to explain in this framework. Although we 
observed a seeming relationship of ventral melanization with temperature and elevation, we 
believe both variables do not exclusively explain our observations. However, despite our 
broad taxon sampling, information is often derived from few individuals and few localities 
only, particularly in the many poorly known, locally endemic and ‘lost’ taxa (Supplemen-
tary Table S1). This uncertainty regarding within-species variation, as well as the challenges 
when deriving color information from historic museum specimens and possible inaccura-
cies of trait characterization when deriving color data opportunistically from different data 
sources require caution for interpreting our observations.

It is clear from our study that patterns of ventral sexual dichromatism as well as presence 
of ventral melanization are geographically complex, making it highly unlikely that a single 
functional explanation can be applied to all populations and species. Consequently, we focus 
below on the least imperiled and therefore best sampled Amazonian species and the robust 
sex-specific difference of ventral melanization in this group for a functional discussion.

Sexual dichromatism in anurans commonly implies a function in intraspecific communi-
cation such as territoriality (e.g., in the genus Staurois; Stangel et al. 2015) or mate-choice 
(e.g., in Oophaga pumilio; Maan and Cummings 2009). However, different colors of males 
and females can equally be the result of sex-specific life history (Dale et al. 2015). Many 
Atelopus, at least for some periods throughout the year, live along streams in visually and 
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acoustically complex environments (e.g., Sexton 1958; Dole and Durant 1974; Crump 1988; 
Lindquist et al. 1996; Ringler et al. 2022). Besides acoustic signaling, visual signaling might 
therefore be crucial in intraspecific communication for instance with regard to hand and foot 
signaling (i.e. semaphoring) in Atelopus (e.g., Lindquist and Hetherington 1996). Ventral 
coloration which is exposed during intraspecific interaction, likely has a signaling function 
in diurnal anurans (Hödl and Amézquita 2001; cf. Starnberger et al. 2014). So far observed 
in at least some Atelopus species, males expose the vocal sac to conspecifics (both male and 
female) during vocalization in both territorial and reproductive contexts (cf. Lindquist and 
Hetherington 1996; Supplementary Video 1). Males of Amazonian Atelopus species that, at 
least on anterior parts, commonly lack ventral melanization, can often be observed calling 
from elevated sites such as tree trunks, increasing the visibility of their ventral surfaces, 
particularly the throat, to conspecifics. Amazonian Atelopus species, however, also present 
the longest advertisement call durations in the genus (i.e. the ‘pulsed call’ type: Cocroft et 
al. 1990; Lötters et a. 2019) and vocalize more frequently than most other Atelopus, perhaps 
implying a stronger selective pressure for bright, non-melanized, throats (A. Plewnia, S. 
Lötters, unpubl. data).

Consequently, the lack of any melanization on the ventral side could maintain visual 
signal efficacy during acoustic signaling. We hypothesize that in order to maintain high 
signal efficacy of throats during vocalization in intra- and or intersexual interactions, mela-
nization of the ventral region may be inhibited in males of certain Atelopus species. To test 
this hypothesis, models of Atelopus with inflatable throats (similar to those used for other 
anurans by James et al. 2022) that can be manipulated in coloration (e.g. yellow vs. yellow 
with black spots) can be used to run choice experiments testing effects of throat coloration 
on female preference.

Understanding sex-specific ventral melanization in Amazonian Atelopus species requires 
broader consideration of their life histories. Substantial differences in life history between 
males and females have been reported in several Atelopus species (Dole and Durant 1974; 
Lötters 1996; Luger et al. 2009; Ringler et al. 2022). In many species, males maintain their 
territories on stream banks at least throughout parts of the year where they can occur in 
high densities (Crump 1988; Ringler et al. 2022; Señaris et al. 2023). Females, on the other 
hand, are scattered throughout the forest farther from streams, returning to their spawning 
sites only for reproduction (Lindquist et al. 2007; Ringler et al. 2022). These differences in 
life history and consequently microhabitat, can likely influence the expression of ventral 
melanization, e.g. due to exposure to distinct predator communities. For instance, ventral 
melanization may act disruptive to ventral color in complex habitats and particularly to 
predators that do not perceive colors while enhancing contrast and conspicuousness in uni-
form environments. Such factors, along with other ecological and evolutionary dynamics, 
could contribute to the expression of ventral sexual dichromatism in Amazonian Atelopus.

Not much is known about predators of Atelopus. As far as we are aware, there are only 
a few documented cases of predation on adult harlequin toads. These include predation by 
the carunculated caracara (Phalcoboenus carunculatus; De Vries et al. 1983), a fire-bellied 
snake (Erythrolamprus epinephalus; Greene 1997; Lindquist et al. 2007), a climbing catfish 
(Astroblepus sp.; Cruz-Garcia et al. 2023), a golden wolf fish (Hoplerythrinus unitaenia-
tus; Lima et al. 2019), a water bug (Abedus sp.; González-Maya et al. 2019) and by an 
unidentified crab (Barrio-Amorós et al. 2021). As far as we are aware, there is only one 
documented case of predation on a juvenile harlequin toad by an Amazonian white-lipped 
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frog (Leptodactylus mystaceus; Pinto and Costa-Campos 2015). It is interesting that four 
of these observations document aquatic predators, which are potential visual receivers of 
ventral coloration. With that in mind, it seems plausible that females of Amazonian Atelopus 
species possess dark blotches, which could render them potentially cryptic to aquatic preda-
tors during aquatic phases pre, during and post egg deposition (with the amplectant male 
on its back). This could explicitly be tested by deploying models of Atelopus with different 
ventral patterns in the water (attached to the shore) and monitor them using camera traps 
for several weeks.

Ontogenetic change of colors is known to enhance camouflage in juveniles to reduce 
predation, with development of conspicuous colors or patterns with sexual maturity (Stan-
gel et al. 2015). Ontogenetic color changes from cryptic to conspicuous are known from 
several harlequin toad species, where dorsal coloration transitions from uniformly greenish 
and black to bright green, yellow, orange, pink or red with black markings in adults (e.g., 
A. balios, A. certus, A. elegans, A. varius, A. zeteki; Lötters 1996; A. Plewnia, S. Lötters, 
unpubl. data). Less is known about potentially similar ontogenetic changes of ventral col-
oration, specifically of melanization. Generally, we suspect that changes in skin toxicity or 
changes in predator species over the lifetime of these animals could influence changes in 
color and pattern expression.

So far, ventral appearance in amphibians have gained very little attention, despite the 
ease of data availability via photographs and field guides. Ventral appearance is usually 
discussed in the context of defensive behaviors, where hidden colors are revealed during 
predator encounters (Rudh and Qvarnström 2013; Loeffler-Henry et al. 2023). The stepping-
stone hypothesis of aposematism evolution (Loeffler-Henry et al. 2023), where conspicuous 
hidden signals are thought to evolve into overt aposematic signals does not account for the 
widespread and variable, ventral sexual dichromatism we describe in Atelopus, demanding 
alternative explanations. Based on our observations in Atelopus we suspect that ventral sex-
ual dichromatism and sex-specific ventral melanization may be widespread among diurnal 
anurans that commonly engage in visual signaling with functions in need of explicit testing.
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