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Abstract
Distinctive chemical signatures have the potential to serve as discriminatory cues for olfac-
tory recognition mechanisms. Cuticular hydrocarbon (CHC) profiles are among the most 
prominent chemical signatures in insects that can be highly diverse even among closely 
related species and between populations with similar ecology. Particularly within the major 
insect order Hymenoptera, CHC profiles are characterized by high complexity and vari-
ation with the potential to evolve rapidly. In this study, we found two very distinct CHC 
chemotypes distinguishing sympatric colonies of the African carpenter ant Campono-
tus maculatus (Hymenoptera: Formicinae). These chemotypic differences were mainly 
detected on the surface profiles of eggs produced by either queens or isolated worker 
groups. In one chemotype, queen- and worker-laid eggs are very similar. This is largely 
contrasted by the other chemotype, where queen-laid eggs clearly differ from worker-laid 
eggs with several prominent queen-exclusive compounds. However, workers display a sta-
ble behavior of discriminating against and selectively disposing of worker-laid eggs i.e., 
worker policing, independent of egg chemotype. Furthermore, genetic barcoding of work-
ers revealed a clear separation between colonies characterized by producing these two dis-
tinct egg chemotypes, which may indicate that these colonies belong to a cryptic species 
complex. Interestingly, worker policing behaviour appears to be evolutionarily conserved, 
despite the strikingly different egg surface profiles.
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Introduction

Eusocial insect societies like ants are characterized by only one or few reproducing indi-
viduals, while the majority of individuals form a distinct worker caste with no or very 
reduced fertility (Wilson 1971; Hölldobler and Wilson 1990). In most ant species and other 
eusocial Hymenoptera, reproductives or queens usually signal their reproductive status, 
inducing workers to remain sterile (Hoover et al. 2003; Le Conte and Hefetz 2008; Holman 
et al. 2010). Fertility signaling in social insects is largely mediated by cuticular hydrocar-
bons (CHCs) on the cuticle of both eggs and their producers (Endler et  al. 2004; Smith 
et al. 2012; Van Oystaeyen et al. 2014). Additionally, numerous studies have shown a link 
between particular CHC compounds or compositions and reproductive status (Peeters 
and Liebig 2009; Smith et al. 2009; Yagound et al. 2014; Abril et al. 2018; Honorio et al. 
2019). In several social insect species, differences in CHC surface profiles between queens 
and workers can be perceived and distinguished by nestmates, potentially signaling pres-
ence or absence of a fertile reproductive caste (Monnin et al. 1997; Dietemann et al. 2003, 
2005).

In the absence of a fertile queen, workers of many ant species are capable of activating 
their ovaries to lay unfertilized eggs that can develop into males (Bourke 1988; Bourke and 
Franks 1995; Wenseleers and Ratnieks 2006). However, frequent observations have shown 
that individual workers may attempt to reproduce even in the presence of a fertile queen 
(Frank 1995; Wenseleers et  al. 2004; Wenseleers and Ratnieks 2006). Worker reproduc-
tion is usually not in the interest of other workers, due to potential relatedness asymmetries 
arising in the colony, as well as bearing the costs of a generally reduced colony efficiency 
(Ratnieks and Wenseleers 2005; Wenseleers and Ratnieks 2006). This can lead to workers 
preventing each other from reproducing, which has been termed ‘worker policing’ (Foster 
and Ratnieks 2001; Whitfield 2002; Endler et al. 2007).

Policing behaviors either involve direct aggression towards reproductive workers 
(Liebig et al. 1999; Wenseleers et al. 2004, 2005) or the selective removal of worker-laid 
eggs (Foster and Ratnieks 2001; d’Ettorre et al. 2004; Endler et al. 2004). Because destroy-
ing queen-laid eggs would be counter-productive in the process, egg policing requires the 
ability to reliably discriminate between queen- and worker-laid eggs. Such discriminating 
mechanisms are frequently mediated by CHC profiles on the surface of eggs (Endler et al. 
2004; Helanterä and d’Ettorre 2015; Saitoh et  al. 2020). These generally function as an 
extension of the surface profiles of the respective egg layer, enabling workers to assess 
the egg layers’ fertility status and caste identity (Heinze et  al. 2002; Endler et  al. 2004; 
Abril et al. 2018). For example, the carpenter ant Camponotus floridanus (Hymenoptera: 
Formicinae) is characterized by marked differences in egg surface CHC profiles between 
queen- and worker-laid eggs (Endler et al. 2004). These differences are used by workers to 
selectively destroy worker-laid eggs, i.e., inducing worker policing. However, egg surface 
profile variations and related policing behaviors have not yet been investigated in other spe-
cies of this highly diverse genus of carpenter ants. Additionally, it remains yet to be investi-
gated whether fertility signals encoded by CHCs might be evolutionarily conserved across 
species and how universally applicable these findings are.

Here, we attempt to close these knowledge gaps by analyzing CHC profiles of both 
queen- (QLE) and worker-laid eggs (WLE) and their respective producers (i.e., queens and 
workers) in African carpenter ant colonies of Camponotus maculatus (Hymenoptera: For-
micinae). Camponotus colonies are generally characterized by a single monandrous queen 
and workers usually refrain from reproduction in her presence (Wilson 1971; Hölldobler 
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and Wilson 1990; Gadau et al. 1996, 1998). However, workers generally start laying eggs 
in the absence of a fertile queen or if the productivity of a queen decreases (Endler et al. 
2004, 2007). We show that these sympatric colonies contain very distinct egg surface pro-
files that can be clustered into two different chemotypes. One of these chemotypes contains 
very few differences between queen- and worker-laid eggs which is largely contrasted by 
the other chemotype, where queen-laid eggs clearly differ from worker-laid eggs with sev-
eral prominent queen-exclusive compounds. We further show a highly selective brood dis-
crimination ability of C. maculatus workers for the first time, independent of the respective 
egg chemotype. Finally, we use a genetic barcoding analysis correlating genetic and chemi-
cal divergence, which may indicate a cryptic species complex. Our results show highly 
conserved worker policing behavior contrasted by a low conservation of distinct chemical 
cues involved in the discrimination of queen- and worker-laid eggs across colonies in this 
potentially cryptic species complex, challenging the assumption of universally detectable 
chemical signatures of reproductive status in ants.

Materials and methods

We characterized the chemotypes (CHC profiles) of seven laboratory colonies founded 
by queens collected during their nuptial flight. From these colonies, we created 25 queen-
less nests that produced worker laid eggs, and 61 queenless nests that were used in worker 
policing assays discriminating between queen-laid eggs (QLE) and worker-laid eggs 
(WLE).

Ant colonies

Founding queens of C. maculatus were collected using a blacklight at the Comoé National 
Park in the northeastern part of the Ivory Coast (8°46′11′′ N,  3° 47′21′′W) after nuptial 
flights in 2017 (about 10 founding queens), 2018 (about 20 founding queens) and 2019 
(about 50 founding queens) during nighttime. The genus Camponotus may reach high 
colony densities of up to 0.045/m2 (Lange et  al. 2019). Assuming similarly high colony 
densities for our sample location and coordinated mating flights, the queens are most likely 
from several unrelated colonies. Mated queens were transferred to our laboratory at the 
University of Münster, Germany, housed in plastic boxes (25 × 25 × 10 cm3) containing a 
plastered floor, and fed twice a week with honey water and cockroaches (Blaptica dubia). 
The colonies were maintained at a day/night cycle of 30 °C/25 °C for 12 h each at 60% 
relative humidity for at least a year prior to carrying out the worker policing experiment 
and extracting chemical data from colonies that had grown to at least 1000 workers. All 
required collection and export permits were provided by the Directeur Général of the 
Office Ivoirien des Parcs et Réserves (OIPR), Côte d’Ivoire (N°018/MINEDD/OIPR/DZ).

Egg and ant surface extractions and chemical analysis

Pilot analysis of representative chemical profiles of queens and workers and their respective 
eggs from two colonies grown to more than 1000 individuals (17–01 and 18–02, Table S1) 
revealed two very distinct colony-specific chemotypes. Batches of 20 eggs per group (QLE 
and WLE) were extracted in 80 µl of MS pure hexane (UniSolv, Darmstadt, Germany) in a 
2 ml GC-vial (Agilent, Santa Clara, California, U.S.A.) while being swirled on an orbital 
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shaker (IKA KS 130 Basic, Staufen, Germany) for 10 min. For single C. maculatus work-
ers (2 for each chemotype, respectively), the same procedure was used except of applying 
250 µl of MS pure hexane to cover the workers entirely during the extractions. Extracts were 
then transferred to a 250  µl conical insert (Agilent, Santa Clara, California, U.S.A.) and 
evaporated under a constant flow of CO2. The dried extracts were resuspended with 20 µl 
of an MS pure hexane solution containing 7.5 ng/μl of n-dodecane (EMD Millipore Corp., 
Billerica, Massachusetts, U.S.A.) as an internal standard. Five μl of the extract were injected 
into a GC-QQQ Triple Quad (GC: 7890B, Triple Quad: 7010B, Agilent, Waldbronn, Ger-
many) with a PAL Autosampler system operating in electron impact ionization mode with 
70 eV. The split/splitless injector was operated at 300 °C in Pulsed splitless mode at 20 psi 
until 0.75 min with the Purge Flow to Split Vent set at 50 ml/min at 0.9 min. For the queens 
of the two colonies, we used solid-phase microextraction (SPME), a non-lethal method to 
extract cuticular chemicals. The individual queens were immobilized with ice for 10 min 
and their abdomens inserted through a small slit cut into filter paper to hold them in place. 
A 7 µm thick Polydimethylsiloxane (PDMS) SPME fiber (Restek GmbH, Bad Homburg, 
Germany), pre-conditioned on a temperature program starting from 60 °C, held for 2 min, 
increasing by 60 °C per min to 200 °C, followed by an increase of 4 °C per min to 325 °C, 
was gently rubbed over the abdomen of the queen for 5  min. Then the SPME fiber was 
inserted into the GC-Inlet using the same method as the liquid injections. Chromatographic 
results obtained with a 7 µm PDMS fiber have been shown to be the closest to the corre-
sponding liquid injections, albeit without the possibility to conduct direct quantitative com-
parisons (Tentschert et al. 2002; Geiselhardt et al. 2009; Gerhardt et al. 2015).

Separation of compounds was performed on a 30  m × 0.25  mm ID × 0.25  μm DB-
5MS ultra inert fused silica column or a 30 m × 0.25 mm ID × 0.25 μm HP-1 Dimeth-
ylpolysiloxane column (Agilent J&W GC columns, Santa Clara, California, U.S.A), 
which both have very similar, comparable separation properties (Agilent, Waldbronn, 
Germany, pers. comm.). The temperature program started from 60 °C, held for 2 min, 
and increasing by 60 °C per min to 200 °C, followed by an increase of 4 °C per min to 
325 °C, where it was held for 5 min. Helium served as carrier gas with a constant flow 
of 1.2 ml per min and a pressure of 10.42 psi. CHC peak detection and identification 
were performed using the Qualitative Analysis Navigator of the MassHunter Worksta-
tion Software (Version B.08.00/Build 8.0.8208.0, Agilent Technologies, Santa Clara, 
California, U.S.A). Peaks were identified according to their diagnostic ions and reten-
tion indices calculated with a C21-C40 alkane standard solution (Merck, Darmstadt, 
Germany). For CHC quantification, Quantitative Analysis MassHunter Workstation 
Software (Version B.09.00/Build 9.0.647.0, Agilent Technologies, Santa Clara, Cali-
fornia, USA) was used. Peaks were quantified using the most abundant diagnostic ion in 
their mass spectra as quantifiers (m/z = 57.0) and several characteristic diagnostic ions 
as qualifiers to allow for unambiguous detection by the quantification software. The pre-
defined integrator Agile 2 was used for the peak integration algorithm to allow for max-
imum flexibility. All peaks were then additionally checked for correct integration and 
quantification, and, where necessary, re-integrated manually. To standardize the peak 
areas, they were divided by total peak area sum per chromatogram, resulting in rela-
tive ratios. The chemotypes of QLE and WLE of the other five colonies with over 1000 
individuals (18–05, 19–10, 19–13, 19–16, 19–17, Table S1) were verified and quanti-
fied under a different set-up where the gas chromatograph (GC: 7890B) was simulta-
neously coupled to a flame ionization detector (FID: G3440B) and the above tandem 
mass spectrometer (MS/MS: 7010B, all provided by Agilent Technologies, Waldbronn, 
Germany). The system was equipped with a DB-5MS fused silica column as indicated 
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above at a temperature of 300  °C with helium used as a carrier gas under a constant 
flow of 1.8  ml/min. The FID had a temperature of 300  °C and used nitrogen with a 
20 mL/min flow rate as make-up gas and hydrogen with a 30 mL/min flow rate as fuel 
gas. The column was split at an auxiliary electronic pressure control (Aux EPC) module 
into an additional deactivated fused silica column piece (0.9 m × 150 μm) with a flow 
rate of 0.8 ml/min leading into the FID detector, and another deactivated fused silica 
column piece (1.33 m × 150 μm) at a flow rate of 1.33 ml/min into the mass spectrom-
eter. The column temperature program was set as described above. This set-up allowed 
for the combination of the best-suited method for hydrocarbon quantification (Agilent 
Technologies, Waldbronn, Germany, pers. comm.) with reliable compound identifica-
tions. However, due to the differences to the initial set-up (see above), the resulting 
chromatograms could not be directly compared quantitatively to the ones received in the 
pilot analysis of the first two colonies, which were therefore excluded from the subse-
quent linear discriminant analysis (LDA). We performed an LDA to visualize the chem-
ical differences between QLE and WLE of the five representative colonies (Chemotype 
1:18–05 and 19–03; Chemotype 2:19–10, 19–16, 19–17) with the R package “MASS” 
and calculated an approximated Wilk’s λ to measure the quality of the LDA.

Worker policing experiment

From the seven chemotyped laboratory colonies, we established in total 61 queen-
less nests of orphaned minor workers with group sizes of ten individual workers each 
(Table  S1). For each of the three colonies of chemotype 1 (17–01, 18–05, 19–13), 
we established five worker groups receiving QLE and five worker groups receiving 
WLE, except for colony 17–01 where we only established three queenless groups per 
QLE and WLE treatment, respectively. For each of the four colonies of chemotype 2 
(18–02, 19–10, 19–16, 19–17) we also established five replicates per egg type, except 
for colony 18–02, where two replicates received QLE, and three replicates received 
WLE. One hour after isolation from their natal nest, each isolated group was provided 
with a batch of ten eggs, derived either from the queen of  their own colony (QLE) 
or from their sisters in one of the 25 queenless nests used for producing worker-laid 
eggs (WLE), depending on the respective treatment of each discriminator colony. As 
we never observed egg-laying in freshly isolated worker groups before approximately 
30 days had passed, we could exclude the occurrence of additional WLE from within 
the respective discrimination groups in this time frame. Egg batches were transferred 
with fine forceps to a piece of plastic (3 × 3 cm2) and checked under a stereo micro-
scope to confirm that no eggs were damaged before starting the experiment. The egg 
batches were then transferred into the isolated nests 1 cm away from their entrance on 
the glass plate that covered the indention of the plaster floor. Twenty-four hours after 
introduction, any remaining eggs were removed and counted. Selective egg removal 
has frequently been demonstrated to occur by oophagy in ants (Monnin and Peeters 
1997; Foster and Ratnieks 2001; d’Ettorre et  al. 2004), thus we regarded non-recov-
ered eggs as consumed (or destroyed) by the workers. Mean differences in the number 
of remaining eggs recovered after 24 h in all 61 isolated worker groups were compared 
according to the origins of the eggs (QLE vs. WLE) with Mann–Whitney U tests, per-
formed with R (Version 4.1.2) in R Studio (Version 2022.07.1) (R Development Core 
Team 2018).
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DNA barcoding/sequencing of cytochrome c oxidase I (COI)

We used COI as a standardized single molecular marker gene, which is present in all 
animals, not considered to be under selection and has a mutation rate fast enough to 
distinguish between closely related species but is conserved among conspecifics (Hebert 
et al. 2003). The Chelex procedure as described by Gadau (2009) was used for our DNA 
extraction of one worker per colony. PCRs were subsequently performed based on Fol-
mer et al. (1994) with 1 µl of the DNA extracts in 2 µl Colorless GoTaq Reaction Buffer 
(pH 8.5, 7.5  mM MgCl2; Promega, Walldorf, Germany), 1  µl 25  mM MgCl2, 0.6  µl 
1.25 mM dNTPs, 0.2 µl of each primer (20 µM, HCO: TAA ACT TCA GGG TGA CCA 
AAA AAT CA; LCO: GGT CAA CAA ATC​ATA​ AAG ATA TTG G), 0.06 µl GoTaq 
G2 DNA Polymerase Buffer (5u/µl; Promega, Walldorf, Germany) and 4.94  µl dem-
ineralized H2O. Samples were heated to 94 °C for 3 min and passed through 38 cycles 
of 94 °C for 1 min, 45 °C for 1 min, and 72 °C for 1.5 min. Final extension occurred at 
72 °C for 5 min. Five µl of the PCR products were purified using 0.25 µl Exonuclease 
1 (5u; Thermofisher, Dreieich, Germany) and 0.5 µl Shrimp alkaline phosphatase (5u; 
Thermofisher, Dreieich, Germany) for 15  min at 37  °C and another 15  min at 85  °C. 
Five µl of purified DNA solution were added to 5 µl of one primer (5 µM; HCO or LCO) 
and sequenced at the European Custom Sequencing Centre, Cologne, Germany. Neigh-
bor Joining calculations based on the mtDNA sequences were conducted using the pro-
gram MEGA 7.0 (Kumar et al. 2016). Sequences were aligned by ClustalW (Thompson 
et al. 1994) and a Neighbor-Joining (Juke-Cantor) tree was created including 100 boot-
straps. The gene tree was rooted with the published sequences from Camponotus flori-
danus (NCBI Reference number: NW_020229323.1).

Results

Distinct egg surface profiles separate into two chemotypes while worker policing 
behavior remains conserved

We discovered very distinct egg surface CHC patterns clearly distinguishing the seven 
experimental colonies into two distinct chemotypes, namely Cmt 1 and Cmt 2 (Figs. 1, 2, 
Table 1). In the first chemotype (Cmt 1) shared by three colonies (17–01, 18–05, 19–13), 
both queen- (QLE) and worker-laid egg (WLE) surface profiles contained the same set of 
compounds up to carbon chain length C31, and QLE surface profiles additionally had com-
pounds with longer chain lengths of up to C35 (Fig.  1, Table  1). Furthermore, the pro-
files of both QLE and WLE in Cmt 1 were mostly composed of methyl-branched alkanes 
(see also Fig.  4a). Conversely, the second chemotype (Cmt 2), detected in four colonies 
(18–02, 19–10, 19–16, 19–17), was characterized by mostly shared compounds between 
WLE and QLE (Fig. 2, Table 1). Moreover, the egg surface profiles of Cmt 2 appeared to 
be dominated by unsaturated CHC compounds (see also Fig. 4b), largely contrasting them 
with Cmt 1. Irrespective of these two very distinct chemotypes, numbers of remaining eggs 
in isolated worker groups from our seven experimental colonies representing both Cmt 1 
(three colonies, n = 26, W = 13, P < 0.001, Mann–Whitney U test) and Cmt 2 (four colo-
nies, n = 35, W = 33, P < 0.001, Mann–Whitney U test) were significantly lower for WLE 
than for QLE 24 h after egg introduction (Fig. 3, Table S1).   
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Fig. 3   Isolated C. maculatus workers discriminate strongly against worker laid eggs. Mean relative 
egg survival rates (± SD) of queen-laid eggs (QLE, red) and worker-laid eggs (WLE, blue) from both dis-
tinct chemotypes (Cmt 1 and Cmt 2) after 24 h in isolated worker groups. The average absolute differ-
ences between initially presented and remaining eggs compared between QLE and WLE were assessed with 
Mann-Whitney U tests and were highly significant for both Cmt 1 (n = 26, W = 13, P < 0.001) and Cmt 2 
(n = 35, W = 33, P < 0.001)

Fig. 4   Comparison of CHC compound class ratios between egg surface profiles and their respective 
producers. Relative distributions (%) of the seven detected CHC compound classes (n-alkanes, n-alkenes, 
alkadienes, mono-, di-, tri- and tetra-methyl branched alkanes) for a) chemotype (Cmt) 1 and b) chemotype 
(Cmt) 2, indicated by different colors, across the surface profiles of queens, QLE, WLE, and workers (top 
to bottom). Note that for queen surface profiles, a different, non-lethal extraction method (SPME) had to be 
applied
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Comprehensive chemical comparison of surface profiles

The chemical profiles of workers and queens that we examined from the two initial 
exemplary colonies were generally similar to the profiles of the eggs they produced 
for both chemotypes, albeit with no complete quantitative and qualitative congruence 
(Figs.  4 and 5). The distribution of CHC compound classes was similar, particularly 
the dominance of methyl-branched alkanes for Cmt 1 and the exclusive occurrence of 
unsaturated compounds for Cmt 2 (Fig.  4). However, closer inspection revealed that 
worker and queen surface profiles differ from the surface profiles of their eggs. In Cmt 
1, for instance, the proportions of both n-alkanes and mono-methyl-branched alkanes 
are almost twice as large on WLE (around 80% in total) when directly compared to 
the profiles of the workers (around 50%), which, in turn, displayed far greater propor-
tions of di- and tri-methyl-branched alkanes (Fig. 4a). Conversely, for Cmt 2, WLE and 
worker profiles displayed very similar compound class distributions, whereas QLE and 
the queen profile showed more differences (Fig. 4b). No tri-methyl-branched alkanes 
and only a small fraction of di-methyl-branched alkanes could be detected on QLE 
despite being clearly present on the queen’s surface in Cmt 2. As apparent from the 
chromatogram comparison (see Fig. 2), the chain length ranges of WLE and QLE were 
vastly different in Cmt 1, which was generally mirrored by both queen and worker pro-
files (Fig. 5a). Queen and QLE profiles of Cmt 1 mostly span between chain lengths of 
C23 and C35, whereas both worker and WLE profiles only ranged between C23 and 
C31. Conversely, Cmt 2 showed more congruence of egg surface profiles with their 

Fig. 5   Comparison of relative CHC lengths distributions between egg surface profiles and their 
respective producers. Relative distributions (%) of CHC compound chain lengths (C21-C39) for a) 
chemotype (Cmt) 1 and b) chemotype (Cmt) 2, indicated by a color gradient, across the surface profiles 
of Queens, QLE, WLE, and Workers (Top to bottom) Note that for queen surface profiles, a different, non-
lethal extraction method (SPME) had to be applied
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Fig. 6   Linear discriminant analysis shows clear separation of egg surface profiles according to chem-
otypes and caste. Linear discriminant analysis (LDA) based on 49 cuticular hydrocarbon (CHC) profiles 
from queen- (QLE) and worker-laid eggs (WLE) of five laboratory colonies initially identified as Campono-
tus maculatus, separated according to the two detected chemotypes (Cmt 1 and Cmt 2) and the respective 
castes of their producers. The respective contributions of the two discriminant functions to the total chemi-
cal variation are indicated in percentages (approximated Wilk’s λ < 0.0001, χ2 = −38.032)

Fig. 7   C. maculatus egg chemotypes correlate with distinct clusters after genetic barcoding. Neighbor-
Joining tree (Juke-Cantor) based on partial mitochondrial COI sequences for Camponotus maculatus, with 
bootstrap values based on 100 iterations at each node. The tree was routed with Camponotus floridanus, a 
carpenter ant native to North America, as an outgroup. The respective egg chemotypes characterizing the 
two distinct clusters are indicated as well
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respective producers, reflecting the general similarity of QLE and WLE which largely 
contrasted them with Cmt 1 (see also Figs. 1 and 2). Focusing solely on the egg sur-
face profiles, a linear discriminant analysis (LDA) clearly showed a strong separation 
of WLE and QLE for Cmt 1, whereas the two egg types clustered much more closely 
together for Cmt 2 (Fig. 6, approximated Wilk’s λ < 0.0001, χ2 = -38.032).  

Genetic analysis of the investigated colonies

A genetic barcoding analysis based on partial mitochondrial cytochrome c oxidase I 
(COI) sequences showed two distinct clusters clearly separating all tested colonies in 
line with the two egg chemotypes which the investigated C. maculatus colonies pro-
duce (Fig.  7). Well-supported by bootstrap values based on 100 iterations, the seven 
colonies clearly clustered according to the distinct egg surface profiles.

Discussion

Despite two very distinct egg surface chemotypes detected in different African carpen-
ter ant colonies initially identified as Camponotus maculatus, worker policing behavior 
appears to be remarkably similar and conserved (Fig. 3). In all tested colonies from both 
chemotypes, WLE are significantly less accepted, unlike QLE which always show a higher 
survival rate in isolated worker groups. This clearly demonstrates the capability of iso-
lated Camponotus workers to discriminate against and selectively dispose of WLE while 
the numbers of QLE remain significantly higher. Interestingly, only in one chemotype (Cmt 
1), numerous qualitative CHC differences between QLE and WLE (Fig. 1 and 4a, Table 1) 
could be detected. In contrast, Cmt 2 shows very few prominent qualitative differences 
between QLE and WLE (Fig. 2 and Table 1), which generally appear to be very similar. 
Additionally, Cmt 1 and Cmt 2 are also very distinct from each other overall with very few 
shared CHC compounds (Table 1).

Our comparisons of egg surface profiles with their respective producers generally cor-
roborate the highly distinct chemotypes for both compound class and chain length distribu-
tions (Figs. 4, 5). However, the egg surface profiles appear in no instance entirely reflective 
of the profiles of their producers, independent of stemming from either worker or queen 
in both chemotypes. This contrasts with findings in the related ant species Camponotus 
floridanus, where the chemical profiles of egg surfaces generally function as an extension 
of the profiles of their producers and match them very closely (Endler et  al. 2004). Our 
results suggest a more selective deposition of CHC compounds on the egg surfaces by their 
respective producers in C. maculatus, potentially explaining the deviations in both com-
pound class ratios and chain length distributions (Figs.  4, 5). Intriguingly, QLE surface 
profiles have been found to be more dominated by short-chained CHCs in C. floridanus, 
a pattern reversed in our findings for Cmt 1 with more long-chained QLE-exclusive com-
pounds (Figs. 2 and 5a, Table 1), but also for the QLE-exclusive trace components in Cmt 
2 (Fig. 3 and Table 1).

This challenges the hypothesis that shorter-chain compounds generally  function as 
conserved queen fertility cues in the evolution of the ant genus Camponotus. Concord-
antly, recent findings have put the universality of queen fertility signals across eusocial 
insect taxa into question, even within the same genus (Smith and Liebig 2017; Smith et al. 
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2018; Steitz and Ayasse 2020). Notably, CHC profiles of most investigated hymenop-
teran species appear to be either dominated by methyl-branched or unsaturated CHCs, and 
closely related species have frequently been found to opposingly display either one of these 
two fundamentally different chemotypes (van Wilgenburg et al. 2011; Kather and Martin 
2015; Sprenger and Menzel 2020). This matches the two distinct chemotypes revealed in 
our study, with Cmt 1 being proportionally dominated by methyl-branched alkanes, and 
Cmt 2 by n-alkenes and dienes (Figs.  1, 2, 4, and Table  1). Moreover, our genetic bar-
coding analysis clearly shows that the genetic divergence between the investigated carpen-
ter ant colonies is in accordance with the two distinct chemotypes (Fig.  6). It has been 
shown that CHC profiles have the potential to evolve rapidly (Menzel et al. 2017; Hartke 
et  al. 2019). For instance, differences in CHC profiles can occur due to local adaptation 
to microclimatic conditions, e.g., higher humidity or radiation, within a few generations 
(Menzel et al. 2018). CHC differences might also occur due to assortative mating and are 
correlated with speciation events in other insects, where species boundaries are maintained 
by chemical differences (Schwander et al. 2013; Chung and Carroll 2015). Since C. macu-
latus has long been known as a notoriously difficult ant species to characterize taxonomi-
cally (Baroni-Urbani 1972; Bolton 1994, 2019), our results support the hypothesis that C. 
maculatus constitutes a cryptic species complex that can be differentiated using chemical 
and molecular, but not morphological characteristics. Moreover, since we detected these 
two distinct chemotypes consistently and independently of the respective collection years 
of the founding queens, it appears to be a stable discriminatory trait within the sampled 
range. As an evolutionary consequence, the chemical profiles of these cryptic species may 
be selected as one of the first cues to differentiate and evolve rapidly within the sympat-
ric speciation process of C. maculatus subspecies, thus comprising a potential source for 
brood discrimination and to detect colony membership. A rapid change in egg surface pro-
files might also be an adaptive strategy to counteract the risk of brood parasitism at certain 
locations. Quickly changing surface profiles might impede social parasites to stably imi-
tate them, and potentially prevent the exploitation through brood parasitism (Guillem et al. 
2014; Casacci et al. 2019).

Our study further demonstrates that worker policing behavior can be remarkably con-
served even between populations with no concretely discernable queen fertility signal on 
the egg surfaces. A few studies have already hinted at evolutionarily stable worker polic-
ing and brood discrimination abilities from a behavioral perspective (Endler et  al. 2004; 
Helanterä and d’Ettorre 2015; Saitoh et al. 2020). However, a common, unambiguous fer-
tility signal could not be ultimately verified so far (Smith and Liebig 2017; Smith et  al. 
2018). For instance, in the black garden ant Lasius niger (Hymenoptera: Formicinae), 
3-MeC31 has been shown to function as queen-specific fertility signal, that reduces both 
worker ovarian activation and aggression (Holman et al. 2010). This hints at the general 
potential of mono-methyl-branched alkanes as fertility cues. In contrast, in the trap-jaw ant 
Odontomachus brunneus Patton (Hymenoptera: Ponerinae), a C29 alkene (9-nonacosene) 
has been identified as queen fertility signal across multiple geographically varied popula-
tions (Smith et al. 2013, 2015). In comparison, we found three C29 alkene isomers, one in 
Cmt 1 and two in Cmt 2, yet all three of them are clearly detectable in both WLE and QLE, 
with no recognizable queen-specific pattern (Table 1).

Thus, universal features of signals encoding and conveying the same fundamental bio-
logical information, in this case fertility and reproductive status, appear to be hard to ulti-
mately verify (Smith and Liebig 2017; Smith et al. 2018). It has been postulated that mainly 
saturated straight-chain and methyl-branched alkanes constitute conserved queen pheromonal 
compounds across the order Hymenoptera (Van Oystaeyen et al. 2014). Interestingly, the only 
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shared compounds between Cmt 1 and 2 are, in fact, a subset of straight-chain and methyl-
branched alkanes (Table  1). Only two compounds, 7-MeC35 and 5-MeC33, were found 
exclusively in small traces in QLE. The latter were shared between both chemotypes, poten-
tially hinting at the rarely investigated capability of this compound class to encode and con-
vey information (Holze et al. 2021), despite their comparatively low quantities.

Our study design cannot completely discriminate whether QLE display distinguishable 
fertility cues preventing them from being policed, or WLE display differential cues render-
ing them more prone to policing. The physiological, perceptual and cognitive processes for 
egg- and nestmate recognition are still largely unknown. It is suggested that queen odors 
are the dominant recognition cues (Carlin and Hölldobler 1987; Van Oystaeyen et al. 2014; 
Smith and Liebig 2017), but discrimination patterns may largely vary between species and 
the relative influences of genetic, environmental, and chemical factors may be different 
– even between populations of the same or closely related species. Additionally, in an envi-
ronment with a high number of sympatric species such as in the present study’s sampling 
location (Comoé National Park, Ivory Coast), individuals may experience reinforced selec-
tive pressure to constantly fine-tune their template for recognition (Leonhardt et al. 2007; 
Smith and Liebig 2017).

To obtain more detailed insights into the exact mechanisms of egg discrimination 
hinted at by our study, other recognition cues distinguishing QLE from WLE should 
be investigated, e.g., subtle visual or morphometric differences (Ratnieks and Visscher 
1989; Monnin and Peeters 1997; Kikuta and Tsuji 1999), though we have been unable so 
far to confirm any distinctive traits apart from their surface chemistry. In honey bees, egg 
discrimination occurs even in complete darkness, and cues of QLE can be transferred to 
WLE (Martin et al. 2004), delivering more empirical evidence that the main communica-
tion modalities used by social insects are chemical cues rather than optical or morpholog-
ical cues. Therefore, possibly undetected chemical signaling compounds should be con-
sidered in future studies as well. For instance, several studies have revealed the presence 
of longer chained CHCs generally eluding detection with standard analytical methods 
(Akino 2006; Cvacka et al. 2006; Bien et al. 2019; Golian et al. 2022). Thus, egg surface 
profile differences might have gone undetected in the present study due to hitherto unde-
tected CHCs with longer chain lengths. Additionally, we cannot exclude the reliance on 
non-CHC compounds for egg recognition and fertility signaling (e.g. Hanus et al. 2010; 
Smith et al. 2016; Steitz et al. 2019). For instance, it has been shown in termites of the 
genus Reticulitermes that specific enzymes can also be used for egg recognition (Mat-
suura et al. 2009). Future studies should also include large scale analyses between both 
sympatric and allopatric carpenter ant populations as well as their degree of interfertility 
and reproductive isolation. Rigorous comparisons of the capability of isolated worker 
groups from these colonies to discriminate QLE from WLE and corresponding chemical 
analyses should reveal whether our study unveiled a more wide-spread and consistent egg 
discrimination capability with no discernable recognition pattern.

In conclusion, we detected two very distinct chemotypes in African carpenter ant 
colonies initially identified as Camponotus maculatus. These chemotypes are mainly 
recognizable on the cuticular surface profiles of queen- and worker-laid eggs, and also, 
in part, on the cuticle of the respective egg producers. The highly divergent egg surface 
profiles greatly differed in both dominant compound classes as well as chain length dis-
tributions. Nevertheless, workers were clearly able to discriminate between queen- and 
worker-laid eggs and displayed selective policing behavior against the latter. The largely 
distinct chemotypes are also corroborated by the segregation of genetic clusters based 
on mitochondrial DNA sequences of the investigated carpenter ant populations, hinting 
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at a cryptic species complex most strongly characterized by chemical divergence with 
conserved worker policing behavior.
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