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Abstract
Climate change alters many environmental parameters with strong consequences for eco-
logical interactions, from species interactions to community dynamics. Temperature is cru-
cial in determining ecosystem dynamics, especially for those involving ectothermic species 
such as plants or insects. Phenotypic plasticity, the capacity of one genotype to produce 
different phenotypes in response to environmental conditions, is a common mechanism 
by which individuals adapt to changing environments and is observed in multiple traits. 
The capacity of genotypes to adapt to novel temperature conditions plays a crucial role in 
structuring ecosystem dynamics and species persistence in adverse conditions. It is well 
recognised that temperature in natural ecosystems fluctuates over multiple time scales (e.g., 
hour, day, season, year). These fluctuations can follow predictable patterns or be unpre-
dictable, with different consequences for phenotypic plasticity and ecosystem dynamics. 
Among trophic interactions, host–parasitoid interactions represent a special case because 
of the intimate symbiosis of the parasitoid larvae with their host. Understanding how and 
to what extent phenotypic plasticity structures species’ ecological niches is of utmost 
importance in the context of rapid climate change. With a particular focus on host–para-
sitoid interactions, this review discusses the literature on the role of phenotypic plasticity 
in fluctuating environments, highlighting the role of temporal dynamics. While we discuss 
literature on phenotypic plasticity at large, this review emphasises the fundamental effects 
of extreme temperatures in driving biochemical rates underlying phenotypic plasticity.
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Introduction

Temperature is an important environmental parameter that plays a crucial role in ecological 
processes, especially for ectothermic organisms such as insects, whose body temperature is 
directly affected by ambient thermal conditions (Huey and Berrigan 2001; Kingsolver and 
Huey 2008; Angilletta 2009). Temperature governs physiological processes of ectothermic 
species, such as metabolism (Brown et al. 2004). Metabolic activity influences fitness and, 
following a thermal performance curve (TPC), increases with temperature up to a maxi-
mum and drops as the temperature continues to increase (see Box 1) (Gillooly et al. 2001; 
Clarke and Fraser 2004). In response to changing thermal regimes, species may track suit-
able thermal conditions spatially, or adapt locally to the new conditions (Parmesan 2006). 
Physiological processes may allow organisms to mitigate the effects of temperature fluctua-
tions on their fitness. This may be achieved by differentially activating physiological pro-
cesses in response to changes in temperature.

At the individual level, phenotypic plasticity represents the capacity of one genotype 
to express different phenotypes when exposed to various environments (Stearns 1989; 
Agrawal 2001; DeWitt and Scheiner 2004; Whitman and Agrawal 2009). Phenotypic 
plasticity can be subdivided into reversible and irreversible (or developmental) plasticity 
resulting from the past and present environmental conditions an individual has experienced 
throughout its ontogeny (DeWitt and Scheiner 2004). For example, when caterpillars of 
the pipevine swallowtail butterfly, Battus philenor (Lepidoptera: Papilionidae) are exposed 
to ambient temperatures above 30 °C they switch from black to red phenotype (Nice and 
Fordyce 2006). This type of phenotypic plasticity is known as polyphenism and is com-
monly observed in insects (Stearns 1989). In contrast to morphological traits, behavioural 
or physiological traits are rapidly reversible (Whitman and Agrawal 2009). When pheno-
typic traits vary continuously along an environmental gradient (i.e. continuous plasticity), 
the relationship can be depicted as a reaction norm (Box 1). For example, the temperature-
size rule describes the relationship between developmental temperature and insect body 
size (Atkinson 1994). The change in phenotype expressed by one species in response to a 
change in thermal conditions will likely have fitness consequences and will affect interac-
tions with other species, such as trophic interactions (Ma et al. 2021).

Insects have evolved an extensive suite of physiological and behavioural adaptations to 
cope with thermal constraints (Angilletta et al. 2002; Angilletta 2009; Abram et al. 2017). 
Thermal tolerance has a polygenic basis, and underlying mechanisms conferring thermal 
tolerance include, for instance, the production of protective molecules such as Heat Shock 
Proteins (HSPs) (Stanton-Geddes et  al. 2016). The thermal responses at the cellular or 
gene transcriptional levels depend on an individual’s body temperature. Although ambi-
ent thermal conditions affect insect body temperature, individuals can modulate it using 
various thermoregulatory mechanisms (May 1979). Behavioural thermoregulation relates 
to the behavioural strategies an individual uses to regulate its body temperature, and relies 
on the capacity to sense and select appropriate thermal environments (Abram et al. 2017).

Insect parasitoids and their insect hosts provide excellent study systems to assess the 
role of phenotypic plasticity in response to fluctuating thermal regimes and high-temper-
ature extremes. Parasitic wasps are a very diverse group of arthropods and contribute sig-
nificantly to regulating other insect populations (Jervis 2005; Quicke 2014; Forbes et al. 
2018). They are often specialised in attacking one or a few host species, and even specific 
larval stages within these host species. As juveniles, parasitoids feed on their host (para-
sitic stage), which represents a limited source of nutrients; thus, their traits have tightly 
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coevolved with those of their hosts (Godfray 1994). For species that have such an intimate 
interaction where one species develops within a developing individual of another species, 
the effects of phenotypic changes will have important consequences for this ecological 
interaction. For instance, the developmental rate of the host, including moulting, affects 
the nutritional environment of parasitoid larvae present in the host. Our goal is to assess 
how phenotypic plasticity in thermally fluctuating environments influences host–parasitoid 
interactions, including the effects of high-temperature extremes, highlighting the role of 
temporal dynamics. We focus on host–parasitoid interactions because of the importance of 
parasitoids as a functional group and their role in the population dynamics of herbivorous 
insects (Hance et al. 2007; Jervis and Ferns 2004; and references therein). To reach this 
goal, we will first address the kinetic and behavioural responses to thermal fluctuation and 
extremes at the level of individuals. Then we scale up from individual plastic responses to 
species interactions and discuss the consequences for population dynamics and commu-
nity structure. We conclude this review by presenting promising frameworks to analyse and 
interpret complex multifactorial effects of thermal fluctuations and extremes on species’ 
realised ecological niches.

Box 1 Thermal Performance Curves, Jensen’s inequality, and insect thermotolerance

Temperature governs the rates of biochemical reactions and physiological processes 
(Brown et al. 2004; Angilletta 2009). The effect of temperature on insect metabolism and, 
more widely, on phenotypic traits is depicted using reaction norms, also called thermal per-
formance curves (TPC) when applied to performance-related traits (Kingsolver et al. 2004; 
Angilletta 2009; Lande 2014). The shape of thermal reaction norms varies from species 
to species and from trait to trait (Berger et al. 2008; Iltis et al. 2019; Romero-Mujalli et al. 
2021). TPCs are useful to depict the thermal tolerance of individuals, defined by the ther-
mal breadth composed of two critical temperatures (lower and upper thermal limits) (Sin-
clair et al. 2016) (solid black line in Fig. 1). Due to the non-linearity of the relationship, 
the thermal performance at the mean temperature will be higher or lower than the averaged 
thermal performance at each end of the thermal fluctuation, depending on the shape of the 
thermal reaction norms (i.e. the convex or concave part). This well-known phenomenon 
is referred to as the Jensen’s inequality (Jensen 1906; Ruel and Ayres 1999; Denny 2017) 
(depicted by the dotted and solid coloured lines in Fig. 1). A parasitoid and its host may 
have different TPCs that are shifted along the temperature range resulting in a thermal mis-
match in part of the temperature range (Furlong & Zalucki 2017).

Physiological and behavioural responses to fluctuating thermal 
regimes

The fundamental role of metabolism in determining life-history traits and fitness at the 
individual level is central in assessing species distribution and abundance across climatic 
regimes (Brown et al. 2004). TPCs represent an excellent tool to depict species’ thermal 
tolerance and have been used extensively to predict the impact of climate change on spe-
cies (Schulte et al. 2011; Sinclair et al. 2016; von Schmalensee et al. 2021). For instance, 
the climate variability hypothesis (CVH), stating that species living at high latitudes dis-
play wider thermal tolerances than species at lower latitudes allowing them to withstand 
larger thermal fluctuations, was confirmed by Addo-Bediako et al. (2000), who reviewed 
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the thermal tolerance of ectotherms across their latitudinal distribution. Although TPCs 
are useful in depicting the thermal responses of an individual, they suffer from several 
shortcomings (Dowd et al. 2015; Sinclair et al. 2016). An essential drawback of TPCs is 
the lack of temporal dynamics required to accurately measure lagged temperature effects 
on fitness-related traits throughout ontogeny (Schulte et al. 2011; Kingsolver and Woods 
2016). In this section, we will review the physiological effects of temperature on thermal 
tolerance with the concept of acclimation and rapid heat hardening. Then we will explore 
the molecular background of heat tolerance in insects. Lastly we will discuss the special 
case of diapause and aestivation.

Physiological effects of fluctuating thermal regimes

The physiological effects of temperature on insect metabolism are well-described and 
widely used to predict the impact of climate change on the geographical distribution of 
species (Furlong and Zalucki 2017; Macfadyen et  al. 2018). However, the precision of 
these models depends on a correct assessment of the non-lethal effects of temperature on 
physiology (Jørgensen et al. 2022) as well as on the inclusion of species interactions and 
their consequences for the realised ecological niches (Section "Consequences of fluctuating 
thermal regimes for species interactions and community structure", Davis et al. 1998a, b; 
Woodin et al. 2013; Tylianakis and Binzer 2014). Because temperature fluctuates daily in a 
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Fig. 1   Fictive curve of thermal performance (solid black line) expressed as a function of temperature. The 
thermal performances for two hypothetical thermal ranges represented by the blue and orange solid lines 
are plotted on the Y-axis. The dotted black lines represent the performance values taken at the average tem-
perature of each thermal range and are denoted P1 and P2. The dotted blue and orange lines represent the 
thermal performances,  P1J and  P2J, calculated as averages from performances at the minimal and maximal 
temperature value of each thermal range  t1min and  t1max or  t2min and  t2max. The + and − signs emphasise 
the Jensen’s inequality’s positive and negative effects, respectively, compared to performances at the mean 
temperatures



605Evolutionary Ecology (2023) 37:601–625 

1 3

predictable way (e.g. day-night) as well as in an unpredictable stochastic way (e.g. extreme 
events), insects often have to face significant thermal variation during their life cycle. Pot-
ter et al. (2011) found variable but significant effects on egg development time and initial 
larval growth rate after having exposed eggs of Manduca sexta (Lepidoptera: Sphingidae) 
to cycling temperatures and heat shocks. The demographic rate and life-history traits of 
Sitobion avenae (Hemiptera: Aphididae) exposed to a factorial combination of hot and 
‘normal’ days were driven by the balance between hot and normal days. Increasing the 
period of hot days had negative fitness consequences but was dependent on their cluster-
ing (Ma et al. 2018). It emphasises the temporal distributions and quantitative patterns of 
temperature on insect population dynamics (Stoks et  al. 2017; Ma et  al. 2018; Clusella-
Trullas 2022) (Fig. 2). The following section discusses the effects of thermal fluctuations 
and extremes on the physiological mechanisms of thermal tolerance.

Plasticity in thermal tolerance: acclimation and heat hardening

The thermal environment experienced by an individual during development affects the 
adult phenotype and thermal tolerance. Developmental acclimation can lower the rest-
ing metabolic rates of individuals reared in warm conditions compared to those reared in 
milder conditions (Berrigan 1997; le Lann et al. 2011; Moiroux et al. 2012). This allows 
insects to reduce their energy consumption for maintenance; however, this depends on 
the nutritional status and evolutionary history of insect population. Indeed, Moiroux et al. 
(2012), found that the metabolic rates of geographically distinct populations of Leptopilina 
boulardi (Hymenoptera: Figitidae), a parasitoid of Drosophila melanogaster (Diptera: 
Drosophilidae), differed with parasitoids from warm and dry habitats having a higher meta-
bolic rate than populations originating from milder and more humid habitats. However, the 
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Fig. 2  Overview of Section "Physiological effects of fluctuating thermal regimes" on the effects of timing 
of the environmental signal (e.g., temperature) on an individual’s phenotype and its resulting fitness (from 
left to right). As insect species are engaged in interaction networks with other species, a feedback loop was 
added from phenotype (middle box) to biotic environment (see Section "Behavioural effects of fluctuating 
thermal regimes")
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former populations unlike the latter displayed de novo lipid synthesis in the adult stage. 
Most of these studies have only tested developmental acclimation of metabolic rates under 
constant temperature. MacLean et al. (2017) compared the effects of long-term and short-
term exposure during various life stages on the adult critical lower or upper temperature 
(Box 1 and Fig. 1) of D. melanogaster, the host of L. boulardi. Long-term but not short-
term cold and heat exposure increased the fly’s critical lower and upper thermal limit, 
respectively (MacLean et al. 2017). The thermal tolerance of an individual differs whether 
it is measured by ramping or plunging assays (Terblanche et al. 2011; Bahar et al. 2013; 
Nguyen et al. 2014). Plunging assays (i.e. insects are placed without acclimation at the new 
temperature) are better suited to determine basal heat tolerance, while ramping assays are 
performed by gradually increasing temperature and assessing rapid heat hardening (Bahar 
et al. 2013; Manenti et al. 2018).

Rapid heat hardening is a plastic response occurring within hours that can improve 
insect survival and fitness or maintain activity such as feeding under adverse thermal 
conditions (see Section "The thermal landscape and its importance"). Temporal variation 
in thermal exposure during development (i.e. number of hot days and number of critical 
exposure hours within these days) had inconsistent (“zig-zag”) effects on the body size and 
fecundity response in Plutella xylostella (Lepidoptera: Plutellidae) (Chen et al. 2019).

Global warming leads to a faster increase of night temperatures compared to day tem-
peratures. In naturally fluctuating environments, night-time warming is likely to draw spe-
cies closer to their thermal optimum, thus having beneficial effects on their performance 
(Speights et al. 2017). On the other hand, night-time warming can reduce recovery time 
after acute heat exposure during the day (Zhao et al. 2014; Barton and Schmitz 2018; Ma 
et  al. 2021). Recent work assessing the effects of alternating consecutive hot days and 
recovery days on the performance of the grain aphid (Sitobion avenae Fabricius) showed 
that recovery could occur when the insects were gradually exposed to milder thermal con-
ditions (Ma et al. 2018). Additionally, time-specific behaviour and activity patterns could 
mediate the effect of day versus night warming, especially considering diurnal or nocturnal 
species (Whitney-Johnson et al. 2005; Speights et al. 2017). For example, some species can 
shift their foraging time to the night, while others may be constrained to diurnal foraging 
with severe consequences for the thermal physiological effects they will experience (Spei-
ghts et al. 2017).

Thermal tolerance and ontogeny

Variation in thermal tolerance throughout ontogeny and the timing of extreme events rela-
tive to the individual developmental stage may affect host–parasitoid interactions and sub-
sequently fitness (Potter et al. 2011; Zhang et al. 2015; Cavieres et al. 2016). The mecha-
nistic principles behind the variation in thermal tolerance through ontogeny are not entirely 
elucidated but expected to be linked with allometric scaling in body size. In terrestrial eco-
systems, individuals with larger body sizes are usually more thermotolerant than smaller 
ones (Klockmann et  al. 2017; Kingsolver and Buckley 2020). Moreover, many insects 
exhibit modular life cycles, meaning that their development is characterised by distinct 
stages between which partial physiological restructuring occurs. Consequently, they can 
isolate, to some extent, the adverse effects of thermal stress from one stage to the next 
(Bowler & Terblanche, 2008; Potter et al. 2011). Higher temperatures usually lead to faster 
development and smaller body sizes than in cooler environments (Kingsolver and Huey 
2008). This phenomenon was extensively reviewed by Atkinson (1994) and described as 
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the Temperature Size Rule. The reasons behind the production of smaller body sizes in 
warmer climatic conditions are thought to involve energetic trade-offs between growth 
rate, mortality and reproduction. The adaptive value of smaller body sizes lies in more 
effective thermal exchange (Atkinson 1994, but see Diamond and Kingsolver 2011 for a 
counter-example).

Thermal tolerance: the molecular level

Molecular tools such as omic techniques can give a complete phenotypic and genotypic 
picture of an individual at a given time in a given environment, and their use significantly 
improves the understanding of the physiological effects of environmental variables on phe-
notypic plasticity (Hayward 2014). Among the different physiological responses to tem-
perature stress that were identified (recently reviewed in González‐Tokman et al. (2020), 
HSPs have received most attention (Feder and Hofmann 1999; Ju et  al. 2011; King and 
MacRae 2015; Tian et al. 2021). HSPs are molecular chaperone proteins protecting pro-
teins and cells against the destabilising effect of high temperature, thus playing an impor-
tant role in insect heat tolerance, rapid hardening, and developmental acclimation (Feder 
and Hofmann 1999; Sørensen et  al. 2003). The extent to which HSP gene expression is 
induced in response to heat shocks seems to be lower for individuals maintained in fluc-
tuating thermal regimes than for individuals held in constant thermal regimes (Sørensen 
et al. 2003). The induction of HSP genes is dependent on the circadian rhythm. Thus, heat 
protection gained by inducing HSPs varies within the 24 h thermal cycle (Manenti et al. 
2018; de Alba et al. 2021). Transcriptome analysis of Drosophila species under constant 
or fluctuating thermal regimes showed that a large proportion of the transcriptome was 
affected by differences in constant temperature. Only a small proportion was affected by 
fluctuating temperatures (Sørensen et al. 2016; Manenti et al. 2018). The large proportion 
of genes affected by differences in constant temperature probably results from the funda-
mental effects of temperature on physiological rates. Regarding the proportion of genes 
whose transcription was affected by fluctuating temperatures, Drosophila simulans Stur-
tevant gene ontology analysis showed that egg-chorion-related genes were downregulated, 
and those related to cellular heat tolerance were up-regulated (Manenti et al. 2018). These 
were driven by Turandot genes involved in heat tolerance but with a slower activation rate 
than HSP genes. Their slower activation rates could prevent maladaptive heat tolerance 
expression under fluctuating thermal regimes (Feder and Hofmann 1999; Sørensen et al. 
2003; Manenti et al. 2018).

The special case of diapause and aestivation

Climate change alters seasonal temperature variation affecting the evolution of parasitoid 
diapausing strategies (Vasseur et al. 2014; Wang and Dillon 2014). These changes affect 
the seasonal ecology of insect parasitoids and their hosts by altering voltinism, diapause, 
quiescence, and winter survival. The adaptive value of diapause in a novel thermal envi-
ronment is likely to be species-specific (Tougeron et al. 2020). The increase in mean win-
ter temperatures and host availability led to the increase in winter activity of its associ-
ated parasitoid species and a reduction in diapause (Andrade et al. 2016; Tougeron et al. 
2017). Parasitoid diapause can be linked or not with host diapause leading to a gradient 
of host–parasitoid synchronisms (Corley et al. 2004). In trophic interactions where differ-
ent species respond differentially to warming, a mismatch may occur (Parmesan 2006). 
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This is especially relevant for species that live together during an important part of their 
life such as parasitoids and their hosts. The mismatch in thermal performance between 
host and parasitoid associated with warmer spring temperatures increased the synchrony 
of the parasitoid Cotesia melitaearum (Hymenoptera: Braconidae) with its host Melitaea 
cinxia (Lepidoptera: Nymphalidae) affecting the strength of host–parasitoid interaction, in 
this case favouring the parasitoid (Nouhuys and Lei 2004). The duration of host or para-
sitoid diapause regulated the stability of host–parasitoid systems by preventing a propor-
tion of the population from being parasitised (e.g. in the case of prolonged host diapause) 
(Corley et al. 2004; le Lann et al. 2021). The diapausing strategy adopted by a parasitoid 
is expected to match the expected environmental conditions (e.g. host density and tem-
peratures). An increase in the frequency of extreme weather events can therefore select 
for different overwintering strategies such as undergoing diapause in the juvenile stage of 
the host, entering quiescence as an adult or remaining active to reproduce (Tougeron et al. 
2020). For example, the parasitoid Platygaster demades (Hymenoptera: Plastigastridae) 
regulates the frequency and duration of aestivating and non-aestivating phenotypes to pro-
duce uni-, bi-, tri- or quadri-voltine phenotypes over the season matching the expected host 
shortage, thus avoiding negative fitness consequences (He et al. 2010). An increase in the 
frequency of unpredicted climatic events should select for bet-hedging strategies with indi-
viduals either displaying prolonged or simple diapausing (aestivating) or non-diapausing 
(non-aestivating) phenotypes, reducing the risk for negative fitness consequences due to 
harsh environmental conditions at the population levels (le Lann et  al. 2021). However, 
the response of their host to changing environmental conditions as well as the ancestry’s 
genetic constraints, will determine the evolution of parasitoid life-history strategies in 
response to climate change (Stearns 1989; le Lann et al. 2021).

Behavioural effects of fluctuating thermal regimes

Insects have thermoreceptors on various body parts depending on the insect species and 
life stage (e.g., on the antennae or wings). Thermoreceptors sense ambient temperature 
and transmit the information to the central nervous system that initiates integrated behav-
ioural and physiological responses of the whole organism (reviewed in Abram et al., 2017; 
González‐Tokman et al. 2020). This section will focus on the influence of thermal fluctua-
tions on integrated behavioural responses (Fig. 2, left and middle frames). First, activity 
levels and thermoregulatory behaviour will be reviewed, then we will discuss the impacts 
of extreme temperatures on host–parasitoid foraging and learning behaviours. Finally, the 
importance of the thermal landscape and microclimatic conditions on insect thermal toler-
ance and behavioural responses to climate change will be highlighted.

Activity levels and thermoregulation

Behavioural responses to thermal changes range from alteration of diel activity patterns 
to the modification of foraging strategies. Disentangling behavioural from physiological 
responses to temperature variations is intrinsically difficult (Augustin et  al. 2020). For 
example, several studies have observed changes in walking speed and attack rates of para-
sitoids with changes in temperatures, likely driven by metabolic rates (le Lann et al. 2014a; 
Moiroux et al. 2016; Abram et al. 2017) (see Box 1). Moreover, D. melanogaster exposed 
to long or short thermal stress during their larval stage displayed altered activity levels in 
the adult stage (MacLean et al. 2017). Insects can alter their behaviour and regulate body 



609Evolutionary Ecology (2023) 37:601–625 

1 3

temperature by sensing their thermal environment (González‐Tokman et al. 2020). Rojas 
et  al. (2014) studied in the field the exploratory response of the isopod Porcellio laevis 
(Isopoda: Porcellionidae) acclimated to different thermal fluctuations. The acclimated iso-
pod displayed reduced exploratory behaviour, supposedly to reduce the risk of exposure to 
adverse temperatures (Rojas et al. 2014).

Behavioural thermoregulation is probably the best known mechanism by which insects 
regulate their body temperature (May 1979; Nice and Fordyce 2006; Kearney et al. 2009; 
Turlure et  al. 2011; Woods et  al. 2015; Kleckova and Klecka 2016). Behavioural ther-
moregulation can take various forms, such as habitat selection, orientation to solar radi-
ation (basking), temporal shift in activity patterns, or increased metabolism (e.g., flight) 
(May 1979; Casey and Knapp 1987). For example, the social caterpillar Malacosoma dis-
stria Hübner (Lepidoptera: Lasiocampidae) optimised its thermal gains to promote growth 
via shifts between basking in a tight cluster along a thermal gradient and foraging time 
on the food source (McClure et al. 2011). Behavioural thermoregulation in warm environ-
ments allows individuals to avoid harmful temperatures or select optimal foraging locations 
(Kearney et al. 2009). However, it mainly relies on spatio-temporal thermal heterogeneity 
of the environment (Potter et al. 2013; Caillon et al. 2014; Woods et al. 2015; Pincebourde 
and Woods 2020).

Thermoregulation can be employed by insects to maximise their growth and resource 
acquisition. Casey (1976) studied the thermoregulatory behaviour of two desert cater-
pillars, M. sexta and Hyles lineata (Lepidoptera: Sphingidae), linking it to their activity 
patterns, ambient air and body temperatures. Hyles lineata thermoregulated by selecting 
microclimatic conditions on or near the food plant as well as regulating its feeding activity 
level with ambient temperature (Casey 1976). Insect nutritional requirements vary with the 
thermal environment they are experiencing and are predicted to shift nutrient demand from 
nitrogen-rich to carbohydrate-rich resources (Schmitz and Rosenblatt 2017). The nutri-
tional status of an individual plays a crucial role in its fitness as well as in its phenotypic 
plasticity, as M. sexta feeding on high- or low-quality host plants showed opposite body-
size response to temperature with the former following the temperature size rule while the 
latter had smaller body-size at lower temperatures (Diamond and Kingsolver 2010). Diges-
tive and assimilative performances for nitrogen or carbon had specific thermal reaction 
norms depending on the host plant (Clissold et al. 2013; Clissold and Simpson 2015). Fur-
thermore, when deficient in either protein or carbohydrate, Locusta migratoria (Orthop-
tera: Acrididae) nymphs thermoregulated accordingly to maximise the intake of one or the 
other (Clissold et al. 2013). Upon parasitisation, parasitoids may change the behaviour of 
their hosts (Frederic et al. 2009), for example their response to temperature: Acyrthosiphon 
pisum Harris aphids parasitised by the parasitoid Aphidius ervi Haliday (Hymenoptera: 
Braconidae) selected a temperature that was most suitable for the parasitoid, suggesting 
that the parasitoid manipulated aphid temperature selection behaviour (Lagos et al. 2001).

Foraging and learning strategies

Parasitoid foraging strategies affect their fitness since reproductive success relies on the 
location of suitable hosts by parasitoid females (Godfray 1994). Parasitoid foraging behav-
iour depends on physiological status, especially life expectancy and nutritional status. 
Challenging environmental conditions reducing life expectancy or imposing higher meta-
bolic costs can thus induce risk-prone behaviour (Giraldeau and Boivin 2008). Risk-prone 
behaviour increases fitness when an individual in a given environmental context faces low 
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survival odds or intense physiological stress. For example, in response to warmer rearing 
or foraging conditions, host selection by the aphid parasitoid A. ervi shifted towards hosts 
of lower quality (i.e., instar selection) (Moiroux et al. 2015). Overall, the foraging strategy 
adopted to maximise fitness in challenging thermal environments is correlated to habitat 
quality and, more specifically, linked to the energetic costs of interpatch travel (Denis et al. 
2011).

Female hymenopteran parasitoids can control the sex of their offspring as a result of 
their haplodiploid sex-determination system (Godfray 1994). Sex allocation of offspring by 
female parasitoids varies based on environmental conditions such as local mate competi-
tion, host quality or temperature (Shuker et al. 2007; Gols and Harvey 2009; Moiroux et al. 
2014). The egg parasitoid Trichogramma euproctidis Girault (Hymenoptera: Trichogram-
matidae), foraging at high temperatures, displayed an intentional male bias in offspring sex 
ratio, while this was not the case at lower temperatures (Moiroux et al. 2014). The realised 
sex ratio of T. euproctidis at low temperatures was also male-biased, most likely caused by 
other physiological mechanisms such as egg fertilisation or sperm viability (Moiroux et al. 
2014; Sales et  al. 2018). Alteration in offspring sex ratio under warm temperatures may 
have lasting consequences for parasitoid population dynamics by altering competition for 
mates between males and regulation of host populations.

Learning and memory can significantly improve host location by parasitoids, but forget-
ting associations between cues and hosts is equally essential as it integrates the temporal 
and spatial variation in cue reliability, such as a shift in volatile blend emitted by host-
infested plants (Kraemer and Golding 1997; Dunlap et al. 2009; Soravia et al. 2021). Fol-
lowing a temperature shock, the egg parasitoid Trissolcus basalis Wollaston retained its 
learned cues significantly longer than wasps held in control conditions (Abram et al. 2015). 
These results support the hypothesis that individuals living in an energetically costly envi-
ronment retain information longer than those living in less costly environments (Dunlap 
et al. 2009). Snell-Rood et al. (2011) showed diverging resource allocation in the butterfly 
Pieris rapae (Lepidoptera: Pieridae) when foraging in a complex environment (i.e. new 
hosts or non-host environment). Females foraging in complex environments showed higher 
flight muscle development and, after gaining experience in this environment, increased off-
spring investment (higher egg size and lipid reserves) compared to females foraging in the 
control environment (Snell-Rood et al. 2011). The observed decrease in lifetime fecundity 
associated with an increase in cognition and learning capacities will lead to complex evolu-
tionary life-history trade-offs in thermally costly environments (Dunlap et al. 2009; Snell-
Rood et al. 2013).

The thermal landscape and its importance

Microclimatic thermal heterogeneity is affected by complex interactions between biotic 
and abiotic factors (Pincebourde and Woods 2012). Small herbivorous insects experience 
temperatures of the leaf surface (Pincebourde and Woods 2020). Although abiotic condi-
tions drive leaf temperature, the plant, by regulating its transpiration, can have a cooler or 
warmer surface than the ambient air temperature (Cook and Dixon 1964; Leuzinger and 
Körner 2007; Pincebourde and Woods 2012). Field temperature measurements showed that 
the diversity in microclimatic conditions was correlated to the degree of landscape com-
plexity, and aphid populations inhabiting these different microclimatic zones differed in 
thermotolerance (Tougeron et al. 2016). Feeding strategies used by herbivorous insects will 
impact the stomatal conductance and alter leaf surface temperature. Thus, feeding strategies 
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can affect the microclimate that the herbivore experiences (Pincebourde and Casas 2006, 
2019; Pincebourde et al. 2007). The adaptive nature of thermoregulation and micro-habitat 
selection needs to be considered in the broader context of species interactions (Woods et al. 
2015; Pincebourde and Casas 2019). Moreover, organisms can shift their diel activity pat-
terns to match favourable thermal conditions (e.g. night feeding, mid-day quiescence) using 
temporal variation in microclimatic conditions (Scheffers et al. 2017). The benefits of select-
ing better microclimatic conditions at both spatial and temporal scales need to be considered 
in terms of species interactions, as antagonistic interactions such as predation, parasitism, or 
competition can offset the beneficial effects of thermoregulation (Choutt et al. 2011).

Individuals can alter their thermal tolerance through various mechanisms to cope with 
their thermal environment. However, the type of strategy used or the adaptive value of 
these strategies will ultimately alter species interactions (Tituskin et al. 2022). Moreover, 
the community composition and the thermal responses of the species present will feedback 
on the ability of a given (or target) species to respond to shifts in thermal regimes (Davis 
et al. 1998b).

Consequences of fluctuating thermal regimes for species interactions 
and community structure

Species-specific physiological and behavioural responses to thermal fluctuation and 
extremes at the organismal level will influence species interactions, both trophic and non-
trophic, with consequences at the community level (Gillespie et al. 2012) (Figure 3).

Consequences for trophic interactions

Consumer-resource interactions are at the heart of food web processes, and shifts in 
resource physiology and behaviour are likely to induce a change in consumer physiology 
and behaviour (Rosenblatt and Schmitz 2016). Temperature can alter an individual’s nutri-
tional requirements and nutritional value for its natural enemies by altering the physiologi-
cal processes of both organisms. For example, higher temperatures may reduce leaf carbo-
hydrate levels leading to an increased tissue consumption by herbivores (i.e. compensatory 
feeding) to reach their nutritional requirements (Bauerfeind and Fischer 2013; Jamieson 
et al. 2015). First, we discuss the effects of extreme temperatures on nutritional stoichiom-
etry in tritrophic interactions, then we approach the specific case of the temperature size 
rule and its consequences for consumer-resource interactions. Finally, the role of behav-
iour on host–parasitoid trophic interactions is discussed in the light of changing climatic 
conditions.

Phytochemistry and nutritional status

Plant phytochemical composition is a strong driver of ecological processes and mediates 
plant—pollinator—natural enemy interactions via bottom-up processes (Rosenblatt and 
Schmitz 2016; Jamieson et al. 2017; Han et al. 2019). Plant phytochemistry fluctuates over 
time (e.g. year, season, day), allowing plants to optimise their metabolic activity to match 
their environmental conditions (Gols et al. 2007; Doghri et al. 2021). Mechanical wound-
ing of Lima bean (Phaseolus lunatus L.; Fabaceae) leaves as a mimic of herbivore damage 
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during the photo- or scotophase resulted in differential emission of herbivore-induced plant 
volatiles (HIPVs) (Arimura et  al. 2008). Similarly, plant metabolite composition varies 
across time, differentially affecting the fitness of hosts and parasitoids (Liebelt et al. 2019). 
The composition of secondary metabolites in Brassicaceae crops in response to herbivory 
by Mamestra brassicae L. (Lepidoptera: Noctuidae) peaked at dawn or dusk compared to 
mid-day, suggesting that plants may anticipate potential threats to match their defences 
with the timing of a likely attack (Doghri et al. 2021). Recent studies indicate that plants 
having coevolved with multiple herbivore species may use circadian and seasonal rhythms 
to anticipate and adapt their defence strategies (Mertens et al. 2021; Philbin et al. 2021).

Besides mediating trophic interactions, plant chemical composition mediates herbivore 
immune responses against parasitoids and pathogens (Poelman et  al. 2014). Feeding on 
different plant species was found to alter the herbivore immune system and mediate para-
sitoid intrinsic larval competition (Poelman et al. 2014). Immune responses and growth of 
immuno-challenged M. sexta caterpillars feeding on diverging resource quality showed a 
significant change in the encapsulation capacity of larvae feeding on the high-quality diet 
as opposed to the low-quality diet (Diamond and Kingsolver 2011). Host (and host-plant) 
selection and thermal conditions will likely drive novel host–parasitoid interaction strength 
and metacommunity structure. An increase in rearing temperature led to an increased egg 
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Fig. 3  Overview of Section "Consequences of fluctuating thermal regimes for species interactions and com-
munity structure" with the causal links between dynamic environmental signals and phenotype fitness and 
consequences for species interactions and community structure and dynamics
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encapsulation of the parasitoid Tranosema rostrale Brishke (Hymenoptera: Ichneumo-
nidae) by its larval host Choristoneura fumiferana Clemens (Lepidoptera: Tortricidae) 
(Seehausen et al. 2017). Thermal stress can alter parasitoid attack rates and the defensive 
behavioural responses of hosts (Bannerman et  al. 2011; le Lann et  al. 2014a). Extreme 
temperature events may not always destabilise consumer-resource interactions due to oppo-
site thermal effects on the interacting species (Bannerman et al. 2011; Boukal et al. 2019; 
Gvoždík and Boukal 2021).

Temperature‑size‑rule and consumer‑resource interactions

Warmer thermal regimes affect growth rate and usually yield smaller body sizes in many 
ectothermic species (Kingsolver and Huey 2008). Body size is a known parameter to medi-
ate prey-predator or host–parasitoid interactions. Smaller-sized prey may induce a shift in 
predation rate for bigger alternate prey species, or inversely smaller sized predators cannot 
attack bigger-sized prey (Boukal et al. 2019). The Temperature Size Rule can thus alter the 
strength of consumer-resource interactions by differentially affecting species growth rates 
(Atkinson 1994). Placing the different thermal responses in a trophic context, the trophic 
rank hypothesis holds that higher trophic levels are less thermo-tolerant than lower trophic 
levels; predators are expected to display a more substantial reduction in size than their prey 
(Voigt et al. 2003; Furlong and Zalucki 2017). However, the effects on trophic interactions 
seem more pronounced in aquatic ecosystems than in terrestrial ones (Boukal et al. 2019). 
In host–parasitoid interactions, host body size does not always correlate with the quantity 
of resources available for the parasitoid larvae. Koinobiont parasitoids can manipulate their 
host development to optimise growth and development time, unlike idiobiont parasitoids 
that arrest host development via paralysis (Harvey et al. 2004). Recent studies suggest that 
under extremely high temperatures, parasitoid larvae failed to control host development 
leading to increased mortality and abnormal host physiology (Moore et  al. 2021; Wang 
et al. 2022). For idiobiont parasitoids that paralyse their host upon parasitisation, host body 
size represents a good proxy for the quantity of resources available to the larvae, that are 
likely more exposed to the thermal response of their host (Brodeur and Boivin 2004). New 
climatic patterns and increased unpredictability of extreme temperature events will likely 
disrupt coevolved interactions, thus influencing host–parasitoid community dynamics 
(Liebelt et al. 2019).

The role of behaviour

Although foraging activity, host-handling time and walking speed are strongly corre-
lated to temperature following the principle of thermodynamics, changes in behaviour, 
such as activity levels and spatial orientation, alter the exploited ecological niche by a 
focal species and can have important consequences on trophic interactions (Moiroux 
et  al. 2012). In a mesocosm experiment, Barton and Schmitz (2018) studied the spa-
tial distribution of grasshoppers and spiders in response to day or night warming. In 
the reference and night warming treatments, grasshopper and spider spatial distribu-
tions on the plant overlapped during their diurnal activity, while in the day-warming 
treatment, spiders retreated to lower parts of the plant canopy resulting in a spatial 
mismatch with their prey. In the night-warming treatment, but not in the reference or 
day-warming treatments, spider and grasshopper distributions on the plant overlapped 
during nocturnal activity (Barton and Schmitz 2018). Females of the host Boloria 
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eunomia (Lepidoptera: Nymphalidae) tend to lay their eggs in a sub-optimal habitat for 
their offspring but with lower parasitism prevalence by the parasitoid Cotesia eunomiae 
(Hymenoptera: Braconidae) (Choutt et  al. 2011). Similarly, a study on P. xylostella 
oviposition preference showed that females selected oviposition sites based on the leaf 
position while the neonates foraged on leaves based on leaf developmental stage (young 
vs. mature) (Ang et al. 2014). A shift in the foraging time of the host or its parasitoid 
caused by a shift in microclimatic variables can potentially create a temporal or spatial 
mismatch, preventing the parasitoid to locate or access its hosts.

Overall, temperature effects on plant metabolites are context-specific as they inter-
act with other abiotic and biotic stresses affecting insect community structure. Spe-
cies-specific differences in thermal sensitivity will drive responses of complex con-
sumer-resource interactions to changing climatic conditions. The thermal responses of 
parasitoid foraging efficiency, herbivore feeding rates and plant growth will play a cru-
cial role in determining host–parasitoid population dynamics (Berggren et  al. 2009). 
Over time, variation in plant phytochemistry evolved to optimise plant defences against 
herbivores, either direct defences caused by secondary metabolites and/or indirect 
defences mediated by volatile emissions (Mertens et al. 2021), but further research is 
needed to assess the impact of changing climatic conditions on tri-trophic interactions. 
Research has mainly focused on bottom-up processes mediated by plant chemical pro-
files on host–parasitoid interactions, and less is known about the effects of thermal 
variation on top-down processes. It is important to note that thermal stress influences 
the emission of plant volatiles: in the brassicaceous plant Brassica nigra L. thermal 
stress resulted in a shift from terpenoids towards glucosinolate-derived volatiles being 
emitted (Kask et  al. 2016). Volatile blend composition is known to influence behav-
ioural responses of both herbivores and their parasitoids (Dicke and Lucas-Barbosa 
2020). Top-down effects of herbivory via feeding and foraging strategies influence 
plant chemical profiles (Zhu et  al. 2014). We can expect that a shift in these strate-
gies, due to changes in thermal conditions, may prevent plants from mounting efficient 
chemical defences against herbivores (Rosenblatt and Schmitz 2016; Chidawanyika 
et al. 2019). However, thermal alterations in feeding strategies are constrained by other 
environmental factors, among which non-trophic interactions are important (Heinrich 
1979; Greeney et al. 2012).

Consequences for non‑trophic interactions

Non-trophic interactions between species, such as predator avoidance, are important 
for population dynamics and community structure (Sentis et al. 2017). The ecological 
niche a species occupies within a given environment partly depends on the non-con-
sumptive effects that natural enemies have on their resources as well as mutualistic or 
antagonistic interactions with other species, for example as competitors (Dajoz 2006; 
Laughlin and Messier 2015). First the effects of warming conditions interacting with 
non-consumptive effects of parasitoids on their host as well as the potential cascading 
effects on community composition are discussed. Then, we explore the effects of dif-
ferences in thermal tolerance on the competition between species. Finally, mutualistic 
interactions altering thermal tolerance and the outcome of trophic interactions in the 
context of climate change are explored.
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Non‑consumptive effects and apparent competition

In a 2-year mesocosm experiment, Barton and Schmitz (2018) recorded higher plant diver-
sity in the day-warming treatment and lower in the night-warming treatments compared to 
the ambient-temperature mesocosm driven by changes in plant-plant competition affected 
by herbivory. The timing of warming influenced spatial niche exploitation of the spiders, 
which changed their non-consumptive effects on grasshoppers resulting in higher or lower 
herbivory pressure on the dominant species in the system, leading to changes in the plant 
community (Barton and Schmitz 2018). This shift in the ecological niche exploited by one 
species is likely to destabilise species interactions and community composition. Non-con-
sumptive effects are common in insect communities (Laws 2017). The presence of parasi-
toids can alter host and non-host feeding behaviour and nutritional ecology (Ingerslew and 
Finke 2018; Cuny et al. 2019). However, little is known on the effects of thermal extremes 
on non-consumptive effects in parasitoids and on host apparent competition.

Thermal tolerance and interspecific competition

Based on the principle of mutual exclusion, two species with a perfectly overlapping eco-
logical niche cannot coexist in the same environment, and one superior competitor domi-
nates the interaction (Dajoz 2006). Thus individuals and species tend to reduce their niche 
overlap by attacking different stages of the same host or shifting their time of activity or 
spatial niche (Hood et al. 2021). However, environmental filtering is expected to reduce the 
range of an organism’s phenotype (i.e. trait values), leading to converging functional traits 
at the community or guild level. le Lann et al. (2014b) compared several functional traits 
(i.e. development time, body mass, egg load, metabolic rate and energy use) between four 
coexisting parasitoid species of Drosophila exposed to higher constant temperatures. The 
reduction in trait divergence at higher temperatures resulted in an increase in competition 
between individuals and parasitoid species (le Lann et al. 2014b). A warming experiment 
involving two ant species showed that the less thermotolerant species suffered indirectly 
from warming through antagonistic interaction with a more thermotolerant ant species 
(Diamond et al. 2017). Thermal variation and extremes are likely to alter temporal and spa-
tial resource partitioning between species, thus changing species’ coexistence via thermal 
asymmetries in competitive interactions (Smith and Amarasekare 2018).

Mutualistic interactions

Despite the high degree of host specialisation, parasitoid species display overlapping niches 
competing for shared hosts. The plant species’ identity or the presence of specific symbi-
onts will reduce competition between competing species creating cryptic niches (Harvey 
et al. 2013; Poelman et al. 2014). Microorganisms such as bacteria, fungi or viruses inter-
act with many insects and plants species in various ways (Dicke et al. 2020; Frago et al. 
2020). These associations mediate various ecological interactions ranging from protecting 
the host against a parasitoid (e.g., Hamiltonella defensa Moran (Enterobacteriaceae)) via 
altering host physiology and nutritional properties, to increasing thermotolerance (Corbin 
et al. 2017; Dicke et al. 2020; Frago et al. 2020). A recent study assessed the impact of 
day and night warming using fluctuating thermal regimes on the fitness gain provided by 
the protective symbiont H. defensa to the aphid A. pisum in the presence or absence of its 
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endoparasitoid A. ervi (Higashi et al. 2020). Carrying H. defensa reduced aphid survival 
under all warming treatments regardless of the timing of warming. Moreover, H. defensa 
influenced parasitoid mummification success with a higher proportion under the warming 
treatment (Higashi et al. 2020). Mechanisms through which symbionts alter the thermotol-
erance may involve the higher physiological cost of carrying protective symbionts when the 
organism faces physiological stress (Corbin et al. 2017). Symbiont-mediated interactions 
and the effects of thermal fluctuation and temperature extremes on these interactions add 
another layer of complexity to the effects of thermal stress on parasitoid-host interactions.

Concluding remarks and future perspectives

Phenotypic plasticity is central to ecosystem functioning and should be included in studies 
aiming to predict eco-evolutionary responses of organisms to new thermal conditions. This 
paper highlights the importance of thermal variation and thermal history on species-spe-
cific fitness-related traits and performance. On a short time scale (a few hours) the damage 
caused by high-extreme temperatures can be repaired or compensated for during milder 
thermal periods (Bai et al. 2019; Ma et al. 2018). However, when the stress is prolonged for 
several days, different physiological responses can occur, allowing acclimation to warmer 
conditions, e.g., accumulation of heat shock proteins and metabolic compensation (le Lann 
et al. 2011; Pazouki et al. 2016; Stanton-Geddes et al. 2016; Tian et al. 2021). Moreover, 
the biotic context in which species develop affects the thermal performance of the focal 
species having consequences for community dynamics. The diversity of species interac-
tions taking place in ecosystems makes predictions about community dynamics under cli-
mate change challenging.

The thermal environment influences ecological dynamics in countless ways through 
phenotypic plasticity at all levels of biological organisation. Here, we present promis-
ing avenues for future research on assessing species and community responses to thermal 
extremes such as heatwaves. Communities are often highly diverse, however, few species 
play a central role in the structuring and dynamics within these communities (Poelman 
and Kessler 2016). Assessing the phenotypic responses to changing environmental condi-
tions of such keystone species, as well as the cascading effects on community dynamics 
are likely to give valuable insights into the processes at play and their relative importance. 
As plants are at the basis of most ecosystems, they represent a common link between vari-
ous species. Their chemical profiles play a major role in shaping insect interactions and 
community dynamics. However, little is known about the effects of the timing of extreme 
events on plants and the (seasonal) dynamics of insect communities they sustain. This 
paper focused on the effects of variable thermal conditions on host–parasitoid interactions. 
The microclimatic heterogeneity and the capacity of arthropods to move across the thermal 
landscape can mitigate or exacerbate the effects of changing thermal conditions (Pince-
bourde et al. 2007; Rebaudo et al. 2016; Tougeron et al. 2016). Moreover, more accurate 
measurements of microclimatic conditions will inform the modelling of temperature effects 
on physiology and plasticity of insects that are ultimately dependent on body temperatures 
(von Schmalensee et al. 2021).

Thermal variation in natural ecosystems is characterised by periodic and stochastic fluc-
tuations. The predictability of environmental variation is thought to favour adaptive phe-
notypic plasticity. In contrast, stochastic environments are thought to favour bet-hedging 
strategies. Bet-hedging produces various phenotypes in response to change itself and is not 
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necessarily adaptive (Bond et al. 2021; le Lann et al. 2021). Cyclical variation of environ-
mental conditions seems to maintain higher intra-population trait variation than in stochas-
tic environments, although populations originating from the latter displayed similar levels 
of plasticity (Bond et al. 2021; Park and Wootton 2021). This further highlights the impor-
tance of periodicity of environmental variation for life-history trait variation. One of the 
consequences of anthropogenic climate change is an increase in the frequency and mag-
nitude of extreme weather events, thus an increase in stochasticity (Vasseur et al. 2014). 
Trophic interactions shape ecological communities and the effects of thermal variation on 
phenotypic plasticity will have consequences for such interactions. Parasitoid-host inter-
actions are very intimate interactions where the parasitoid is integrated in the biology of 
the host. Parasitism represents a dominant lifestyle and is a very common interaction in 
various ecological communities (Forbes et al. 2018). Studying how dynamic changes in the 
thermal environment affect host and parasitoid separately is not adequate to fully under-
stand how parasitoids influence the way that hosts deal with thermal variation and vice 
versa. Such understanding is crucial to appreciate how thermal variation influences eco-
logical communities.
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