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Abstract
It has been argued that disproportionately larger ornaments in bigger males—positive 
allometry—is the outcome of sexual selection operating on the size of condition depend-
ent traits. We reviewed the literature and found a general lack of empirical testing of the 
assumed link between female preferences for large ornaments and a pattern of positive 
allometry in male ornamentation. We subsequently conducted a manipulative experiment 
by leveraging the unusual terrestrial fish, Alticus sp. cf. simplicirrus, on the island of Raro-
tonga. Males in this species present a prominent head crest to females during courtship, 
and the size of this head crest in the genus more broadly exhibits the classic pattern of posi-
tive allometry. We created realistic male models standardized in body size but differing in 
head crest size based on the most extreme allometric scaling recorded for the genus. This 
included a crest size well outside the observed range for the study population (super-sized). 
The stimuli were presented to free-living females in a manner that mimicked the spatial 
distribution of courting males. Females directed greater attention to the male stimulus that 
exhibited the super-sized crest, with little difference in attention direct to other size treat-
ments. These data appear to be the only experimental evidence from the wild of a female 
preference function that has been implicitly assumed to drive selection that results in the 
evolution of positive allometry in male ornamentation.
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Introduction

Extravagant morphological features can evolve for a host of reasons, but a particularly 
powerful force is sexual selection (Andersson 1982; Jennions and Petrie 1997; Andersson 
and Simmons 2006; Kraaijeveld et al. 2011). For example, some of the most elaborate mor-
phological features are male ornaments that are assessed by females when choosing among 
prospective mates (e.g., Petrie et al. 1991; Girard et al. 2011; Scholeset al. 2017). Although 
ornaments come in a variety of forms, the apparent size of the ornament seems to be 
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especially useful for evaluating mates, with those males possessing the largest ornaments 
generally thought to mate with the most females (e.g., Brodsky 1988; Andersson 1992, 
1994; Pryke et al. 2001; Giacomello and Rasotto 2005; Kleven et al. 2006). There are also 
a large proportion of experimental studies reporting female preferences for enlarged male 
secondary sexual traits (i.e., structures used in reproduction that are not genitalia; reviewed 
by this study). Males themselves can also assess the size of exaggerated ornamental struc-
tures in other males to provide additional cues on a rival’s condition and potential fight-
ing ability (e.g., male eye-span in Diopsidae flies—Panhuis and Wilkinson 1999; the size 
of conspicuous dewlaps in male Anolis lizards—Vanhooydonck et al. 2005; Lailvaux and 
Irschick 2007).

The size of secondary sexual traits, such as ornaments (or even weapons), are often 
(but not always) costly to produce and serve as important indicators of individual ‘qual-
ity’ (Andersson 1982; Grafen 1990; Moller 1996; Kotiaho et al. 1998; Kotiaho 2001; Con-
treras-Garduno et al. 2008; Polnaszek and Stephens 2014). Furthermore, larger males are 
often better able to manage the physiological costs associated with developing much larger 
ornaments than smaller males (e.g., Petrie 1988; Masello and Quillfeldt 2003; Rogers 
et al. 2008; Somjee et al. 2021; reviewed by Nur and Hasson 1984; Rowe and Houle 1996; 
Johnstone et al. 2009; Somjee 2021). Based on this phenomenon, it has been argued that 
the size of ornaments should exhibit a particular scaling relationship with body size when 
compared across males within the same population (Green 1992; Petrie 1992; Bondurian-
sky and Day 2003; Somjee 2021). Specifically, this allometric scaling should result in a 
power function with a positive exponent (i.e.,  Xb where b > 1). That is, as males become 
larger in a population, there should be a disproportionate increase in the size of the orna-
ments developed (Kodric-Brown et al. 2006). This has in turn lead to the argument that the 
extent to which an exponent exceeds 1 (i.e., a linear or proportional increase in ornament 
size with body size) should reflect the extent to which ornaments are driven by female pref-
erences for increasingly larger ornaments (Green 1992, 2000; Petrie 1992).

As a result, allometric analyses have begun to be used by investigators to indirectly 
assess the presence or even strength of sexual selection operating on extravagant morpho-
logical features (e.g., Tomkins et al. 2010; Ord and Hsieh 2011). For example, ornaments 
(as well as weapons) have been shown to commonly exhibit exponents greater than 1 (e.g., 
Echelle et al. 1978; Kawano 2000; Hone et al. 2016), but particularly exponents between 
1.5–2.5 (e.g., Petrie 1988; Green 1992; Kodric-Brown et  al. 2006; Outomuro and Cord-
ero-Rivera 2012; Voje and Hansen 2013). Indices of the strength of sexual selection have 
also been found to correlate positively with the allometric exponents of ornaments across 
populations (eg., Baker and Wilkinson 2001; Voje and Hansen 2013; Morgans et al. 2014). 
Furthermore, experimental evolution studies have successfully induced positive evolution-
ary changes in allometric exponents under targeted directional selection (e.g., Tobler and 
Nijhout 2010; Pavlicev et al. 2011; Bolstad et al. 2015). All of this lends support to the util-
ity of allometry analysis for the study of putative sexually selected structures.

However, despite the renewed interest in the empirical investigation of allometry theory, 
few studies have investigated how the assessment of sexual morphologies by prospective 
mates (or rivals) might contribute towards the variation observed in allometric scaling pat-
terns. There are many studies that have sought to experimentally determine how females 
(and sometimes males) respond to increases or decreases in the size of elaborate morpho-
logical structures. Specifically, our review of the literature uncovered 65 experimental stud-
ies testing conspecific responses to ornaments of different size (see Results; NB: our search 
was inclusive of weapons as well, but only one experimental study was found—see Meth-
ods). About a quarter of these examined responses over a range of ornament sizes (i.e., 
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more than two), but only five studies sought to quantify female responses to structures out-
side the normal range (i.e., “super-normal” stimuli; NB: we could not find a manipulative 
study investigating male responses to differing sizes of rival ornaments). This is despite 
various models of sexual selection explicitly predicting ‘hidden’ preferences or sensory/
cognitive biases for exaggerated sexual structures that do not currently occur in the male 
population (e.g., runaway sexual selection—Fisher 1958; reviewed by Kokko et al. 2002; 
Mead and Arnold 2004; pre-existing biases—Basolo 1990; Basolo 1995; see also Rowland 
1989; Ryan and Rand 1993; Pryke and Andersson 2002; NB: larger morphological struc-
tures presumably make males more conspicuous to distant receivers in general as well: 
Charles and Ord 2012), and classic ethological experiments that show super-normal stimuli 
elicit exaggerated responses in the wild (Lorenz and Tinbergen 1938; Tinbergen and Per-
deck 1950). More specifically, a study of how females respond to super-sized ornaments 
should provide the best framework to test the extent to which mate preferences induce 
disproportionate scaling of ornamental size within species. This is because it allows the 
assessment of the likely response of females to the evolution of exaggerated ornament sizes 
yet to evolve in males, and specifically whether disproportionate increases in ornament size 
would convey disproportionate reproductive advantages to those males.

In this study, we tested the response of conspecifics to altered male ornamental head 
crest size in an unusual land-dwelling blenny fish, Alticus sp. cf. simplicirrus, from the 
island of Rarotonga. Our objective was to provide an experimental manipulative test to 
uncover whether conspecifics respond proportionally to the size of a large sexual structure 
(the head crest) in a manner that would be expected to induce the evolution of a posi-
tive allometric scaling relationship. The selection of this particular species was deliber-
ate. Previous studies have shown Alticus male head crests exhibit positive allometry (and 
with exponents typically greater than 1.5; Summers and Ord 2022) and that the magnitude 
of this allometry is positively correlated with indices of sexual selection across popula-
tions (Morgans et al. 2014). However, the species on Rarotonga is unusual because male 
head crests exhibit the lowest exponent so far measured (b = 1.05; Summers and Ord 2022), 
implying that the size of the head crest itself is constrained in some way (e.g., from pred-
ator-induced negative selection—Ord et al. 2017), but female preferences for exaggerated 
crest sizes should nevertheless be apparent. This because every other Alticus species so 
far examined exhibits positive head crest exponents indicative of strong sexual selection 
(b = 1.31–2.05; Summers and Ord, 2022; see also Ord and Hsieh 2011; Morgans et  al. 
2014), and that the courtship behaviour of males on Rarotonga remains centered on the 
head crest and its presentation to females through mating display (as with all other Alti-
cus species; e.g., Bhikajee and Green 2002; Ord and Hsieh 2011). That is, females were 
expected to exhibit preferences for larger head crests, and the unusual isometry of this spe-
cies offered an excellent opportunity to test a biologically realistic, but otherwise super-
sized male head crest size. By doing so, we were able to evaluate the extent to which 
females have ‘hidden’ preferences for exaggerated head crests in males, which would in 
turn help explain the origin of positive allometries in other species.

Alticus generally spend their entire adult life living out of the water on rock outcrops in 
the supralittoral zone (Bhikajee and Green 2002; Ord and Cooke 2016; Ord et al. 2017). 
The fishes are highly agile on land (Hsieh 2010), but are otherwise restricted to the splash 
zone in order to remain moist to avoid desiccation and maintain adequate respiration 
through the gills and skin (Martin and Lighton 1989; Brown et  al. 1991; Martin 1995). 
Behavioral observations of Alticus sp. cf. simplicirrus, coupled with detail empirical study 
of closely-related terrestrial blennies on other islands (Bhikajee and Green 2002; Ord and 
Hsieh 2011; Morgans and Ord 2013; Morgans et al. 2014), provide strong evidence that 
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males defend rock holes used as nests from rival males, while attempting to entice females 
to enter those holes to lay eggs (e.g., Bhikajee and Green 2002; Shimizu et al. 2006; Ord 
and Hsieh 2011).

To perform our experiment, we first used allometric data from a previous study (Sum-
mers and Ord 2022) for the same Rarotonga population and a closely related species on 
another island that exhibits the most extreme allometric scaling known for the male head 
crest in blenny fishes. This was used to benchmark what would be an average and super-
normal (but still biologically realistic) male head crest size (Fig. 1b). We then created mod-
els representing these head crest sizes in addition to a control model lacking a head crest 
altogether. These models were then presented to free-living females and males in a man-
ner that mimicked the natural context in which these fish typically viewed the head crest. 
Under the allometric model of sexually selected traits (e.g., Kodric-Brown et al. 2006), we 
predicted that females would attend most to the model with the super-normal sized head 
crest. More specifically, females should respond at a level that mirrors the extent to which 
the super-normal crest was disproportionately larger than the average sized head crest (and 
despite this size being well outside the natural range for this species on Rarotonga). This 
finding would support the underlying assumption that the positive power function exhib-
ited between ornament size and male body size in most land-dwelling blennies (Summers 
and Ord 2022) has been driven by female preferences for increasingly larger ornaments.

Fig. 1  Past studies investigating female responses to the manipulation of male sexual structures have A 
reported a range of different preferences for ornament size and B largely tested ornament sizes within the 
natural range of populations. Those handful of studies that included a super-sized ornament (i.e., a size 
outside the natural range) uniformly found female preferences for the super-sized structure, whereas those 
studies that tested ornament sizes within the natural range tended to report mixed preferences for larger 
ornaments
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In addition, it is possible male blennies themselves use the size of the head crest in 
rivals to assess rival condition and potential fighting ability before challenging a male over 
a nest hole (sensu Small et al. 2009; Alonso et al. 2010; Tedore and Johnsen 2012). Past 
work on male assessment strategies in other animals suggests males increase their engage-
ment with a rival as that rival exhibits increasingly larger condition-dependent traits (dis-
plays, weapons or other elaborate physical features) indicating an increased threat (Clutton-
Brock et al. 1980; Ord and Evans 2003). However, this will tend to occur up to a point, 
after which males should start to disengage if a rival exhibits a trait or behavior perceived 
to reflect a male of likely superior fighting ability (see Clutton-Brock et al. 1980; Ord and 
Evans 2003). The model with the average sized head crest should therefore receive most of 
the attention from males, with little attention directed towards the control (no head crest) 
while the super-normal stimulus should generally be avoided by most males. In this case, 
the positive power function of the head crest may be generated, in part or entirely, by male-
male competition through opponent assessment of rival condition conveyed by the head 
crest (i.e., males possessing disproportionately larger crest sizes are more intimidating and 
obtain greater fitness payoffs compared to males with ‘average’ sized crests).

Materials and methods

Review of past experimental studies

Prior to conducting the experimental manipulation, we first reviewed past experimental 
investigations of female and male responses to manipulations of ornament size in order to 
evaluate the context of past experimental study to the allometric theory of sexually selected 
traits (e.g., Kodric-Brown et al. 2006). Our goal was not to conduct a formal meta-anal-
ysis to test the hypothesis of whether or not females (or males) responded positively to 
increases in sexual structure size. Instead, our objective was to reveal the pattern of conspe-
cific responses, how that might vary among studies, and whether that pattern of response 
reflected the manner in which studies have manipulated the size of ornaments or weapons. 
That is, it was the shape of conspecific responses—not their statistical effect size—that was 
of most interest, given its specific relevance for understanding how conspecific assessments 
of sexual structures might lead to the evolution of positive allometry. A secondary goal of 
our review was to highlight how frequently experimental manipulations of ornament or 
weapon size were conducted with explicit reference to the observed allometry of the struc-
ture being manipulated. As we have already revealed in the Introduction, there appears to 
be a general lack of experimental study of conspecific responses to sexual structures for 
which the allometric scaling pattern has been quantified. Details on the methods and crite-
ria used to identify studies are provided in the online Supporting Information, as well as a 
detailed description of each study reviewed (Tables S1 and S2).

Experimental manipulation of ornament size in a land blenny

Our experimental work took place on the South-Pacific island of Rarotonga at Avana Point 
and the adjacent island of Motutapu (~ 150 m from Avana Point) near the locality of Muri. 
It was conducted from December 6–18, 2015, a period that was expected to overlap with 
the peak breeding period for these land blennies (midsummer; e.g., Bhikajee et al. 2006). 
The experiment involved the presentation of three models varying in head crest size (Fig. 
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S1) to free-living Alticus sp. cf. simplicirrus found along a reef wall in the supralittoral 
splash zone (Fig. S2), where individuals were observed to be active and in high abundance 
during mid-tide, with males often occupying rock holes as nests. The models were realistic 
mimics of Alticus sp. cf. simplicirrus and consisted of two contrasting head crest sizes: (i) 
a population average or ‘normal’ sized head crest, which was derived from the allometric 
curve of this population and was approximately 11  mm2 (Fig. 2b); and (ii) a ‘super-sized’ 
head crest that corresponded to one of the largest head crest sizes recorded for any terres-
trial blenny species, which was exhibited by a male A. monochrus on the island of Mau-
ritius (Summers and Ord 2022) and was approximately 48  mm2 (Fig. 2b; NB: the abso-
lute largest head crest that we have ever recorded was 61  mm2, but creating this on the 
model that was otherwise life-size for the species on Rarotonga was impossible because it 
was simply too big to fit on the model’s head). This ‘super-sized’ treatment, while being 
well outside the bounds for this population on Rarotonga (Fig. 2b), was nevertheless bio-
logically plausible for this genus. We also created a control model that had no head crest 
and was more typical of a juvenile or female of this species (only mature males possess a 

Fig. 2  Head crest size and influence on conspecific behaviour. A A male Alticus sp. cf. simplicirrus exhibit-
ing a prominent head crest (NB: this male is not showing the typical charcoal black courtship colouration; 
photo courtesy of Georgina Cooke). B The allometry of male head crests in Alticus sp. cf. simplicirrus 
(blue circles) and Alticus monochrus (orange circles; data from Summers and Ord 2022). Shown are the 
head crest sizes of the models used in presentations (filled circles): control  (0mm2); average  (11mm2); and 
super-sized  (48mm2). The standard length of models was kept consistent (30 mm), equivalent to the display 
position of an average male (60  mm). Data are ln-transformed, with head crest area first linearised by a 
square-root (see Summers and Ord 2022). C The time females and males spent inspecting each male model 
(data are the mean ± SE total time individuals spent within the zone of approach, weighted by the propor-
tion of individuals that approached that model out of all the individuals observed to approach any model 
during the trial)
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head crest). The online Supporting Information provides details on the construction of the 
models. 

Model presentation

The experiment consisted of a simultaneous presentation of all three models to free-living 
blennies, which approximated the context in which males and females would encounter 
each other in the wild. Each model was fixed next to each other on the reef wall in a rough 
line with approximately 30 cm separating each model (e.g., see Fig. S2). The specific posi-
tion of models was dependent on where they could be attached to the reef wall and this was 
effectively random across treatments and the control (i.e., there was no statistical bias in 
model position among treatments; see Table S3). The order in which models were placed 
relative to each other was changed systematically from one trial to the next. The model 
blennies were also switched among the three artificial nest holes in a systematic manner 
every seven trials and the opportunity was taken at this point to also switch out the copy of 
the model blenny itself.

Trials were recorded using a hand-held video camcorder approximately 5 m from the 
reef face (Fig. S3). Each trial began with a 2 min acclimation period and was followed by a 
maximum of 10 min video-recording (mean trial time: 8:55 min, range 1:10 to 10:00; trials 
were sometimes ended prematurely by wave inundation knocking models off the reef wall). 
Consecutive trials were conducted in a systematic manner in which the researcher progres-
sively moved along the reef wall in a consistent direction away from the previous trail for 
several meters before positioning models for the next trial. Based on extensive observations 
of other species (e.g., Ord and Hsieh 2011) and anecdotal observations of individuals at 
this location, this distance was anticipated to be far enough between trials to reduce the 
likelihood of resampling individuals.

Previous studies on closely related amphibious and terrestrial species have indicated 
social activity on land is generally concentrated during periods of mid-tide, and to a lesser 
extent during moderate to high air temperatures (Ord and Hsieh 2011; Ord and Cooke 
2016). All presentations were consequently made during the approximately two hour mid-
tide period. Air temperature ranged from 24.8 to 32.4 °C and was well within the range 
during which peak social activity has been observed in other species (Ord and Hsieh 2011; 
Ord and Cooke 2016).

Video and statistical analyses

Videos were scored blind (it was very difficult to discern treatment position in videos) and 
involved running clips in real-time, repeatedly for each individual fish observed to move 
into frame during the trial. Each individual was identified as male or female based on the 
presence/absence of a head crest, gross body size and coloration. In relation to body size, 
terrestrial blennies (specifically Alticus) exhibit age cohorts that allow juveniles to be eas-
ily distinguished from adults based on obvious differences in size (e.g., see Bhikajee et al. 
2006). Small individuals (approximately < 35 mm standard length) were therefore excluded 
from observations because they were likely to be juveniles. Individuals were tracked for the 
entirety of the trial (10 min) or until that individual moved out of frame. Data was collected 
on which individuals entered a designated ‘zone of approach’ for each model and total time 
(in seconds) spent within that zone. This zone was defined as an approach within 10 cm 
or closer of the circular latex platform, with an orientation of approach being specifically 
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towards the model blenny. Total time within this zone and orientation towards the model 
was then recorded using a stopwatch. Timing stopped at any point that an individual ori-
entated away from the model, but otherwise stayed within 10 cm, or left the zone entirely. 
On occasion individuals re-oriented towards the model or moved back into the zone of 
approach and timing was recommenced. Our analyses focused specifically on the total 
time each individual spent oriented towards a given model within that zone. Of 140 trials, 
observations were made of 84 females and 50 males approaching one or more of the mod-
els. Models that were not approached by a given individual were given a time score of zero.

Data were analysed separately for the sexes using R version 3.2.4 (R Development Core 
Team, The R Foundation for Statistical Computing, Vienna, Austria) and a compound pois-
son random-effects linear model in the ‘cplm’ package version 0.7–5 (Zhang 2013) with 
the ‘cpglmm’ function. This model is especially suited for our needs because it evaluates 
the distribution of the data and fits a model with the most appropriate error distribution 
from the family of tweedie probability distributions. For both sexes, the model identified a 
poisson-gamma distribution, which accounted for the heavy skew of zero time scores when 
individuals did not approach a given model and the normal distribution of times when indi-
viduals did approach a given model. In this framework, model parameter estimates were 
effectively the total time individuals spent within the zone of approach for a given blenny 
mimic, weighted by the proportion of individuals that approached that model out of all the 
individuals observed to approach any model during the trial.

All models included a random intercept and slope for fish identity and trial number. 
These random effects accounted for the repeated measures for some individuals (fish 
approaching two or more models within a single trial) and the possibility that the behavior 
of other fish observed during a given trial influenced the behavior of the focal fish or that 
some variable specific to a trial influenced the general behavior of all fish observed (e.g., 
subtle variation in reef topography). The fixed effect included categories of control (no 
head crest), normal (population-average sized head crest) and super-normal (a large head 
crest outside the observed range for this population) and was defined in the model as a fac-
tor. The dependent variable was the time (s) individuals spent within the zone of approach, 
with instances of non-approach scored with a value of 0. By including non-approaches in 
this way, the tweedie model explicitly considered both the proportion of individuals that 
did or did not approach a given model and, and for those that did approach, the time indi-
viduals subsequently spent inspecting the blenny mimic (see previous paragraph).

Results

Review of past experimental studies

From the 543 articles reviewed, we found 65 articles that met our criteria and cov-
ered 38 different species in which the size of sexual structures were manipulated and 
presented to conspecifics for assessment. The typical method for generating different 
sized sexual structures was by trimming (N = 42 studies) and artificially extending 
ornaments in live animals (N = 34 studies), followed by presenting conspecifics with 
static models (N = 11 studies), still images (N = 3 studies) and video-playback (N = 1 
studies). Only three studies were found to manipulate the size of male weapons (see 
Table S1). A summary of the reported nature of preferences and types of ornaments 
tested by studies that focused on female responses to male ornaments (i.e., those most 
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relevant for our empirical study) is provided in Fig. 1. Full details on all studies cap-
tured by our review is provided in Table S1 in the online Supporting Information.

Approximately one quarter of studies we reviewed manipulated ornament stim-
uli across a range of different sizes (N = 17 studies), but in only five cases did these 
include an ornament size outside the natural range for the studied species (i.e., a 
“super-normal” stimuli; Fig. 1). For these five, all reported a log-linear, positive pref-
erence in favor of the super-normal male ornament (Table 1a; e.g., Andersson 1982; 
Jones and Hunter 1998; Pryke and Andersson 2002). However, the allometric scaling 
of these ornaments in life remains unknown for these species, so the relevance of these 
response patterns to the evolution of sexually selected allometry remains unclear. Of 
those studies testing stimuli in the natural range of sizes seen in nature, nearly a quar-
ter failed to report any preference for larger ornaments (10 of 35 studies). Studies that 
simply compared the response of females to the presence and absence of male sexual 
structures all reported a lack of preference for ornamentation in general (Fig. 1b).

Experimental manipulation of ornament size in a land blenny

Only two female land blennies out of the 84 observed approached all three models. 
One of those females spent the longest time inspecting the super-sized head crest 
model (12 s; compared to the population-average (“normal”) sized head crest and the 
control (no head crest) models, both 2 s), while the other female spent the longest time 
inspecting the average-sized head crest model (99 s; compared to the super-sized, 26 s, 
and the no head crest control, 5  s). Five females approached two of the three mod-
els, with two females inspecting the super-sized and average-sized head crest models, 
a third inspecting the average-sized and control models, and the last two inspecting 
the super-sized and control models. Three of the five females spent the longer time 
inspecting the model with the larger head crest (super-sized vs average-sized vs con-
trol, female A: 21 s, 7 s, -; female B: 41 s, 8 s, -; female C: -, 54 s, 2 s; female D: 6 s, -, 
18 s; female D: 4 s, -, 18 s). The remaining 77 females inspected only one of the three 
models (super-sized head crest: 32 females; average-sized head crest: 23 females; con-
trol: 22 females). Across all individuals, female blennies approached and spent more 
time attending to the model with the super-sized head crest, and disproportionately 
so, compared to either the model with the average-sized head crest or the control (no 
head crest; Table S4 and Fig. 2c). There was little difference between female evalua-
tion times towards the average-sized head crest and the control (Fig. 2c).

No male land blenny of the 50 observed approached all three models. However, 
seven males inspected two of the three models, with four males shifting between the 
super-sized and average-sized head crest models, one between the average-sized and 
control models, and two inspecting the super-sized and control models. Four of the 
seven males spent the longer time inspecting the model with the larger head crest 
(super-sized vs average-sized vs control, male A: 32 s, 26 s, - s; male B: 81 s, 9 s, - s; 
male C: - s, 23 s, 4 s; male D: 4 s, - s, 3 s; male E: 17 s, 22 s, - s; male F: 11 s, 12 s, - s; 
male G: 18 s, - s, 56 s). The remaining 43 males inspected only one of the three mod-
els (super-sized head crest: 13 males; average-sized head crest: 18 males; control: 12 
males). Taken together, and in contrast to females, there was no statistical difference in 
the time males spent evaluating any of our models (Table S4 and Fig. 2c).
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Discussion

Experiments that have investigated female or male responses to supernormal sized orna-
ments or weapons are rare (< 10% for ornaments; none for weapons; Table  S1). The 
findings of these studies suggest that males capable of exhibiting sexual morphologies 
greater than the natural size range for a population would likely acquire greater fitness 
benefits (based on the 5 studies that presented super-normal sized traits; Fig. 1b). The 
findings of our own experimental study were consistent with this general conclusion as 
well, but have direct implications for the evolution of sexually selected allometry (see 
next paragraph). Furthermore, had we not tested an ornament beyond the size range for 
male Alticus sp. cf. simplicirrus on Rarotonga, we would likely have failed to detect any 
difference in female attention towards an average-sized ornament and a male possessing 
no ornament. Our review revealed this type of null outcome was common. Most experi-
ments examined the consequences of possessing a large or small ornament relative to a 
standardized control, and this design was the least likely to detect positive preferences 
for one ornament size over another. At a basic level, this suggests experiments testing a 
range of ornament sizes, especially those that incorporate supernormal stimuli, are bet-
ter designed to measure the full extent of female preference behavior.

In our experimental study, we found females likely have a strong positive preference 
for male head crest size, and that this preference extends beyond the range of male crest 
sizes actually observed in the population. This result is important because it seems to be 
the first confirmation of a central assumption underlying the allometry theory of sexu-
ally selected characters more broadly (e.g., Kodric-Brown et al. 2006). The size of head 
crest treatments used in our study corresponded to the positive scaling exponent typi-
cally exhibited by members of this genus (Fig. 2b; Summers and Ord 2022). By doing 
so, our study reveals the probable underlying mechanism that drives positive allomet-
ric relationships of a sexually selected ornament in these fishes. That is, the size of 
the male head crest has likely evolved as an honest indicator of male condition—e.g., 
his ability to devote resources to growth and development—assessed by females dur-
ing mate selection. Given the choice, female blennies will more readily associate with 
a male possessing the largest head crest (Fig.  2c), and such a male will presumably 
benefit from increased mating opportunities. For example, in several species of Alti-
cus, females actively inspect multiple males as they perform courtship displays at the 
entrance of their rock holes, and central to those displays is the presentation of the head 
crest (Bhikajee and Green 2002; Ord and Hsieh 2011). Females choosing a male will 
then enter a male’s hole to lay eggs, which he then fertilizes and cares for until hatching 
(e.g., Bhikajee and Green 2002; Shimizu et al. 2006; Ord and Hsieh 2011). In contrast, 
the size of the head crest appears not to be used by other males as a cue of the condition 
of rivals during opponent assessment, despite male land-dwelling blennies aggressively 
defending rock holes from rival males (Bhikajee and Green 2002; Ord and Hsieh 2011; 
Fig. 2c; NB: this does not exclude the possibility that males assess other aspects of a 
rival’s morphology such as gross body size).

Positive allometric scaling of sexually selected characters should occur because 
only larger males can invest in producing disproportionately larger condition-depend-
ent traits (Petrie 1988; Green 1992; Tomkins and Simmons 1996; Emlen and Nijhout 
2000; Kodric-Brown et al. 2006). Our experiment provides evidence this investment in 
exaggerating ornament size should in turn convey advantages in acquiring mates and 
therefore result in improved fitness for males. Furthermore, disproportionately larger 
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ornaments receive disproportionately greater attention from females (Fig. 2c), and this 
includes ornament sizes well beyond the observed range found in a population (Fig. 2b).

Given females seem to exhibit a strong preference for disproportionately exagger-
ated head crests in this population, it’s worth noting again that male Alticus sp. cf. sim-
plicirrus appear to have an almost isometric head crest exponent (1.05), and one con-
siderably lower than the average Alticus head crest exponent within the genus (1.36, CI 
range = 1.24–1.47; Summers and Ord 2022; see also Fig. 2b). This might reflect either 
a generally low level of competition among males for females in this population (i.e., 
relaxed sexual selection despite the presence of strong female preferences for a par-
ticular male phenotype) or a constraint on exaggerating ornament size (e.g., natural 
selection via predation or biomechanical constraints; Summers and Ord 2022). These 
explanations will need to be confirmed by future study, but this species offers an excit-
ing opportunity to investigate the evolutionary and developmental factors involved in an 
apparent mismatch between male trait expression and female preference for that trait.

This effectively “hidden” female preference for extravagant ornament sizes in males 
highlights a challenge for any investigation of mate choice wishing to identify the cues 
used by females that does not incorporate stimuli outside the observed range in a pop-
ulation. If this phenomenon is frequent in nature (e.g., see also Rosenthal and Evans 
1998; Kozak et  al. 2008), it could account for instances where preferences for larger 
ornaments were failed to be detected by many studies (19 overall—see Table S1—14 
of which were specific to female preferences—see Fig. 1b). This might reflect a general 
issue of statistical power. The ability to detect an effect of female preference for larger 
ornaments will likely be greater in experiments that test ornament sizes outside the 
normal range simply because the magnitude of difference between treatments is larger, 
which in turn improves the signal-to-noise ratio in subsequent analyses. All studies we 
reviewed that tested ornament sizes outside the normal range reported female prefer-
ences for larger ornaments. In contrast, as many as a quarter of studies that only tested 
ornament sizes within the natural range failed to recover any preference for ornament 
size. Furthermore, documenting that males in a population exhibit an isometric scaling 
relationship in an ornament does not preclude the possibility that females might oth-
erwise have strong preferences for increasingly larger ornaments. We know the allom-
etry of ornaments can experience complex trade-offs, with opposing selection pressures 
dampening what would otherwise be positive allometric scaling in ornaments (e.g., pre-
dation or biomechanical constraints; see Summers and Ord 2022 for discussion).

Despite several models of sexual selection implicating the potential for animals to 
harbor hidden preferences for exaggerated sexual characteristics that are otherwise 
not currently expressed in a population (e.g., sensory bias—e.g., Rosenthal and Evans 
1998; Rodd et al. 2002; Smith et al. 2004; Makowicz et al. 2016; see also Basolo 1998; 
runaway selection—Fisher 1958; Lande 1981; Kirkpatrick 1982; Chandler et al. 2013), 
there are surprisingly few direct tests of super-size sexual ornaments and apparently 
none conducted within an explicit allometric context. Yet it is precisely these types of 
experiments that are vital for improving our understanding of how female preferences 
contribute to the evolution of complex sexual morphologies. It is especially relevant 
to allometry theory that implicitly assumes that the development of disproportionately 
sized sexual structures in males reflects disproportionate increases in fitness as a con-
sequence of elaborating the size of those structures (Kodric-Brown et al. 2006). One of 
the best ways to investigate this underlying mechanism is to test conspecific responses 
or fitness outcomes to super-normal characteristics, and those that reflect observed 
or expected positive exponents of ornament size. This approach has the additional 
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potential to improve our ability to interpret non-positive allometries of sexually selected 
characteristics.
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