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Abstract
Allometry has been the focus of growing interest in studies using geometric morphomet-
ric methods to address a wide range of research questions at the interface of ecology and 
evolution. This study uses computer simulations to compare four methods for estimating 
allometric vectors from landmark data: the multivariate regression of shape on a measure 
of size, the first principal component (PC1) of shape, the PC1 in conformation space, and 
a recently proposed method, the PC1 of Boas coordinates. Simulations with no residual 
variation around the allometric relationship showed that all four methods are logically con-
sistent with one another, up to minor nonlinearities in the mapping between conformation 
space and shape tangent space. In simulations that included residual variation, either iso-
tropic or with a pattern independent of allometry, regression of shape on size performed 
consistently better than the PC1 of shape. The PC1s of conformation and of Boas coordi-
nates were very similar and very close to the simulated allometric vectors under all condi-
tions. An extra series of simulations to elucidate the relation between conformation and 
Boas coordinates indicated that they are almost identical, with a marginal advantage for 
conformation. Empirical examples of ontogenetic allometry in rat skulls and rockfish body 
shape illustrate simple biological applications of the methods. The paper concludes with 
recommendations how these methods for estimating allometry can be used in studies of 
evolution and ecology.

Keywords  Allometry · Boas coordinates · Conformation space · Geometric 
morphometrics · Kendall’s shape space · Procrustes distance

Introduction

Allometry is an important factor to consider in many branches of biology because body 
size pervasively influences physiological and developmental processes in animals and 
plants (Calder 1984; Schmidt-Nielsen 1984; LaBarbera 1989). Most obviously, growth is 
an increase in body size of an organism. Through their association with other life history 
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features, growth and development are also intimately tied into the ecological and evolution-
ary context of the organism (Roff 1992; Gilbert and Epel 2008). Morphological traits can 
be viewed as the cumulative product of growth and development of an organism up to the 
time when traits are observed, and many of them are involved in functions such as forag-
ing and reproduction and are therefore undergoing adaptive evolution. Accordingly, allom-
etry has been of long-standing interest for ecology and evolutionary biology (Huxley 1932; 
Jolicoeur 1963; Cock 1966; Gould 1966a; Mosimann 1970; LaBarbera 1989; Klingenberg 
1996) and in recent decades the advent of new disciplines and approaches such as evo-devo 
and geometric morphometrics has reinvigorated the field (Loy et al. 1998; Monteiro 1999; 
Sidlauskas et al. 2011; Mitteroecker et al. 2013; Klingenberg 2016; Outomuro and Johans-
son 2017; Bookstein 2021).

Historically, the study of allometry started with the observation that log-transformed 
values of different linear measurements of growing animals, when plotted against one 
another, tended to fall along straight lines (i.e., the original measurements were related by 
a power function) and by the insight that this can be interpreted in terms of relative growth 
ratios of the traits (Huxley 1924; Teissier 1926; Gayon 2000). For the situation when mul-
tiple measurements are considered simultaneously, Jolicoeur (1963) proposed a multivari-
ate generalization of a best-fitting line in a scatter plot using the first principal component 
of log-transformed measurements. This approach was extended by methods for size correc-
tion (e.g., Burnaby 1966) and has been widely used since then (Cheverud 1982; Shea 1985; 
Klingenberg 1996). By contrast, Gould (1966a, p. 587, p. 629) explicitly defined allometry 
as the study of proportion changes correlated with variation in size of either the whole 
organism or the part of interest, and emphasized that the term was not limited to any spe-
cific mathematical expression, such as the power function. He also repeatedly highlighted 
geometric similarity as an important criterion in allometric studies (Gould 1966b, 1968, 
1971, 1975, 1977). Mosimann (1970) formalized this approach for multiple linear meas-
urements: shape is a vector of ratios, each measurement divided by a general size vari-
able computed from the measurements jointly. Allometry is a correlation between shape 
vectors and the size variable (Mosimann 1970; Mosimann and James 1979). These two 
different approaches have been distinguished as two “schools” of thought: the Huxley–Joli-
coeur school that characterizes allometry as the covariation among two or more traits in 
response to variation of size, where each of the traits contains its own size information, 
and the Gould–Mosimann school that is based on separating size and shape into separate 
components according to the criterion of geometric similarity and defines allometry as 
the covariation between them (Klingenberg 1998, 2016). Whereas both frameworks were 
initially developed for traditional morphometric studies of sets of distance measures, both 
also apply to studies using the methods of geometric morphometrics (Klingenberg 2016).

This paper uses computer simulations of landmark configurations to compare the perfor-
mance of two methods within each of the two major allometric frameworks in the context 
of geometric morphometrics. For the Gould–Mosimann school, the simulations include the 
multivariate regression of shape on centroid size, the most widely used method for analyz-
ing allometry in geometric morphometrics (Loy et  al. 1998; Monteiro 1999; Rosas and 
Bastir 2002; Drake and Klingenberg 2008; Rodríguez-Mendoza et al. 2011; Springolo et al. 
2021), and the estimation of an allometric vector using the first principal component (PC1) 
in the shape tangent space (O’Higgins and Jones 1998; Cobb and O’Higgins 2004; Sardi 
and Ramírez Rozzi 2012; Watanabe and Slice 2014). For the Huxley–Jolicoeur school, the 
comparisons cover the PC1 in the conformation space, where position and orientation of 
landmark configurations are standardized but not size (also known as size-and-shape space; 
Bensmihen et al. 2008; Feng et al. 2009; Milne and O’Higgins 2012; O’Higgins and Milne 
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2013; Mydlová et al. 2015), and a recently proposed method using the PC1 of Boas coordi-
nates (Bookstein 2018, 2021).

Because the spaces in which morphologies are represented and analyzed are impor-
tant for understanding morphometric methods (Kendall 1984; Small 1996; Kendall et al. 
1999; Rohlf 2000; Dryden and Mardia 2016; Klingenberg 2016), I briefly present Kend-
all’s shape space and conformation space, as well as the respective tangent spaces, before 
explaining the set-up of the models for allometry used in the simulations. A first set of 
simulations uses models in which allometry is the only variation, with no residual scat-
ter around the allometric relationships at all. These simulations test the logical compat-
ibility between methods: if the methods are logically consistent with each other, they are 
expected to provide corresponding results for such deterministic allometric relations. Two 
more sets of simulations add residual noise that is either isotropic or has a random but ani-
sotropic structure. These simulations examine the statistical performance of the methods 
for analyzing allometry in the presence of noise that is either completely homogeneous in 
every available direction or that has a pattern different from that induced by the allometry. 
Some additional analyses examine the relationship between the conformation space and 
Boas coordinates (Bookstein 2018, 2021). Finally, two contrasting examples demonstrate 
the application of the different frameworks to empirical growth data from rats (Moss et al. 
1981; Bookstein 1991) and rockfish (Rodríguez-Mendoza et al. 2011).

Shape space, conformation space and methods for analyzing allometry

For understanding and comparing morphometric methods, including those used to study 
allometry, it is helpful to consider the underlying shape or form spaces (Rohlf 2000; 
Klingenberg 2016). For the comparison of the Gould–Mosimann and Huxley–Jolicoeur 
approaches to allometry in the context of geometric morphometrics, the key point is that 
they use different spaces. The Gould–Mosimann school separates size and shape according 
to the criterion of geometric similarity, and therefore uses shape spaces. Because size is 
external to shape spaces, analyses of allometry then are based on regressions of shape on 
size or similar methods. The Huxley–Jolicoeur school characterizes allometry as covaria-
tion among traits without separating size and shape, and therefore finds allometric trajecto-
ries by fitting lines to the scatter of data points in conformation space. In practice, analyses 
of morphometric data are using some form of Procrustes superimposition algorithm and a 
projection to the tangent spaces to the shape or conformation spaces (Kendall 1984; Rohlf 
and Slice 1990; Goodall 1991; Dryden and Mardia 2016). It is therefore useful to consider 
those as well.

Kendall’s shape space is familiar to morphometricians, especially the one for triangles 
in two dimensions, which is the surface of a sphere (Fig. 1a; e.g., Rohlf 1999; Klingenberg 
2020). The points in a shape space represent every possible shape for a given number of 
landmarks and dimensionality, and the pairwise distances between points correspond to the 
Procrustes distances between the respective shapes. Shape spaces for more than three land-
marks are difficult to understand because they are curved multidimensional spaces (Small 
1996; Kendall et al. 1999; Dryden and Mardia 2016; Klingenberg 2020). For that reason, 
practical shape analyses normally use tangent spaces. Just as maps provide a flat represen-
tation of the curved surface of the Earth, a shape tangent space gives a local linear approxi-
mation of the shape space in the vicinity of the tangent point (Fig.  1c). In practice, the 
usual choice for the tangent point is the mean shape. Because the tangent space is linear, 



442	 Evolutionary Ecology (2022) 36:439–470

1 3

the standard methods of multivariate statistics can be used within it. For biological data, 
shape variation is usually sufficiently limited for the tangent approximation to be good 
enough for practical shape analyses (Rohlf 1999; Marcus et al. 2000; Klingenberg 2020).

Two types of analysis of allometry that are in widespread use are based on the shape 
(tangent) space: the regression of shape on centroid size and the correlation of the PC1 
of shape with centroid size. Both these types of analysis are firmly in the Gould–Mosi-
mann school because the size measure (usually centroid size or sometimes log-transformed 

Fig. 1   Shape space, conformation space, and the respective tangent spaces. (a) Kendall’s shape space for 
triangles, one hemisphere viewed from a direction so that an equilateral triangle forms the pole (center; 
the other half of the sphere is hidden and holds mirror images of the visible triangles in corresponding 
positions). The circle at the periphery of the diagram (equator of the sphere) corresponds to the collinear 
triangles, in which all three vertices lie on a single straight line. (b) The conformation space for collinear 
triangles. It is a cone, with each cross-section corresponding to a scaled copy of the respective shape space 
(here the circle of collinear triangles that forms the equator of the shape space for all triangles). A straight 
line from any point to the tip of the cone represents conformations that have the same shape but different 
sizes. (c) A tangent space to the shape space for triangles. It is a linear (flat) approximation to the surface of 
the sphere in the vicinity of the point where the tangent plane touches the shape space (dot), but there are 
distortions with increasing distance from the tangent point. (d) A tangent space to the conformation space 
for collinear triangles. Note that the line from the tangent point to the tip of the cone (dashed line) runs 
within the tangent space. Rectangular boundaries have been added to the tangent spaces in the diagrams (c, 
d) to facilitate visual interpretation. Diagrams (a–c) from Klingenberg (2016)
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centroid size) is external to the shape space. For both these types of analysis, the first step 
is a generalized Procrustes superimposition and tangent projection (Table 1, left two col-
umns; this paper focuses entirely on partial Procrustes superimposition, e.g. Dryden and 
Mardia 2016). This procedure starts with centering the landmark configurations so that 
the center of gravity of each configuration is located at the origin of the coordinate system 
(step 1) and scaling to unit centroid size (step 2). The subsequent steps iteratively rotate the 
landmark configurations to fit them optimally to a consensus configuration, updating the 
consensus to converge to the mean shape of the sample (steps 3–6). In essence, the rotation 
step consists of successive ordinary Procrustes fits of all landmark configurations to the 
consensus, and the aligned configurations are then averaged to find the consensus for the 
next iteration. Finally, once changes in the consensus are negligible, the aligned landmark 
configurations are projected onto the shape tangent space at the sample mean shape (step 
7). The resulting shape coordinates can then be used for analyzing allometry.

In this framework, allometry is an association of shape with size. The most straight-
forward way to characterize this association is by a multivariate regression of shape on 
a measure of size, such as centroid size or log-transformed centroid size (e.g., Loy et al. 
1996, 1998; Monteiro 1999; Rosas and Bastir 2002; Drake and Klingenberg 2008; Rod-
ríguez-Mendoza et al. 2011; Sidlauskas et al. 2011; Weisensee and Jantz 2011; Klingen-
berg et al. 2012; Strelin et al. 2016, 2018; Sansalone et al. 2020; Simons 2021; Springolo 
et al. 2021). Using log-transformed centroid size is often advantageous if size variation is 
large, as it can render the relationship to size more linear and reflects the multiplicative 
nature of growth, but for data with relatively small ranges of size, untransformed centroid 
tends to be easier to interpret. For this method, the regression vector contains information 
about the pattern and strength of allometry because it is the expected shape change for an 
increase in centroid size (or log-transformed centroid size) by one unit. The strength of 
allometry can be quantified as the length of the regression vector (square root of the sum of 
its squared elements). In the limiting case of perfect isometry, when there is no allometry 
at all, the regression vector consists of only zeros. This method can also be used for size 
correction (Sidlauskas et al. 2011; Klingenberg 2016). Analyses of allometry using multi-
variate regression make no assumptions whether allometry is the only or the main effect 
on shape in a dataset, and they can therefore also be used in the presence of other factors 
influencing shape variation.

An alternative method for characterizing allometry within the Gould–Mosimann 
framework is to use regression or correlation to assess the relation between the PC1 of 
shape and a size measure such as centroid size (e.g., O’Higgins and Jones 1998; Sardi and 
Ramírez Rozzi 2012; Watanabe and Slice 2014; Bastir et al. 2017; Nishimura et al. 2019). 
The direction of the PC1 provides the pattern of allometry and the correlation or covari-
ance with the size measure are indications of the strength of the relationship. If there is no 
allometry, correlation and covariance are expected to be zero and the direction of the PC1 
is unrelated to allometry. The crucial assumption implicit in this approach is that allometry 
is the only factor having a major influence on shape. If this assumption is not met, the 
analysis can be misleading because no PC or multiple PCs may be correlated with the size 
measure (Singleton 2002; Sardi et al. 2007; Watanabe and Slice 2014).

Whereas most analyses in geometric morphometrics focus on shape variation, far fewer 
studies have used the Huxley–Jolicoeur framework. A fundamental characteristic of this 
approach is that it does not divide the form of objects into the separate aspects of size 
and shape, but it considers form jointly as a single coherent feature. Whereas the shape 
of an object is all its geometric features except its size, position and orientation, the form 
includes all the geometric features except position and orientation—size is an integral 
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component of form. In analogy to Procrustes distance, a measure of distance between the 
forms of two landmark configurations can be defined: after one configuration is aligned 
with the other by translating and rotating so that the sum of squared distances between 
corresponding landmarks is minimal, the distance measure is computed as the square root 
of that sum. I call this distance measure conformation distance (Klingenberg 2016). This 
distance measure has been proposed several times independently in different contexts 
and under different names: first for comparing human skulls (Boas 1905), and later in the 
field of statistical shape analysis under the names “figure” (Ziezold 1977, 1994), “size-
and-shape” (Kendall 1989; Le 1995; Kendall et al. 1999; Dryden and Mardia 2016), and 
“form” (Goodall 1991; but note that several very different concepts have also been called 
“form”). A closely related measure of distance, root mean square deviation (RMSD), dif-
fers only by a constant factor and has long been a standard measure of difference between 
conformations of proteins in structural biology (Kabsch 1976; Cohen and Sternberg 1980).

Conformation space (also known as “size-and-shape space”; Kendall et  al. 1999; 
Dryden and Mardia 2016) is the space in which each point represents one of the possi-
ble conformations for a given number of landmarks and dimensionality, and pairwise dis-
tances between points in this space are the conformation distances between the correspond-
ing pairs of conformations. By comparison to shape spaces, conformation spaces are more 
complex because they include size as an additional dimension. It is possible to imagine 
that differently scaled copies of the corresponding shape space are “stacked up” along this 
additional dimension of size. As a result, conformation spaces are hard to visualize; the 
only one that can be visualized in no more than three dimensions is the conformation space 
for collinear triangles (Fig. 1b; Klingenberg 2016; the conformation space for all triangles 
requires four dimensions). It considers only those triangles for which all three vertices lie 
on a straight line, and for which the shape space is a circle (the ‘equator’ of the shape 
space for all triangles, visible as the outer circle in the diagram of Fig. 1a). It is easy to 
imagine stacking up increasingly larger circles along a size axis, and it follows that this 
conformation space is a cone emanating from an apex corresponding to the conformation 
with size zero, for which all three landmarks are exactly in the same point. In Fig. 1b, the 
cone is cut off at a cross-section to make the diagram clearer to understand, but in real-
ity, the conformation space has no such boundary and would continue indefinitely. Each 
cross-section of this cone is a circle corresponding to the shape space of collinear triangles 
(Fig. 1b; the “equator” of the shape space for all triangles, outer circle in Fig. 1a). These 
circles are oriented consistently, so that each straight line running from the apex of the 
cone along its side represents the set of conformations that all have the same shape, but 
different sizes. This kind of lines therefore can be interpreted as vectors of isometric varia-
tion of form (note that they are locally orthogonal to the circles corresponding to the scaled 
shape spaces). Further, the distance of a point from the apex of the cone is the centroid size 
of the respective conformation.

The tangent space to the conformation space of collinear triangles is a plane (Fig. 1d). 
It is defined by the tangent to the circular cross-section of the space at the tangent point 
and by the isometric line from the tangent point to the apex. The tangent space touches the 
conformation not only at a single tangent point, but along the entire isometric line passing 
through that point (dashed line in Fig. 1d). This has an implication that is important for the 
study of allometry: whereas the usual concerns about small variation and the quality of the 
tangent approximation apply for the shape of configurations (and are usually manageable; 
Rohlf 1999; Marcus et al. 2000; Klingenberg 2020), the fact that a vector for isometric var-
iation of size is runs within the conformation tangent space means that no such concerns 
exist for size, no matter how large its variation is. Therefore, even large disparities in size 
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do not lead to severe distortion when projecting conformations to the tangent space. This 
is especially relevant for analyses of ontogenetic and evolutionary allometry, where size 
ranges regularly extend over more than an order of magnitude. Other conformation spaces 
cannot be easily visualized, but it is true in general that the tangent space contains the iso-
metric vector that passes through the tangent point, and therefore that size variation can be 
arbitrarily large without affecting the quality of the fit to conformation tangent space.

The standard procedure for finding mean conformations in empirical data and fitting the 
data to tangent space is a Procrustes superimposition that omits the scaling step (Table 1, 
third column). The resulting mean conformation has a minimal sum of squared distances to 
the conformations of the landmark configurations from which it was obtained (for proofs, 
see Ziezold 1994; Le 1995). This means that this procedure provides a least-squares esti-
mate for the mean conformation, as the complete Procrustes procedure does for the mean 
shape. No extra projection to tangent space is necessary because the centering and rotation 
steps in the Procrustes procedure fulfil the relevant constraints of the conformation tangent 
space (for analyses of shape, the tangent projection only deals with the tangent constraint 
concerning size; Kent 1995). The superimposed landmark configurations resulting from 
the procedure can be used for analyses of variation of conformation in the sample. For 
instance, for the analysis of allometry, a PCA using the covariance matrix of the aligned 
landmark coordinates and then using the resulting PC1 as an estimate of the allometric 
vector. In empirical examples, the PC1 scores tend to be highly correlated with centroid 
size or other size measures (e.g., Langlade et al. 2005; Hsu et al. 2020).

Boas coordinates have recently been proposed as an alternative approach for analyzing 
allometry (Bookstein 2018, 2021). The starting point for this method is the first proposal 
by Boas (1905) of the least-squares 3D superimposition of one landmark configuration 
onto another by centering and rotation to an optimal fit, but without scaling. This crite-
rion for optimal superimposition of two configurations is the same as for the conforma-
tion approach, and the resulting measure of pairwise distances between configurations is 
therefore also the same. As a further consequence, the space these distances define must 
be the same as conformation space (Fig.  1b). Boas (1905) focuses entirely on the com-
parison of two configurations and a time, and so did Bookstein (2018, 2021) in most of 
his discussion. About the generalized superimposition of multiple specimens, Bookstein 
(2018, 2021) did not provide much detail but repeatedly specified that Boas coordinates are 
obtained by multiplying each configuration of Procrustes shape coordinates by its own cen-
troid size. The complete superimposition algorithm (fourth column of Table 1) therefore 
consists of a standard generalized Procrustes fit and an extra step (step 8 in Table 1) that 
multiplies the shape coordinates by centroid size to undo the scaling step (step 2). For this 
un-scaling to restore centroid sizes successfully, the procedure must use a partial and not 
a full Procrustes superimposition and there must be no projection to shape tangent space, 
because both those procedures would change the centroid size (Dryden and Mardia 2016) 
and thus would produce incorrect results in the un-scaling step (step 8). Boas coordinates 
are distinct from the analysis of conformations because the superimposition algorithms dif-
fer (Table 1, third and fourth columns). As pointed out by Bookstein (2021), the rotation 
step (step 4) is the same for a given target M and centered landmark configuration, regard-
less of whether that configuration is in the scale of original measurements ( XC

i
 ) or whether 

it is scaled to the corresponding preshape ( Zi ). The scale information does not enter the 
rotation, no matter whether the rotation is computed by singular value decomposition (for 
2D or 3D data, step 4 in Table 1; the matrix L takes up all the scale information, but is not 
used in computing the rotation matrix) or by complex regression (for 2D data; Appendix 
A2 in Bookstein 2021). The difference between the algorithms is in how they compute 
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the consensus M to which configurations are fitted in each iteration (step 5): for the anal-
ysis of conformation, the centered and rotated landmark configurations are used in their 
original scale, whereas for Boas coordinates (as for Procrustes analyses of shape) it is the 
rotated preshapes (all centered and scaled to unit centroid size). As a result, the consensus 
M for the conformation procedure can be interpreted as being proportional to a weighted 
average of the shapes of configurations in the sample, with centroid size as the weight-
ing factor, whereas the M for Boas coordinates is an unweighted average of those shapes. 
Bookstein (2018, 2021) and O’Higgins et al. (2019) mention this difference between the 
two approaches. The difference between weighted and unweighted averages implies that 
the consensus matrices M for the two methods will differ by more than just scaling and 
sampling error particularly if there is a systematic association between shape and size, that 
is, if there is allometry. For this reason, it will be useful to explore the relative performance 
of the methods using conformations and Boas coordinates in more detail in simulations of 
allometric variation.

Models used in the simulations

Allometric models

An inherent problem for comparing the Gould–Mosimann and Huxley–Jolicoeur frame-
works is that the relation between shape space and conformation space is slightly nonlinear. 
The problem is that a model of linear allometry in one space is expected to yield a subtly 
nonlinear response in the other space. For instance, if the point P in Fig. 2b moves from M 
upwards and to the right along the allometric vector repeatedly by equal shifts, the corre-
sponding steps of point P′ in shape tangent space become progressively smaller (this is also 
true for the projection into shape space). Such nonlinearities may produce deviations from 
predictions based on local linear approximations, such as the enumeration of constraints 
on tangent spaces (Klingenberg 2020) or the matrix J of Bookstein (2018, 2021). To avoid 
bias in favor of either of the two approaches, this study uses two parallel sets of simula-
tions, one situated in conformation space and the other in shape tangent space (Fig. 2).

One set of simulations was conducted using a model situated in the configuration 
space (Fig. 2a), with different numbers of landmarks (k = 6, 8, 10, 15, 20, 30, 40, 50, 
100) in both 2D and 3D. For each simulation run, a mean configuration M was chosen 
with a centroid size set arbitrarily to 5 units and a shape M′ drawn randomly from a 
uniform shape distribution with the appropriate number of landmarks and dimensions. 
The line from the origin O of the coordinate system through M′ and M is a vector of 
isometric variation because variation along this direction only changes the scaling of 
the resulting configurations (Klingenberg 2020). There are two ways in which allomet-
ric effects can become stronger or weaker: the angle β between the allometric trajec-
tory and the isometric vector can change (and accordingly the amount of shape change 
per unit of size increase) or the displacements Δ along the allometric trajectory can 
increase or diminish. Variation of Δ is closely related to size variation of P, but varia-
tion in the centroid size of P (the distance between points O and P in Fig. 2a) is a trigo-
nometric function of both β and Δ and is therefore a nonlinear function of both. The 
simulations varied the angle β from 0° to 30° in steps of 5°, corresponding to a spec-
trum from completely isometric variation to clear allometric variation. The pattern of 
allometric changes was generated by a random shape vector α orthogonal to the vector 
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of the mean shape. The vector α and angle β together determine the direction of the 
allometric vector in conformation space (oblique red line in Fig. 2a). The magnitudes 
of displacements Δ from the mean M along the allometric vector were modelled in 
two different ways: as a normal distribution and as a lognormal distribution, each with 
mean zero and variances of 0.4, 0.6, 0.8 or 1.0 squared units of size.

The second set of simulations used a model situated in shape tangent space 
(Fig. 2b). This model was the same as above, but instead of modelling displacements 
Δ along the allometric vector in conformation space, the model included deviations Δs 
of centroid size from the mean, drawn from the same set of distributions as Δ. To com-
pute the magnitude of the allometric displacement along the vector α in shape tangent 
space Δs was divided by the mean size and multiplied by sin(β). Finally, the resulting 
shapes were scaled to the appropriate centroid size for each landmark configuration 
(mean size plus Δs).

a b

Fig. 2   Diagrammatic representation of the setup of simulation models. (a) Simulation model situated in 
conformation space. This model includes displacements Δ from the mean conformation M along the allo-
metric vector, and some simulations also include residual variation around P (dashed circle), drawn either 
from an isotropic or anisotropic distribution with total variance var(ε). (b) Simulation model situated in 
shape tangent space. This model simulates allometric displacements from the mean shape M′ along the 
vector α and possibly residual variation, both within the shape tangent space, and subsequently computes 
landmark configurations by scaling to the appropriate centroid size. For further details, see the main text
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Residual error structure

A first series of simulations used these two models with no residual noise at all to examine 
whether the four different methods to analyze allometry (Table 1) are logically compatible 
with one another. The remaining simulations included an additional component of resid-
ual noise that was either isotropic or had a pattern of its own (dashed circles labeled ε in 
Fig. 2). This noise was added in the space in which the respective model was situated (with 
appropriate scaling to make the amounts of noise compatible between the two sets of simu-
lations). Isotropic noise, without any pattern and equal amounts of variation in all direc-
tions of the space of landmark coordinates, was simulated as independent and normally 
distributed random variables with equal variances. In a separate set of simulations, pat-
terned noise was simulated as multivariate normal vectors with zero mean and a covariance 
structure according to the model of exponential decrease of eigenvalues (Varón-González 
et al. 2020). In this model, the successive eigenvalues diminish by a constant factor, cho-
sen to be 0.7 in this case, producing a decline in eigenvalues that is steep initially and then 
tapers off, as it is seen in many empirical datasets. The set of eigenvectors for each such 
simulation run was simulated as a random rotation matrix (using the QR decomposition; 
Press et al. 2007). As a result, the pattern of the residual variation is completely independ-
ent of the allometric vector. For both isotropic and anisotropic noise, residuals were drawn 
from a multivariate normal distribution with mean zero and a total variance var(ε) of 0, 
0.2, 0.4, 0.6, 0.8, 1.0, or 1.2 squared units of size. Because the residual component was 
applied to the entire space of landmark coordinates, it contributed variation that included 
translations and rotations in addition to variation of form.

Evaluation of results

Each simulation generated data for a sample of 100 individuals. The allometry in the 
data was analyzed with all four methods presented in Table 1. The outcome was quanti-
fied as the angle between the estimated allometric vector from the respective method 
and the expected allometric vector, either the allometric vector in conformation space 
or the vector α in the shape tangent space at M′ (Fig. 2). This angle (here called “error 
angle”) is a consistent way to compare the performance of all four methods. For the 
two methods from the Gould–Mosimann approach, which are based on shape space, 
comparisons to the expected direction of the allometric vector do not apply for the case 
of isometry: the expected regression vector entirely consists of zeros and its direction 
is therefore undefined, whereas the PC1 is entirely determined by residual noise (in the 
absence of noise, there is no shape variation at all, and therefore no PCs exist). There-
fore, comparisons with these two methods were only evaluated for values of the angle 
β > 0. For each combination of parameter values, 100 simulations were run, and the 
resulting error angles were averaged for presentation.

Simulations were run in R, version 4.1.0 (R Core Team 2021). The code used for the 
simulations and analyses is included in the Supplementary Information.
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Simulations with no residual variation

Most of the simulations for allometry without residual noise showed close agreement 
between the expected allometric vectors and those estimated from the simulated data 
(Figs. 3, 4, S1–S6). Error angles were small or very small for the majority of simulations, 
with the only exceptions occurring in simulations using lognormal distributions of the Δ or 
Δs values and particularly for simulations situated in shape tangent space (Figs. S1, S3, S4, 
S6). Throughout all simulations, there was a consistent trend for error angles to be smaller 

a b

c d

Fig. 3   Performance of methods for estimating allometry without any residual noise for 2D data, from simu-
lations situated in the conformation space and with allometric displacements Δ along the allometric vector 
drawn from a normal distribution. The plots show the error angles, averaged over sets of 100 simulation 
runs for each combination of parameters, as functions of the angle β between the allometric and isometric 
vectors, for different numbers of landmarks, k. In each plot curves are color-coded according to the variance 
of the Δ values, the deviations from the mean conformation along the allometric vector
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for the estimation methods that used the same space in which the simulation model was 
situated. For simulations using normal distributions of the Δ or Δs values, the error angles 
for the methods in which the model was situated were in the order of 1° or less (often sub-
stantially less) and ranged to a few degrees for the estimation methods based on the other 
space. For the simulations using lognormal distributions of the Δ or Δs values, error angles 
mostly were small in the space in which the model was situated, whereas they tended to be 
substantially bigger in the other space. There were also trends for error angles to increase 

a b

c d

Fig. 4   Performance of methods for estimating allometry without any residual noise for 2D data, from simu-
lations situated in the shape tangent space and with deviations from the mean size drawn from a normal 
distribution. The plots show the error angles, averaged over sets of 100 simulation runs for each combina-
tion of parameters, as functions of the angle β between the allometric and isometric vectors, for different 
numbers of landmarks, k. In each plot curves are color-coded according to the variance of the Δs values, the 
deviations from the mean centroid size
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with higher angle β between the allometric and isometric vectors and with the variances 
of the Δ or Δs values, that is, when allometry in the model was stronger, and to decline 
with increasing numbers of landmarks. By contrast, the results were very similar for 2D 
and 3D data. Finally, there appeared no noticeable differences in the error angles produced 
by alternative estimation methods that used the same space (panels a vs. b and c vs. d in 
Figs. 3, 4, S1–S6).

These observations are consistent with an interpretation that the observed discrepancies 
arise from the nonlinearities in the mapping functions between the allometric trajectories 
in conformation and shape tangent space. Those nonlinearities are more accentuated for 
larger displacements from the mean size or conformation and for larger angles between 
allometric and isometric vectors. Also, the greater discrepancies found for the lognormal 
than for the normal distributions, particularly in the models situated in shape space (Figs. 
S4, S6), most likely can be explained as consequences of large deviations in Δ or Δs val-
ues, which are expected with higher frequency under the lognormal distribution, and may 
produce unrealistic effects in the models. These extreme effects suggest some caution may 
be required in interpreting the results particularly from simulations using lognormal distri-
butions of Δ or Δs values.

That estimation methods using the same space in which the simulation models is situ-
ated yield smaller error angles than the methods using the other space indicates that both 
approaches are logically consistent with one another, and neither is inherently superior over 
the other. Up to the subtle nonlinearity in the mapping between the conformation space and 
shape tangent space and possible pathological effects of extreme deviations in the simula-
tion models, the logic that underlies each of the different estimation methods is mutually 
compatible with any of the others. In addition, for most types of simulations, the effects of 
nonlinear mapping are negligible by comparison to the effects of residual error (compare 
the top row of blocks to the other rows in Figs. 5, 6, 7 and 8, S7–S12). Further assessment 
of the relative merits of methods for estimating allometry therefore is a question of statisti-
cal performance and needs to examine how well they do in the presence of residual noise.

Simulations with isotropic residuals

In the presence of isotropic residual noise, the two methods using shape space were clearly 
affected and the error angles reflect the amount of residual variation in the model (colors 
are darker in the lower blocks of heat maps in parts a and b of Figs. 5, 6, S7–S9, S11; the 
exception to this pattern are the simulations situated in shape tangent space using lognor-
mal distributions of Δs values, Figs. S10, S12). Both regression of shape on size and the 
PC1 of shape recovered the allometric vector better when the angle β between the allomet-
ric and isometric vectors was relatively large. Presumably this is a consequence of the fact 
that variation is nearly isometric with small β, and the residual noise therefore contributes a 
bigger proportion of the total shape variation. The regression of shape on centroid size per-
formed consistently as well or better than the PC1 of shape in the same simulations (com-
pare parts a vs. b of Figs. 5, 6, S7–S12). Also, it is immediately apparent that the two meth-
ods using conformation space universally performed well, with very small error angles, 
almost regardless of how strong the allometry was or how much residual noise was present 
(parts c and d of Figs. 5, 6, S7–S9, S11). The exceptions to this pattern were the simula-
tions situated in shape tangent space using lognormal distributions of Δs values (Figs. S10, 
S12), where the two methods using the conformation space performed consistently poorly, 
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even in the absence of residual error (i.e., with var(ε) = 0), whereas the regression of shape 
on size and PC1 of shape did unusually well. It is likely that these results were conse-
quences of extreme values in the simulations. In all scenarios, there was little difference 
between the simulations in two dimensions and those in three dimensions.

a b c d

Fig. 5   Performance of methods for estimating allometry in the presence of isotropic residual noise for 2D 
data, from simulations situated in the conformation space and with displacements along the allometric vec-
tor following a normal distribution. The heatmaps show the error angle in response to the angle β between 
the allometric and isometric vectors and to the variance of the deviations Δ from the mean conformation 
along the allometric vectors. Isotropic residual noise was added in different amounts, with total variances 
var(ε) ranging from 0 to 1.2 units of squared size (no residual variation to slightly more than the maximum 
of the variance of Δ)
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Simulations with patterned residuals

When the simulations included residual variation that was itself structured, with patterns 
of variation independent of allometry, the contrast in performance between methods was 
more accentuated (Figs. 7, 8, S14, S17; slightly less so for simulations using lognormal 

a b c d

Fig. 6   Performance of methods for estimating allometry in the presence of isotropic residual noise for 2D 
data, from simulations situated in the shape tangent space and with deviations from the mean size drawn 
from a normal distribution. The heatmaps show the error angle in response to the angle β between the allo-
metric and isometric vectors and to the variance of the Δs values, the deviations from the mean centroid 
size. Isotropic residual noise was added in different amounts, with total variances var(ε) ranging from 0 to 
1.2 units of squared size (no residual variation to slightly more than the maximum of the variance of Δs)
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distributions of Δ or Δs values, Figs. S13, S15, S16, S18). The differences to the simula-
tions with isotropic noise were most striking for the two methods using the shape space 
(compare parts a vs. b in Figs. 7, 8, S14, S17). The regression method produced slightly 
larger error angles for models with patterned residual variation than for the corresponding 

a b c d

Fig. 7   Performance of methods for estimating allometry in the presence of patterned residual noise for 2D 
data, from simulations situated in the conformation space and with displacements along the allometric vec-
tor following a normal distribution. The heatmaps show the error angle in response to the angle β between 
the allometric and isometric vectors and to the variance of the deviations Δ from the mean conformation 
along the allometric vectors. Non-isotropic residual noise was added in different amounts, with total vari-
ances var(ε) ranging from 0 to 1.2 units of squared size (no residual variation to slightly more than the 
maximum of the variance of Δ)
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models with isotropic residuals (e.g., compare Fig. 7a vs. Fig. 5a, Fig. 8a vs. Fig. 6a, etc.). 
By contrast, the performance of the PC1 of shape dropped drastically from models with 
isotropic noise to the corresponding models with anisotropic residual variation (e.g., com-
pare Fig. 7b vs. Fig. 5b, Fig. 8b vs. Fig. 6b, etc.). The two methods using conformation 

a b c d

Fig. 8   Performance of methods for estimating allometry in the presence of patterned residual noise for 2D 
data, from simulations situated in the shape tangent space and with deviations from the mean size drawn 
from a normal distribution. The heatmaps show the error angle in response to the angle β between the allo-
metric and isometric vectors and to the variance of the Δs values, the deviations from the mean centroid 
size. Non-isotropic residual noise was added in different amounts, with total variances var(ε) ranging from 
0 to 1.2 units of squared size (set to match those used in the model situated in conformation space by a lin-
ear approximation)
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space continued to perform very well, but with high levels of residual variation (total vari-
ance var(ε) of 1.0 or 1.2) and the highest level of the var(Δ), even these two methods pro-
duced larger error angles (top rows of the heatmaps, especially for k ≥ 15, in the bottom 
two blocks of Fig. 5c, d). The effects of anisotropic residual noise on the performance of 
all four methods tended to be slightly less drastic in simulations with few landmarks and 
to become more accentuated with increasing numbers of landmarks. Again, the results for 
3D data were very similar for those for 2D data (e.g. compare Fig. 7 vs. Fig. S14, Fig. 8 vs. 
Fig. S17).

How do Boas coordinates differ from conformation?

The close and consistent similarity between the results for the methods using the PC1 of 
conformation and of Boas coordinates raises the question how the two methods differ, and 
whether there is a way to choose between them. A separate series of simulations addressed 
this question, based on the allometric model situated in conformation space (Fig. 2a) with 
normally distributed deviations along the allometric vector and anisotropic residual varia-
tion at a fixed level of var(ε) = 0.6. The strength of allometry was varied through the angle 
β between the allometric and isometric vectors, which ranged from 0° (isometry) to 30°, 
and through the variance of the deviations Δ from the mean conformation along the allo-
metric vector, ranging from 0.4 to 1 squared units of size. The number of landmarks was 
set to 6, 8, 10, 15, 20, 30, 40, 50 and 100 in different simulation runs and separate simula-
tions were conducted for 2D and 3D data. In each simulation run, a sample of 100 land-
mark configurations was generated and conformation and Boas coordinates were computed 
using the respective superimposition algorithms (Table 1). For each combination of param-
eter values, 100 separate simulations were run.

Because superimposition algorithms for both the analyses of conformation (Ziezold 
1994; Le 1995; Dryden and Mardia 2016) and Boas coordinates (Bookstein 2018, 2021) 
use a least-squares criterion, a suitable measure for comparison are the total sums of 
squares of the superimposed landmark configurations, or equivalently their total variances 
(differing only by a constant factor). Differences are presented here as percentage differ-
ences of the total variance of Boas coordinates minus the total variance of conformation, 
with the value for conformation set to 100% (i.e. positive percentages mean Boas coordi-
nates have larger total variance or sums of squares than conformation). The differences 
were computed for all simulation runs separately and percentage differences averaged over 
the 100 runs for each set of parameter values.

Consistent with the close match of estimated allometric vectors, the percentage dif-
ferences of total variances between the two methods were all very small (Fig. 9). All the 
average percentage differences were positive, indicating that the total variances of Boas 
coordinates slightly exceeded those for conformation. This is not surprising, given that the 
generalized Procrustes algorithm for conformation has been proven to yield a least-squares 
superimposition (Ziezold 1994; Le 1995). The differences were nearly zero under an iso-
metric model (i.e., if the angle β was zero) and tended to become larger when allometry 
was stronger (i.e., with increasing angle β and variance of shifts Δ along the allometric 
vector). The differences between the two methods were largest for small numbers of land-
marks and diminished for configurations with very many landmarks. Also, the differences 
were greater for analyses in three than in two dimensions (note that the plots in parts a and 
b of Fig. 9 are not scaled equally).
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Does it matter? Applying the methods to empirical examples

To put the preceding simulations into perspective, I present two applications of the vari-
ous methods in two examples of ontogenetic data: the Vilmann rat data, from a laboratory 
experiment following individual rats from 7 to 150 days of postnatal age (Moss et al. 1981, 
1983; Bookstein 1991, 2018, 2021), and an example of growth in a marine fish, the rock-
fish (Helicolenus dactylopterus, also called bluemouth or blackbelly rosefish), with speci-
mens obtained from bottom trawl surveys on the continental shelf off the coast of Gali-
cia (Spain; Rodríguez-Mendoza et  al. 2011). These two examples differ in the sampling 
designs of the respective studies as well as in the growth characteristics of the two species, 
which are in turn related to their life histories and ecologies. Therefore, they illustrate dif-
ferent features that can be encountered in studies of ontogenetic allometry.

Rat data

For the rat example, landmarks were digitized from lateral radiographs taken at the ages of 
7, 14, 21, 30, 40, 60, 90, and 150 days (Moss et al. 1981, 1983). The data, including eight 
midsagittal landmarks of the braincase, are publicly available (http://​sbmor​phome​trics.​org/​
data/​Book-​Vilma​nnRat.​txt; as published in Bookstein 1991, appendix A.4.5). The dataset 
used here included just those 18 rats with complete records of all eight landmarks at eight 
ages (as in the analyses in Bookstein 2018, 2021).

The multivariate regression of shape on centroid size for the rat data accounted 
for 76.3% of the total shape variation. The shape change associated with the regres-
sion (Fig. 10a) was a combination of a stretching of the ventral row of landmarks and a 
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Fig. 9   Differences in the quality of superimpositions between conformation and Boas coordinates. (a) Com-
parisons for 2D data. (b) Comparisons for 3D data. The plotted values were computed as the percentage 
differences of total variance of Boas coordinates minus the total variance of conformation, with the total 
variance of conformation set as 100%, and averaged over 100 simulations per combination of parameters. 
The plots show the averaged percentage differences as functions of the angle β between the allometric and 
isometric vectors, for different numbers of landmarks, k. In each plot curves are color-coded according to 
the variance of the Δ values, the deviations from the mean conformation along the allometric vector
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dorsoventral compression that is particularly accentuated in the region of the parietal and 
interparietal bones (upper-left region of the grids), turning the braincase from a rounded 
to an elongated box-like shape. The scatter of the regression scores (the shape variable 
in the direction of the regression vector in shape tangent space; Drake and Klingenberg 
2008) against centroid size showed a clear linear trend, except for the data points at the 
age of 7 days, which were slightly offset from the overall trend and were separated from 
those of the other age groups by a distinct gap in size (Fig. 10b). The PC1 of the shape data 
accounted for 82.2% of the total variance of shape. It produced an estimate of allometry 
that was very similar to the regression estimate, as the angle between the shape PC1 and 
regression vector was only 1.55° (shape change not shown here, but a transformation grid 
is presented in Fig. 1b of Bookstein 2021).

The PC1 of conformation for the rat data accounted for 95.2% of the total variance of 
conformation. The conformation changes along the PC1 (Fig.  10c), from the left to the 
right grid, featured an expansion that was clearly stronger in the horizontal than in the ver-
tical direction, and was particularly pronounced for the stretching of the ventral part of the 
braincase. In addition, the upper-left corner of the transformation grid was clearly “pulled 
out” toward the upper left in the right transformation grid by comparison to the left grid, 
corresponding to a marked vertical expansion of the occipital to form a sharper angle with 
the interparietal bone. The result was an overall expansion from a rounded to a more box-
like form of the braincase. The scatter of the PC1 scores of the conformations (horizontal 
direction in Fig. 10d) closely corresponded to centroid size (horizontal axis of Fig. 10b).

The PC1s of conformation and of Boas coordinates corresponded very closely to each 
other: the angle between them is only 0.0076°. This close similarity is also apparent 
from the graphs of the PC1 of conformation (Figs. 10c, d) to those that Bookstein (2021) 
obtained for the PC1 of Boas coordinates from the same data: the transformation grids 
seemed identical except for the spacing of grid lines and scaling of the degree of change 
(cf. Fig. 10c vs. Fig. 2b of Bookstein 2021); the scatters of PC1 versus PC2 scores matched 
closely, up to changes in sign (but signs are arbitrary for PCs; cf. Fig. 10d vs. Fig. 3b of 
Bookstein 2021); and finally, the PC1 of both conformation and Boas coordinates corre-
lated tightly with centroid size (compare the spacing of points along the horizontal axes in 
Figs. 10b, d; cf. Fig. 7a of Bookstein 2021).

The angle between the estimated allometric vector and the isometric vector in confor-
mation space (corresponding to the angle β in the simulation models; Fig. 2a) was 22.36° 
regardless of whether the PC1 of conformation or Boas coordinates was used as the esti-
mate. To examine how compatible the Gould–Mosimann and Huxley–Jolicoeur approaches 
are for this example, I obtained the projection of the conformation PC1 onto the shape tan-
gent space and computed the angles between this and the PC1 for shape and the allometric 
regression vector. The angle between the projected conformation PC1 and the shape PC1 
was 1.60° and the angle between the projected conformation PC1 and the regression vector 
of shape on centroid size was 2.74°. It seems that all allometric methods yield compatible 
results in this example, likely because there appear to be no substantial sources of variation 
except for allometry, which is quite strong and therefore produces a clear pattern in both 
conformation space and shape tangent space that is easily recovered by all methods.
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Rockfish data

The rockfish example uses a sample of 191 specimens, from Galicia, taken from a larger 
study of allometry in this species (Rodríguez-Mendoza et al. 2011). For each fish, 13 land-
marks were digitized to characterize its overall body shape (for further details, see Rod-
ríguez-Mendoza et al. 2011).

In this dataset, centroid size ranged from 5.2 to 34.5 cm, a nearly sevenfold difference, 
and correlated very strongly with the total length of the fish (Fig. 3 in Rodríguez-Mendoza 
et al. 2011). The multivariate regression of shape on centroid size accounted for 8.99% of 
total shape variation, and a permutation test rejected the null hypothesis of independence 
(P < 0.0001). This indicates that allometry is clearly present but is not the dominant source 
of shape variation. The shape changes over the observed range of body sizes were fairly 
subtle (Fig. 11a), with overall body shape changing from more triangular (with the apex 
above the head, at the insertion of the first dorsal fin spine) to more elliptical. This change 
involved the posterior body becoming relatively higher, the pectoral and pelvic fins shifting 
posteriorly and downward relative to nearby structures, and the maxilla relatively short-
ening and rotating to a steeper angle. The plot of regression scores against centroid size 
(Fig. 11b) shows a clear allometric trend, but also a substantial amount of residual scatter. 
The PCA of shape produced a dominant PC1 accounting for 44.7% of the total variance 
of shape, which shared some aspects of the associated shape change with the regression 
vector, but which also contained other prominent features of variation (not shown). The 
angle between the PC1 of shape and the allometric regression vector in shape space was 
52.4°. This relatively poor correspondence indicates that the PC1 included other sources of 
variation in addition to (or instead of) allometry, and therefore would be ineffective as an 
estimator of allometry.

The PC1 of conformation accounted for 98.4% of the total variance in the rockfish 
example. The conformation change associated with this PC1 involved a large difference 
in size (Fig. 11c) and more subtle changes in shape that correspond to the change found in 
the regression vector (cf. Fig. 11a, c): a slightly disproportionate expansion of the height 
of the posterior part of the body, expansion of the region posterior to the operculum and 
pectoral and pelvic fins, and slightly less drastic expansion of the maxilla along with the 
rotation to a slightly steeper orientation. Together, these changes amounted to an overall 
appearance that was more triangular for small individuals and more elliptic for large ones. 
The dominance of the conformation PC1 is also very clear from the plot of PC1 versus 
PC2 (Fig. 11d). The scores of the conformation PC1 corresponded closely to centroid size 
(compare the scatters along the horizontal axes in Fig. 11b, d).

The PC1s of conformation and of Boas coordinates were virtually identical: the angle 
between the two PC1s was only 0.00019°. The angles between both these estimates of the 
allometric vector and the isometric vector in conformation space were 2.38°, indicating 

Fig. 10   Allometry in the example of the Vilmann rat data (Bookstein 1991). (a) Allometric analysis by 
multivariate regression of shape on size. The two transformation grids show the shape changes from the 
average shape to the shapes expected for changes in centroid size by −  350 units (left) and + 350 units 
(right) from the average size. The two grids are scaled to equal centroid sizes. (b) The scatter plot of the 
regressions scores (vertical axis, in units of Procrustes distance) against centroid size (units of measurement 
not specified in the original source, Bookstein 1991). (c) Allometric analysis for the rat data using the PC1 
in the conformation space. The two transformation grids show the change to the conformations along the 
PC1 with scores − 400 units (left) and + 350 units (right), including the changes in size. (d) Scatter plot of 
the scores of PC1 versus PC2 in the conformation space (in units of length measurements, not specified in 
the original source)
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that the rockfish example was much closer to isometry than the rat example. The projec-
tion of the conformation PC1 onto the shape tangent space made an angle of 15.2° with 
the regression vector of shape on centroid size and an angle of 42.5° with the PC1 of 
shape. This indicates that the correspondence between estimates of allometry based on the 

a

b

c

d

Fig. 11   Allometry in the rockfish data (Rodríguez-Mendoza et al. 2011). (a) Allometric analysis by mul-
tivariate regression of shape on size. The warped outline drawings show the average shape plus allometric 
shape changes expected for a decrease in centroid size by 10 cm (left) and an increase by 20 cm (right). 
Both diagrams are scaled to equal centroid size. (b) The scatter plot of the regressions scores (vertical axis, 
in units of Procrustes distance) against centroid size (horizontal axis, in cm). (c) Allometric analysis using 
the PC1 in the conformation space. The two warped outline drawings show the conformations along the 
PC1 with scores − 10 cm (above) and + 20 cm (below). The two diagrams are scaled proportionately to rep-
resent the complete changes in conformation. (d) Scatter plot of PC1 versus PC2 in the conformation space 
for the rockfish data (both PCs are in cm)
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Huxley–Jolicoeur framework (in conformation space) and on the Gould–Mosimann frame-
work (in shape space) is moderately good, and it reinforces the result above that the PC1 of 
shape is a poor estimator of allometry in this example.

Discussion

The computer simulations and the two contrasting examples reported in this paper have 
yielded some consistent conclusions relevant to practical analyses of allometry in the con-
text of morphometric studies concerning the evolution, ontogeny, or ecology of diverse 
organisms. The simulations without residual error (Figs. 3, 4, S1–S6) established that, up 
to minor nonlinearities of the mapping between the shape tangent space and conformation 
space, the Gould–Mosimann and Huxley–Jolicoeur frameworks for analyzing allometry 
are logically compatible with each other. Among the four alternative methods for analyzing 
allometry compared here, two belong to the Gould–Mosimann framework: the multivari-
ate regression of shape on size and the PC1 of shape (and possibly relating PC1 scores to 
a measure of size by correlation or regression). The regression approach performed clearly 
better in some simulation experiments (cf. Figs. 5, 6, 7, 8, 9, parts a vs. b) and the PC1 
of shape also seemed to do poorly in the rockfish example. The two methods belonging 
to the Huxley–Jolicoeur framework, the PC1 in conformation space and the PC1 of Boas 
coordinates, performed well in the simulation experiments and also appeared to do so for 
both empirical examples. These two methods consistently yielded results that were nearly 
identical—a finding that is somewhat unexpected because they use different variants of 
superimposition algorithm (Table 1) and previous discussions have alluded to the potential 
for differences (Bookstein 2018, 2021; O’Higgins et  al. 2019). Whereas it is reassuring 
that the two main frameworks of allometry are logically compatible with each other, this 
also raises the question how investigators should choose between them for actual empirical 
studies.

Allometry within the Gould–Mosimann framework

Among the methods using shape space, multivariate regression of shape on centroid size 
performed consistently better than the PC1 of shape in the presence of residual noise. The 
difference in performance was dramatic if the residual noise had a pattern itself that was 
independent of allometry and the Δ or Δs values were drawn from a normal distribution 
(Figs. 7, 8, S14, S17), somewhat less so if the Δ or Δs values were from a lognormal dis-
tribution (Figs. S13, S15, S16, S18). The reason why the PC1of shape performed poorly as 
an estimate of an allometric vector was that its main assumption, that patterns of the shape 
variation originate exclusively from allometry, was violated in these simulations. Yet even 
when the residual noise was isotropic and therefore had no pattern of its own, the PC1 
did not perform as well as an estimator of allometry as the regression method (Figs. 5, 6, 
S7–S9, S11). It seems that just adding non-allometric variation, even though it was com-
pletely unstructured, was sufficient to affect the precision of PC1 estimates detrimentally, 
at least accentuating the problems that the regression approach also faced. In all the simu-
lations, there appears to be no situation where the PC1 of shape outperformed the multi-
variate regression of shape on size as an estimator of allometry. Even if the aim is just to 
provide a score that can subsequently be related to measures of size, there seems to be no 
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benefit in estimating a vector of allometry without considering the available information on 
size.

The two examples provide different perspectives on this issue. For the rat example, both 
methods using the shape space produced similar estimates of allometry, which were also 
compatible with the estimates based on the Huxley–Jolicoeur framework. With an angle of 
22.36° between the isometric and allometric vectors in conformation space, this example is 
in the upper third of the range of the angle β used in the simulation models, where all esti-
mation methods perform well if the amount of residual variation is not too large. Evidence 
that residual variation was modest by comparison to allometry were the high proportions 
of total variance for which the multivariate regression or PC1s accounted in all analyses: 
there seemed to be a good fit of the allometric model regardless of the analytical frame-
work used. Therefore, the rat example appears to have properties that make it similarly 
permissive to all methods for estimating allometry.

By contrast, the rockfish example has an angle of just 2.38° between the isometric and 
allometric vectors in conformation space, which is less than the minimum angle of 5° used 
in the simulation models (apart from the situation of perfect isometry, with β = 0). In addi-
tion, residual shape variation is substantial—because variation is close to isometric, the 
non-allometric part takes up by far the largest share of the total shape variation. Despite 
the very large scale of size variation, this situation is challenging. With this combination of 
parameters (at the left margin of the heat maps in Figs. 5, 6, 7 and 8, S7–S18), simulation 
results indicate that the PC1 of shape performs poorly and even the multivariate regression 
of shape on size displays some instability in the simulation experiments. The higher degree 
of incongruence among methods for the rockfish example likely reflects this instability.

What are the consequences of this type of problem in estimating allometry? It is impor-
tant to keep in mind that the regression method does not use exclusively the direction of 
the regression vector. As a result of the almost isometric variation, the magnitudes of the 
regression coefficients will be near zero, which is correct in this situation. Any use of the 
regression vector, for instance for size correction (Klingenberg 2016), will have little effect 
because the predicted changes also will be small. Therefore, even in this challenging situ-
ation, the regression method is not expected to lead to misleading inferences or erroneous 
size corrections.

Allometry within the Huxley–Jolicoeur framework

The two methods belonging to the Huxley–Jolicoeur framework performed very well in the 
simulation experiments, and a key insight is that they produce very similar results despite 
the difference in the superimposition algorithms they use (last two columns of Table 1). 
The algorithm omitting the scaling step altogether (third column of Table  1) yields the 
mean conformation that is optimal in a least-squares sense (Ziezold 1994; Le 1995), and 
therefore also the optimal superimposition. The simulations presented here show that 
superimpositions from both methods differ remarkably little in their quality and that Boas 
coordinates are therefore a close approximation to the optimal solution. Differences are 
larger when allometry is stronger (greater angle β and larger displacements along the allo-
metric vector), as expected, and diminish with increasing numbers of landmarks (Fig. 9). 
Because both methods produce nearly the same results under all the conditions considered 
here, the difference is unlikely to matter in practice. This close similarity in the superimpo-
sitions is the reason why estimates of allometry based on these two methods also consist-
ently performed similarly (Figs. 3, 4, 5, S1–S9).
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It is less clear why the two methods from the Huxley–Jolicoeur framework performed 
better than those from the Gould–Mosimann framework (except for simulations situated 
in shape tangent space and using a lognormal distribution of Δ or Δs values, in which 
there seemed to be problems because of extreme effects; Figs. S4, S6, S10, S12, S16, S18). 
There are some explanations for specific situations: for instance, for simulations with near-
isometric variation (very small angle β; left margins of the heat maps in Figs. 5, 6, 7 and 
8) the methods based on shape space yield poor estimates because there is little allometric 
shape variation and therefore the directions of allometric vectors are poorly defined, so that 
residual variation can easily affect the estimates. Also, size usually takes up a substantial 
proportion of the variation in the data (including in all simulations of this study) and is 
a component of allometric vectors in conformation space, which are therefore inevitably 
aligned to some extent with the isometric vector in conformation space. For shape, by con-
trast, the proportions of allometric versus residual variation are usually much more variable 
and there is no a-priori expectation at all about the direction of allometric vectors in shape 
tangent space. Therefore, estimating the directions of allometric vectors in conformation 
space may be easier than in shape tangent space. Using those directions (or error angles) in 
comparing performance may therefore give a systematic advantage to estimation methods 
using conformation space.

A further problem is related to the scaling of residual variation between spaces. The 
models used residual variation around the allometric relationship that was homoscedastic, 
with equal amounts and patterns of residual variation at every position along the allomet-
ric vector. Because of the scaling by size that is involved in projecting from conforma-
tion space to shape (tangent) space or vice versa, variation that is homoscedastic in one 
space will be heteroscedastic after projection into the other space. It is not possible for the 
residual variation to be homoscedastic in both the conformation and shape (tangent) space. 
Heteroscedasticity is problematic for statistical procedures such as regression and therefore 
may explain some of the poorer performance of the methods using shape tangent space in 
the presence of residual noise for the simulations situated in conformation space. Neverthe-
less, because results did not substantially differ between corresponding simulations situ-
ated in the two spaces (e.g., Fig. 5 vs. Fig. 6, Fig. 7 vs. Fig. 8), this effect appears not to be 
an important cause for the performance difference in these simulations. Yet, such a pattern 
of heteroscedasticity does appear to be present for the rockfish example, where the degree 
of scatter of PC2 scores in conformation space rises from left to right (Fig. 11d; a hint of 
it may also be apparent for the rat example, Fig. 10d, but note that the allometric relation 
here is markedly nonlinear). It is unclear what effect this may have in this example or gen-
erally in empirical data.

Which method should I choose?

The key question for investigators is which method to choose for empirical studies of 
allometry. The choice is easy once the investigator has decided whether to use the shape 
space (the Gould–Mosimann framework) or the conformation space (Huxley–Jolicoeur 
framework) for the study. For studies using shape space, allometry should be analyzed by 
multivariate regression of shape on a suitable measure of size (e.g., centroid size or log-
transformed centroid size; Monteiro 1999; Klingenberg 2016) because the simulations 
have shown that this method consistently outperforms the alternative method of computing 
the PC1 of shape, especially when the residual variation is structured itself (Figs. 5, 6, 7 
and 8, S7–S18). For studies focusing on form without separating size from shape, the two 
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methods using conformation space perform similarly well, so that the choice between them 
does not make much of a difference. In favor of the algorithm using conformation (third 
column in Table 1), it can be argued that it is slightly simpler (no scaling and un-scaling 
steps), that it results in a superimposition that is equal to or marginally better than Boas 
coordinates (Fig. 9), and that not even Bookstein (2018, 2021) or O’Higgins et al. (2019) 
have pointed out any direct advantages of Boas coordinates over conformations. In prac-
tice, a potential advantage of Boas coordinates is that they are simple to obtain even if only 
software for shape analysis is available (but investigators must ensure that it uses a partial 
and not a full Procrustes superimposition and that it does not perform a projection to shape 
tangent space, because either of those would invalidate the procedure).

A more difficult choice is whether to use the Gould–Mosimann or the Huxley–Jolicoeur 
framework for a given study. To answer this question, the investigator needs to consider 
not only the analysis of allometry, but the research question that the study is addressing 
overall. Are size and shape relevant per se for this question, or is it more appropriate to 
treat morphology as a single, coherent (albeit multidimensional) feature without separating 
size from shape? Considering these questions may lead to a choice that is optimal in the 
broader context of a particular study. Also, because the two frameworks are mutually com-
patible, both are likely to yield similar conclusions for any given study. If a clear allometric 
pattern is present (as in the rat example, Fig. 10), both frameworks will show related pat-
terns differing mainly in the respective styles of presentation; alternatively, if variation is 
nearly isometric (as in the rockfish example, Fig. 11) or if there is no clear allometric pat-
tern because of limited variation in size, both approaches provide indicators that this is the 
case (e.g., information about the absolute scale or relative amount of variation for which 
allometry accounts).

Both the Gould–Mosimann and the Huxley–Jolicoeur approaches apply to all levels of 
allometry: static, ontogenetic, and evolutionary allometry (e.g., Cock 1966; Gould 1966a; 
Cheverud 1982; Klingenberg and Zimmermann 1992; Klingenberg 1996, 2014). Whereas 
static and ontogenetic data can be used in allometric analyses without further adjust-
ments, appropriate phylogenetic comparative methods such as independent contrasts or 
PGLS should be used for evolutionary allometry (e.g., Klingenberg and Marugán-Lobón 
2013; Adams 2014). The quantity each of the approaches uses to characterize morpho-
logical variation, that is, shape in the Gould–Mosimann approach or conformation in the 
Huxley–Jolicoeur approach, can be used as a “common currency” to relate the different 
levels of allometry with each other (e.g., Weisensee and Jantz 2011; Klingenberg et  al. 
2012; Mydlová et al. 2015; Hipsley and Müller 2017; Springolo et al. 2021). This perspec-
tive holds considerable promise for characterizing different levels of allometry in studies 
designed to combine multiple levels of variation, so that the contributions of multiple fac-
tors and their interactions can be analyzed jointly. Such multilevel studies, based on rigor-
ous and flexible quantification of morphological variation by geometric morphometrics, 
are likely to provide major new insights into processes at the interface of development, 
ecology, and evolution.
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