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Abstract The evolution and maintenance of conspicuous phenotypic polymorphisms has

challenged evolutionary ecologists for centuries. Polymorphisms in pleiotropic cascades or

genetic linkage may lead to correlations of life history traits such as immunity, parasite

infection levels, pigmentation and lifetime reproductive success. The common buzzard

Buteo buteo is a bird of prey occurring in several plumage morphs, which differ in pig-

mentation and in the prevalence, infection intensity and clone composition of their most

common blood parasite, as well as in ectoparasite infestation levels. Buzzard morphs are

heritable and exhibit a heterozygote advantage where intermediates have higher lifetime

reproductive success (LRS). We explored the hypothesis that the differences in pigmen-

tation also correspond to differences in immunity. We hence compared an inducible

adaptive and an innate constitutive immune response between the buzzard plumage

morphs. The increase of specific anti-tetanus antibodies after vaccination was explained by

the morph of the nestling’s mother and was highest in offspring of intermediate mothers.

Additionally, nestlings with higher humoral response were less infected with blood para-

sites and, if infected, harboured a lower genetic diversity of these parasites. The phyto-

haemagglutinin-induced skin swelling, a complex of cellular inflammatory responses, was

lowest in intermediate nestlings. The higher LRS of intermediate buzzards suggests that the

cellular immunity is an inferior fitness determinant compared to humoral immunity. The

strength of immune responses was not linear along the melanisation gradient, indicating

that there is most likely no simple genetic correlation between immune responses and

plumage morphs.
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Introduction

Understanding the mechanisms of polymorphism maintenance under selection continues to

be a significant challenge for evolutionary biologists. Often, the most conspicuous poly-

morphic traits are assumed to be the most important, while pleiotropic effects and corre-

lated phenotypes can conceal concomitant traits which are under stronger selection. For

example, melanin polymorphisms are widely distributed in many clades, but their adaptive

significance still remains unclear (Fowlie and Krüger 2003; Roulin 2004). The pro-opi-

omelanocortin (POMC) pleiotropy has been suggested to cause positive correlations

between pigmentation, humoral immunity and anti-inflammatory responses, since the

involved hormones can regulate both the melanisation and systemic inflammation in mice

(Ducrest et al. 2008). Several studies have indeed found correlations between melanin

pigmentation and immune responses in wild vertebrates as a possible consequence of the

POMC pleiotropy. However, the precise molecular link to the humoral response is so far

unknown and the documented patterns are, at least partially, contradictory (Gangoso et al.

2011, 2015; Jacquin et al. 2011, 2013; Lei et al. 2013; Roulin et al. 2000).

The immune response is the final and most sophisticated layer of defence which hosts

have against parasites and pathogens (Janeway et al. 2005). Immune defence components

can be separated into cellular and humoral or innate and adaptive (Schmid-Hempel and

Ebert 2003). Different parts of the immune system have evolved to deal with different

types of parasites, but immune trade-offs, as well as trade-offs with other life-history

components can arise. Additionally, discrete morphs within a species can be differently

constrained by such trade-offs (Gasparini et al. 2009a, c; Krasnov et al. 2005; Lochmiller

and Deerenberg 2000; McDade et al. 2016; Moret 2003; Norris and Evans 2000).

Therefore, different individuals may differ in susceptibility and tolerance to different types

of parasites (Svensson and Råberg 2010).

One example of a pigmentation polymorphism with potential links to immunity is the

common buzzard Buteo buteo. This bird of prey is found throughout Eurasia and has a

variable expression of melanins with three coexisting, but easily distinguishable plumage

morphs: dark, intermediate and light (Glutz von Blotzheim et al. 1971). The polymorphism

behaves as if encoded by a single autosomal locus, possibly involved in the POMC

pleiotropic cascade. Plumage morph seems to be inherited in a Mendelian fashion with

both parents contributing ‘‘half’’ of each offspring’s morph phenotype (Krüger et al. 2001).

The buzzard polymorphism could be sustained through a heterozygote advantage, since for

both sexes in a population in Germany, intermediate buzzards showed up to twice higher

lifetime reproductive success than dark and light individuals (Chakarov et al. 2008; Krüger

et al. 2001). Buzzard morphs differ in multiple other traits, such as breeding phenology,

behaviour and habitat use (Boerner and Krüger 2009; Chakarov et al. 2013; Krüger 2002).

Yet, among the best candidates to affect their fitness in the long-term are the differences

between morphs in parasite infections. Previously, we have shown that dark nestlings are

most heavily infested by the common ectoparasite Carnus haemapterus, a blood-sucking

fly. In contrast, the most common blood parasite Leucocytozoon has lowest prevalence in

intermediate nestlings and highest infection intensities in light nestlings (Chakarov et al.
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2008). Additionally, the genetic similarity of Leucocytozoon infections was best explained

by the plumage morph of the hosts’ mothers (Chakarov et al. 2015a). Since melanin morph

appear to not be spatially segregated (Chakarov et al. unpublished data) these infection

patterns suggest that morphs may differ in immunity components responsible for the

protection against different parasites and the shaping of parasite communities.

In this study, we test the hypothesis that morphs differ not only in parasite infection

patterns, but also in two components of the immune defence. One is the delayed-type

hypersensitivity response, caused by an injection of the mitogen phytohaemagglutinin

(PHA) into the skin. This response has been shown to correspond to leukocyte profiles and

is indicative of the first line of cellular response (Martin et al. 2006). If the POMC

pleiotropic cascade influences both melanin production and immune responses to parasites,

then we predict (1) that dark nestlings will have the lowest PHA response, while light

nestlings should have the highest (Ducrest et al. 2008). Secondly, many infections which

have managed to establish themselves in the host are effectively reduced and controlled via

specific antibodies (Riley et al. 2006). The POMC-pleiotropy hypothesis predicts a positive

correlation between melanisation and proliferation of B-lymphocytes and production of

antibodies (Ducrest et al. 2008). Thus we predict that (2) the inducible humoral response,

which produces specific antibodies, should be highest in dark nestlings and weakest in light

nestlings. The production of maternal antibodies can be influenced by the POMC pleio-

tropy, similarly to other immunoglobulins (Gasparini et al. 2009b). Since maternal anti-

bodies can affect the immunity of nestlings in their first weeks of life, we consider morph

of the mother to be another potential variable explaining the nestling’s immune responses

(Gasparini et al. 2009b; Jacquin et al. 2013).

The host immune system identifies parasitic antigens which are similar and related more

easily than dissimilar ones (Caillaud et al. 2006). Thus, the genetic diversity of parasites

may decrease with the strength of the host immune response and host age as a correlate of

the former (Ntoumi et al. 1995; Van den Broeck et al. 2014). Since plumage morph is a

predictor of prevalence, parasitemia and parasite diversity in buzzards (Chakarov et al.

2008, 2015a), and the humoral response is the most probable intermediate link between

morph and infection measures, we predicted that (3) the antibody titres will negatively

correlate with infection prevalence, parasitemia and parasite genetic diversity.

Materials and methods

Study population and field procedures

The study was carried out between 2010 and 2012 in the same buzzard population where

infection differences between buzzard morphs were previously established (Chakarov et al.

2008). It is situated in a 300 km2 study area in Eastern Westphalia, Germany (8�250 and
52�060). Each year, nests were located between March and May. Nest trees were climbed

and nestlings were brought to the ground, tarsus length was measured with a calliper to the

nearest 0.1 mm, wing length with a ruler to the nearest mm and body mass was taken with

a Pesola spring balance to the nearest 5 g. The residuals of the body mass-tarsus regression

were used as a proxy for current body condition (Roulin 2004; Sternalski et al. 2012).

Carnus infestation score was grouped into one of five classes according to the number of

underwing and leg pits where infestation signs could be found (0 = no infestation to

4 = all wing and leg pits infested). Morphs of the nestlings and their mother and father
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were recorded. Like many Accipitrid raptors, buzzards are expected to maintain genetic

monogamy and have very low rates of extra-pair paternity (Briggs and Collopy 2012;

Rudnick et al. 2005; Woolaver et al. 2013), hence the social father is very likely to be the

genetic one, too. Blood samples (50–500 ll) were taken from the brachial vain of nestlings

into a heparinized capillary. A drop of blood was used to prepare blood smears and the rest

was centrifuged within 10 min to separate cells and plasma. The plasma was stored at

-20 �C until analyses. Blood cells were reconstituted in PBS-EDTA buffer and used for

DNA extractions from which nestling sex was determined following a standard protocol

(Fridolfsson and Ellegren 1999). After handling, chicks were brought back to the nest.

Blood smears were swiftly air dried, fixed in absolute ethanol within 24 h and stained with

Giemsa (Sigma) within 30 days. From these blood smears, 10,000 erythrocytes were

scanned under a 5009 magnification to determine Leucocytozoon infection status and

infection intensity. Buzzard nests were further observed until feather plumage was com-

plete and the morph of nestling could be confirmed visually. All sampling and experi-

mental treatments were done with permission from the local authority, Kreis Gütersloh,

permit nr: 4.5.2-723-Bussard.

Specific antibody response test

In order to test the strength of the individual humoral response in early nestling age when

infection with Leucocytozoon is most probable, we introduced 40 nestlings from 18 broods

to a mix of two antigens presumably unknown to them. The mean age of the nestlings was

18 days (10–26). After taking a plasma sample at primary sampling, we injected naı̈ve

nestlings with 200 ll of tetanus–diphtheria vaccine (Mérieux, 500 ll containing 20 IE

tetanus and 2 IE diphtheria toxoids) in the pectoral muscle (Råberg et al. 2000; Sandell

et al. 2009). Seven days later, the nests were climbed again, and a second blood sample was

taken, from which plasma was extracted and stored at -20 �C. Death of young nestlings

due to bad weather, poor food conditions and sibling competition is common in the

population (Chakarov et al. 2015b). Six of the vaccine-treated nestlings died between the

first and second sampling of plasma, leaving a sample size of 34 chicks. Analyses of the

antibody titres were performed with commercially available ELISA plates coated with

tetanus or diphtheria toxoids (Demeditec Diagnostics kits DE85101 and DE85111).

Handling of pre- and post-treatment sera was performed in tandem. Test sera were diluted

1:33 in the kit dilution buffer (PBS/BSA, 0.095% NaN3) in duplicates and 100 ll of the
solution was pipetted into the wells. The first and last columns of each plate were occupied

with four blank and four serial dilutions of a reference plasma sample extracted from a

recaptured and previously vaccinated adult buzzard. Plates were incubated for 16 h at 5 �C
and wells were washed with the kit washing buffer (PBS ? Tween 20, all washing steps

include three washings with the buffer) and incubated for 90 min with 100 ll rabbit anti-
chicken IgG (C2288, Sigma, diluted 1:300 in the kit dilution buffer). Afterwards, wells

were washed and incubated 45 min with 100 ll peroxidase-labelled goat anti-rabbit IgG

(A6154, Sigma, diluted 1:500). After a further washing, 100 ll of substrate (tetram-

ethylbenzidine delivered with the ELISA kits) were added to the wells and incubated for

30 min. Then, 100 ll kit stop solution (1 N HCl) was added, and the wells and plates were

read at 450 nm. Values of individual samples were highly repeatable (r[ 0.99). There was

a strong correlation between tetanus and diphtheria antibody titres (Pearson: r = 0.623,

N = 19, p = 0.004), similar to previous studies (Svensson et al. 1998). However, values

for diphtheria were always very low, potentially because of a lower assay sensitivity or

smaller antigen concentration in the vaccine. Because of higher error rate and plasma
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limitations, we did not measure titres for diphtheria antibodies for all birds and only

discuss results for tetanus antibodies. The increase in optical density between pre- and

post-vaccination sera is further used as a measure of the individual specific anti-tetanus

antibody response. The analyses of antibody titres were performed blind to any of the

nestling data recorded in the field.

Phytohaemagglutinin challenge

We used a PHA challenge modified after Smits et al. (1999) as a feasible test of the cell-

mediated immunity. During primary sampling, a spot on the right wing web of 33 nestlings

from 14 broods, aged between 11 and 30 days (mean: 24 days) was marked and its

thickness was measured three times. Afterwards, 50 lg PHA (L1668, Sigma) dissolved in

100 ll PBS were injected into the patagium at the marked location. After 24 h (±1 h),

nests were climbed again and wing web thickness at the marked location was measured

three times. Repeatability of measurement was high (r[ 0.9) and the median measure was

used in all analyses. The difference in wing web thickness after and before the PHA

injection is further used as the response to the stimulus. PHA and vaccination tests were

performed on different individuals.

Blood parasite diversity

An average of 44% of all buzzard nestlings are infected with Leucocytozoon buteonis

(Chakarov et al. 2008). Although mitochondrial lineages are the standard marker of blood

parasite diversity (Bensch et al. 2009), the studied buzzard population appears to be

infected by one dominant Leucocytozoon lineage. Thus we opted to estimate intraspecific

diversity of this parasite species through microsatellites. We estimated the genetic diversity

of Leucocytozoon infections by developing 15 microsatellites for Leucocytozoon through

high throughput sequencing of Leucocytozoon-enriched buzzard blood (Chakarov et al.

2015a). Microsatellites were PCR-amplified using type-it microsatellite PCR kit (Qiagen)

and the resulting fragments were resolved on an ABI 3730 Automated DNA Analyser and

analysed using Genemarker 1.95 (SoftGenetics LCC). The maximal number of alleles

among any of the microsatellite loci was used as a measure of the number of Leucocy-

tozoon clones, i.e. genetic diversity of the infection within a given host. For complete

details see Chakarov et al. (2015a).

Statistical analyses

The anti-tetanus antibody increase and PHA-induced swelling for individual birds were

used as dependent variables in generalized linear mixed effects models, calculated with

lmer in the R package lme4. In these models, brood identity and year of sampling were

entered as random factors to account for shared genetic background and environmental

effects such as food availability, which can influence parts of the immune response (Hoi-

Leitner et al. 2001). Morph of nestlings, maternal and paternal morph were entered in the

maximal model as three-level factors. Potential effects of sex and age were accounted for

by incorporating in the models sex, and wing length as the best available correlate of age.

We present the results from the best models, selected by lowest AICc values (Burnham and

Anderson 2002). A separate set of models with similar structure was constructed with

Carnus infestation score, Leucocytozoon infection status, infection intensity and number of
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clones as dependent variables, and immunity component measures as explanatory vari-

ables. These models had binomial and Poisson error structure and were calculated with

glmer in lme4. All means are presented ±SE.

Results

Humoral response

The anti-tetanus antibody response was best explained by the model containing the morph

of the nestlings’ mother (v2 = 39.032, df = 2, p\ 0.001), and the body condition of the

nestling during vaccination (b = 0.523 ± 0.078, F = 29.668, p\ 0.001). As expected

from a Mendelian inheritance pattern, the morphs of nestlings and their mothers were

correlated (b = 0.357, v2 = 7.365, p = 0.006). Nevertheless, morph of the nestling did

not explain its humoral response (v2 = 0.370, df = 2, p = 0.831). Nestlings of interme-

diate mothers mounted a stronger anti-tetanus response than offspring of both dark and

light mothers (Fig. 1a), and better body condition at the time point of vaccination corre-

lated with a higher antibody titre.

PHA-response

The PHA-induced swelling was best explained by the nestling morph (v2 = 10.881,

df = 2, p = 0.004, Fig. 1b). Intermediate nestlings showed a significantly lower cellular

response than both dark and light nestlings. Neither body condition before PHA injection

or one day after, nor the difference in body mass between both measurements correlated

with the PHA-induced swelling.

Parasite prevalence and diversity

Nestlings infected with Leucocytozoon had a significantly lower humoral response than

nestlings which were not infected (v2 = 4.428, df = 1, p = 0.035). The number of Leu-

cocytozoon clones in infected nestlings was negatively correlated with the response against

tetanus antigens (v2 = 7.256, df = 1, p = 0.007, n = 16, Fig. 2) and positively correlated

with age (b = 0.096 ? 0.040, v2 = 6.367, df = 1, p = 0.012). These results remained

qualitatively unchanged when nestling morph was included in the explanatory models and

this variable did not significantly explain neither Leucocytozoon infection status nor

Leucocytozoon clone number. Neither the induced antibody titre, nor the PHA-response

explained the Carnus haemapterus infestation score.

Discussion

We showed that two components of the immune response are associated with plumage

morphs of the common buzzard. The strength of the humoral response also explained the

infection status with blood parasites and their genetic diversity.

The differences between morphs did not correspond to our expectations based on a

possible POMC pleiotropic cascade, linearly correlating melanisation and the measured

immune responses (Ducrest et al. 2008). Surprisingly, and in contrast to our prediction (1),
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not dark but intermediate nestlings had the lowest PHA-response among all morphs. The

PHA-induced swelling is the result of a complex cascade of immune signalling and many

types of interacting cell types. This may convolute the effect of any potentially con-

tributing melanisation-related genes. Additionally, the PHA response as a measure of skin

inflammation did not mirror the pattern of ectoparasite distribution among nestling morphs

(Chakarov et al. 2008). Neither did the PHA-response directly correlate with the actual

ectoparasite infestation of the nestlings. This is not surprising since among different

immune measures, ectoparasite infestation correlates most often with antibody and rarely

with skin inflammation responses, without a clear direction of the latter correlations (Owen

et al. 2010). Our results, however, indicate that intermediate buzzards might have the

strongest anti-inflammatory reactions which might be selectively beneficial and contribute

to their higher fitness later in life.
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Our prediction (2) was that the adaptive humoral response would be highest in dark

nestlings. In contrast, we found that the humoral response in nestlings is explained by

morph of their mothers and nestlings of intermediate mothers had the highest antibody

production. Maternal effects on defences are mostly studied with respect to prenatal

transfer of antibodies via yolk, and even postnatally via milk in mammals or other

secretions in birds (Hasselquist and Nilsson 2009; Jacquin et al. 2012). It is generally

assumed that wild birds are naı̈ve towards vaccine antigens (e.g. Hanssen et al. 2005;

Råberg et al. 2000), but maternal antibodies may unspecifically block antigens. This could

inhibit the stimulation of specific antibody production in the first weeks of a nestling’s life

and create an opportunity for early incoming parasites such as Leucocytozoon (Staszewski

and Siitari 2010). Thus, potentially, dark mothers could transfer the highest amount of

antibodies to their nestlings. Unfortunately, experiments with vaccination of breeding

females to reveal such an effect in our system have so far been impossible. Interestingly,

most of the other studies comparing specific antibody production among colour poly-

morphic vertebrates also found a dependence on the maternal rather than on the own morph

(Gasparini et al. 2009a; Jacquin et al. 2013; Roulin et al. 2000; Svensson et al. 2001). In

side-blotched lizards Uta stansburiana, offspring of yellow-throated females have stronger

anti-tetanus response than offspring of orange-throated females (Svensson et al. 2001). In

barn owls Tyto alba, the antibody response increases with heritable plumage spottiness of

the genetic mother, which also decreases the number and fecundity of ectoparasites (Roulin

et al. 2000, 2001). In feral pigeons Columba livia, plumage darkness explains the transfer

of specific antibodies against a natural antigen to the eggs (Jacquin et al. 2013). However,

in Eleonora’s falcons Falco eleonorae, a system most similar to the common buzzard

polymorphism, not maternal but the own morph of nestlings explained their humoral

response (Gangoso et al. 2015). The last example indicates that the developmental timing

of the nestling immune system may differ between species and alter the effect of maternal

morphs at the relative time of sampling.

Also in contrast to our prediction (2), a stronger humoral response was not associated

with dark, but with intermediate morphs of the mothers. Intermediate buzzards have higher

fitness and potentially higher parental quality. Therefore, they may provide more food

resources, allowing higher investment into immune responses by their offspring (Møller

and Petrie 2002). Indeed, heavier buzzard nestlings of given age were able to produce a

stronger humoral response than lighter ones. Additionally, heterozygous intermediate

females might transfer fewer non-specific maternal antibodies and thereby boost the pro-

duction of specific antibodies in their offspring (Janeway et al. 2005; but see Boerner et al.

2013).

Overall, the production of a specific antibody response and inflammatory reactions are

both expected to be costly and different morphs may have different investment strategies

towards these defence axes. Our results, however, suggest that light and dark individuals

are rather similar in both respects. Only intermediate morphs differed significantly in both

antibody production and response to PHA, which cannot be explained by a simple func-

tional or genetic (pleiotropic or linkage) correlation with melanisation. Thus, it might be

plausible that a heterozygote advantage arises in intermediates through the interaction of

immune-related genes belonging to light and dark morphs. This study, however, is cor-

relative and the effects of plumage morph need to be verified and disentangled from

environmental and parental effects through cross-fostering experiments and more pro-

longed measurements of the immune response development of nestlings (Gangoso et al.

2015).
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Antibody titres of nestlings explained their blood parasite infection status and genetic

diversity, but not the intensity of infection. This finding supports the assumption that strong

immune responses may effectively fight off parasites, limit the number of successful

parasite strains, and is congruent with our prediction (3) (Hasselquist 2007). A common

explanation is that parasite genetic diversity decreases with age because of stronger

selection by the maturing host immunity (Bendixen et al. 2001). Indeed, we found a

negative correlation between the genetic diversity of blood parasites and the strength of the

humoral response, but also a weak increase of parasite diversity with host age, indicating

that older nestlings may increasingly act as a ‘‘mixing bowl’’ for different parasite strains

(Van den Broeck et al. 2014). Since more diverse infections may limit the potential of the

immune system to react to novel antigens, the direction of a possible dependence remains

to be established experimentally. Nevertheless, to our knowledge, this is the first report

showing a correlation between the antibody response of a wild vertebrate and the genetic

diversity of its blood parasites.

Genetically inherited colour polymorphisms are being increasingly associated with

differences in parasitism and immunity (e.g. Calsbeek et al. 2008; Gangoso et al.

2011, 2015; Kerimov et al. 2012; Pryke et al. 2007). The exact mechanisms in melanin-

polymorphic vertebrates are still unclear and possibly heterogeneous. Here we have shown

that two anti-parasitic responses are morph-dependent and show exceptional levels for

heterozygous intermediate morphs. A simple pleiotropy such as the POMC cascade may

not be sufficient to explain such non-linear trends of immunity with melanisation (e.g.

Calsbeek et al. 2008; Ducrest et al. 2008; Poelstra et al. 2014; Svensson et al. 2001). Such

patterns may result from interactions between the genetic architecture and physiology

behind colour polymorphisms, which need to be explored further.
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Chakarov N, Jonker RM, Boerner M, Hoffman JI, Krüger O (2013) Variation at phenological candidate
genes correlates with timing of dispersal and plumage morph in a sedentary bird of prey. Mol Ecol
22:5430–5440. doi:10.1111/mec.12493

Chakarov N, Linke B, Boerner M, Goesmann A, Kruger O, Hoffman JI (2015a) Apparent vector-mediated
parent-to-offspring transmission in an avian malaria-like parasite. Mol Ecol 24:1355–1363. doi:10.
1111/mec.13115

Chakarov N et al (2015b) Territory quality and plumage morph predict offspring sex ratio variation in a
raptor. PLoS ONE. doi:10.1371/journal.pone.0138295

Ducrest AL, Keller L, Roulin A (2008) Pleiotropy in the melanocortin system, coloration and behavioural
syndromes. Trends Ecol Evol 23:502–510
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Wiesbaden

Hanssen SA, Hasselquist D, Folstad I, Erikstad KE (2005) Cost of reproduction in a long-lived bird:
incubation effort reduces immune function and future reproduction. Proc R Soc B Biol Sci
272:1039–1046. doi:10.1098/rspb.2005.3057

Hasselquist D (2007) Comparative immunoecology in birds: hypotheses and tests. J Ornithol 148:S571–
S582. doi:10.1007/s10336-007-0201-x

Hasselquist D, Nilsson JA (2009) Maternal transfer of antibodies in vertebrates: trans-generational effects on
offspring immunity. Philos Trans R Soc B Biol Sci 364:51–60. doi:10.1098/rstb.2008.0137

Hoi-Leitner M, Romero-Pujante M, Hoi H, Pavlova A (2001) Food availability and immune capacity in
serin (Serinus serinus) nestlings. Behav Ecol Sociobiol 49:333–339

Jacquin L, Lenouvel P, Haussy C, Ducatez S, Gasparini J (2011) Melanin-based coloration is related to
parasite intensity and cellular immune response in an urban free living bird: the feral pigeon Columba
livia. J Avian Biol 42:11–15. doi:10.1111/j.1600-048X.2010.05120.x

Jacquin L, Blottière L, Haussy C, Perret S, Gasparini J (2012) Prenatal and postnatal parental effects on
immunity and growth in ‘lactating’ pigeons. Funct Ecol 26:866–875. doi:10.1111/j.1365-2435.2012.
01988.x

Jacquin L, Haussy C, Bertin C, Laroucau K, Gasparini J (2013) Darker female pigeons transmit more
specific antibodies to their eggs than do paler ones. Biol J Linn Soc 108:647–657. doi:10.1111/bij.
12001

60 Evol Ecol (2017) 31:51–62

123

http://dx.doi.org/10.1111/j.1557-9263.2011.00354.x
http://dx.doi.org/10.1016/j.micinf.2006.06.003
http://dx.doi.org/10.1111/j.1365-2656.2007.01320.x
http://dx.doi.org/10.1111/j.1365-2656.2007.01320.x
http://dx.doi.org/10.1111/mec.12493
http://dx.doi.org/10.1111/mec.13115
http://dx.doi.org/10.1111/mec.13115
http://dx.doi.org/10.1371/journal.pone.0138295
http://dx.doi.org/10.2307/3677252
http://dx.doi.org/10.1111/j.1420-9101.2011.02336.x
http://dx.doi.org/10.1111/j.1420-9101.2011.02336.x
http://dx.doi.org/10.1111/j.1365-2656.2008.01521.x
http://dx.doi.org/10.1111/j.1365-2656.2008.01521.x
http://dx.doi.org/10.1111/j.1600-048X.2008.04590.x
http://dx.doi.org/10.1111/j.1600-048X.2008.04590.x
http://dx.doi.org/10.1111/j.1420-9101.2009.01831.x
http://dx.doi.org/10.1098/rspb.2005.3057
http://dx.doi.org/10.1007/s10336-007-0201-x
http://dx.doi.org/10.1098/rstb.2008.0137
http://dx.doi.org/10.1111/j.1600-048X.2010.05120.x
http://dx.doi.org/10.1111/j.1365-2435.2012.01988.x
http://dx.doi.org/10.1111/j.1365-2435.2012.01988.x
http://dx.doi.org/10.1111/bij.12001
http://dx.doi.org/10.1111/bij.12001


Janeway CAJ, Travers P, Walport M, Schlomchik MJ (2005) Immunobiology. Garland Science, New York
Kerimov AB, Rogovin KA, Ivankina EV, Bushuev AV, Sokolova OV, Ilyina TA (2012) Specific immunity

and polymorphism of breeding plumage in pied flycatcher (Ficedula hypoleuca) males (Aves:
Passeriformes). Zhurnal Obshchei Biol 73:349–359

Krasnov BR, Mouillot D, Khokhlova IS, Shenbrot GI, Poulin R (2005) Covariance in species diversity and
facilitation among non-interactive parasite taxa: all against the host. Parasitology 131:557–568
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