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Abstract Multicellular organisms coordinate growth and differentiation from single cell

starting points with developmental programs. While the evolutionary origins of these

programs are unknown, it is likely that they are closely tied to the evolution of regulated—

not stochastic—phenotypic expression. To determine how such regulation might arise, we

consider experimental populations of Pseudomonas fluorescens which evolved stochastic

switching in the lab. This switching is directly coupled with environmental oscillations

generated by the bacteria themselves. This unique example of niche construction provides

reliable information that organisms may incorporate into regulation of phenotypes. We use

mathematical models to investigate the success of two forms of regulation that rely on

sensing either external or internal information. We find that both strategies can outcompete

stochastic strategies for certain combinations of parameters. In particular, external sensing

mechanisms are very effective over a large range of parameter space—including param-

eters that correspond to poor sensing of the extracellular signal and gradual responses. We

show with evolutionary simulations that this robustness makes them more likely to evolve

from initially stochastically switching populations rather than internal sensing mechanisms

which require more tuning of parameters. These results demonstrate that, within this

oscillating system, if regulatory mechanisms can evolve to incorporate environmental

information then their selective advantage is sufficient for them to fix in the population.
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Introduction

Many multicellular organisms grow and develop from a stage in which they are only a

single cell (Buss 1987; Grosberg and Strathmann 1998; Wolpert 1990). As cells reproduce

they differentiate to produce a multicellular form composed of different cellular
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phenotypes often organized into specialized tissues. This process usually relies on

genetically encoded developmental programs that coordinate cell reproduction and dif-

ferentiation (Davidson 2001). Regulation of cell differentiation decisions reduces ran-

domness that might impair the cohesion or function of the multicellular form (Balázsi et al.

2011). Thus, in this way, developmental programs play a pivotal role in ensuring the

integrity and success of multicellularity. Despite this, their evolutionary origins are

unknown (Minelli and Fusco 2010; Rainey and Kerr 2010; Schlichting 2003).

A hallmark of developmental programs is that phenotypic expression is linked to some

signal (either internal or external to a cell) and expression can be adjusted and reliably

predicted (Moczek et al. 2011; West-Eberhard 2003). If phenotypic expression cannot be

adjusted then it will have limited use in the evolution of new multicellular forms; and if it

cannot be reliably predicted then the process can be described as stochastic. Stochastic

phenotypic expression, in and of itself, may not be disadvantageous. Indeed, it is a com-

mon strategy among organisms to survive harsh and changing environments via bet

hedging (Balaban et al. 2004; Bull 1987; Donaldson-Matasci et al. 2008; Levins 1962;

Ratcliff et al. 2015; Slatkin 1974). However, in a multicellular context stochastic changes

in phenotype can be disadvantageous both to the cell and the organism (Balázsi et al.

2011). Put in this context, the evolutionary origins of developmental programs is intimately

connected with the evolution of regulated—as opposed to stochastic—phenotypic

expression.

Conditions that select for regulating phenotypic expression presupposes a need for at

least two different phenotypes. To do this, models typically make use of two environmental

states that preferentially select for one phenotype over the other: one environmental state

selects for one phenotype and the other environmental state selects for the other phenotype

(Acar et al. 2008; Balaban et al. 2004; Libby and Rainey 2011; Moran 1992; Thattai and

van Oudenaarden 2004). If the environment fluctuates between these two states then there

can be selection for genotypes with the capacity to switch between phenotypes. Depending

on the nature of the environmental fluctuations, different switching strategies may be

favored (Acar et al. 2008; Gaal et al. 2010; Lachmann and Jablonka 1996; Libby and

Rainey 2011; Liberman et al. 2011; Salathé et al. 2009). Previous theoretical studies have

investigated scenarios in which there might be some signal that indicates an environmental

switch (Kussell and Leibler 2005; Levins 1963). Organisms that evolve to respond to this

signal may outcompete those that switch stochastically, i.e. without regard to the signal

(Kussell and Leibler 2005; Thattai and van Oudenaarden 2004). The relative benefit of

switching according to a signal versus stochastic switching has been linked to many factors

including the reliability (information content) of the signal, the cost of maintaining a

regulated switch, the delay in switching between phenotypes, and the cost of being the

wrong phenotype in an environment (Arnoldini et al. 2012; Donaldson-Matasci et al.

2010; Friedman et al. 2014; Geisel 2011; Kussell and Leibler 2005; Moran 1992; Thattai

and van Oudenaarden 2004).

In these theoretical models, the signal that is linked to environmental fluctuations is

external to the system and is typically abiotic. While there are important abiotic envi-

ronmental fluctuations, e.g. the diurnal cycle, considering only such cases limits the pos-

sibility for evolving regulation. Organisms, as a result of their own growth and

reproduction, modify environments and produce many reliable signals that indicate a

changing environment (Laland et al. 1999; Moczek et al. 2011; Odling-Smee et al. 2013).

For example, the consumption of resources and generation of waste products are reliable

indicators of increasing population size and depleting environmental quality. Such eco-

logical signals are abundant, reliable, and involve compounds familiar to the organism. As
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a consequence, these signals could be harnessed to help organisms decide when the

environment has changed and it is time to disperse or generate spores (Fujita and Losick

2005; Garti-Levi et al. 2013; McDougald et al. 2011). If we assume an external restorative

process that rejuvenates environments then responding to these signals could help

organisms complete a life cycle. This added assumption may not be strictly necessary

because some organisms induce intrinsic environmental oscillations.

One example of intrinsically induced environmental fluctuations are experimental

populations of the bacterium Pseudomonas fluorescens (Rainey and Travisano 1998;

Rainey and Kerr 2010). When grown in a laboratory microcosm, P. fluorescens establishes

a cycle of environmental states and phenotypes. Initially, in liquid medium, smooth type

cells (S) reproduce rapidly. Occasionally, they give rise to a mutant type, the wrinkly

phenotype, that produces a costly extracellular glue. As a result of the population

expansion, the liquid media becomes deplete of oxygen and the only available oxygen is at

the surface of the microcosm. The wrinkly (W) types are able to colonize the air–liquid

interface by constructing a mat. The mat niche expands and denies access to the S types in

the liquid media underneath. As the W types reproduce they also yield mutants who do not

produce the glue, effectively S phenotypes. Eventually the mat collapses under its own

weight, condemning the W types to the bottom and mixing oxygen back into the media.

The new S mutants escape into an environment similar to the original state (in practice,

experimental regimes often place these new S types into fresh media completing the cycle).

Since the P. fluorescens experimental system features an organism that switches between

two states, one being strictly unicellular (S types) and one forming a physically connected

group (W types), it has been used as a model to study the evolutionary origins of multi-

cellularity. The wrinkly stage represents a multicellular body while the smooth stage is

similar to a reproductive germ line as it has the capacity to eventually give rise to another

multicellular group (Rainey and Kerr 2010).

The intrinsically induced environmental oscillations can also be viewed as a niche-

constructing trait (Odling-Smee et al. 2003). When the smooth cell population is most

abundant, consumption of oxygen results in a type of negative niche construction because

the depleted resources shift the balance of fitness and allow wrinkly types to increase in

frequency. Similarly, as wrinkly phenotypes construct a mat they initially benefit from its

presence but ultimately pave the way for oxygen to be restored into the environment,

which in turn, allows smooth cells to increase in frequency. Each organism conditions the

environment for the other phenotype. As in other niche construction models, this permits

coexistence of the two phenotypes (Odling-Smee et al. 2013). Furthermore, the combined

effects of wrinkly and smooth niche construction can actually be adaptive. The resulting

environmental oscillations select for genotypes that can readily switch between smooth and

wrinkly types. Invading organisms must be able to adapt to these challenging, fluctuating

conditions in order to be successful.

Initially in the P. fluorescens experimental system, phenotypes switch via mutations

(Rainey and Travisano 1998; Rainey and Rainey 2003). However, repeated experimental

evolution in this system has found the evolution of phenotypes that switch more rapidly via

epigenetic mechanisms (Beaumont et al. 2009; Gallie et al. 2015; Hammerschmidt et al.

2014). Mathematical models show that because of the coupling between environmental

oscillations and organismal populations, there is a single optimal stochastic switching

frequency that is mostly independent of population size, the number of competing geno-

types, the switching strategies of competitors, and the relative differences in growth rates

of different types (Libby and Rainey 2013). Evolutionary models show that populations

that evolve this optimal stochastic switching frequency create a niche of frequently
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oscillating environments which cannot be invaded by other switching or non-switching

types (Libby and Rainey 2013). Although successful, this optimal stochastic switching

strategy may not be the end point of the system’s evolution. Since the environmental

fluctuations are driven by the organisms themselves, there are ecological signals that act as

informative cues to predict environmental change such as population density, oxygen

availability, and resource abundance. Strategies that use this information to regulate

switching may be able to invade and replace stochastic switching strategies. This, however,

assumes that the organisms can detect this information and use it appropriately. It is likely

that the first instantiations of such regulation are noisy and rely on receptors poorly tuned

to measuring information or translating it into action. It is unknown how tuned phenotypic

regulatory mechanisms must be in order to be successful.

In this paper, we consider the P. fluorescens system and the potential for evolution of

regulatory control of phenotype switching. We use mathematical models to compete

switching strategies that use either the extracellular cue of population density or internal

cues of cell history. We find that while both of these strategies might be able to outcompete

the optimal stochastic switching strategy, there are significant differences in the amount of

evolutionary tuning required to be successful. We also find that switching strategies under

regulatory control have single optimal strategies within parameter space, suggesting that

the fitness landscape of this system is single-peaked and cycles between strategies are

unlikely. Ultimately, these results highlight the ecological and evolutionary opportunity in

the P. fluorescens system for evolution of regulated phenotypic expression and thereby

primitive developmental programs.

Materials and methods

To model competitions between modes of regulating phenotypic expression, we use dif-

ferential equations that describe the population growth of SW genotypes in terms of their S

and W phenotypes. This differential equation approach ignores random cell-level decisions

in order to capture mean population-level behavior. Equations that represent different SW

genotypes are independent except for a population density term, D, which corresponds to

the total number of all organisms divided by the carrying capacity N, i.e. D ¼ SþW
N

. This

density term is used to enforce a carrying capacity, via the term ð1 � DÞ, common to

logistic growth equations. We use Eq. 1 to compute the population growth of the SW

genotype that switches without regard to informative signals (Ss and Ws for ‘‘stochastic’’)

in environmental state ES. Since these equations apply to growth in the ES environmental

state, there is a growth deficiency for W types described by the factor cw where cw\1. The

model assumes, for simplicity, that the switch rate ps between S and W phenotypes is the

same in both directions, i.e. the switch rates are symmetric.

dSs

dt
¼ ð1 � DÞ ð1 � psÞSs þ cwpsWsð Þ

dWs

dt
¼ ð1 � DÞ psSs þ cwð1 � psÞWsð Þ

ð1Þ

Alternatively, the SW genotype that switches based on an external signal of population

density (D) is modeled with Eq. 2. Here, Se and We are the smooth and wrinkly phenotypes

which reproduce at the same rate as those of the stochastic genotype. The key difference

between Eqs. 2 and 1 is that the rate of switching is not constant. Instead, the SW genotype
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that relies on external signals switches according to a Hill function of the form pe
Dn

Dnþhn.

This functional form permits the frequency of switching to increase with increasing

population density and reach a maximum value of pe. The Hill function has two other

parameters: the Hill coefficient n and a threshold coefficient h. The Hill coefficient n varies

between 1 and 8 and determines the sharpness of the response such that higher n produce

sharper responses. We call h, which ranges from 10�1 to 10, the threshold parameter

because it largely determines when the switching rate increases—higher values of h cor-

respond to delayed responses.

dSe

dt
¼ ð1 � DÞ 1 � pe

Dn

Dn þ hn

� �
Se þ cwpe

Dn

Dn þ hn
We

� �

dWe

dt
¼ ð1 � DÞ pe

Dn

Dn þ hn
Se þ cw 1 � pe

Dn

Dn þ hn

� �
We

� � ð2Þ

Finally, there is the mechanism of switching that relies on internal signals, whereby SW

organisms switch phenotypes after a set number of reproductive events (called z). We

model this by splitting both smooth and wrinkly phenotypes into subpopulations based on

how many divisions they have undergone. So, for example, if phenotypes switch after three

divisions (z ¼ 3) then there are three populations of S phenotype (Si1, Si2, and Si3) and three

populations of W phenotype (Wi1, Wi2, and Wi3). All S and W phenotypes reproduce at the

same rate as in the stochastic SW genotype. Equation 3 shows the dynamics of the S and W

subpopulations. When Si1 reproduces it yields an Si2 and an Si1 cell because one daughter

cell continues the countdown to switching while the other starts at the beginning of the

countdown. A similar case is true for Wi1, Si2, and Wi2. When either Si3 or Wi3 reproduce

they give rise to an Si1 and a Wi1 cell because one daughter switches and the other keeps the

same phenotype but with a fresh counter.

dSi1

dt
¼ ð1 � DÞ Si2 þ Si3 þ cwWi3ð Þ

dSi2

dt
¼ ð1 � DÞ Si1 � Si2ð Þ

dSi3

dt
¼ ð1 � DÞ Si2 � Si3ð Þ

dWi1

dt
¼ ð1 � DÞ cwWi2 þ cwWi3 þ Si3ð Þ

dWi2

dt
¼ ð1 � DÞ cwWi1 � cwWi2ð Þ

dWi3

dt
¼ ð1 � DÞ cwWi2 � cwWi3ð Þ

ð3Þ

Each competition between switching strategies begins with a population of two genotypes,

with one member of each, in the S phenotypic state growing in the ES environmental state.

The populations reproduce until they reach the carrying capacity, N (when D ¼ 1), and the

environment switches states to EW . Since it is advantageous to have a larger investment in

the phenotype that grows preferentially in EW , the genotype with the most W at the end of

growth in ES will have the advantage and ‘‘win’’ the competition. We could consider

completing the full cycle with growth in EW and transfer to ES but as long as the switching

rates are the same this would not affect which strategy wins. This follows from the fact that

the strategy that won after growth in the first environment would have a numerical
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advantage to begin growth in the second environment. In this system, there is no frequency

dependence of growth which means that a strategy cannot do better if it made up less of the

population (Libby and Rainey 2013). For simplicity, we also assume that the W phenotype

does not reproduce in ES and thereby acts more like a spore. Previously, it was shown that

the actual growth rate of the non-favored type does not alter the results as long as it is much

slower than the favored type (Libby and Rainey 2013).

The evolutionary simulations used to generate Fig. 6 adopt an agent-based modeling

approach with time discretized according to the generation time of S and W phenotypes.

Each simulation begins with a single genotype that stochastically switches with probability

ps ¼ 10�4. Each time an organism reproduces there is the possibility of two types of

mutations. First there is a probability of 10�3 the organism mutates so that it switches

according to the same mechanism but with different parameters. Alternatively, there is a

probability of 10�4 that the organism mutates and produces a genotype that switches

according to a different mechanism. If the second type of mutation occurs then parameters

are sampled from the following ranges: ½10�4; 1� for ps of stochastic switching strategies;

½10�4; 1� for pe, ½10�3; 10� for h, and [1, 8] for n of external sensing strategies; and [1, 25]

for z of internal sensing strategies. Non-favored types (W in ES and S in EW ) grow at a

quarter of the rate of favored types. When the population reaches the carrying capacity

(N ¼ 107), ten organisms of the phenotype favored in the next environmental state are

selected to seed growth in the next environment. This process is repeated for 1000

oscillations of ES to EW to ES.

Results

We model experimental populations of Pseudomonas fluorescens by extending a previ-

ously published model (Libby and Rainey 2013) in which environmental fluctuations are

generated by populations of bacteria. The environment alternates between two states, ES

and EW . Switches between states occur when the total population of cells reaches a fixed

number, N, the carrying capacity. In addition to the two environmental states, the bacteria

also switch between two phenotypic states, S and W. We refer to the bacteria as ‘‘SW

organisms’’ due to their capacity to generate both phenotypes from a single genotype. The

S and W phenotypes differ in their reproductive performance in environmental states. S

phenotypes grow faster than W phenotypes in environmental state ES while the inverse is

true in EW . To be competitive in this environment, SW organisms must balance growth

(investment in the type favored in the current environment) with diversification (invest-

ment in the type favored in the next environment).

The mechanism of phenotype switching is the topic of investigation in this paper so it

will differ depending on whether it is independent of an apparent signal (called

‘‘stochastic’’), uses extracellular signals, or relies on intracellular signals (see Fig. 1). For

the stochastic mechanism, we assume that switching between W and S phenotypes is

random and occurs with a fixed rate or probability, ps, depending on whether the model is a

set of continuous differential equations or a discrete time agent-based simulation (see

‘‘Materials and methods’’ section). To make communication easier, we will use ‘‘proba-

bility’’ preferentially over ‘‘rate’’ but it should be noted that the two are proportional. For

the mechanism that uses extracellular signals (called ‘‘external sensing’’), the probability of

switching is modulated by a signal. Although in the actual experimental system there may

be many extracellular signals available, we use population density (ratio of total population
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to the carrying capacity) which might be sensed directly or indirectly via a proxy like

resource limitation. We assume that the probability of switching is modified by this

information such that with increasing population density, the switch probability increases.

Thus, we use a sigmoidal curve (the Hill curve) with three parameters to reflect this

decision (for justification of sigmoid responses, see Perkins and Swain 2009). We could

have considered a functional form with the inverse relationship, i.e. decreasing switch

probability with increasing population density, but this would not be adaptive as it would

lead to an over investment in the slow-growing phenotype early on when the populations

should be focusing on growth rather than diversification. Finally, for the mechanism that

relies on intracellular signals (called ‘‘internal sensing’’), we use a record of a cell’s history

so that cells switch after a certain number of reproductive events—a parameter of the

model. This mechanism is similar to an internal oscillator (Thattai and van Oudenaarden

2004) and represents a type of memory which may occur via the internal accumulation of

some molecule. This contrasts with the mechanism using extracellular signals because the

cell has no information about the state of its extracellular environment. With appropriate

tuning of its oscillator it may be able to synchronize with environmental fluctuations.

From previous analysis of the stochastic switching strategy (Libby and Rainey 2013),

we know that there exists a single optimal probability of switching (ps � 10�1) that can

invade all other strategies and avoid being invaded itself. To see if the mechanism that uses

extracellular information can evolve within the context of an environment taken over by

the optimal stochastic switching strategy, we compete the two strategies over a range of

parameter values of the external sensing strategy (see ‘‘Materials and methods’’ section).

Initially, we hold the Hill coefficient fixed at n ¼ 2 and vary the threshold parameter (h)

and the maximal switching probability (pe). We find that there is an area of parameter

space in which the external sensing mechanism beats the optimal stochastic strategy (see

S
ps1-ps 1-ps

ps
W

pop

p e

z

time or pop

time

p i

S
pe1-pe

pe

zth

W

p s

1-pe

S W...S S

stochastic (no signals)

mechanistic (external signals)

mechanistic (internal signals)

Fig. 1 Schematic displaying the model framework. When organisms use a stochastic strategy, they switch
between phenotypes at a constant probability ps (blue curve on top right) that is independent of time or
population density (‘‘pop’’). In contrast, cells that switch according to a mechanism that incorporates external
signals, modulate the switch probability pe according to population density—which can be sensed as the
depletion of resources. As the population density increases, the switch probability increases in a sigmoidal
fashion. Finally, there is a mechanistic model that uses internal signals from the organism’s reproductive
history—which can be detected via the internal accumulation of some molecule. After a set number of divisions
(z), the organism switches phenotypes and so the switch probability pi equals 1. (Color figure online)
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Fig. 2a). In general the parameter combinations that offer the largest magnitude of victory,

i.e. the most W types to seed the EW environment, have high values of pe and h values

between 0.1 and 1. This corresponds to a strategy that switches frequently just as the

environment is about to change states. This reduces the cost of investing in the non-favored

type (W in ES) too early when its growth deficiency will hinder the growth rate of the

population. It also ensures mass production of W types when they are most needed. If we

compute the average switch probability over the course of population growth for external

sensing strategies (Fig. 2b), we find that the parameter space where the external sensing
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Fig. 2 Competition between external sensing and stochastic strategies. a External sensing strategies are
competed against the optimal stochastic strategy. The contour plot shows the proportion of W of the external
sensing genotype for different combinations of the probability of switching and the value of h. The carrying

capacity is N ¼ 107 and the Hill coefficient (n) is fixed at 2. The black line indicates the boundary between
strategies that beat the optimal stochastic and those that lose. b Contour plot of the average switch
probability (log10) over population growth for combinations of h and pe for external sensing strategies

(N ¼ 107 and n ¼ 2). By increasing switch probability with increasing population size, the external sensing
strategy can outcompete the optimal stochastic strategy over a larger range of average switch rates. c The
best external sensing strategy parameters are shown as a function of the Hill coefficient. The probability of
switching pe (blue) and h (red) are relatively constant. The green points show the proportion of W types of
the external sensing strategy compared to the optimal stochastic strategy. d The contour regions for
strategies that beat the optimal stochastic strategy are shown for different Hill coefficients (n values). The
n ¼ 1 (blue) boundary encompasses the largest range of parameters pe and h. In contrast, the n ¼ 8 strategy
has the smallest region and requires a finer tuning of parameters. (Color figure online)
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strategy wins includes average switching probabilities both higher and lower than the

optimal stochastic switching probability. Since both h and pe can vary by a factor of ten

and still beat the optimal stochastic switching strategy, the external sensing strategy does

not require fine tuning (narrow area of parameter space) to be successful.

Another result of Fig. 2a is that there is a single optimal external sensing strategy in

terms of its degree of winning over the stochastic strategy, i.e. the most W types to seed the

EW environment. This single optimal external sensing strategy adopts the maximum

probability of switching in our parameter space (pe = 10�:1) and a threshold coefficient

h ¼ :4. This means that the population increases its switch probability to half maximal

when the density is 40 % of the carrying capacity. This single optimal strategy is robust to

changes in the Hill coefficient n (Fig. 2c) and enables the external sensing strategy to

compose over 90 % of the W types at the end of growth in ES. In fact, as the Hill coefficient

decreases there is a larger area of parameter space in which the external sensing strategy

wins (see Fig. 2d). This means that a sharp response with a higher value of the Hill

coefficient requires more tuning of parameters than a more gradual response represented by

lower Hill coefficients (n ¼ 1).

While there are a range of parameters for which the external sensing strategy beats the

optimal stochastic switching strategy, it is possible that there are other stochastic switching

strategies that may fare better. To test this, we compete external sensing strategies against a

range of stochastic switching strategies with probabilities of switching (ps) between 10�5

and 10�:1 (data not shown). We find that if an external sensing strategy beats the optimal

stochastic strategy then it beats all other stochastic switching strategies.

Once an external sensing strategy outcompetes a stochastic strategy and takes over the

population, there could be a different set of external sensing strategies that perform better

against other external sensing strategies. Stochastic strategies have a constant probability

of switching and so over time there is a fixed proportion of the population that switches—

this appears as a linear relationship in the differential equations (see ‘‘Materials and

methods’’ section). In contrast, external sensing strategies alter the probability of switching

with respect to population density, increasing it towards the end of growth in an envi-

ronmental state. It could be that the dynamics of these competitions lead to different

combinations of parameters being more successful. We test these possibilities in Fig. 3a by

competing external sensing strategies against one another. The results show that the same

parameter combinations that were effective against stochastic strategies also perform well

against other external sensing strategies. Indeed, there is a single optimal external sensing

strategy for the parameter combinations that we evaluated and this strategy is the same as

the best performer against the optimal stochastic strategy. Though there is a single optimal

external sensing strategy, it does not outcompete all other external sensing strategies by a

large magnitude. There is a range of pe and h values for which the optimal external sensing

strategy makes up 50–60 % of the population. This indicates that there is not a sharp fitness

peak but rather a plateau of effective sensing strategies.

Now we shift from considering the external sensing mechanism of switching to one that

relies on internal information, switching every zth division. This internal sensing mecha-

nism has only one parameter, z, which allows us to compete it against a range of stochastic

switching strategies (see Fig. 4a). We find that when N ¼ 107, there is a single optimal

internal sensing strategy that beats all stochastic switching strategies. However, any other

internal sensing strategy loses against some collection of stochastic switching strategies.

This optimal z value for switching varies between 3 and 5 depending on the carrying

capacity (see Fig. 4b). For a large range of carrying capacities, 105 �N� 109, z ¼ 4 is
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unbeatable. At N ¼ 104 and N ¼ 1010, z ¼ 4 is beaten by some stochastic strategies

because it results in switching too slowly or too quickly, respectively—this explains why

z ¼ 3 and z ¼ 5 supplant z ¼ 4 at those values of N. When internal sensing strategies are

competed against other internal sensing strategies, the optimal z value against stochastic

switching strategies is again unbeatable (see Fig. 4c). In addition, the magnitude of this

victory quickly increases as z moves away from the optimal so that z ¼ 4 makes up more

than 80 % of the W population compared to z ¼ 7 when grown in ES.

The narrow range of parameter space for which internal sensing strategies outcompete

stochastic strategies indicates that internal sensing strategies may not perform well against

external sensing strategies. We test this hypothesis by competing a range of external

sensing strategies (pe and h are varied) against internal sensing strategies for z between 1

and 20 (see Fig. 5). The results show that the same parameter combinations with which

external sensing strategies beat stochastic strategies are also unbeatable against internal

sensing strategies, i.e. high pe and h\1.

Thus far, we have considered scenarios in which competing strategies start at equal

numbers. In reality, strategies that arise via mutation and fix must be able to invade when

rare. Moreover, they must be able to survive the selective pressures of the niche con-

structed by the resident genotypes, namely oscillating environments at a certain frequency.

To see how mechanisms with regulatory control fare in such a scenario we use evolu-

tionary simulations (see ‘‘Materials and methods’’ section). Initially each simulation begins

with a uniform population that switches stochastically with ps ¼ 10�4. With each repro-

ductive event there is a chance of generating a mutant with different parameter values but

employing the same mechanism of switching. There is also a smaller probability of pro-

ducing a mutant that switches according to a different mechanism. We run these simula-

tions through 1000 environmental cycles of growth in ES and growth in EW . As the

environment changes, ten members of the population are chosen randomly to survive

Fig. 3 Competition among external sensing strategies. a External sensing strategies are competed against

other external sensing strategies over a range of pe and h values (N ¼ 107 and n ¼ 2). The contour plot
shows the fraction of other strategies that a particular combination of pe and h beat (1 being all other
strategies and 0 being none). There is a single unbeatable strategy shown by the white dot which is the same
strategy that performed best in terms of magnitude of victory against the optimal stochastic strategy. b The
best external sensing strategy is competed against all other external sensing strategies. The contour plot
shows the proportion of W-types from the optimal sensing genotype at the end of growth in ES. Although
there is a single optimal sensing strategy there is a wide parameter space in which it makes up less than
60 % of the population, indicating that a range of other strategies perform similarly, i.e. the fitness landscape
is not sharply peaked
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passage to the next environmental state. Types that are not favored in the current envi-

ronment reproduce at 25 % the rate of favored phenotypes.

With this setup, we find that over time all simulations become dominated by external

sensing strategies (Fig. 6a). Internal sensing strategies appear during growth in environ-

ments but because they require fine tuning of parameters they are unable to successfully

invade and survive the transition to the next environment. Ultimately, by the 1000th

environmental oscillation, all simulations have the majority genotypes using external

sensing mechanisms to regulate switching. The parameter values of these genotypes are not

the same but vary within the ranges found to be successful in previous competitions (see

Fig. 6b). The pe values are all high, above 10�1, and the h values are all much less than 1.

Fig. 4 Internal sensing strategies versus stochastic strategies and other internal sensing strategies. aA contour

plot shows the proportion ofW types for internal sensing strategies at the end of growth inES (N ¼ 107) when in
competition with stochastic switching strategies. At z ¼ 4 the internal sensing strategy is unbeaten for all
stochastic switching strategies tested. The black line indicates the boundary where internal sensing strategies
perform the same as stochastic strategies. b The optimal z value is shown as a function of the carrying capacity
when the environment switches. For a wide range of carrying capacities there is a single optimal strategy that
switches every fourth generation. cA contour plot shows the proportion ofW types produced after growth inES

of the optimal internal sensing strategy z ¼ 4 at N ¼ 107 when competed against other internal sensing
strategies. The same z value is unbeatable against stochastic and other internal sensing strategies. As z moves
away from the optimal, the proportion of W types rapidly increases in favor of the optimal z
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The Hill coefficients (n) show more variation but this is likely due to the fact that they are

less significant in terms of the performance of the external sensing strategy.

Discussion

Multicellular organisms rely on developmental programs that regulate expression of dif-

ferent phenotypes to coordinate growth and reproduction. Yet, the evolutionary origins of

these programs are unknown. We consider a hallmark feature of developmental programs

Fig. 5 Internal sensing versus
external sensing strategies. The
proportion of internal sensing
strategies beaten (1 ¼ all) is
shown as a function of two
parameters for external sensing

strategies, pe and h (N ¼ 107

with a Hill coefficient of 2). The
parameter combinations that
allow external sensing strategies
to beat stochastic strategies are
also successful against internal
sensing strategies (top left high pe
and h\1). Above the black line,
external sensing strategies beat
all internal sensing strategies

Fig. 6 Evolutionary simulations. a The proportion of the population selected for transfer to the next
environmental state of the three mechanisms of switching (stochastic, external sensing, and internal sensing)
is shown over the course of environmental oscillations for 100 evolutionary simulation runs. All simulations
begin with stochastic switching strategies (red) but over time external switching strategies (blue) invade and
replace them. Internal sensing strategies (green) are present during growth in environmental states but are
rarely at high enough frequency to be selected for passage to the next environmental state. b The parameter
values for the majority genotype of the population at the end of each simulation is shown. All simulations

ended with an external sensing strategy as the majority genotype. The pe values (blue) are all above 10�1

and the h values are all less than 1. The n values tend to be above 1 although this could be due to the
sampling interval for n values which was between 1 and 8
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to be the linking of phenotypic expression to a signal. To determine if this type of regu-

lation can displace stochastic switching strategies we consider experimental populations of

Pseudomonas fluorescens which evolved stochastic switching in the lab (Beaumont et al.

2009). Using mathematical models we compare the performance of two types of pheno-

typic regulation, using external or internal cues, against stochastic strategies in an oscil-

lating environment constructed by the organisms themselves. We find that both strategies

can beat the stochastic strategy for certain combinations of parameters. The difference

between them is that the external sensing strategy requires far less refinement of param-

eters and is therefore more likely to evolve. We demonstrate this increased likelihood with

evolutionary simulations in which populations that initially rely on stochastic switching are

soon taken over by external sensing strategies. These results show that the selective benefit

of regulated phenotypic expression and its robustness to mechanistic parameter choices (in

external sensing strategies) is sufficient to permit the evolutionary origin of primitive

developmental programs.

One reason for the success of the external sensing strategy is the quality of information

contained in the environmental cue. In our model, the population density is a perfect

indicator of when the environment switches. Thus, a strategy that is able to use this

information, even imperfectly, will have an advantage against strategies that do not use this

information, e.g. internal sensing and stochastic strategies. This explains why external

sensing requires little tuning in order to be successful against other strategies. It is likely

that this would be less true if the environmental cue were not a perfect indicator. Indeed, in

the extreme case in which there is no available reliable signal, stochastic switching

strategies are expected to prevail (Balaban et al. 2004; Thattai and van Oudenaarden

2004). In such environments, stochastic switching allows organisms to bet hedge without

the need to maintain potentially complex regulatory control.

Internal sensing strategies, in contrast, do not enjoy the benefit of either stochastic

switching or external sensing mechanisms. They do not make use of an information source

which is well-correlated with environmental change and they require careful tuning to

perform well. This may be responsible for their rarity in extant biological systems.

Organisms that use similar strategies, e.g. volvocine algae (Kirk 1998), often have other

features such as physically connected cells. This spatial structure can be built reliably by

internal sensing strategies and without any additional information. It may be that in

assembling physical structures, these programs have advantages over other regulatory

mechanisms. In the system considered here, however, without spatial structure and where

responding to environmental change is instrumental to survival, external sensing strategies

perform best.

For both internal and external sensing mechanisms, we considered only one type of

regulation with specific subtleties in implementation that might affect performance. For

example, the internal sensing strategy always generates one daughter cell with an initial-

ized setting for the internal clock, z divisions away from switching. This is but one

implementation of such a mechanism as it could also be valid that the internal clock is set

randomly somewhere between 0 and z or set to the same stage as the parent cell. Another

implementation choice was for switching to occur during reproductive events. This was

done under the assumption that DNA replication is a source of genetic mutations, but it

could be the case that cells switch continuously. In this case, one effective strategy would

be for all cells to switch to the type favored in the next environmental state just as the

environment changes. We would still expect external sensing to be successful with such an

implementation but it could change the range of winning parameters. In addition to

changes in implementation of these switching mechanisms, there are other types of
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mechanisms that regulate phenotypic expression which might be likely to evolve. For

instance, switching could be mediated by quorum sensing molecules or the density of

different phenotypes in a local environment (assuming some form of spatial structure).

Such mechanisms would allow subpopulations of cells to coordinate their behavior and

may be effective in competition against other mechanisms. While consideration of a range

of these mechanisms lies outside the scope of this paper, it would be interesting to

understand the conditions under which each regulatory mechanism may evolve.

Even though our model and simulations show from a selective point of view how

primitive developmental programs might evolve, we do not address the molecular details.

It is unknown by what means a mutation may bring a stochastic response under regulatory

control (Moczek et al. 2011). Certainly, it would depend on the genetic architecture and

background of the genotype. If there existed a way of sensing a proxy for population

density (say nutrient concentration) and the genotype could already produce two pheno-

types, then there is potential for linking these two systems. Although we cannot say how

this comes about, our results show that even early, imperfect systems that link information

sensing to phenotypic expression have the potential to outcompete purely stochastic

strategies. To run the evolutionary simulations we needed some estimate of the frequency

of mutations that change the type of regulatory control. We assumed that these mutations

occur a factor of 10 less often than mutations that tune the regulation without changing its

mode of operation. It could be that these mutations are rarer, but even so, given enough

time and evolutionary opportunity the simulations show that they would be able to out-

compete stochastic strategies.

In this paper, we considered the evolution of regulated phenotype expression which

requires a system that expresses at least two phenotypes. We chose a particular experi-

mental system, Pseudomonas fluorescens, in which two phenotypes must be produced in

order to complete a life cycle. This is not the only system with selection favoring

expression of two phenotypes. Indeed, there are many other types of arrangements in which

an organism might benefit from producing two phenotypes without necessarily progressing

through a life cycle. Filamentous cyanobacteria, for instance, produce heterocysts along

with vegetative cells in order to fix nitrogen and survive oxic conditions (Zhang et al.

2006). Although our modeling does not consider the gamut of such systems, our differ-

ential equation models may be adapted to fit a subset of these cases. For example, if

heterocysts do not reproduce but rather help vegetative types grow faster then we could

transform Eq. 1 into Eq. 4 with the modifications shown in brackets and the Ss terms

representing vegetative cells and the Ws terms representing heterocysts.

dSs

dt
¼ ð1 � DÞ ð1 � psÞSs þ ½Ss�cwpsWsð Þ

dWs

dt
¼ ð1 � DÞ psSs þ ½0�cwð1 � psÞWsð Þ

ð4Þ

Interestingly, if the [0] term is changed to an [Ss] in Eq. 4 then the equations would

describe a mutualism between different species in which it costs each organism repro-

ductive potential to produce a benefit for the other. This could be used to understand how

mutualistic interactions could be regulated. Thus, while the experimental system we

consider is a limited case, our framework is plastic enough to analyze other types of

interactions.

A caveat to our model system is that it only considers two phenotypes. In other systems

or organisms, such as animals, multicellular developmental programs must regulate

expression of hundreds of phenotypes. Based on our results, it would be advantageous for
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organisms to find and use reliable sources of information. Since environments may not

provide enough information sources on their own, one solution that is commonly used by

multicellular organisms is to produce the information sources themselves (Davidson 2001;

Donohue 2005; West-Eberhard 2003). As the multicellular organism grows and develops

from a single cell, it synthesizes and transmits molecules that may be harnessed by cells for

spatial and temporal information. The developmental program, therefore, encodes both

construction of a niche and appropriate phenotypic expression at times and places in the

niche. These more complex forms of regulation require larger coordination among cells

and are rare if non-existent in unicellular organisms. It could be that their evolution may be

intimately tied to the evolution of multicellularity, itself.
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