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Abstract  Two-stage analysis methods are often 
used in multi-environment trials (MET) for plant 
variety selection, when a single-stage approach is 
not feasible or too time consuming. In any two-stage 
analysis, the estimated effects taken to stage two 
must be unbiased for the effects of interest, and this 
means using best linear unbiased estimates based 
on a model with fixed genetic effects. The error (or 
weights) associated with the estimates must also be 
taken to stage two. These weights are functions of 
unknown variance parameters that need to be esti-
mated at stage one. These parameters may be better 
estimated if genetic effects are taken as random, but 
resulting predicted genetic effects are biased. The bias 
can be removed by so-called de-regression in animal 
sciences. The proper weights involve a block diagonal 
matrix with blocks corresponding to environments, 
whereas diagonal weights were originally proposed 
in animal sciences. Two MET experiments, one fully 
replicated and one with partial replication of varie-
ties, were used to compare one-stage and two-stage 
approaches. The results were similar, but using a full 
weight matrix for two-stage methods was superior to 
using diagonal weights. A small simulation study for 

trials with partial replication showed that fitting ran-
dom genetic effects, de-regressing, and using a full 
weight matrix, was very similar to a one-stage anal-
ysis, and was superior to starting with fixed genetic 
effects at stage one. The use of diagonal weights was 
found to be very poor.

Keywords  De-regression · Fixed genetic effects · 
Mixed models · Multi-environment trials (METs) · 
Random genetic effects · Weighting

Introduction

The advent of the digital age has allowed the devel-
opment of genetic analyses for complex data. Despite 
advances in hardware, scalable software remains an 
issue. This is particularly true of mixed model soft-
ware, which is largely built on methods from twenty-
five or more years ago. The underlying algorithms 
that are used restrict the speed of analysis, and the 
size of the problem can prevent a full single stage 
analysis.

Crop improvement programs usually involve tri-
als being run in multiple environments (METs) 
because genotype or variety by environment (GE or 
VE) interaction is likely to be substantial, and rec-
ommendations on the use of specific varieties may 
therefore need to be environment specific. In analyz-
ing such sets of trials, it is preferable to use single 
stage methods, usually based on mixed models; see 
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the first paragraph of the introduction in Piepho et al. 
(2012). Single stage methods have been proposed by 
many authors and examined for optimality, for exam-
ple see Smith et al. (2001b) and Welham et al. (2010). 
These methods typically rely on factor analytic mod-
els and can be computationally expensive. Two-stage 
methods however, in which each trial is analyzed 
separately, and the results combined in some manner 
(Smith et al. 2001a; Piepho et al. 2012; Gogel et al. 
2018) are simpler to use and faster. However, there is 
a loss of information and hence efficiency, provided 
the single stage approach is based on the “correct” 
model. The issue of two-stage analysis with weighting 
has been discussed by a number of authors (Mohring 
and Piepho 2009; Damesa et al. 2017, 2019; Buntaran 
et al. 2019; Endelman 2023).

Both Piepho et al. (2012) and Gogel et al. (2018) 
show that a two-stage approach that uses fixed genetic 
effects at the first stage of analysis, is exactly equiva-
lent to the single stage approach if variance param-
eters are known, and a known full weight matrix is 
carried forward to the second stage. Variance param-
eters are not known, and for the case of fixed genetic 
effects at the first stage of analysis, Gogel et al. (2018) 
quantify the information loss in using a two-stage 
approach through dissection of the residual likelihood 
used for estimating the unknown variance parameters.

Genetic effects are usually assumed to be random. 
In animal breeding, this is necessary because replica-
tion is not possible (except for clones). For genomic 
prediction in animal breeding, Garrick et  al. (2009) 
develop so-called de-regression. Random genetic 
effects are predicted or estimated at the first stage, 
and then transformed or de-regressed for use in 
genomic prediction. De-regression is in fact return-
ing the best linear unbiased predictions (BLUPs) to 
best linear unbiased estimates (BLUEs), as is shown 
in this paper. Garrick et al. (2009) consider individual 
BLUPs, rather than the full vector, and a diagonal 
weight matrix is used at the second stage of analysis 
for genomic prediction. This is a special case of the 
more general mixed effects two stage analysis pre-
sented in this paper. This approach is called random 
plus de-regression in this paper.

For partially replicated trials (Cullis et  al. 2006), 
Gogel et al. (2018) state on page 6 of their paper, that 
using single stage analysis is preferred. It might be 
conjectured that using random plus de-regression at 
the first of a two-stage process, might be preferable 

to starting with fixed genetic effects as in Piepho 
et al. (2012) and Gogel et al. (2018). This approach is 
examined and formalised in this paper, and ultimately 
uses the approach given by Smith et  al. (2001a) for 
practical application.

Two examples are used in this paper to illustrate 
the approaches and to compare various two-stage 
methods and a one-stage method. The two data sets 
examined were a barley breeding MET with 24 trials 
(environments) and replicated lines (at least 2), and 
a MET for 4 trials in a wheat variety trial in which 
partial replication was used. The approaches that use 
either fixed or random plus de-regression genetic 
effects are presented. The results of analysis of both 
data sets are presented. In animal breeding, animals 
cannot be replicated, and genetic effects need to be 
assumed random. A relationship matrix is required 
for analysis. With partially replicated designs (Cul-
lis et al. 2006) of low replication, it seems intuitively 
clear that using fixed genetic effects at the first stage 
will be problematic, even with an optimal design. A 
small simulation study is presented to illustrate that 
at the first stage, it is preferable to use random genetic 
effects, and then convert these to best linear unbiased 
estimates through de-regression, for use at the sec-
ond stage. Discussion and conclusions complete the 
paper.

Examples

Barley stage 3 variety selection trials

Multi-environment trials were conducted by the 
South Australian Barley Program in 2006 and 2007. 
A total of 24 Stage 3 trials were grown over the two 
years. The designs for all trials were randomised 
complete blocks, with two or three blocks and hence 
two or three replicates of the varieties. The details of 
each trial are given in Table 1. The number of com-
mon lines within the two years is approximately 180, 
while between years there are approximately 50 lines 
for each pair of trials. A total of 322 lines were used 
in the trials. No pedigree or genomic information is 
available. The trait of interest is yield. Note the mean 
yields (in tonnes/hectare) are highly variable reflect-
ing the multi-environment nature of the trials. The 
aim of the trials was promotion of lines to stage 4 
trials, and hence best linear unbiased predictions of 
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variety by environment effects are required, to enable 
selection of varieties.

Multi‑site p‑rep yield trials

A series of wheat variety trials were conducted at 4 
sites over 2 years, sites 1 and 2 in year 1 and sites 
3 and 4 in year 2. The layouts (rows,columns and 
blocks), the number of varieties in each trial and 
the proportion that are replicated, the number of 
missing values and mean yield (the trait of interest, 
tonnes/hectare) are given in Table  2. A simple ini-
tial randomised block design of 2 blocks (Reps) was 
used for all trials. Additional blocking with 2 blocks 
within each Rep, was included in the first year, while 
in the second year, further blocking was based on the 
level of phenology (flowering time), classified into 3 
classes. Within each Rep, there were 6 blocks, each 
phenology class being replicated. As pointed out by 
a reviewer, blocking on phenology might be an issue, 
as randomisation of lines is compromised by the 
likely presence of a genetic component for phenology 
traits, and hence estimated variance components may 
be biased.

The trials were designed using partial replication 
of lines, although the replication rate is fairly high. 
There were 943 lines in total with 25 standard or 
commercial lines used in the trials. The concurrence 
of lines across sites varied from 482 to 616.

As for the barley trials, the aim was selection of 
varieties, using best linear unbiased prediction.

Simulation study: multi‑site p‑rep

A small simulation study was conducted to inves-
tigate two-stage methods for p-rep or partially rep-
licated designs. In the simulation study, data was 
generated for four sites, and three levels of partial 
replication were examined, namely 50%, 20% and 

Table 1   Barley trial information: name of the trial, layout 
(number of rows and columns), number of varieties at each 
site, number of missing values and the mean yield for each site

Site Number of Mean

Rows Columns Varieties Missing 
values

Yield

06S3BRE 60 6 180 1 1.98
06S3BRI 46 12 184 4 0.25
06S3CAL 46 12 184 0 0.66
06S3CLI 46 12 184 2 0.91
06S3MRC 6 60 180 2 0.41
06S3MUR 46 12 184 0 2.00
06S3NAR 46 12 184 0 0.81
06S3NTR 46 12 184 0 3.06
06S3PAR 46 12 184 2 1.58
06S3WEE 46 12 184 4 0.73
06S3YEE 46 12 184 2 1.10
07S3BRE 60 6 180 0 2.36
07S3BRI 45 12 180 0 1.81
07S3CAL 45 12 180 0 1.19
07S3CLI 45 12 180 0 2.27
07S3COR 45 12 180 0 3.22
07S3GRA​ 45 12 180 12 2.50
07S3MRC 60 6 180 25 0.31
07S3MUR 45 12 180 1 3.11
07S3NAR 45 12 180 0 0.49
07S3SWA 45 12 180 4 1.11
07S3TAR​ 45 12 180 3 2.63
07S3WEE 45 12 180 0 1.70
07S3YEE 45 12 180 4 1.01

Table 2   p-rep trial information: name of the trial, layout 
(number of rows, columns, Reps, blocks and the configuration 
for each Rep and block), number of varieties at each site, level 

of partial replication (P-rep), number of missing values and the 
mean yield for each site

Site Number of Missing 
values

Mean yield

Rows Columns Rep Blocks Varieties P-rep

1 28 36 2 ( 28 × 18) 4 ( 14 × 18) 735 0.37 6 2.80
2 20 56 2 ( 20 × 28) 4 ( 20 × 14) 801 0.39 14 4.40
3 60 16 2 ( 30 × 16) 12 ( 5 × 16) 641 0.49 6 2.49
4 84 12 2 ( 42 × 12) 12 ( 7 × 12) 666 0.51 2 2.71
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10% replication of the total of 480 lines. The simu-
lated trials consisted of 24 columns and 30, 24 and 
22 rows for the three replication rates (50, 20 and 
10%) respectively. The replicated lines were assigned 
to 6 blocks (of 4 columns) in a balanced incomplete 
block design for all scenarios, using find.BIB from 
the crossdes R package (https://​CRAN.R-​proje​ct.​org/​
packa​ge=​cross​des). In the case of 50% replication, 
allocation of replicated lines was balanced over sites. 
For the lower replication rates, different replicated 
lines appeared at each site. Non-replicated lines were 
allocated to each block at random. An optimal row(-
column) BIB design was then constructed using odw 
(Butler and Cullis 2022) using the tabu+rw option for 
each site. For a discussion of design of plant breed-
ing experiments, including p-rep designs, see Piepho 
et al. (2021).

For each simulation, the model used consisted of 
fixed site means, random Block, Row and Column 
effects and a spatial ar1 × ar1 (Gilmour et al. 1997) 
residual model. The parameters used are given in 
Table 3.

The variance matrix for genetic effects for sites 
was (with correlations below the diagonal)

All designs were generated using the variance compo-
nents and parameters for each site so that the designs 
are optimal for the simulations.

The aim of the simulation study was to compare 
5 approaches, namely, the one-stage, the two-stage 
analysis using fixed or random plus de-regression 

(1)Ge =

⎡⎢⎢⎢⎣

0.150 0.027 0.120 0.060

0.100 0.500 0.082 0.383

0.800 0.300 0.150 0.150

0.200 0.700 0.500 0.600

⎤⎥⎥⎥⎦

variety effects at the first stage, and subsequently 
using the full weight matrix and diagonal weights 
at the second stage. Using an unstructured variance 
matrix for the site genetic variance matrix resulted in 
convergence issues. Thus a factor analytic model (of 
order 1) was used for the analysis in all the simula-
tions across all methods.

The approaches were compared using mean square 
error of prediction (MSEP) of the predicted random 
variety effects for the five approaches, with the simu-
lated true variety effects for each scenario. The mean 
and standard deviation of the MSEP were also calcu-
lated as an overall summary over the 100 simulations 
for each scenario. Thus for simulation i, the 1920 
(480 varieties ×4 sites) effects were used to find the 
MSEP, namely

and subsequently the mean and standard deviation of 
the MSEP was calculated over the 100 simulations. 
In addition, counts of the ranking of the 5 approaches 
on MSEPi (smallest 1 to worst 5) over the 100 simula-
tions were found.

Methods

Models

Piepho et al. (2012) and Gogel et al. (2018) provided 
details of the one-stage analysis for MET data. Sup-
pose we have t environments. Let yj be the nj × 1 vec-
tor of observations for environment j, j = 1, 2,… , t . 
A mixed model forms the basis of analysis, and for 
each environment

where the four terms on the right-hand side of (3) 
represent fixed effects, genetic effects (typically a ran-
dom effect), other random effects (hence o) and the 
residual. The fixed effects typically include a mean 
effect for the environment, and may also include 
global trends for that environment. The “other” ran-
dom effects uoj typically contain design (blocking) 
effects, and where required global and extraneous 
effects. Lastly, the residual effects often allow for 

(2)MSEPi =

∑1920

j=1
(uij − ûij)

2

1920

(3)yj = Xj� j + Zgjugj + Zojuoj + ej
Table 3   Parameter values for all simulations, Mean(s) are 
fixed effects, and the remaining effects are random.

Effect Site 1 Site 2 Site 3 Site 4

Mean 3 4 5 2
Block 0.03 0.02 0.02 0.04
Column 0.06 0.05 0.08 0.02
Row 0.03 0.10 0.04 0.02
Variance 0.15 0.25 0.15 0.20
Column cor 0.40 0.50 0.60 0.30
Row cor 0.20 0.30 0.40 0.50

https://CRAN.R-project.org/package=crossdes
https://CRAN.R-project.org/package=crossdes
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spatial variation for that site. All these aspects are 
discussed by Gilmour et al. (1997), and the examples 
provide details on terms that appear in the (3) and the 
models developed below.

The genetic effects ugj will vary in dimension in 
most cases, unless all varieties are the same for each 
environment or trial. Let ngj be the number of varieties 
in environment j.

For a succinct presentation, the models (3) 
are put together into a single model. Thus if 
y = (yT

1
, yT

2
,… , yT

t
)
T is the vector of responses 

across all environments, and the full data set has 
n =

∑t

j=1
nj observations, the combined mixed model is

where the design matrices are all block diagonal, with 
the diagonal blocks being the design matrices in (3), 
and the vectors are concatenations of the vectors of 
effects in (3). The effects uo and residual vector e are 
independent, with uo ∼ N(0,Go) and e ∼ N(0,R) . 
The variance matrices Go and R are block diagonal, 
so that non-genetic and residual effects are also envi-
ronment specific. The labelling for the genetic effects 
includes a subscript 2, and this denotes the form that 
would be appropriate in a two-stage analysis.

One‑stage analysis for MET data

In a one-stage analysis, the model specification is

where the non-genetic effects match those in (4), but 
the genetic effects are such that all varieties are repre-
sented at all environments. This allows prediction of 
all varieties at all environments, even if particular 
varieties were not in a particular trial. In (5), the 
genetic effects are assumed ug ∼ N(0,Gg) , where 
Gg = Ge ⊗ Ing , where Ge is the covariance matrix for 
the environments. Thus here, the lines are assumed 
unrelated, because no pedigree or genomic informa-
tion is available. The methods can be modified easily, 
if such information is available. In that case, multiple 
terms would be required in plant trials with replicated 
lines.

Note that

(4)y = X� + Zg2ug2 + Zouo + e

(5)y = X� + Zgug + Zouo + e

(6)Zg = Zg2D

for a block diagonal matrix D , and where this matrix 
pads out Zg2 with zero columns for those varieties not 
observed at a particular site.

Let � = Zouo + e . The variance matrix is 

var � = V = ZoGoZ
T

o
+ R . The mixed model (5) can 

then be written as

The mixed model equations for estimation of fixed 
effects and prediction of random effects are

Define

The conventional estimate of � and best linear unbi-
ased prediction of ug are given by

Let X = [Xe Xo] and � = [�T
e
�T
o
]
T be a partition of 

the fixed effects design matrix and parameter vector 
into site or environment means (indexed by e) and 
other fixed effects (indexed by o). The examples pre-
sent terms that appear in the other fixed effects. Note 
that

where De is a diagonal matrix whose diagonal blocks 
are simply a vector of unities of length the number 
of varieties in the corresponding environment. The 
matrix De appears in the model for the second stage 
in a two-stage analysis. The other fixed effects can be 
eliminated from the mixed model equations to form 
the reduced mixed model equations

(7)y = X� + Zgug + �

(8)
[
XTV−1X XTV−1Zg

ZT

g
V−1X ZT

g
V−1Zg +G−1

g

][
�̂

ũg

]
=

[
XTV−1y

ZT

g
V−1y

]

(9)H =V + ZgGgZ
T

g

(10)P =H−1
−H−1X(XTH−1X)−1XTH−1

(11)�̂ =(XTH−1X)−1XTH−1y

(12)ũg =GgZ
T

g
Py

(13)Xe = ZgDe

(14)
[
XT

e
SoXe XT

e
SoZg

ZT

g
SoXe ZT

g
SoZg +G−1

g

][
�̂e

ũg

]
=

[
XT

e
Soy

ZT

g
Soy

]
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where

allows for the elimination of �o . Note that using (9), 
(15) and the Sherman–Morrison–Woodbury formula, 
(10) can be written as

which will be used to connect one and two-stage 
methods.

Note that in Gogel et al. (2018), their Eq. (3) is not 
correct as it is missing a term on the right-hand side.

Two‑stage analysis of MET data

There are two important components of a two-stage 
analysis. The first component is that the estimated 
effects taken forward to the second stage of analy-
sis must be unbiased for the effects of interest. This 
means that at the end of stage one, best linear unbi-
ased estimates and hence fixed effects estimates are 
required. The second component is a weight matrix 
(or weights). This is required because estimates are 
taken as the response in the stage two model, and esti-
mates have an error associated with them. The weight 
matrix depends on non-genetic variance parameters 
and these are estimated at the first stage of analysis. 
It might be better to estimate the non-genetic variance 
components in an extra step in the first stage of analy-
sis, using a model with random genetic effects. But 
the resulting predicted genetic effects are biased, and 
hence an additional step to convert (de-regress) these 
to fixed effects is required, that is, random plus de-
regression as noted earlier.

The following sub-sections consider the stage one 
analysis starting with fixed genetic effects, and alter-
natively starting with random genetic effects, then de-
regressing to obtain fixed effect estimates.

Fixed genetic effects at stage 1

Piepho et  al. (2012) and Gogel et  al. (2018) present 
the two-stage approach assuming fixed genetic effects 
at stage 1. In particular they show that for known var-
iance matrices, and a full weight matrix carried from 

(15)So = V−1
− V−1Xo(X

T

o
V−1Xo)

−1XT

o
V−1

(16)P = So − SoZg(Z
T

g
SoZg +G−1

g
)
−1ZgSo

stage 1 to stage 2, the same form for estimates of �e 
and predictions of ug..

Equation (4) is the basis for two-stage analysis. 
If ug2 are taken as fixed effects in (4), estimation is 
based on the normal equations

with solutions

Substituting (18) into (19), rearranging, and defining

we find

Equation (21) is a key results for the following sub-
section. Notice that ûg2 is an unbiased estimate of ug , 
and this is a key property that is needed to proceed to 
the second stage of analysis. Taking forward a biased 
estimate, would introduce bias into the second stage 
analysis.

The final details for the first stage are presented 
after the discussion of random plus de-regression 
genetic effects at the first stage.

Random genetic effects plus de‑regression at stage 1

Now suppose ug2 is taken as a random effect at stage 
1. A two-stage analysis ignores genetic covariance 
between environments. Indeed each environment is 
analyzed separately or in a single analysis where all 
fixed, random, and genetic effects have block diago-
nal design matrices, and in the latter two cases vari-
ance matrices that are block diagonal so that each 
environment has it’s own effects without covariance 
or correlation across environments. For our exam-
ples, Gg2d = diag

(
�2
gj
Ingj

)
 , recalling ngj is the num-

ber of varieties at environment j. In particular, the 
genetic random effects in the combined model (4) 
are specified as ug2 ∼ N(0, Gg2d) , with the d 

(17)
[
XTV−1X XTV−1Zg2

ZT

g2
V−1X ZT

g2
V−1Zg2

][
�̂

ûg2

]
=

[
XTV−1y

ZT

g2
V−1y

]

(18)�̂ =(XTV−1X)−1XTV−1
(y − Zg2ûg2)

(19)ûg2 =(Z
T

g2
V−1Zg2)

−1ZT

g2
V−1

(y − X�̂)

(20)S = V−1
− V−1X(XTV−1X)−1XTV−1

(21)ûg2 = (ZT

g2
SZg2)

−1ZT

g2
Sy
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making the block diagonal form explicit. So our 
mixed model at stage 1 is

and in the mixed model Eq. (8), ũg and Gg are 
replaced by ũg2 and Gg2d . The solutions of the mixed 
model equations are

and similar to the case of fixed genetic effects, substi-
tuting (23) into (24) we find

where S is given in (20). Note that (21) and (25) only 
differ by the term G−1

g2d
.

Now,

and hence is biased for ug2 . This in turn means �̂d is 
also biased, using (23), and the effects that would be 
taken to the second stage of analysis (combined esti-
mated site means and the predicted genetic effects) 
would also be biased. However, the bias can be 
removed. Thus if we define

this estimate is unbiased for ug2 . If this estimate is 
used in (23), �̂d is unbiased for �d , and the effects 
taken forward to the second stage of analysis will 
be unbiased for the genetic by environment means. 
In the animal breeding literature, this is termed de-
regression (Garrick et al. 2009).

Note that substituting (25) into (26),

which is identical to (21), found if the genetic effects 
are taken as fixed. Thus, de-regression results in an 
estimate of the same form as for fixed genetic effects.

The practical effect of the above derivation is that 
when a stage 1 analysis is undertaken with random 
genetic effects, it is necessary to de-regress both the 
predicted random genetic effects and the fixed effects 
of interest. A practical way to do this is presented 

(22)y = X�d + Zg2ug2 + �

(23)�̂d =(X
TV−1X)−1XTV−1

(y − Zg2ũg2)

(24)ũg2 =(Z
T

g2
V−1Zg2 +G−1

g2d
)
−1ZT

g2
V−1

(y − X�̂d)

(25)ũg2 = (ZT

g2
SZg2 +G−1

g2d
)
−1ZT

g2
Sy

E
(
ũg2

)
= (ZT

g2
SZg2 +G−1

g2d
)
−1ZT

g2
SZg2ug2

(26)ûg2 = (ZT

g2
SZg2)

−1
(ZT

g2
SZg2 +G−1

g2d
)ũg2

ûg2 = (ZT

g2
SZg2)

−1ZT

g2
Sy

in Smith et al. (2001a). The stage 1 model with ran-
dom genetic effects is fitted. The resulting estimated 
non-genetic variance parameters (and hence their 
structures) are then fixed and the model with genetic 
effects taken as fixed effects rather than random is 
then fitted.

Stage 1 fitted model

The final details of the first stage of analysis using 
either fixed or random plus de-regression genetic 
effects are as follows. It is simpler to fit genetic by 
environment means at the end of first stage, rather 
than site means plus genetic by environment effects. 
This is true for both fixed and random plus de-
regression cases, noting that in the latter, the fitting 
is achieved by fixing variance parameters at their val-
ues when genetic effects were fitted as random. This 
means that Xe�e is omitted from the model (7), and 
the model fitted is

where �g2 are the fixed effects for genetic by environ-
ment means. With So defined in (15), and in a similar 
fashion to (21), we find under (27)

and importantly the conditional distribution of �̂g2 
given �g2 is

This distribution forms the basis of the second stage 
of analysis.

Stage 2 analysis

The second stage model is

where ug is the full set of genetic effects as in the one-
stage model (5), and De and D are defined (13) and 
(6). Note that ug ∼ N (0,Gg) and eg2 ∼ N (0,Vg2) 
where

(27)y = Xo�o + Zg2�g2 + �

(28)�̂g2 = (ZT

g2
SoZg2)

−1ZT

g2
Soy

(29)�̂g2|�g2 ∼ N
(
�g2, (Z

T

g2
SoZg2)

−1
)

(30)�̂g2 = De�e + Dug + eg2

(31)Vg2 = (ZT

g2
SoZ)

−1
g2
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The distribution of eg2 has no unknown parameters, 
and the variance matrix is block diagonal (the blocks 
correspond to the environments) and is fully known 
(found at the first stage of analysis). With these speci-
fications the mixed model equations based on (30) are

Substituting for the weight matrix V−1
g2

 in (32) using 
(31),

Noting (13), (6) and

we see that (33) is identical to (14). Thus the form of 
estimates and predictions is the same for one and two-
stage methods of analysis. Note that in Gogel et  al. 
(2018), the derivation of �̂e is incorrect as a term is 
missing on the right-hand-side of their equation.

Lastly, the difference between one-stage and two-
stage methods lies in the estimation of variance 
parameters in the linear mixed models. This differ-
ence is presented in the following sub-section.

Estimation of variance parameters

In all approaches, there is a need to estimate unknown 
parameters in V and Gg . The score equations are com-
pared for the one and two-stage approaches. If � and 
� are the parameters in V and Gg respectively, in all 
the equations presented below, the dot above a matrix 
means the derivative with respect to a parameter, 
either �j or �j , and j also appears in the subscript for 
derivative of the matrix.

Genetic variance parameters

The usual approach for estimation of variance param-
eters is to use residual maximum likelihood or REML 
(Patterson and Thompson 1971). For the one-stage 
approach, the residual log-likelihood is

(32)

[
DT

e
V−1

g2
De DT

e
V−1

g2
D

DTV−1
g2
De DTV−1

g2
D +G−1

g

][
�̂e

ũg

]
=

[
DT

e
V−1

g2
�̂g2

DTV−1
g2
�̂g2

]

(33)

⎡⎢⎢⎣
DT

e
ZT

g2
SoZg2De DT

e
ZT

g2
SoZg2D

DTZT

g2
SoZg2De DTZT

g2
SoZg2D +G−1

g

⎤⎥⎥⎦

⎡⎢⎢⎣
�̂e

ũg

⎤⎥⎥⎦
=

⎡⎢⎢⎣
DT

e
ZT

g2
SoZg2 �̂g2

DTZT

g2
SoZg2 �̂g2

⎤⎥⎥⎦

DT

e
ZT

g2
SoZg2�̂g2 = XT

e
Soy DTZT

g2
SoZg2�̂g2 = ZT

g
Soy

where | ⋅ | denotes the determinant of the matrix argu-
ment and H and P were given in (9) and (10). The 
REML estimates of � and � are found by maximizing 
(34). This involves finding the score or derivative of 
the log-likelihood with respect to each parameter. For 
�j , the score is given by

and using (12) this reduces to

For the two-stage approach, the residual log-likeli-
hood is based on (30). If

and

where Q22 is such that QT

22
De = 0 , the residual log-

likelihood is

The score for �j is then given by

Now using GgP2�̂g = ũg , the sum of squares in (40) 
equals

The trace term requires some manipulation as fol-
lows. Firstly, using (37), (38), and the Sherman-Mor-
rison-Woodbury formula,

where

(34)
�(�, �;y) = −

1

2

{
log(|H|) + log

(|||X
TH−1X

|||
)
+ yTPy

}
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1

2
tr
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g

)
+

1

2
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1

2
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ũg
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T
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P
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H
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Now Vg2
−1

= ZT

g2
SoZg2 and hence using (13) and (6), 

DT

e
ZT

g2
SoZg2De = XT

e
SoXe and DTPVg2

D = ZT

g
SoZg , 

so that the term in the trace

using (16). Substituting (41) and (42) into (40), the 
score is then equal to (35), the score for the one-step 
analysis.

While the form of the score is identical for the 
one and two-step approaches, estimates of unknown 
parameters in V (and hence R and Go ) have to be 
used in calculating the effects and variance param-
eters. These estimates differ in the two two-stage 
approaches and differ with the one stage approach. 
This is because the score equations are updated in an 
iterative process for the one-stage analysis, whereas 
in the two-stage analysis, the non-genetic variance 
parameters are fixed from the first stage analysis and 
define the weight matrix Vg2

−1 . This matrix also dif-
fers between the two-stage approaches using fixed or 
random genetic effects at the first stage.

Non‑genetic variance parameters

Using the residual log-likelihood (34), the score 
equation for a non-genetic variance parameter �j for 
the one-stage approach is

For the two-stage approach using fixed genetic 
effects, the residual log-likelihood used for estimating 
non-genetic variance parameters at stage 1 is

where S is given by (20). The score for �j then follows 
as

PVg2
= Q22(Q

T

22
Vg2Q22)

−1QT

22

(42)

DTP
2
D = ZT

g
SoZg − ZT

g
SoZg(Z

T

g
SoZg +G−1

g
)
−1ZT

g
SoZg

= ZT

g
PZg

(43)U(𝜙j) = −
1

2
tr
(
PḢj

)
+

1

2
yTPḢjPy

(44)
�(�;y) = −

1

2

{
log(|V|) + log

(|||X
TV−1X

|||
)
+ yTSy

}

(45)Uf (𝜙j) = −
1

2
tr
(
SV̇j

)
+

1

2
yTSV̇jSy

For random genetic effects at stage 1, the residual 
log-likelihood is

where Hd and Pd are of the same form as (9) and (10) 
but with Gg replaced by Gg2d . The score for �j is

These are all of different forms and hence the esti-
mates of non-genetic variance parameters will differ 
across the methods. As the score equations under the 
random genetic effects scenario are closer to the one-
stage equations, it might be the case that the estimates 
in that case will be “better” than under a fixed genetic 
effects scenario.

De‑regression and diagonal weight matrices

The original development of de-regression by Gar-
rick et al. (2009) considered adjusting individual pre-
dicted genetic random effects. This also meant that 
individual weights were formed, and hence a diago-
nal weight matrix resulted. For very large problems, it 
may only be feasible to use a diagonal weight matrix. 
Smith et al. (2001a) take the diagonal elements of the 
inverse variance matrix V−1

g2
 as the weights. These ele-

ments are conditional variances and hence provide 
an adjustment for other effects. The use of diagonal 
weights was investigated to some extent by Gogel 
et al. (2018) and they show that in some cases using 
diagonal weights shows considerable disagreement 
with a one-stage and two-stage approach using the 
full weight matrices. This is further examined in the 
examples and the simulation study.

Results

All analyses were conducted using the asreml pack-
age in R (Butler et al. 2018), which is a commercial 
product (VSN International, https://vsni.co.uk/soft-
ware/asreml). A function that automates the stage 1 
analysis (stage1) is available from the author, as is 
data and code for the analyses of the two examples.

(46)
�(�, �;y) = −

1

2
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log
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||
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+ log

(|||X
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X
|||
)
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(47)Ur(𝜙j) = −
1

2
tr
(
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)
+

1

2
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Barley stage 3 variety selection trials

To investigate two-stage methods of analysis, the 
one-stage analysis of the 24 site multi-environment 
trials was conducted first. Each trial was analyzed 
separately (needed for two-stage methods as well) to 
examine what fixed and random effects were needed 
to account for extraneous and global variation (Gil-
mour et al. 1997). A subset of linear row and column, 
and random row and column effects were needed 
across sites. These constitute terms that appear in 
Xo�o and Zouo , the latter also including random block 
effects. All analyses included the separable ar1 by ar1 
spatial model. The necessary extraneous and global 
effects were then included in a full multi-site analysis.

The models fitted for the random genetic effects 
were a diagonal (diag) structure over sites, and then 
factor analytic models of order 1 to 9, labelled fa1 to 
fa9 in Table  4. This table also includes the residual 
log-likelihood, sequential residual likelihood ratio 
statistics with the corresponding degrees of freedom 
and p-value for each test.

The likelihood ratio tests suggests the fa7 model is 
required and this model was used in the comparisons 
given below.

There were four two-stage methods used for com-
parison. For all four methods, linear row and column, 
and random row and column effects were included in 
the model as well as random block effects. The spatial 

ar1 by ar1 model was fitted for the residuals. This 
enabled an automated first stage analysis.

Firstly, fixed genetic effects were fitted for each 
site. The estimated fixed genetic effects were then 
taken forward, with a full weight matrix and a diago-
nal weight matrix. The same approach was used for 
random genetic effects at the first stage, with the de-
regressed genetic effects taken forward to the second 
stage analyses, again with a full weight matrix and a 
diagonal set of weights.

The second stage analyses followed the one-stage 
process by starting with a diagonal variance matrix 
for sites for random site by genetic effects, and then 
fitted a sequence of factor analytic models.

Table 5 gives the models fitted for four two-stage 
approaches, fixed or random plus de-regression 
effects at the first stage and either a full weight matrix 
or diagonal weights carried forward. Using sequen-
tial residual likelihood ratio tests, a factor analytic 
model of order 8 (fa8) was selected for all two-stage 
approaches. Note that if the standard approach was 
used, model fitting would have stopped at the fa7 
model for three of the approaches and the fa6 selected 
as the best model. This highlights the fact that impor-
tant factors need not enter in order of importance, and 
that a sequential approach might miss factors that are 
important. Discovering that the fa8 improved the fit 
occurred by chance and not design. The two-stage 
models used for comparison were the fa8 in all cases 
compared to the fa7 used for the one-stage approach.

As variety selection is the aim, the predicted vari-
ety effects are of interest. These effects for one-stage 
model and the four two-stage models are plotted 
against each other for a selection of sites. In Fig.  1, 
the plots of the BLUPs for each pair of methods 
and their Pearson correlation are presented for Site 
06S3NTR. For this site, the full weight matrix is 
slightly better than the diagonal form, for both fixed 
and random plus de-regression stage 1 analyses and 
the fixed first stage models are marginally better than 
their random counterparts.

Figure 2 provides the pairwise plots of BLUPs and 
their Pearson correlations for site 06S3WEE. For this 
site using random plus de-regression genetic effects at 
the first stage leads to a better stage 2 correspondence 
with the one-stage results than when fixed genetic 
effects were used at the first stage.

An examination of the 24 sites showed that there 
is no consistent pattern of which two-stage method, 

Table 4   Barley Multi-environment trial, one-stage analysis: 
The sequence of models for the site genetic variance matrix 
is presented together with the residual log-likelihood for each 
model, residual likelihood ratio statistics (REMLRS) for 
sequential models, the degrees of freedom (df) and p-value for 
the test

Model Residual Sequential

Log-likelihood REMLRS Df P-value

Diag 10188.48
fa1 11293.31 2209.65 23 0.000
fa2 11614.14 641.68 23 0.000
fa3 11710.59 192.89 22 0.000
fa4 11740.97 60.77 18 0.000
fa5 11761.47 41.00 19 0.002
fa6 11783.62 44.30 18 0.000
fa7 11802.13 37.00 17 0.003
fa8 11813.70 23.16 14 0.058
fa9 11822.51 17.61 15 0.284
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fixed or random plus de-regression is better overall. 
It depends on the site. However, the differences were 
generally small. The full weight matrix approach is 
generally better than using diagonal weights, but the 

BLUPs were highly correlated with the correspond-
ing full weight matrix case.

Two-stage methods do not estimate the unknown 
variance parameters in the same manner as an 

Table 5   Barley Multi-
environment trial, second 
stage analysis using fixed 
(Fixed) or random plus 
de-regression (Random) 
genetic effects at the 
first stage with either a 
full weight matrix (Full) 
or diagonal weights 
(Diagonal): The sequence 
of models for the site 
genetic variance matrix 
is presented together with 
the residual log-likelihood 
for each model, residual 
likelihood ratio statistics 
for sequential models 
(REMLRS), the degrees of 
freedom (df) and p-value 
for the test

Genetic effects Residual Sequential
at Stage 1 Weights Model Log-likelihood REMLRS Df p-value

Fixed Full Diag 3516.79
fa1 4618.35 2203.11 24 0.000
fa2 4931.46 626.21 23 0.000
fa3 5027.21 191.51 22 0.000
fa4 5052.05 49.67 19 0.000
fa5 5083.57 63.04 19 0.000
fa6 5102.87 38.60 17 0.002
fa7 5118.53 31.33 18 0.026
fa8 5130.70 24.33 14 0.042
fa9 5141.10 20.80 13 0.077

Fixed Diagonal Diag 3499.94
fa1 4597.72 2195.56 24 0.000
fa2 4902.71 609.98 23 0.000
fa3 4993.90 182.38 22 0.000
fa4 5018.80 49.80 19 0.000
fa5 5043.98 50.37 19 0.000
fa6 5065.76 43.55 17 0.000
fa7 5077.98 24.45 17 0.108
fa8 5092.08 28.20 15 0.020
fa9 5102.16 20.16 15 0.166

Random Full Diag 3544.55
fa1 4646.01 2202.93 24 0.000
fa2 4962.73 633.43 23 0.000
fa3 5058.92 192.38 22 0.000
fa4 5088.79 59.75 18 0.000
fa5 5110.45 43.33 19 0.001
fa6 5134.47 48.02 19 0.000
fa7 5145.94 22.94 15 0.085
fa8 5161.88 31.89 15 0.007
fa9 5172.73 21.69 13 0.060

Random Diagonal Diag 3512.36
fa1 4610.34 2195.97 24 0.000
fa2 4917.27 613.87 23 0.000
fa3 5008.60 182.66 22 0.000
fa4 5035.72 54.23 21 0.000
fa5 5059.56 47.69 20 0.000
fa6 5081.60 44.08 19 0.001
fa7 5095.90 28.61 18 0.053
fa8 5110.28 28.76 17 0.037
fa9 5118.45 16.34 16 0.429
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iterative full analysis. The estimated variance com-
ponents were compared graphically for the different 
methods.

For the genetic variance model, the full esti-
mated 24 × 24 variance matrix was formed for the 
four approaches that involved weights from the first 
stage of analysis. The estimated correlations between 
the sites were found for each model and Fig.  3 is a 
scatterplot matrix of these estimated correlations, 
together with Pearson correlations for each pair 
of estimated correlations. It is clear that the corre-
spondence of two-stage methods with the one-stage 
approach is very strong with high correlations. Using 
the fixed and random plus de-regression full weight 
matrices in particular are very close with the fixed 
approach being marginally better.

Figure  4 is a similar plot for the genetic vari-
ances. Again the Pearson correlations are very high, 
but under the fixed genetic effects stage 1 model 

(using both the full weight matrix and diagonal 
weights) and the random plus de-regression genetic 
effects stage 1 model with diagonal weights, there 
is one over-estimated genetic variance. This is site 
06S3NTR for which the BLUPs were presented in 
Fig.  1. It was clear from those plots that only the 
stage 1 approach using random genetic effects with 
a full weight matrix at stage 2 captured the full set 
of genetic effects well, when compared to a one-
stage analysis. Note that the ranking of top lines is 
not affected in this example.

Non-genetic parameters were matched across the 
3 approaches where these parameters are estimated 
(one-stage, and stage 1 analyses with fixed or ran-
dom plus de-regression genetic effects) and are pre-
sented graphically in Fig.  5. The correlations with 
the one-stage approach are higher for the random 
plus de-regression stage 1 analysis, although the 
difference appears minor.

Fig. 1   Barley Multi-
environment Trial, Site 
06S3NTR: Five models in a 
scatterplot matrix. A factor 
analytic model of seven fac-
tors is fitted in a one-stage 
analysis (label fa7), an fa8 
was used two-stage models 
with fixed (label fixed) or 
random plus de-regression 
(label random) at stage 
one, and in each case a full 
weight matrix and diagonal 
weights were used at stage 
two
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Multi‑site p‑rep yield trials

The same process was used for the p-rep trials as 
for the replicated Barley trials. Thus the five meth-
ods, one-stage, two-stage with fixed or random plus 
de-regression genetic effects at the first stage, and 
full and diagonal weights at the second stage, were 
examined.

The p-rep MET data were analyzed firstly using 
a one-stage approach. The Site factor (or trials) was 
included in the fixed effects in the model ( Xe�e ), 
as was the phenology group factor for sites 3 and 4 
( Xo�o ). The phenology factor was included so that 
shrinkage of variety effects would be relative to the 
membership of each variety to a phenology group. 
Random Rep, Block, and row and column effects 
were included for each trial ( Zouo ) and separable 
autoregressive processes of order 1 for row and col-
umn components were used in the residual model 
(Gilmour et al. 1997) also for each trial. The genetic 

model allowed for a separable structure for sites and 
lines, with a fully unstructured variance matrix used 
for the site component. Lines were assumed inde-
pendent as no pedigree or genomic information was 
available.

For the two-stage analyses, the stage 1 model had 
a mean for the individual site being analyzed, as well 
as the phenology factor for sites 3 and 4, and random 
Rep, Block, row and column effects as for the one-
stage model. The genetic effect for line was fixed or 
random with a scaled identity variance matrix. The 
residual model was a separable autoregressive pro-
cesses of order 1 for row and column components as 
for the one-stage analysis.

For the second stage analyses, a full-weight matrix 
and the diagonal approximation as described above 
were used. The site by line model was the same as for 
the one-stage approach.

Figure 6 presents a scatterplot matrix of predicted 
genetic effects for all lines in the trials, for the five 

Fig. 2   Barley Multi-
environment Trial, Site 
06S3WEE: Five models in a 
scatterplot matrix. A factor 
analytic model of seven fac-
tors is fitted in a one-stage 
analysis (label fa7), and 
fa8 was used for two-stage 
models with fixed (label 
fixed) or random plus de-
regression (label random) at 
stage one, and in each case 
a full weight matrix and 
diagonal weights were used 
at stage two
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models for trial site 2 (similar results were found for 
other trials). The plotting panels represent the pre-
dicted line effects for pairs of models. The Pearson 
correlations are very high with the full weight matrix 
providing the highest correlation. Although not pre-
sented, the prediction standard errors are also highly 
correlated, although there is bias when a diagonal 
weight matrix is used.

The correlations and variances of the estimated 
genetic variance matrix were extracted for the three 
approaches, one-stage, two-stage with a full weight 
matrix, and two-stage using a diagonal weight matrix. 
Because of the smaller size of this set of METs, the 
scatterplot matrix of the estimated correlations and 
variances (chosen because they are of the same order) 
are presented in a single figure, rather than splitting 
into two as for the replicated MET. Figure  7 shows 
that using the full weight matrix results in a very high 
Pearson correlation of the components of the esti-
mated genetic variance matrix with those found using 

the one-stage method. The diagonal weight matrix 
option is also very good.

Figure  8 is a plot of the estimated non-genetic 
variance parameters for the one-stage and the stage 
1 analysis with fixed or random plus de-regression 
genetic effects. The correspondence is good even 
though the larger effects under the full model appear 
to be under-estimated by the two-stage approach.

Simulation study: multi‑site p‑rep

Table 6 presents a summary of results from simula-
tions described in the Materials sub-section. The 
setup is given in Table 3 and (1). One hundred simu-
lations of a four site MET with three levels of partial 
replication were examined.

The mean square error of prediction MSEP (2) was 
calculated for each simulation for each scenario, and 
then the mean and standard deviation of the 100 val-
ues calculated. Note these values were multiplied by 

Fig. 3   Barley Multi-envi-
ronment Trial, comparison 
of estimated genetic cor-
relations
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1920, the number of effects, for scaling the results. 
The values are presented in Table 6. For each simu-
lation, the five methods were ranked according the 
MSEP and the counts of rankings in each class (1, 
smallest, to 5, largest) were accumulated over the 100 
simulations for each method. These are also presented 
in Table 6.

For a partial replication of 0.5 or 50%, the mean 
MSEP and standard deviation of the MSEP are simi-
lar for one-stage, and two-stage with fixed or random 
plus de-regression genetic effects at stage 1. There is 
an ordering but the differences are small. However, 
the rankings of the methods show the one-stage and 
two-stage plus de-regression random genetic effects 
methods are generally better. Using diagonal weights 
is poor whether fixed or random plus de-regression 
genetic effects at stage 1 are used, but random seems 
better.

The change as the partial replication decreases can 
be seen for 0.2 and 0.1. For 0.2 partial replication, 

Fig. 4   Barley Multi-envi-
ronment Trial, comparison 
of estimated genetic vari-
ances

Fig. 5   Barley Multi-environment Trial, comparison of esti-
mated non-genetic variance and correlation parameters
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the mean and standard deviation of MSEP are very 
similar for one-stage and two-stage with random plus 
de-regression genetics effects at stage 1. The rankings 
favour one-stage but there are cases where random 
plus de-regression two stage is ranked higher. Only 
once does starting with fixed genetic effects at stage 
1 result in the lowest MSEP. Again diagonal weights 
are poor, with random plus de-regression rather than 
fixed genetic effects in the stage 1 analysis heavily 
favoured.

For 0.1 or 10% partial replication the results are 
stronger and again random plus de-regression at stage 
1 in a two-stage analysis compares favourably with a 
one-stage approach. Note that the model for the fixed 
genetic effects at stage 1 had to be modified to ensure 
analysis of simulations did not fail by removing the 
ar1 by ar1 spatial model for the residuals. The anom-
aly for diagonal weights where fixed appears better 
than random plus de-regression may be a function of 
the different models fitted.

The clear message from the simulations is that for 
p-rep designed METs, if a two-stage approach is to be 
used, a random plus de-regression genetic effects for-
mulation at stage 1 should be used, and furthermore a 
full weight matrix should be used in the second stage 
analysis. The small simulation study shows the results 
will then be similar to those of a one-stage analysis.

Discussion and conclusions

This paper examined one-stage versus two-stage anal-
ysis of multi-environment trials. These methods were 
examined because there are situations when one-stage 
analysis is not feasible (computational requirements 
or time taken to fit the model is prohibitive) or feasi-
ble but with a compromised model.

In a one-stage analysis the model, genetic effects 
are random. In a two-stage analysis, fixed or ran-
dom genetic effects can be used at the first stage of 

Fig. 6   For trial site 2, a 
scatterplot matrix for pairs 
of all predicted genetic line 
effects across five different 
models. The models were a 
one-stage, two stage fixed 
or random plus de-regres-
sion genetic effects at stage 
one, with full weight matrix 
and diagonal weights at 
stage two. The lower panels 
show the Pearson correla-
tions between the predicted 
pairs of effects
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analysis. Using fixed genetic effects results in unbi-
ased estimated variety means, and together with a 
weight matrix, these means can be used at the sec-
ond stage of analysis. If random genetic effects are 
used at the first stage, the predictions are biased, but 
de-regression leads again to unbiased variety means 
for the second stage and effectively fixed effects 
estimates, and again these estimates can be used at 
the second stage with a weight matrix. It might be 
expected that non-genetic effects that are estimated 
at the first stage, might be better estimated if genetic 
effects are initially random, and in the examples this 
appears to be the case. It might be expected that pre-
dicted genetic effects at the second stage would also 
be better. In the examples, this is also true, but the 
predicted genetic effects did not differ greatly if the 
full weight matrix was used. Diagonal weights were 
not as good.

With partial replication, fitting fixed genetic effects 
might be problematic with low replication. In animal 

Fig. 7   p-rep Multi-environ-
ment Trial, comparison of 
estimated genetic variance 
matrix parameters

Fig. 8   p-rep Multi-environment Trial, comparison of esti-
mated non-genetic variance and correlation parameters
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breeding, genetic effects must be fitted as random, 
because there is no replication. A small simulation 
study showed that using fixed genetic effects at stage 
1 is not as good as random plus de-regression genetic 
effects, with model fitting becoming problematic for 
low replication (10%) with fixed genetic effects, even 
with good design. One and two stage analyses with 
random genetic effects plus de-regression were very 
close in mean square error of prediction and ranking 
across methods showed these approaches were supe-
rior to using fixed genetic effects. Diagonal weights 
were very poor.

In animal breeding it is necessary to use a pedi-
gree based or genomic relationship matrix to ensure 
a useful analysis is possible. Partially replicated trials 
would benefit with inclusion of a relationship matrix 
both from a design and analysis perspective (Cullis 
et al. 2020).

The conclusion from this paper is that if a two-
stage analysis needs to be conducted, random 
genetic effects should be used at the first stage, 
then de-regressed, and subsequently a full weight 
matrix used in the second stage of analysis. It may 

be necessary in large data problems to use diagonal 
weights, but in some circumstances these weights 
will be far from optimal.
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Table 6   Comparison of five methods (Method) of analysis, 
one-stage, two-stage with fixed or random plus de-regression 
genetic effects at stage 1, and the latter two with a full or diag-
onal weight matrix at the second stage. Three levels of partial 
replication (p-rep), 0.5, 0.2 and 0.1. For 0.1, using fixed effects 
at stage 1 required a simpler model to be fitted (denoted by ∗ ). 

Mean square error of prediction (MSEP) times 1920 was cal-
culated for each of 100 simulations. The mean and standard 
deviation (Std dev) calculated for all methods. The counts of 
the rank (Ranking) from smallest (1) to largest (5) MSEP of 
each of the 100 simulations for all methods is presented

P-rep MSEP Ranking

Method Mean Std dev 1 2 3 4 5

0.5 One-stage 164.79 6.48 64 24 12 0 0
Two-stage random 165.89 6.57 27 61 12 0 0
Two-stage fixed 167.81 7.32 9 15 76 0 0
Two-stage random/diag 209.39 10.87 0 0 0 80 20
Two-stage fixed/diag 214.73 12.99 0 0 0 20 80

0.2 One-stage 169.80 8.88 66 34 1 0 0
Two-stage random 170.15 8.90 34 65 1 0 0
Two-stage fixed 206.79 30.54 0 1 99 0 0
Two-stage random/diag 311.39 23.66 0 0 0 97 3
Two-stage fixed/diag 386.89 46.28 0 0 0 3 97

0.1 One-stage 213.41 11.46 67 33 0 0 0
Two-stage random 214.73 10.84 33 67 0 0 0
Two-stage fixed∗ 297.40 36.26 0 0 99 1 0
Two-stage random/diag 469.51 45.53 0 0 0 22 78
Two-stage fixed/diag∗ 429.92 87.49 0 0 1 77 22
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medium or format, as long as you give appropriate credit to the 
original author(s) and the source, provide a link to the Crea-
tive Commons licence, and indicate if changes were made. The 
images or other third party material in this article are included 
in the article’s Creative Commons licence, unless indicated 
otherwise in a credit line to the material. If material is not 
included in the article’s Creative Commons licence and your 
intended use is not permitted by statutory regulation or exceeds 
the permitted use, you will need to obtain permission directly 
from the copyright holder. To view a copy of this licence, visit 
http://creativecommons.org/licenses/by/4.0/.
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