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as well as known genes on the wheat physical map. 
With the advancement in genomics and next genera-
tion sequencing (NGS) technology, more than 20 rust 
resistance genes have been cloned in the last two dec-
ades. The mutational genomics approach was found 
competitive and parallel to modern NGS technology 
in isolating rust resistance loci. In this review, evolu-
tionary trends of rust pathogens, source of rust resist-
ance genes, methodology used in genetic and asso-
ciation mapping studies and available cutting-edge 
techniques to isolate disease resistance genes have 
been summarised and discussed.
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Introduction

Common wheat is an allohexaploid with a vast 
genome size (~ 15.8 Gb). It constitutes 85 per cent of 
highly repetitive sequences (Wicker et al. 2018). The 
wheat genome was evolved through two continuous 
polyploidisation events accommodating three diploid 
progenitors (AA, BB, DD). Million years ago, wild 
tetraploid emmer wheat (AABB genome; Triticum 
turgidum ssp. dicoccoides L.) was originated after a 
primary hybridisation between two diploid AA (T. 
urartu L.) and BB (closely related to Aegilops spel‑
toides, Ae. longissima, Ae. sharonensis, Ae. searsii 
and Ae. bicornis) genome progenitors (Jordan et  al. 
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2015; Avni et  al. 2017). The derived emmer wheat 
(AABB) faced a secondary hybridisation around 
10,000  years ago with the DD genome donor (Ae. 
taushii). With the origin of agriculture, manifold 
changes had occurred in wheat biology (Preece et al. 
2017). This resulted in the cultivation of domesti-
cated wheat in the Fertile Crescent (Nevo et al. 2013) 
and led to the evolution of common wheat (Salamini 
et al. 2002).

Wheat production attains a milestone level of 761 
million tons which supplies one-fifth of the total pro-
tein and calorific requirements of mankind (USDA 
2020). Global wheat production should be increased 
around 60 to 70 per cent to feed 10 billion people by 
2050 (Ray et al. 2013; Ranganathan et al. 2018). To 
meet the requirement, wheat production in develop-
ing countries needs to be double (Ray et  al. 2013). 
The crop encounters numerous biotic and abiotic 
stresses that continuously challenge its sustainable 
production. Fungal diseases are considered one of 
the most serious threats. Rust diseases of wheat are 
of major concern due to the rapidly evolving nature 
of the fungal pathogens and their potential to adapt 
to diverse environments. It afflicts up to 30 per cent 
of wheat yield (Juliana et  al. 2018). Potential losses 
from stem rust race Ug99 are three billion USD per 
year (Pardey et al. 2013) and annual yield losses due 
to stripe rust are estimated 5.47 million tonnes glob-
ally which is equivalent to 979 million USD (Beddow 
et al. 2015). Deployment of stripe rust resistant varie-
ties in Australia alone has saved around one-billion-
dollar annually (Murray and Brennan 2009).

Wheat rusts and their evolution

Three species of the genus Puccinia namely Puccinia 
graminis f. sp. tritici (Pgt), Puccinia triticina (Pt) and 
Puccinia striiformis f. sp. tritici (Pst) are the causal 
organisms for stem rust, leaf rust and stripe rust, 
respectively (Roelfs et  al. 1992). A conducive envi-
ronment is needed for the proliferation of rust inocu-
lum and their dispersal occurs via wind (Singh and 
Rajaram 1992). Stem rust propagates well underwarm 
and humid climates (≤ 30  °C). However, leaf rust 
pathogen proliferates under 15–20 °C and humid con-
dition. In contrast, most stripe rust races prefer a cool 
climate (12–20 °C) (Singh et al. 2011).

Incursion and evolution of rust pathogens stress 
to study of their evolutionary nature. Pathogens 

have gained the capacity of migrating long-distance 
(Brown and Hovmøller 2002), mutational changes 
from avirulence to virulence (Hovmøller and Just-
esen 2007), acclimatise to fluctuating climatic con-
ditions (Milus et al. 2009) and creating new variants 
through a sexual cycle and somatic hybridization (Ali 
et al. 2017). The evolutionary nature of rusts has been 
understood at a substantial level, answered and sum-
marised by Jin et al. (2009), Singh et al. (2011), Pat-
pour et al. (2018), Li et al. (2019) and Pinto da Silva 
et al. (2018).

Identification of rust resistance genes

Multi‑pathotype tests

Comparison of infection types (ITs) produced by 
test entries against an array of pathotypes of the tar-
get rust pathogen on differential genotypes carry-
ing known genes facilitates gene postulation (McIn-
tosh et  al. 1995). Several studies reported results on 
the postulation of rust resistance genes in different 
sets of wheat genotypes. For example, Singh et  al. 
(2008) reported the presence of Sr5, Sr8a, Sr9g, 
Sr12, Sr30, Sr31, Sr36 and Sr38 in British wheat cul-
tivars. Stem rust resistance genes Sr7b, Sr8a, Sr8b, 
Sr9b, Sr9g, Sr11, Sr15, Sr17, Sr29, Sr31, Sr31, Sr36 
and Sr38 were reported in European wheat cultivars 
(Pathan and Park 2007). Similarly, Sr5, Sr7a, Sr7b, 
Sr8a, Sr9e, Sr11, Sr21, Sr27, Sr29, Sr30 and Sr37 
have been postulated in Ethiopian durum and com-
mon wheat cultivars (Admassu et  al. 2012). Rand-
hawa et  al. (2016) postulated the presence of Sr7b, 
Sr8a, Sr12, Sr15, Sr17, Sr23, Sr30, Lr1, Lr3a, Lr13, 
Lr14a, Lr16 and Lr20 either in combinations or sin-
gly among 87 Nordic spring wheat genotypes. DNA 
markers confirmed the presence of Sr2, Lr34/Yr18/
Sr57, Lr68 and Yr48 in this collection (Randhawa 
et al. 2016). Singh and Rajaram (1992) postulated the 
presence of Lr3, Lr10, Lr13, Lr26 and Lr34 in CIM-
MYT wheat genotypes. A collection of European 
winter wheat carried Lr1, Lr3a, Lr3ka, Lr10, Lr14a, 
Lr17b, Lr20, Lr26 and Lr37 (Winzeler et  al. 2000). 
Chinese wheat lines are likely to carry Yr2, Yr3a, 
Yr4a, Yr6, Yr7, Yr9, Yr26, Yr27 and YrSD genes 
based on rust tests (Li et  al. 2006). Two CIMMYT 
and one Australian wheat nurseries including 153 
entries were screened against Pst pathotypes to pos-
tulate major and minor genes (Singh et al. 2014) and 
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around half of the entries did not carry any effective 
ASR against Australian Pst pathotypes. Yr6, Yr7, Yr9, 
Yr17 and Yr27 were detected either singly or in com-
binations in these nurseries. Based on their resistance 
level, some entries were postulated to carry uncharac-
terised resistance genes and known APR genes Yr18, 
Yr29 and Yr30 (Singh et al. 2014). Figure 1 shows the 
range of rust reactions (immune to very susceptible) 
of a diversity panel screened against stem rust (A), 
leaf rust (B) and stripe rust pathotypes (C). For exam-
ple, the test response of four genotypes against Pst110 
E143A + (all resistant(R); avirulent on Yr9 and Yr17) 
and Pst134 E16A + 17 + 27 (all susceptible(S); viru-
lent on Yr9 and Yr17) is shown in Fig. 1d. These dif-
ferences revealed the presence of Yr9 and/or Yr17 in 
these entries.

Alien introgression from wild relatives

Diploid progenitors of wheat and wild relatives are 
the major contributors to the rust resistance gene 
pool. It has been argued to enhance the deployment 
of short alien segments in modern wheat to overcome 
the forbidden challenge posed by evolving rust fungi 
as the large alien segment is associated with yield 
penalty (Friebe et  al.1996; Qureshi et  al. 2018a). 
Hybridization among species sharing homologous 
wheat genomes is feasible. It covers the primary 

gene pool of common wheat and includes landraces, 
the cultivated and wild forms of T. turgidum L., and 
the diploid progenitors T. monococcum L. (AA), T. 
boeoticum (AA) and T. urartu (AA), and Aegilops 
tauschii (DD) (Sharma and Gill 1983). Several rust 
resistance genes namely Sr2, Sr12, Sr13, Sr14, Sr21, 
Sr22, Sr35, Lr14a, Lr21, Lr22a, Lr23, Lr39, Lr53/
Yr35, Lr61, Yr15, Yr28 and Yr36 have been intro-
gressed in wheat and their utilisation is under pro-
gress (McIntosh 1991; Marais et  al. 2005a, b; Riar 
et al. 2012; Tables 1 and 2). The progress on marker 
development and  characterization of some genes has 
been summarised in Table 2.

The secondary gene pool includes the Triticum 
and Aegilops species that share at least one homolo-
gous genome in common with common wheat. Gene 
transfer via homologous recombination from these 
species is possible if the target gene is also placed 
on a homologous chromosome. This group mainly 
includes the tetraploid species T. timopheevii Zhuk. 
and the diploid SS-genome species having Aegilops 
section Sitopsis (related to the B genome). This SS 
genome includes Ae. sharonensis, Ae. speltoides, 
Ae. longissima, Ae. searsii and Ae. bicornis, two 
tetraploid species Ae. peregrina (Ae. variabilis) and 
Ae. kotschyi and hexaploid Ae. vavilovii. This group 
offers various resistance genes namely Sr32, Sr36, 
Sr37, Sr39/Lr35, Sr40, Lr28, Lr36, Lr51, Lr56/Yr38 

Fig. 1   Rust reaction against different pathotypes a Pgt 
34–1,2,3,6,7,8,9, b Pt 104–1,3,4,6,7,8,9,10,12 + Lr37 and 
c, Pst 239 E237A-17 + 33 + , d Contrasting rust reaction of 

four genotypes against Pst 110E 143A + (all resistant;;CN, 
0;,;1 = CN) and 134E 16A + 17 + 27 (all susceptible; 3 + , 4), 
respectively
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and Lr66 that are being deployed in wheat cultivar 
(McIntosh 1991; Marais et  al. 2008, 2010; Tables 1 
and 2).

Distantly related species do not have homology 
with the wheat. However, the Ph1 (pairing homoe-
ologous) gene, placed on chromosome arm 5BL, 

ensures chromosomal pairing and recombination 
between homologous chromosomes in wheat (Riley 
and Chapman 1958). Other options are the transfer 
of whole chromosome arms, the centric breakage-
fusion mechanism of univalents at meiotic metaphase 
I can be exploited (Sears 1950; Friebe et  al. 1996). 

Table 1   List of some outsourced wheat rust gene deployed in common wheat (T. aestivum L.)

#  Ug99 resistant loci; *Tight repulsion phase linkage with Sr36; **Increasing Yield

SN Outsourced wheat rust genes Source/Origin References

1 Sr21#(2AmL), Sr22#(7AL), Sr35#(3AL) 
and SrTm4# (2AL) and Lr63(3AS), 
Sr60(5AmS)

T. monococcum L Gerechter-Amitai et al. (1971), McIntosh 
et al. (1984), Kolmer et al. (2008) and 
Briggs et al. (2015)

2 Sr33(1DL), Sr45(1DS), Sr46(2DS), 
SrTA10171#(7DS), SrTA10187# (6DS), 
SrTA1662# (1DS), Lr21(1DS), Lr22a 
(2DS), Lr32(3D), Lr39(2DS), Lr40-
42(1D), and Yr28(4DS)

Ae. tauschii Coss Kerber and Dyck (1979), McIntosh et al. 
(2014) and Olson et al. (2013a, b)

3 Sr32(2A, 2B), Sr39/Lr35*(2B), 
Sr47(2BL), Lr28(4BL), Lr36(6BS), 
Lr51(1BL) and Lr66(3A)

Ae. speltoides Tausch McIntosh et al. (1995), Faris et al. (2008) 
and Chemayek et al. (2016)

4 Sr36(2BS), Sr37(4BL), and Sr40 (2BS) T. timopheevii (Zhuk.) Zhuk McIntosh et al. (1971), Dyck (1992)
5 Lr24/Sr24(Ug99 susceptible; 3DL), 

Lr29(7DS) and Sr25/Lr19** (7DL), 
Sr26# (6AL)

Agr.elongatum (syn. Thinopyrum pon‑
ticum)

Mago et al. (2005a), Knott (1968), Sears 
(1973, 1977), McIntosh et al. (1977) 
and  Jin et al. (2007)

6 SrR and Sr31/Lr26/Yr9/Pm9 (Ug99 
susceptible;1BL)

Secale cereale Mago et al. (2005b)

7 Sr2#/Lr27/Yr30/Pbc1 (3BS) Sr9d (2BL; 
Sr1) and Sr17 (7BL)

T. turgidum var dicoccoides cv Yaroslav McFadden (1930) and McIntosh (1988)

8 Sr34/Yr8 (2A, 2D) T. comosa McIntosh et al. (1995)
9 Sr38/Lr37/Yr17(2AS) Ae. ventricosa Molnár-Láng et al (2015)
10 Lr9(6BL), Lr76/Yr70(5DS) Ae. umbellulata Bansal et al. (2017)
11 Lr38(2AL) Th. intermedium Riar et al. (2012)
12 Lr57/Yr40(5DS), Sr53(T5DL-

5MgL·5MgS)
Ae. geniculata Liu et al. (2011), Riar et al. (2012)

13 Lr58(2BL) Ae. triuncialis Molnár-Láng et al (2015)
14 Yr15(1BL), Yr36(6BS), Yr84 (1BS), 

Lr53/Yr35(6BS) and Lr64(6AL)
T. dicoccoides Marais et al. (2005a, b),Riar et al. (2012)  

and Klymiuk et al. (2022)
15 Sr9f (2BL), Sr9g/Yr7(2BL), Sr11(6BL; 

cv. Gaza), Sr12(3BS; cv. Iumillo)
T.turgidum var. durum Knott and Anderson (1956), Sheen and 

Snyder (1964), McIntosh and Luig 
(1973) and Loegering (1975)

17 Sr13(6AL; cv. Khapli) Sr14#(1BL; cv 
Khapli), Sr17(7BL; cv. Yaroslav)

T. turgidum var. dicoccum Knott (1962)

18 Lr14a(7BL), Lr23(2BS), Lr61(6BS), 
Sr9e(2BL, SrV; cv. Bernalemmer) 
Srdp2

T. turgidum McIntosh and Dyck (1975), Herrera-
Foessel et al. (2008) and Rondon et al. 
(1966)

19 Lr62/Yr42(6A) Ae. neglecta Marais et al (2008)
20 Lr54/Yr37(2DL) Ae. kotschyi Marais et al. (2005b)
21 Lr56/Yr38(6AL) Ae. sharonensis Marais et al. (2010)
22 Sr52(T6AS.6 V#3L) Dasypyrum villosum (L.) Candargy Qi et al. (2011)
23 Yr50(4BL) Thinopyrum intermedium Liu et al. (2013)
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Table 2   List of markers associated with some outsourced wheat rust genes deployed in common wheat (T. aestivum L.)

SN Genes Associated markers Approach Nature of cloned genes References

1 Sr21 CJ961291 and Cscnl20 Map-based cloning Coiled-coil, nucleotide-
binding leucine-rich 
repeat protein (NLR)

Chen et al. (2018)

2 Sr22 S22GMF and S22GMR MutRenSeq NLR Steuernagel et al. (2016)
3 Sr45 S45F1/S45R1 MutRenSeq NLR Steuernagel et al. (2016)
4 Sr35 AK331487 and 

AK332451
Map-based cloning NLR Saintenac et al. (2013)

5 Sr33 BE405778 and 
BE499711

Map-based cloning NLR Periyannan et al. (2013)

6 Sr46; SrTA1662 S46ConsFA and 
S46PREVR; R1.F3 
and R1.R3

AgRenSeq NLR Arora et al. (2019)

7 SrTA10171; 
SrTA10187

gdm88-F andgdm88-
R;6DS0027 and 
6DS0039

− − Olson et al. (2013a)

8 Sr32 csSr32#1-F and 
csSr32#1-R

− − Mago et al. (2013)

9 Sr36 STM773-2F and 
STM773-2R

Hayden and Sharp 
(2001)

10 Sr39/Lr35 Sr39#22r-F and 
Sr39#22r-R

− − Mago et al. (2009)

11 Sr47 gpw4043-F and 
gpw4043-R; 
gpw4165-F and 
gpw4165-R

– – Klindworth et al. (2012)

12 Sr24/Lr24 Sr24#12-F and 
Sr24#12-R

− − Mago et al. (2005a)

13 Sr25/Lr19 PSY-E1 and PSY-D1 − − Zhang and Dubcovsky 
(2008)

14 Sr26 sunKASP_224 and 
sunKASP_225

− − Qureshi et al. (2018a)

15 Sr31/Lr26/Yr9/Pm9 iag95-F and iag95-R − − Mago et al. (2002, 
2005b)

16 Sr2/Lr27/Yr30/Pbc1 csSr2-F and csSr2-R − − Mago et al. (2011)
17 Sr50 Sr50-5p-F3 and Sr50-

5p-R2
Comparative genomics 

and complementation 
tests

CNL Mago et al. (2015)

18 Sr60 ucw530 and ucw540 Map-based cloning wheat tándem kinase2 Chen et al. (2020)
19 Sr38/Lr37/Yr17 Ventrip and LN2 − − Helguera et al. (2003)
20 Sr53 Xbe442600 and 

Xbe443201
− − Liu et al. (2011)

21 Sr12 IWA610 and IWA537 − − Hiebert et al. (2016)
22 Sr13 cnl2 and CJ641478 Map-based cloning CNL Zhang et al. (2017)
23 Sr52 BE497099-STS-F and 

BE497099-STS-R
− − Qi et al. (2011)

24 Lr21 KSUD14, and KSU936 Map-based cloning CNL Huang et al. (2003)
25 Lr22a SWSNP4 and SWSNP6 Targeted chromosome-

based cloning via 
long-range assembly 
(TACCA)

CNL Thind et al. (2017)
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When a univalent of homoeologous wheat chromo-
some and alien target chromosome are together, 
chances of recovery of compensating whole-arm 
translocations are high (Marais and Marais 1994). To 
introgress smaller non-homologous alien segments, 
Sears (1956) preferred ionizing radiation treatment to 
cause chromosome breaks followed by transferring a 
novel Lr gene from Ae. umbellulata Zhuk. to wheat. 
Another approach is to disrupt the normal meiotic 
chromosome pairing of wheat using a high pairing 
line of Ae. speltoides Tausch followed by introgres-
sion of Yr gene from Ae. comosa ssp. comosa Sm. to 
wheat through induced homoeologous recombination 
(Riley et al. 1968a, b). Successful transfer of the alien 
segments can be confirmed by meiotic-chromosome 
pairing, phenotypic assays, monosomic analysis, 
telocentric mapping, C-banding and genome-in-situ 
hybridization (GISH) (Friebe et al. 1996).

Genetic analysis of rust resistance

Host resistance has been categorised into two broad 
classes: ASR/qualitative resistance and APR/field 
resistance/quantitative resistance (Bariana 2003; Bar-
iana et al. 2007). ASR is conditioned by major genes 
(R) effective from seedling to adult plant stage and 
this type of resistance is often matched by virulence 
in the corresponding pathogen. In contrast, APR is 
governed by minor genes effective at the post-seed-
ling stages and it generally retards pathogen devel-
opment and is hence referred to as partial resistance/
slow rusting. It is assumed to be race non-specific 
(Bariana et  al. 2007). However, some APR genes 
express hypersensitive responses at adult plant stages 

and show pathotypic specificity, for example, Lr22b 
(McIntosh et al. 1995).

The resistant parent (carrying ASR and/or APR) 
is crossed with a susceptible parent to develop a bi-
parental population to determine the inheritance of 
resistance and genomic location of the underlying 
resistance gene(s). Although several studies involved 
tests on individual F2 plants, tests on F3 families 
are preferred for their amenability for checking the 
reproducibility of results (Bariana 2003). Population 
advancement to the F6 generation can be conducted 
through the single seed/head method to create recom-
binant inbred lines (RILs) and alternatively the dou-
bled haploid approach (Ahmed and Trethowan 2020). 
F3 populations carrying ASR gene(s) are classified 
into three categories using phenotypic responses: 1. 
homozygous resistant (HR), 2. segregating (Seg) and 
3. homozygous susceptible (HS) and phenotypic data 
are subjected to Chi-squared analysis to determine the 
number of resistance loci controlling the target trait. 
An F3 population can be used for preliminary genetic 
analysis, however, a good number of seeds is required 
to study the segregation pattern. A RIL population 
has an advantage over an F3 generation as RILs are 
fixed after many recombination events and few seeds 
are needed for genetic analysis and it allows end-
less screening for different traits segregating among 
the target population. The segregation ratios for the 
involvement of a different number of genes are listed 
in Bariana (2003). Wright’s formula is used to esti-
mate the number of loci governing rust resistance 
based on phenotypic evaluation under field conditions 
(Wright 1968).

The presence of more than one gene in a bi-
parental population requires the development of 

Table 2   (continued)

SN Genes Associated markers Approach Nature of cloned genes References

26 Lr51 S30-13L and AGA7-
759R

− − Helguera et al. (2005)

27 Lr76/Yr70 and 
Lr57/Yr40

MAS-CAPS16 − − Kuraparthy et al. (2009); 
Bansal et al. (2017)

28 Lr23 sunKASP_16 − − Chhetri et al. (2017)
29 Yr15 kinI and kinII Map-based cloning wheat tandem kinase 1 Klymiuk et al. (2018)
30 Yr84 usw312-usw317 − − Klymiuk et al. (2022)
31 Yr36 Xucw129 and Xucw148 Map-based cloning kinase-START gene 

protein
Fu et al. (2009)



Euphytica (2022) 218:159	

1 3

Page 7 of 22  159

Vol.: (0123456789)

single gene segregating populations to precisely 
locate genes conferring resistance. For example, an F3 
family of Aus27858/Westonia showed segregation of 
two seedling stripe rust resistance genes (Randhawa 
et al. 2014, 2015). Families showing single gene seg-
regation based on ITs were advanced separately to 
generate F6 RIL populations. Molecular mapping of 
two F6 RILs revealed two new ASRs; Yr51 (;n–;1-nn) 
on chromosome arm 4AL (Randhawa et al. 2014) and 
Yr57 (0;) on 3BS (Randhawa et al. 2015). Australian 
wheat cultivars Sunco and Kukri expressed a high 
level of stripe rust resistance (Bariana et  al. 2001). 
Two BC1F2 populations derived from each cultivar 
and a common susceptible parent Avocet ‘S’ con-
firmed the presence of three independent loci each 
(1HR:6Seg:1HS) in Sunco and Kukri. The wheat cul-
tivar Sunco was reported to carry Yr18 (Kolmer et al. 
2008) and YrCK (Bariana et  al. 2001) on chromo-
some 2D. To map the third gene, a Sunco/2*Avocet 
S-derived BC1F2 line SA65 (a resistant line) was 
crossed with a susceptible sib (SA67) and 123 RILs 
of cross SA65/SA67 was generated (Bariana et  al. 
2016). Monogenic segregation among derived RILs 
was demonstrated and the resistance locus was named 
YrSA3. Further selective genotyping using a 90  K 
SNP array and SSRs placed the YrSA3 gene on chro-
mosome 3D and was catalogued as Yr71 (Bariana 
et al. 2016).

Developing bi-parental mapping population using 
parents showing moderate resistant to moderate sus-
ceptible reaction can help to detect transgressive 
segregant. Chhetri et al. (2016) developed a low-res-
olution RIL population from a cross of W195 with 
BTSS. This population expressed transgressive seg-
regation for each rust confirmed the contribution of 
both parents. Another phenomenon is known as seg-
regation distortion where the segregation of individ-
ual alleles does not follow the mendelian inheritance. 
For instance, QTL QYr-3BL detected in durum wheat 
Stewart, on chromosome arm 3BL showed distorted 
segregation in F2 and later generations of cross Stew-
art/Bansi (Li et  al. 2020a). Markers associated with 
the QYr-3BL-Stewart allele were overrepresented 
compared with the Qyr-3BL-Bansi allele in F5 fami-
lies and the 4:1 segregation ratio was observed instead 
of the expected 1:1 ratio (Li et al. 2020a). The same 
region of chromosome 3BL also harboured powdery 
mildew locus Pm41 which expressed a preferen-
tial inheritance of the susceptible locus of tetraploid 

emmer Langdon in a cross Langdon × IW2 (Li et al. 
2009). However, Yr80 and Yr82 loci detected on the 
same arm showed mendelian inheritance (Nsabiyera 
et al. 2018; Kandiah et al. 2019).

Mapping populations segregating for Yr34 (syno-
nym Yr48) showed suppression of recombination in 
the distal region of chromosome arm 5AL (Lowe 
et  al. 2011; Lan et  al. 2017; Qureshi et  al. 2018b). 
This kind of suppression may occur due to inverted 
chromosomal segments or alien introgression. Lan 
et  al. (2017) reported a slight segregation distor-
tion for Yr48 and comparatively more representa-
tion of markers linked to the resistance allele (67% 
vs. expected 50%). Chen et al. (2021) confirmed that 
restricted recombination events in the Yr34-carrying 
population occur due to the distal translocation of 
chromosome arm 5AL of T. monococcum into com-
mon wheat. Segregation distortion among outsourced 
rust resistance genes namely Lr53/Yr35 (Marais et al. 
2005a), Lr54/Yr37 (Marais et al. 2005b), Lr19 (Prins 
and Marais 1999) and QYrtb.pau-5A (Chhuneja et al. 
2008) were also observed.

Mapping of rust resistance genes

Bi‑parental mapping

Precise mapping of rust resistance loci became more 
convenient with the availability of high throughput 
genotyping platforms including DArTseq (http://​
www.​diver​sitya​rrays.​com), genotyping-by-sequenc-
ing (Poland and Rife 2012) and SNP arrays includ-
ing 90 K (Wang et al. 2014), 820 K (Winfield et al. 
2015), 660 K (Cui et al. 2017) and 35 K chips (Allen 
et al. 2017). These platforms are frequently used for 
bulked segregant analysis (BSA; Michelmore et  al. 
1991), selective genotyping (SG; Lebowitz et  al. 
1987) and whole population genotyping. For BSA, 
equal amounts of genomic DNA from 20 resistant 
and 20 susceptible RILs is pooled separately to con-
stitute resistant and susceptible bulks, respectively. 
DNA samples from up to forty randomly selected 
RILs should also be pooled to prepare an artificial 
F1 sample. One µg DNA sample of both parents, the 
constituted resistant and susceptible bulks and an arti-
ficial F1 sample are being used for genotyping using 
the 90  K SNP array to detect linkage of resistance 
loci and their position in the wheat genome. Genom-
eStudio software (Illumina Ltd) is being used in 

http://www.diversityarrays.com
http://www.diversityarrays.com
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detecting putatively linked SNPs using their normal-
ised theta value (Wang et al. 2014). Associated SNPs 
can be converted into kompetitive allele-specific PCR 
(KASP) assays using the bioinformatics pipeline, Pol-
yMarker (http://​www.​polym​arker.​info). The KASP 
assay includes two allele-specific forward primers that 
are labelled with specific sequences that correspond 
to two universal fluorescence resonant energy transfer 
(FRET) cassettes labelled with FAM™ and HEX™ 
dye and a common reverse primer (http://​www.​lgcgr​
oup.​com). It allows accurate bi-allelic discrimination 
of known SNPs. The BSA was used to map major 
genes, for example, Sr49 (Bansal et  al. 2015), Yr47 
(Bansal et  al. 2011), Yr51 (Randhawa et  al. 2014) 
and Yr57 (Randhawa et al. 2015). It was also used in 
saturating the Lr79-region (Qureshi et al. 2018c) and 
SG to map the APR gene Yr71 (Bariana et al. 2016). 
Polymorphic markers can be recommended to deploy 
targeted genes in the wheat background.

Several software programs namely QTL IciMap-
ping (Meng et  al. 2015), Map Manager QTX20 
(Manly et al. 2001) are routinely being used in gene 
mapping using putatively linked markers and pheno-
typic responses using the Kosambi and Haldane map-
ping function (Haldane 1919; Kosambi 1943). A map 
chart can be used to draw the genetic map (Voorrips 
2002).

Sixty genes for stem rust, 80 for leaf rust and 83 
for stripe rust resistance has been catalogued using bi-
parental populations (McIntosh et  al. 2017; Li et  al. 
2020b). In a study, a Portugees landrace Aus27969 
expressed a high level of stripe rust resistance at the 
seedling and adult plant stage in the field. Kandiah 
et  al. (2019) observed monogenic segregation at the 
seedling stage against three Pst pathotypes in the 
Aus27969/AvS RIL population. The BSA using the 
90 K SNP Infinium array placed this locus on chro-
mosome arm 3BL. The seedling gene was catalogued 
as Yr82 and linked markers were identified.

Many methods namely Single-Marker Analysis 
(SMA), Composite Interval Mapping (CIM) and Mul-
tiple Interval Mapping (MIM) have been reported for 
QTL mapping (Bernardo 2020). However, the CIM 
function of QTL Cartographer was frequently used 
and offered a platform to align genome-wide markers 
and phenotypic data together to detect resistance gene 
loci using default parameters (Wang et al. 2012).

Several studies focus on mapping QTL under-
pinning rust resistance (Rosewarne et  al. 2013; 

Maccaferri et al. 2015; Babu et al. 2020). A RIL pop-
ulation from a cross of the CIMMYT line Arableu#1 
(source of APR) and Apav#1 (susceptible line) was 
derived to identify QTL for leaf rust and stripe rust 
(Yuan et  al. 2020). Further QTL analysis detected 
four and six genomic regions governing leaf rust 
resistance and stripe rust resistance, respectively. A 
new pleiotropic locus QLr.cim-1BL.2/QYr.cim-1BL.2 
was reported that is 37  cM (~ 6  Mb) far from the 
known pleiotropic APR locus Lr46/Yr29. They found 
QLr.cim-3DS, QYr.cim-2AL, QYr.cim-4BL, QYr.cim-
5AL, and QYr.cim-7DS as putatively new loci after 
comparing them with the published literature (Yuan 
et al. 2020).

Consensus maps and their application in fine 
mapping and cloning of rust resistance genes

Integration of known stripe rust resistance loci 
resulted in two consensus maps (Rosewarne et  al. 
2013; Maccaferri et al. 2015). The first map included 
49 chromosomal regions covering 140 stripe rust 
resistance QTL from thirty bi-parental mapping stud-
ies (Rosewarne et  al. 2013). The second map incor-
porated 56 stripe rust resistance genes and 169 QTL 
from ten Genome wide association studies (GWAS; 
Maccaferri et  al. 2015). Similarly, a consensus map 
of stem rust resistance loci was drafted that included 
24 bi-parental populations, two backcross popula-
tions and three association mapping panels (Yu et al. 
2014). This study identified 141 stem rust resistance 
loci effective against Ug99 and reported linked mark-
ers. In more than 50 publications, 80 QTL for leaf 
rust and 119 QTL for powdery mildew were reported 
on 16 and 21 chromosomes, respectively (Li et  al. 
2014). Eleven loci on 10 chromosome arms (1BS, 
1BL, 2AL, 2BS, 2DL, 4DL, 5BL, 6AL 7BL and 7DS) 
showed potential pleiotropic effects including known 
multi-pathogenic resistance genes Lr34/Yr18/Sr57, 
Lr46/Yr29/Sr58, Lr67/Yr46/Sr55 and Lr27/Yr30/Sr2 
(Li et al. 2014).

Genetic mapping of an individual gene is usually 
carried out in low-resolution populations. To delimit 
the gene region, a high-resolution family (HRF) is the 
prerequisite. HRF can help to develop closely linked 
markers (< 0.1 cM) (Singh and Singh 2015). Flanking 
markers from the low-resolution mapping are tested 
for initial screening of a large population, preferably 
F2 or backcross population. Progeny testing of these 

http://www.polymarker.info
http://www.lgcgroup.com
http://www.lgcgroup.com
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individuals helps in confirming marker positions. 
Screening of recombinants with additional mark-
ers specific to underlying candidate genes can offer 
a platform to initiate cloning work (Periyannan et al. 
2013; Klymiuk et al. 2018; Zhang et al. 2019). A high 
level of sequence similarity between homoeologous 
genomes (95–99% in coding sequences) and over 
80% of repetitive DNA had posed challenges to clone 
rust resistance genes in wheat (Borrill et al. 2015). To 
fine map and clone a gene, several modern genomic 
approaches amenable to sequence similarity and 
repetitiveness in the wheat genome have been under-
taken (Keller et al. 2018; Steuernagel et al. 2020).

A comparative study of DNA markers in related 
taxa originated from a similar ancestor and their 
arrangement in different maps is known as compara-
tive mapping (Singh and Singh 2015). An ortholo-
gous and conserved marker, especially complemen-
tary DNA sequences (cDNA) across the taxa, are 
more useful in a comparative mapping. This can 
reveal genome organisations of diploid progenitors 
and common wheat. The orthologous genes and con-
served marker sequences located in the same chromo-
some is referred to as synteny. However, the arrange-
ment of DNA markers in the same linear order in two 
different chromosomes of the same or different spe-
cies is termed collinearity (Singh and Singh 2015).

The orthologous region of Brachypodium distach‑
yon L. was used in developing a high-resolution map 
of Lr52/Yr47 (Qureshi et  al. 2017). The B. distach‑
yon and related genera Oryza sativa L. and Sorghum 
bicolor L. were explored in a collinearity study to 
saturate the Yr15-region flanked by markers uhw264 
and uhw258 (Klymiuk et al. 2018). Gene annotation 
studies using Ae. tauschii genomic resources inferred 
NLR1 as Lr22a (Thind et  al. 2017). To saturate the 
pleiotropic APR Lr67-region, additional markers 
were designed using conserved orthologs and its 
collinear sequences in B. distachyon and O. sativa 
(Moore et  al. 2015). A high-density map of Yr36 
was drafted using collinear gene regions in O. sativa 
that confirmed the gene to be in a 0.14  cM interval 
spanned by markers ucw113 and ucw111 (Fu et  al. 
2009). Similarly, collinear region sequences of B. dis‑
tachyon were used to narrow down the Sr35-region 
with markers AK331487 (0.02  cM proximal) and 
AK332451 (0.98 cM distal) (Saintenac et al. 2013).

To reduce genome complexity, the chromosome 
flow-sorting technology (Vrána et  al. 2012) was 

employed to dissect individual chromosomes based 
on their relative DNA content followed by their 
sequencing individually. A high-resolution map of 
Lr49 was prepared using this approach (Nsabiyera 
et al. 2020). The largest wheat chromosome 3B was 
separated easily with this approach, however isolation 
of the remaining chromosomes was challenging due 
to similar sizes (Shatalina et al. 2013). Wide applica-
tion of chromosomes specific labelled repetitive DNA 
as a probe assisted in isolation of 21 bread wheat and 
seven barley chromosomes, individually (Giorgi et al. 
2013). Sánchez-Martín et al. (2016) demonstrated the 
importance of flow cytometry-based chromosome 
sorting of derived mutants followed by alignment of 
their sequences as a robust and unbiased approach for 
reduction of genome complexity.

The whole-genome shotgun (WGS) approach has 
assembled ‘long’ sequence reads using 454 tech-
nology and published the first draft sequence of the 
wheat genome in 2012 (Brenchley et al. 2012). How-
ever, this approach failed to overcome the sequence 
similarity issues between homoeologous genomes 
and their mis-assembly. Another WGS approach 
using large-insert sequencing libraries was under-
taken to draft assemblies of each of the three homoe-
ologous genomes of synthetic hexaploid wheat 
‘Synthetic W7984’ (Chapman et  al. 2015). These 
large insert genomic libraries or Bacterial Artificial 
Chromosome (BAC) libraries represented in-depth 
genome coverage and have been used in the clon-
ing of Yr36 (Fu et al. 2009), Sr33 (Periyannan et al. 
2013), Sr35 (Saintenac et al. 2013), Sr50 (Mago et al. 
2015) and Yr15 (Klymiuk et al. 2018). Mascher et al. 
(2013) have anchored both CSS and W7984 scaffolds 
into a high-density genetic map using population 
sequencing (POPSEQ). In POPSEQ, several indi-
viduals from a bi-parental population were sequenced 
to low coverage (c.1.5x) followed by SNP calling to 
parental lines and in silico mapping of the sequenced 
contigs associated with the identified SNPs. Through 
the POPSEQ analysis, 80–90 doubled haploid indi-
viduals of synthetic W7984 x Opata M85 (Sorrells 
et al. 2011) were anchored on a high-density genetic 
map covering 4.5 Gb (CSS) and 7.1 Gb (W7984) of 
the wheat genome. POPSEQ relies on meiotic recom-
bination that occurs frequently in the distal ends of 
wheat chromosomes (Anderson et al. 2006; Saintenac 
et  al. 2009). Due to uneven recombination, POP-
SEQ generates a distorted assignment of scaffolds 
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concentrated in centromeric regions with much lower 
resolution than in the more recombinogenic dis-
tal regions of the chromosome. Over 600,000 SNPs 
from 820 K Axiom and 90 K iSelect SNP platforms 
have been integrated into the Chinese Spring survey 
sequence assembly. However, most of the SNPs were 
mapped in silico by genome browser Ensembl (http://​
www.​cerea​lsdb.​uk.​net/; https://​plants.​ensem​bl.​org).

A reference wheat genome sequence assembly, 
derived from one wheat cultivar Chinese Spring, was 
generated by Appels et al. (2018) and widely used as 
an annotated reference wheat genome in the mapping 
and cloning projects. However, one wheat cultivar 
cannot capture available diversity, rearrangement and 
historical variations of the hexaploid wheat genome 
(Walkowiak et  al. 2020). To expand the genome 
assemblies of wheat, Walkowiak et al. (2020) gener-
ated five scaffold-level assemblies and ten reference-
quality pseudomolecule assemblies (RQAs) of wheat 
and used them in the validation of each result. A 
universal single-copy orthologue (BUSCO) analysis 
showed a high level of completeness of the genomes 
and identified over 97% of the expected gene content 
in each genome. Arrangement of over 94% of the 
scaffolds, three-dimensional chromosome conforma-
tion capture sequencing (Hi-C) and 10 × genomics 
linked reads revealed twenty-one pseudomolecules of 
wheat genomes. Genome size and collinearity were 
highly similar to the reference genome assemblies of 
Chinese Spring (Walkowiak et al. 2020).

Application of mutational genomics in isolating rust 
resistance genes

The fine mapping approach in wheat delimits the 
target gene region with the closely linked markers 
and the delimited gene-region can be annotated to 
reveal underlying candidate genes using bioinfor-
matic approaches (Appels et  al. 2018). However, 
this approach seeks specific expertise, state of the art 
resources, cutting-edge technologies and biosafety 
approval. In general, a candidate gene can be used to 
transform the susceptible wheat variety like Fielder 
or Bobwhite to confirm the role of candidate genes in 
conditioning resistance to the target pathogen (Chen 
et  al. 2020). It is a time consuming and laborious 
method. Therefore, the mutational genomics approach 
is preferred to detect the target gene via induced loss-
of-function in the parental stock.

Ethyl methane sulfonate (EMS; CH3SO3C2H5) is 
a chemical mutagen that is frequently used in wheat 
for generating mutants (Acquaah 2009). EMS pro-
duces C/G to T/A transitions (Ashburner 1989). It 
results in impaired complementary base-pairing fol-
lowed by a series of allelic mutations that are required 
for comprehensive structural and functional stud-
ies (Silme and Çagirgan 2007). A low concentration 
(0.2–0.6%) of EMS has been used to knock out the 
target gene in rust research; however, kill curve using 
LD-50 threshold is the most recommended protocol 
(Acquaah 2009; Periyannan et al. 2013; Thind et al. 
2017). The detailed procedure of mutagenesis has 
been described by Mago et al. (2017).

Rust resistance genes Lr1 (Qiu et  al. 2007), Lr10 
(Feuillet et al. 2003), Lr21 (Huang et al. 2003), Lr22a 
(Thind et  al. 2017), Sr13 (Zhang et  al. 2017), Sr22, 
Sr45 (Steuernagel et al. 2016), Sr33 (Periyannan et al. 
2013), Sr35 (Saintenac et al. 2013), Sr50 (Mago et al. 
2015), Yr5, Yr7, YrSP, (Marchal et  al. 2018), Yr10 
(Liu et al. 2014) and YrAS2388R (Zhang et al. 2019) 
have been cloned successfully and belong to nucleo-
tide-binding and leucine-rich repeat protein (NLR) or 
its variants. Of them, Lr1, Lr10 and Lr21 were cloned 
a decade ago using a conventional map-based cloning 
approach. Isolation of Lr34 (encodes an ATP bind‑
ing cassette transporter), Lr67 (encodes a Hexose 
transporter), Yr15 (encodes a wheat tandem kinase 
1), Yr36 (encodes a Kinase-START​ gene) and Sr60 
(encodes a wheat tandem kinase 2) were successfully 
executed by map-based cloning (Fu et al. 2009; Krat-
tinger et al. 2009; Moore et al. 2015; Klymiuk et al. 
2018; Chen et al. 2020).

Steuernagel et  al. (2016) demonstrated a rapid 
gene isolation approach called MutRenSeq. It com-
bines chemical mutagenesis followed by capturing 
NLRs (nucleotide-binding leucine-rich repeats) via 
exome capture to explore pan-genome variation that 
existed in wild diploid wheat relatives (Ae. tauschii, 
T. boeoticum and T. monococcum). Arora et al. (2019) 
developed the AgRenSeq approach using a diversity 
panel of Ae. tauschii ssp. strangulate. It is based on 
R-gene enrichment followed by extraction of NLR 
k-mers from each accession and k-mers based asso-
ciation mapping to report resistance gene. Sr46 and 
SrTA1662 (both encode NLR) were cloned via the 
AgRenSeq approach. To validate this approach, they 
used Sr33 and Sr45 (previously cloned) as positive 
controls, a fine map of Sr46 and three Sr46 mutants 

http://www.cerealsdb.uk.net/
http://www.cerealsdb.uk.net/
https://plants.ensembl.org
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(Arora et  al. 2019). It indicates that the success of 
both technologies depends directly or indirectly on 
the mutational genomics approach. MutRenSeq and 
AgRenSeq can be used to isolate only NLR-class of 
genes and the probability of missing NLR during 
R-gene enrichment, alignment and annotation are the 
limitations of both technologies. Steuernagel et  al. 
(2020) compared and aligned NLR loci identified 
via NLR annotator with automated gene annotation 
used in IWGSC RefSeq v1.0. Of 3,400 loci predicted 
by NLR annotator, 2,955 NLRs match with genes 
annotated in IWGSC RefSeq v1.0. Of these NLRs, 
578 correspond to two or more genes annotated in 
IWGSC RefSeq v1.0. They hypothesized three major 
factors for these poor gene calling and false annota-
tions: 1. gaps (stretches of unassigned nucleotides) 
in the wheat genome assembly, 2. a potential overex-
tension of the NLR locus carrying at least three con-
secutive NB-ARC motifs and 3. a stop-codon in the 
coding sequence interrupting the open reading frame 
in the transcript. One of the possible hypotheses 
was verified after cloning of Pm2 from wheat culti-
var Ulka (Sánchez-Martín et  al. 2016). Pm2 confers 
resistance to powdery mildew caused by Blumeria 
graminis. This encodes a full-length NLR, and the 
corresponding allele in IWGSC RefSeq v 1.0 substi-
tutes five bases with a stretch of twelve bases result-
ing in a premature stop codon. In a multi-genome 
comparison study, NLR gene families were charac-
terised and examined to reveal gene expansion in 
nucleotide-binding leucine-rich repeat (NBS-LRR) 
protein group (Walkowiak et  al. 2020). This class 
of proteins are major causal genes for disease resist-
ance and the innate immune system in plants (Steu-
ernagel et al. 2016; Keller et al. 2018). The de novo 
annotation of loci containing conserved NLR motifs 
revealed around 2,500 loci with NLR signatures in 
each assembly of ten reference-quality pseudomole-
cule (RQ). And NLRs counts in the studied 16 wheat 
cultivars ranged from 2326 to 2701. Of them, only 
31–34% of the NLR signatures were common across 
the genomes; the number of unique signatures varied 
from 22 to 192 per wheat cultivar (Walkowiak et al. 
2020).

Complex genome and suppressed recombinogenic 
regions challenge the identification of point mutations 
in wheat and barley genomes. To overcome these 
obstacles, a complexity reduction approach MutCh-
romSeq was developed that relies on flow sorting, 

sequencing of mutant chromosomes and referencing 
this with a parental chromosome (Sánchez-Martín 
et  al. 2016). This technique is equally applicable to 
all classes of genes. Single candidate genes of barley 
Eceriferum-q gene and wheat Pm2 were identified 
using six mutants and verified by Sanger sequencing 
of additional mutants (Sánchez-Martín et al. 2016).

The presence of introns or repetitive regions hin-
dered the progress to clone underlying genes. There-
fore, the targeted chromosome-based long-range 
assembly (TACCA) approach was used to clone 
Lr22a (Thind et al. 2017). These genes were isolated 
and validated either by developing loss-of-function 
mutants or transgenesis and/or gene silencing. These 
studies demonstrated the importance of the muta-
tional genomics approach in positional cloning. How-
ever, Yr10 was cloned using a transgenesis and gene 
silencing approach (Liu et  al. 2014) and Sr60 was 
isolated using a transgenesis approach (Chen et  al. 
2020).

Association mapping for gene discovery

Linkage disequilibrium (LD) is the non-random co-
occurrence of two or more gametes/alleles in a map-
ping population. LD occurs between loci placed in 
proximity, and recombination can break it down 
(Korte and Farlow 2013). Population structure and 
selection can maintain higher than expected LD 
across the different chromosomes (Bernardo 2020). 
LD is estimated by the observed frequency of an 
allele in a population deducted by the product of the 
frequencies of the corresponding alleles (Bernardo 
2020). Linkage helps in restoring parental allelic 
combinations.

The GWAS offer high-resolution mapping due to 
the exploitation of higher levels of allelic diversity at 
a locus coupled with ancestral/historical recombina-
tion events that are represented in a diversity panel 
(Yu and Buckler 2006). Rust resistance genes/alleles 
are reported in various germplasm collections includ-
ing old and modern wheat cultivars, synthetic hexa-
ploid wheat, diploid and tetraploid wheat progenitors/
relatives and wild relatives (Yu et  al. 2014; Macca-
ferri et  al. 2015; Pinto da Silva et  al. 2018). GWAS 
has played a key role to dissect various complex traits 
in wheat. Five GWAS (Maccaferri et  al. 2015; Gao 
et  al. 2016; Jighly et  al. 2016; Pasam et  al. 2017; 
Turner et al. 2017) based on high throughput marker 
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platforms have uncovered novel rust resistance alleles 
(Table 3). The success of GWAS in uncovering new 
genetic variation relies on the diversity at the geno-
typic level and resultant phenotypic differences 
between individuals (Korte and Farlow 2013). It can 
detect marker-trait associations for the phenotype 
of interest. Although several major QTL identified 
through GWAS have not been functionally charac-
terised and validated for their application in wheat 
breeding programs, IWGSC RefSeq v1.0 can be used 
to investigate precise locations of QTL identified 
using high throughput genotyping platforms (Appels 
et al. 2018).

The LD decay usually drops at 2–8 cM across the 
three (AA, BB and DD) genomes (Gao et  al. 2016; 
Riaz et  al. 2018). GWAS studies can consider the 
marker trait associations (MTAs) corresponding 
to 5  cM region and/or higher LD r2 value (squared 

correlation coefficient) as an independent QTL. Iden-
tified MTAs deviating from known genes/QTLs by 
more than 5  cM interval could be treated as new in 
the case of ASRs/APRs. However, further valida-
tion using bi-parental populations and physical posi-
tions of underlying rust resistance alleles is essential 
to catalogue candidate genes. Zhang et  al. (2014) 
developed a customized scale to linearised the 0–4 IT 
scale into a 0–9 scale for GWAS analysis. This cus-
tomised scale accommodates complex infection types 
like “;13 + ” and calculate the weighted arithmetical 
mean. It is available in R packages (https://​github.​
com/​umngao/​rust_​scores_​conve​rsion).

Statistical software like TASSEL, and a few R 
based programs like rrBLUP, mrMLM, and rMVP 
targeting single locus and multiple loci mixed linear 
model (SL-MLM and ML-MLM) are used in GWAS 
(Yu et  al. 2006; Endelman 2011; Yang et  al. 2014; 

Table 3   Identification of new rust resistance alleles in key GWAS studies

* Number of polymorphic markers; SNP, Single nucleotide polymorphism; DArT, Diversity Array Technology

Reference Maccaferri et al. 
(2015)

Gao et al. (2016) Jighly et al. (2016) Pasam et al. (2017) Turner et al. (2017)

Genotyping platforms 9 K SNP array 
*(4585)

90 K SNP array 
*(18,924)

DArT and DArT-
Seq *(6176)

90 K SNP array 
*(51,208)

9 K SNP array 
*(5732)

Materials Spring wheat acces-
sions

Elite wheat Lines Synthetic wheat Watkin’s collection Spring wheat

No. of entries 1000 338 173 676 1032
Novel Stripe rust Leaf rust Stem rust Stem rust Leaf rust
alleles 1B-IWA3892 3B-IWB74350 2D-1101415 3A-IWB8720 2BS-IWA8221

1D-IWA980 4A-IWB40915 2D-1102301 3B-IWA1196 2BS-IWA4894
2A-IWA422 4A-IWB7998 Stripe rust 4B-IWB59588 2BL-IWA5177
2A-IWA424 6A-IWA7764 2B-wPt-8776 5A-IWB46277 2DL-IWA5637
3B-IWA5202 6A-IWB40242 3D-100136169 6A-IWA5781 4AS-IWA1900
4A-IWA1034 6B-IWB65148 3D-1267912 Leaf rust 4DS-IWA5375
4D-IWA5375 1B-IWA5474 5DS-IWA6289
5A-IWA6988 2B-IWB35072 5DL-IWA1429
6B-IWA7257 5A-IWB34703 7AS-IWA1277
6D-IWA167 Stripe rust

1A-IWB766
1B-IWB44883
3A-IWA7440
5B-IWB10356
5D-IWB73687
6A-IWB48922
6B-IWB 68,655
7A-IWB60768
7B-IWA1971

https://github.com/umngao/rust_scores_conversion
https://github.com/umngao/rust_scores_conversion
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Liu et al. 2016). The SL-MLM tests each marker one 
by one, however, ML-MLM incorporates multiple 
markers simultaneously as covariates in a stepwise 
manner to overcome the confounding effects between 
kinship and testing markers (Liu et  al. 2016). The 
GWAS highlights the significant MTAs using -log10 
(p) that can result in four possible outcomes while 
considering the null hypothesis (H0) that the marker 
under investigation is unlinked to a single QTL; 1. 
False positive, when a QTL is incorrectly reported, 2. 
True positive, when a QTL is correctly reported, 3. 
False negative, when a QTL is incorrectly unreported 
and 4. True negative, when a QTL is correctly unre-
ported (Bernardo 2020). Type I error rate or signifi-
cance level (α) is the probability of rejecting the null 
hypothesis in case H0 is true. However, the type II 
error rate (β) equates to the probability that a false H0 
is not rejected. High precision mapping experiments 
can lower the values of α and β. To specify experi-
ment-wise control rate (αE) and comparison wise sig-
nificance level (αC), Bonferroni correction, permuta-
tion testing and false discovery rate (FDR, Benjamini 
and Hochberg 1995) have been used to attain higher 
stringency. For instance, 5,000 (n) unlinked markers, 
αE of 0.05 resulted in αC of 1 × 10–5, where αC = αE/n. 
In addition to controlling false positives, it can reduce 
the power of QTL detection and may not be a more 
robust criteria to detect true QTL (Bernardo 2020). 
One may prefer a high FDR threshold when aiming 
to discover the genetic architecture of a trait and a low 
FDR to identify candidate loci for subsequent studies 
and validation (Korte and Farlow 2013).

Several GWAS studies have been conducted to 
detect significant MTAs for rust resistance using 
mixed linear model (MLM-Q + K) accounting prin-
cipal component (Q) and kinship matrix (K) that 
cluster individuals into a subset to minimise the effec-
tive sample size (Table 3; Zhang et al. 2010; Pasam 
et  al. 2017; Juliana et  al. 2018). A complementary 
approach, ‘population parameters previously deter-
mined’ (P3D) was preferably used in some studies 
to circumvent re-computing variance components 
(Zhang et  al. 2010). Juliana et  al. (2018) applied 
a GWAS approach to identify leaf rust and stripe 
rust resistance alleles in International Bread Wheat 
Screening nurseries. In this study, the POPSEQ map 
and Ensembl plants were used to report candidate 
genes associated with significant MTAs. Genomic 
regions conferring rust resistance on chromosomes 

1DS, 2AS, 2BL, 2DL, 3B, 4AL, 6AS, 6AL and 7DS 
were identified. Maccaferri et  al. (2015) performed 
GWAS using a worldwide collection of 1,000 spring 
wheat accessions and a 9  K SNP Infinium assay. A 
greater level of Pst resistance was observed in a sub-
population from southern Asia. Ten significant MTAs 
explained 15% of the phenotypic variation (PVE) 
individually for stripe rust resistance, however, the 
PVE increased up to 45% when combining the effect 
of all QTL. Kankwatsa et al. (2017) evaluated 159 old 
wheat cultivars and landraces against 35 Australian 
rust pathotypes and postulated several known ASRs, 
APRs and a few uncharacterised APRs. Similarly, 
Bansal et al. (2013) screened 205 wheat land patho-
types against rust isolates and high-throughput DArT 
genotyping using a single marker scan and identified 
68 significant MTAs. They reported linked stripe 
rust-leaf rust resistance loci on chromosome arms 
1AL, 2BS, 2BL, 3DL, 5BS, 6BS and 7DL and linked 
stripe rust-stem rust resistance loci on chromosome 
arms 4BL and 6AS.

Bi‑parental mapping (BM) versus association 
mapping (AM)

QTL can be identified using BM and AM approaches. 
It raises the question about the choice of one of these 
methods (Bernardo 2020). When population devel-
opment is challenging, AM is the obvious choice. 
For instance, developing segregating progeny from a 
clonal selection of tuber crops is tedious due to their 
mode of propagation and AM can be chosen in this 
instance. The probability of detecting rare variants 
using AM is however lesser than BM. For example, 
among a diverse wheat collection of 300 accessions, 
only three lines carried the same resistance allele for 
pathotype Ug99, while the remaining lines of the 
panel carried the susceptible allele. The AM approach 
is less likely to detect the rare variants due to lower 
frequency (1%). In BM, out of three lines, one acces-
sion with a good agronomical background (resistant 
parent) crossed with the susceptible parent and 200 
RILs are developed. In this case, the frequency of 
resistance allele would be 50% in the population that 
increases the power of QTL detection.

If an AM panel has 30 resistant lines and 270 sus-
ceptible lines that means the frequency of the resist-
ance allele is 10% and QTL can be detected using 
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GWAS. However, a challenge for the breeder would 
be to determine a resistant line with better agronomi-
cal performance as well as a closely linked marker to 
expedite the deployment of QTL in the elite cultivars 
(Bernardo 2020).

Delivering rust resistance in wheat

Since nineteenth century, wheat crop had been 
affected by rust diseases. Conventional breeding 
approaches have incorporated resistance genes in 
the wheat varieties through hybridization followed 
by field selection and greenhouse assays. Available 
genomic technologies have supplemented traditional 
rust resistant breeding program to address pressing 
challenges (Babu et al. 2020). Modern wheat breed-
ing approaches rely on qualitative/major (R) and 
quantitative/minor genes. In general, major gene 
offers complete resistance and likely to breakdown, 
and acquisition of virulence in corresponding patho-
gen populations renders this resistance type ineffec-
tive (Sucher et  al. 2017). In contrast, a minor gene 
is assumed to be long-lasting as it does not com-
pletely curtail pathogen growth. These genes have 
been incorporated into wheat that recognizes differ-
ent races of a pathogen; pyramiding these genes in 
future varieties is vital for attaining durable resistance 
(Singh and Rajaram 1992; Bariana et al. 2007).

Australian wheat breeder William Farrer noticed 
that Indian wheat was early in maturity resulting in 
rust escape as compared to Canadian wheat var. Fife 
which was delayed in maturity and exposed to rust. 
Two new cultivars Yandilla and Comeback were 
derived from the Indo-Candian wheat hybridization 
program. Farrer crossed European-derived purple 
straw variety with Yandilla and selected a new wheat 
cultivar namely ‘Federation’ in honour of the crea-
tion of the Australian nation in 1901 (http://​nma.​gov.​
au/​defin​ing-​momen​ts/​resou​rces/​feder​ation-​wheat). 
Virulence in P. triticini to Lr10 was evident after the 
introduction of rust resistant Canadian wheat cultivar 
‘Selkirk’ (Lr10 + Lr14a + heterogeneous for Lr16), 
whereas virulence to Lr16 occurred after 8  years of 
cultivation of ‘Selkirk’ (Samborski 1985; Martens 
and Dyck 1989). Virulence for Lr13 had appeared 
after the introduction of Canadian wheat variety 
‘Manitou’ (Samborski 1985). Few mega varieties 
namely ‘CDC Teal’ (Lr1, Lr13, Lr34) (Hughes and 

Hucl 1993; Liu and Kolmer 1997), ‘Roblin’ (Lr1, 
Lr10, Lr13, Lr34) (Dyck 1993), ‘Glenlea’ (Lr1, 
Lr13, Lr34) (Dyck et al. 1985), ‘AC Domain’ (Lr10, 
Lr12, Lr16), ‘AC Karma’ (Lr13, Lr16, LrTb) (Kol-
mer and Liu 2002) and ‘Laura’ (Lr1, Lr10, Lr34) 
(Kolmer 1994) were released. Different rust resistant 
genes have been reported into Indian wheat varieties 
namely PBW343 (Sr2 + Sr5 + Sr31/Lr26/Yr9 + Yr27), 
RAJ3765 (Sr2 + Lr10 + Lr13 + Yr2ks), DBW17 (Sr31/
Lr26/Yr9 + Lr23), PBW550 (Sr31/Lr26/Yr9 + Sr57/
Lr34/Yr18), HD2967 (Sr2 + Sr8a + Sr11 + Lr23 + Yr
2), HD2733 (Sr31/Lr26/Yr9 + Sr57/Lr34/Yr18) and 
HD3086 (Sr2 + Sr7b + Lr10 + Lr13 + Yr2) (Babu et al. 
2020). Marker assisted pyramiding of effective rust 
resistant genes is a continuous process, and wheat 
researchers across the world are actively engaged in 
this approach.

Conclusions

From the findings highlighted in the review, it is obvi-
ous that significant progress has been made to under-
stand the evolutionary nature of rust pathogens, char-
acterising rust resistance sources, and fine mapping 
and cloning of rust resistance genes. Over hundreds 
of genes/QTL along with associated DNA markers 
for individual rust have been mendelised in bi-paren-
tal mapping populations; some of these genes/QTL 
have qualified to catalogue them as genes. However, 
over 20 rust resistance genes have been successfully 
isolated using available genomic technology which 
represents only one-tenth of the total catalogued 
genes. This little progress highlighted the barriers 
associated with gene isolation like size and complex-
ity of the wheat genome, structural rearrangement 
and lacking genome-assembly data of multiple wheat 
lines. In the last couple of years, significant progress 
has been made to deliver reference-quality genome-
assembly data of few wheat lines (10 + genome pro-
ject) which can solve some challenges like deletion/
rearrangement in targeted genes’ corresponding 
region in Chinese Spring based wheat genome ref-
erence. In perspectives of delivering high yielding 
wheat varieties, comprehensive studies should be 
performed to demonstrate the durability of disease 
resistance genes as well as associated yield penalty 
and quality constraints. As we have a consensus that 

http://nma.gov.au/defining-moments/resources/federation-wheat
http://nma.gov.au/defining-moments/resources/federation-wheat
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promoting wheat varieties tagged with effective dis-
ease resistance genes is a crucial step toward food 
security, especially for the developing world.
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