

Characterization of stem, stripe and leaf rust resistance in Tajik bread wheat accessions

Mahbubjon Rahmatov 💿 · Munira Otambekova · Hafiz Muminjanov · Matthew N. Rouse · Mogens S. Hovmøller · Kumarse Nazari · Brian J. Steffenson · Eva Johansson

Received: 11 May 2018/Accepted: 12 February 2019/Published online: 20 February 2019 $\tilde{\mathbb{O}}$ The Author(s) 2019

Abstract Stem rust [causal organism: Puccinia graminis f. sp. tritici (Pgt)], stripe rust [Puccinia striiformis f. sp. tritici (Pst)], and leaf rust [Puccinia triticina (Pt)] are important fungal diseases of wheat in Central Asia and worldwide. Therefore, identification of seedling and adult plant resistance (APR) genes is of major importance for the national wheat breeding program in many countries. The objectives of this study were to identify genes that confer seedling and APR resistances in widely grown wheat cultivars, landraces and advanced lines from Tajikistan. A total of 41 wheat accessions were inoculated with eleven races of Pgt, twelve races of Pst and nine races of Pt for postulation of Sr (stem rust), Yr (yellow or stripe rust), and Lr Lr (leaf rust) resistance genes at the seedling stage. In addition, all of the accessions were tested in field trials for the response to stem rust and stripe rust. Genes for seedling stem rust resistance (i.e.

M. Rahmatov (🖾) · E. Johansson Department of Plant Breeding, Swedish University of Agricultural Sciences, PO Box 101, SE-23053 Alnarp, Sweden e-mail: mahbubjon@gmail.com

M. Otambekova · H. Muminjanov Tajik Agrarian University, 146, Rudaki Ave., 734017 Dushanbe, Tajikistan

M. N. Rouse

Cereal Disease Laboratory, United States Department of Agriculture-Agricultural Research Service, St. Paul, MN 55108, USA Sr5, Sr6, Sr11, Sr31, and Sr38), stripe rust resistance (Yr9, Yr17, and Y27), and leaf rust resistance (Lr16 and Lr26) were postulated in the Tajik wheat. The presence of the pleiotropic APR genes Sr2/Yr30/ *Lr27* (associated with pseudo-black chaff phenotype) and Lr34/Yr18/Sr57 (associated with leaf tip necrosis phenotype), and also Lr37 were assessed in the field and confirmed with linked molecular markers. In most of the wheat accessions, resistance genes could not be postulated because their infection types did not match the avirulence or virulence profile of the Pgt, Pst and Pt races tested. Six, seven, and nine accessions were identified that likely possess new genes for resistance to stem rust, stripe rust, and leaf rust, respectively, which have not been described previously. The research demonstrates the presence of effective seedling resistance and APR genes in widely grown wheat accessions that could facilitate further rust

M. S. Hovmøller Department of Agroecology, Aarhus University, Flakkebjerg, 4200 Slagelse, Denmark

K. Nazari

Regional Cereal Rust Research Center, Aegean Agricultural Research Institute, P.K. 9, Menemen, Izmir, Turkey

M. N. Rouse · B. J. Steffenson Department of Plant Pathology, University of Minnesota, St. Paul, MN 55108, USA resistance breeding in the national wheat breeding program in Tajikistan.

Keywords Gene postulation · Molecular marker · Resistance gene · *Triticum aestivum*

Introduction

Bread wheat (*Triticum aestivum* L., 2n = 6x = 42, ~ 17 Gb, BBAADD genome) is one of the most important and widely cultivated food crops, contributing substantially to the daily nutrition and food security of a large proportion of the world's population (Shiferaw et al. 2013). Unfortunately, many abiotic and biotic stresses limit wheat production across the globe. Among the most important biotic stresses of wheat are the three rust diseases, namely stem rust [caused by Puccinia graminis f. sp. tritici Erikss. & E. Henning (Pgt)], stripe rust [Puccinia striiformis Westend. f. sp. tritici Eriks. (Pst)], and leaf rust [Puccinia triticina Eriks. (Pt)]. Since ancient times, these rust diseases have caused many epidemics, resulting in significant and widespread crop losses (Kolmer 2005; Hovmøller et al. 2011; Szabo et al. 2014). Stem rust and stripe rust can cause complete crop loss, and losses due to leaf rust can be as high as 70% (Chen 2005; Huerta-Espino et al. 2011; Singh et al. 2015). In recent epidemics, yield losses ranging from 20 to 100% were reported for these three rust diseases in wheat growing regions worldwide (Huerta-Espino et al. 2011; Wellings 2011; Singh et al. 2015).

In Tajikistan, bread wheat is the most important food crop with respect to national food security (FAO 2015) but is constantly threatened by these three rust diseases. Epidemics of stripe rust occurred in 1952, 1958, 1966, 1997, 1998, 2003, 2010, and 2016, resulting in significant yield losses across the country (Eshonova et al. 2005; Rahmatov et al. 2011, 2012). Stem rust occurs mainly in the mountainous areas (Pett et al. 2005); however, when favorable environmental conditions prevail, the disease is capable of destroying the grain yield of wheat crops across all agroecological zones of Tajikistan. Leaf rust is more variable with respect to its impact on wheat in the country (Eshonova et al. 2005; Rahmatov et al. 2012).

Deployment of host genetic resistance is considered the most effective and low-cost management strategy for rust diseases, particularly in developing countries (Ellis et al. 2014). To control these rust diseases in Tajikistan, the national wheat breeding program has developed several rust resistant wheat cultivars by utilizing advanced breeding lines from the International Winter Wheat Improvement Program and Centro Internacional de Mejoramiento de Maíz y Trigo (CIMMYT). Genetic resistance to rust diseases has been broadly categorized into "seedling resistance," which is often conferred by single genes with major phenotypic effects across all growth stages of the plant (Flor 1971), and "adult plant resistance" (APR), which is often conferred by multiple genes with more subtle phenotypic effects during the later ontogenetic stages of plant development (Knott 1989). In selecting and breeding for rust resistance, seedling and adult plant phenotyping assays are routinely performed along with molecular marker assays if available for specific resistance genes (Juliana et al. 2017). One of the greatest challenges in breeding for rust resistance in wheat is the genetic variability of the rust pathogens. The virulence diversity of the three rust pathogens in Central Asia is high, particularly in Tajikistan (Kolmer and Ordoñez 2007; Berlin et al. 2015; Ali et al. 2017). For example, the first time Pst virulence was found for the yellow rust (Yr) resistance genes of Yr1, Yr4 +, Yr3 N, Yr9, Yr10, Yr17 and Yr27 in Central Asia was in Tajikistan (Yahyaoui et al. 2012a, b). Eight barberry species have been reported in Tajikistan (Davlatov and Baikova 2011), which may play a role in disease epidemics and pathogen variation in the country since these species could potentially serve as alternate hosts for both Pgt and Pst.

Currently, more than 70 stem rust (*Sr*) resistance genes, 65 yellow rust (*Yr*) resistance genes and 79 leaf rust (*Lr*) resistance genes, including those with minor effects have been cataloged (McIntosh et al. 2017). Widely deployed cultivars with effective resistance genes can suffer yield losses when new, virulent races of the stem, stripe, and leaf rust pathogens emerge, leading to the "boom and bust" cycle of plant breeding (Pretorius et al. 2000; Huerta-Espino et al. 2011; Wellings 2011; Solh et al. 2012). Some of the most widely used and important resistance genes in wheat include *Sr13*, *Sr24*, *Sr31*, *Sr36*, *Sr38*, *SrTmp* and *Sr1RS*^{Amigo} for stem rust, the *Yr2*, *Yr6*, *Yr7*, *Yr8*, *Yr9*, *Yr17* and *Yr27* for stripe rust, and *Lr9*, *Lr14a*, *Lr16*, *Lr17a*, *Lr24*, *Lr26* and *Lr39* for leaf rust all of which have now been overcome by newly detected pathogen races (Huerta-Espino et al. 2011; Singh et al. 2015; Ali et al. 2017). The lack of knowledge regarding the presence of major effect seedling and minor effect APR resistance genes in Tajik wheat germplasm makes it difficult to make informed decisions with respect to breeding for stable resistance in the national wheat breeding program. Therefore, the aims of this study were to (1) evaluate Tajik wheat accessions for seedling resistance and postulate the presence of underlying *Sr*, *Yr* and *Lr* genes; (2) identify the presence of gene(s) conferring APR to the three rust diseases; and (3) verify the presence of resistance genes postulated by available molecular markers.

Materials and methods

Plant and pathogen materials

A total of twenty-nine wheat cultivars, seven advanced breeding lines, and five landraces were used in the present study and tested for response to the three rusts. These wheat accessions were provided by the national wheat breeding program in Tajikistan. The pedigree and origin of the materials are given in Table 1. In addition, differential wheat accessions with characterized resistance genes for stem rust (Jin et al. 2007), stripe rust (Hovmøller et al. 2017), and leaf rust (Kolmer and Hughes 2013) were also included to facilitate the gene postulations. Eleven Pgt, twelve Pst and nine Pt races with different virulence/avirulence combinations and geographic origins were used (Tables 2, 3 and 4).

Seedling rust resistance assays

Seedling resistance assays to stem rust and leaf rust were conducted at the United States Department of Agriculture-Agricultural Research Service-Cereal Disease Laboratory (USDA-ARS-CDL) and the University of Minnesota in St. Paul, USA. Five seeds of each wheat genotype were included for each rust assay. The seeds were planted in pots containing vermiculite (Sun Gro Horticulture), watered daily, and fertilized with 20–20–20 NPK soluble fertilizer (Spectrum Group, St. Louis). Stored urediniospores of the stem and leaf rust pathogens were removed from a - 80 °C freezer, heat-shocked at 45 °C for 15 min and placed in a rehydration chamber for 2 to 4 h maintained at 80% relative humidity by a KOH solution, and then suspended in a lightweight mineral oil (Soltrol 170[®] Chevron Phillips Chemical Company LP, Woodlands, TX 77380) within gelatin capsules (size 00). Then, urediniospores were inoculated onto 8-10 day-old seedlings of the different accessions at the first leaf stage. Seedling resistance assays for stem rust were done according to the methods of Rouse et al. (2011) and those for leaf rust were done according to Oelke and Kolmer (2004). Infection types were scored 14 days after inoculation using a 0-4 scale (Stakman et al. 1962; Long and Kolmer 1989). Seedling resistance to Pgt race TKTTF (bulk collection from Turkey) was carried out at the Regional Cereal Rust Research Center (RCRRC), located at the Aegean Agricultural Research Institute, International Center for Agricultural Research in the Dry Areas (ICARDA) in Izmir, Turkey (Rahmatov et al. 2016). The methods used for this test were similar to those used for the other races, the exception being that fresh urediniospores collected from plants in the field were used instead of frozen urediniospores. Ten-day-old seedlings with the first leaves fully expanded were inoculated with race TKTTF according to Rahmatov et al. (2016).

All accessions were evaluated for seedling stripe rust resistance at the Global Rust Reference Center (GRRC) at Aarhus University in Flakkebjerg, Denmark and at the RCRRC. For these evaluations, ten seeds were sown in pots containing a mixture of peat moss and soil. Inoculations with races of Pst were carried out on 14-day-old seedlings when the second leaves were fully expanded. For inoculations completed at the GRRC and RCRRC, Pst urediniospores were suspended in Novec Fluid (3 M NovecTM 7100 Engineered Fluid) and lightweight mineral oil, respectively (Rahmatov et al. 2017). After inoculation, plants were moved to a dark chamber at 100% RH at 10 °C for 24 h for the infection period. Thereafter, plants were incubated in a greenhouse at 18 °C for 18 h during the day and 12 °C for 6 h during the night, protocols routinely used at both the GRRC and RCRRC (Hovmøller et al. 2017; Rahmatov et al. 2017). After 16 days of incubation, stripe rust infection types were scored using a 0-9 scale as described by McNeal et al. (1971).

Table 1 List of wheat accessions evaluated in this study

#	Accession	Pedigree	Origin	Туре	Accession status
1	Navruz	(S)MIRONOVSKAYA-YUBILEINAYA	Tajikistan	Facultative	Cultivar
2	Sarvar	CHEN/AEGILOPS SQUARROSA (TAUS)//BCN/3/ BAV92	ESWYT25	Spring	Cultivar
3	Vahdat	VORONA/CNO79//KAUZ/3/MILAN	ESWYT25	Spring	Cultivar
4	Yusufi	SOROCA	ESWYT25	Spring	Cultivar
5	Isfara	SW89.5181/KAUZ	ESWYT25	Spring	Cultivar
6	Alex	PAYNE(PYN)/(BAU)BAGULA	1WWEERYT	Facultative	Cultivar
7	Oriyon	NORD-DESPREZ/VG-9144//KALYANSONA/ BLUEBIRD/3/YACO/4/VEERY-5	N.A.	Facultative	Cultivar
8	Sadokat	JUPATECO-73/BLUEJAY//URES-81	Mexico	Spring	Cultivar
9	Ziroat-70	N.A.	N.A.	Facultative	Cultivar
10	Norman	OR-F-1-158/(FDL)FUNDULEA//(BLO) BOLILLO/3/SHI-4414/CROW	5FAWWON	Facultative	Cultivar
11	Somoni	N.A.	N.A.	Facultative	Cultivar
12	Tacicar	TR.AE/SPARROW//ZARAPITIN	5FAWWON	Facultative	Cultivar
13	Ormon	NWT/3/TAST/SPRW//TAW12399.75	8FAWWON	Facultative	Cultivar
14	Iqbol	RUSALKA,BGR/CA-8055//CHAM-6	N.A.	Facultative	Cultivar
15	Starshina	COLT/SPARTANKA	Russia	Winter	Cultivar
16	Shokiri	SHARK/F-4105-W-2-1	5WWEERYT	Facultative	Cultivar
17	Fayzbaksh	TAM200/KAUZ	6WWEERYT	Facultative	Cultivar
18	Nurbakhsh	PRINA/STAR	N.A.	Facultative	Cultivar
19	BASRIBEY-95	JUPATECO-73/(SIB)BLUEJAY//URES-81	Turkey	Facultative	Cultivar
20	Jagger	KS-82-W-418/STEPHENS	USA	Winter	Cultivar
21	Kaboi Panjakent	N.A.	Tajikistan	Facultative	Landrace
22	Surkhaki 5	N.A.	Tajikistan	Spring	Landrace
23	Zafar	N.A.	Tajikistan	Facultative	Cultivar
24	Steklovidnaya-24	BOGARNAYA-56/TEPLOKL YUCHENSKAYA-2//ROSTOVCHANKA	Kazakhstan	Winter	Cultivar
25	SIETE-CERROS- 66	PENJAMO-62(SIB)/GABO-55	Mexico	Spring	Cultivar
26	Krasnodarskaya-99	LUTESCENS-2665-G-10233/ERYTHROSPER MUM-4695-h-449//LUTESCENS-2621-h-24-82	Russia	Winter	Cultivar
27	Jayhun	N.A.	Turkey	Facultative	Cultivar
28	IZ-80	KAUZ * 2/CHEN//BCN/3/MILAN		Facultative	Cultivar
29	AIKT-20	CBRD/KAUZ		Facultative	Cultivar
30	N.A.	OTUS TOBA 97		Facultative	Advanced lin
31	N.A.	PASTOR/3/VORONA		Facultative	Advanced lin
32	N.A.	CMN82A.1294/2*		Facultative	Advanced lin
33	N.A.	HUAVUN INIA		Facultative	Advanced lin
34	Trakua Hatti	N.A.	Turkey	Facultative	Advanced lir
35	Murodi-2013	CHEN/AE.SQ//WEAVER/3/SSERI1	27ESWYT	Spring	Cultivar
36	N.A.	CHEN/AE.SQ//WEAVER/3/PASTOR	27ESWYT	Spring	Advanced lir
37	Ganj	NAC/TH.AC//3 * PVN/3/MIRLO/BUC/4/2 *vPASTOR	27ESWYT	Spring	Cultivar
38	N.A.	NAC/TH.AC//3 * PVN/3/MIRLO/BUC/4/2 * PASTOR	27ESWYT	Spring	Advanced lin

Table 1 continued

#	Accession	Pedigree	Origin	Туре	Accession status
39	Safedaki Pomir	N.A.	Tajikistan	Spring	Landrace
40	Safedaki Ishkoshim	N.A.	Tajikistan	Spring	Landrace
41	Babilo Pomir	N.A.	Tajikistan	Spring	Landrace

N.A. not available, ESWYT elite spring wheat yield trial, FAWWON facultative and winter wheat observation nursery, WWEERYT winter wheat eastern european regional yield trial

Assessment of field response to stem rust and stripe rust

Adult plant stem rust responses were evaluated under field conditions at the Kenyan Agricultural and Livestock Research Organization in Njoro (2010 and 2011), at the RCRRC in Izmir (2014) and at the University of Minnesota in St. Paul (2014). In Tajikistan, the wheat accessions were exposed to naturally occurring races of Pst during the growing season of 2010. The stripe rust-infected leaves were collected in Tajikistan and sent to the GRRC for race analysis (Hovmøller et al. 2017), and the race TJ01a/ 10 was detected and subsequently used at the seedling resistance test. To provide sufficient stripe rust infection in the nurseries at RCRRC, mixtures of susceptible wheat cultivars were used as spreader rows surrounding and between the plots (Rahmatov et al. 2017). In Njoro and Minnesota, urediniospores of Pgt (TTKSK + TTKST, and MCCFC) were needle-injected (i.e. injecting urediniospores directly into the stems of susceptible spreader plants) at the tillering, booting and heading stages. Additionally, direct foliar inoculations were made on the spreader rows using a urediniospore/oil suspension (Rahmatov et al. 2016). In Izmir, the spreader rows were inoculated five times at the tillering, booting and heading stages by dusting a mixture of fresh urediniospores of Pgt (TKTTF) and Pst (TK34/11) together with talcum powder. After inoculation, the nurseries in Njoro and Izmir were mist-irrigated three times per day (i.e. morning, afternoon and evening) to ensure a moist environment and thereby enhance stem and stripe rusts development. The adult plant response to stem and stripe rust were assessed between growth stages 50-90 (Zadoks et al. 1974). Disease severity was assessed using the modified Cobb scale (Peterson et al. 1948) and adult plant infection types were rated according to Roelfs et al. (1992). The presence of the pseudo-black chaff (*PBC*) and leaf tip necrosis (*LTN*) phenotypes were assessed using 0-4 scale in all field trials (Juliana et al. 2015).

Molecular marker analysis

Total genomic DNA was isolated from the leaves of 10 day-old seedlings according to Edwards et al. (1991) with some slight modifications. The molecular markers *XcsSr2*, *Xgwm533* and *wMAS000005* for *Sr2/Yr30/Lr27* (Spielmeyer et al. 2003; Mago et al. 2011), *Xcfd43* for *Sr6* (Tsilo et al. 2009) *Xwmc364* for *Yr2* (Lin et al. 2005), *Xscm9* and *Xiag95* for *Sr31/Yr9/Lr26* (Saal and Wricke 1999; Mago et al. 2005), *csLV34* and *wMAS000003* for *Lr34/Yr18/Sr57* (Lagudah et al. 2006), and *VENTRIUP/LN2* for *Sr38/Yr17/Lr37* (Helguera et al. 2003) were assessed. The PCR assays were conducted according to Rahmatov et al. (2016).

Results

Stem rust seedling response assays

A majority of the wheat accessions showed seedling resistance towards the Pgt races of RKQQC, QTHJC, TPMKC, BCCBC, and MCCFC with infection types (ITs) ranging from 0 to 2 + (Table 5). A lower proportion of the wheat accessions showed seedling resistance towards the more widely virulent Pgt races of TTTTF, TTKSK, TTTSK, TTKST, TRTTF and TKTTF (Table 5). The resistance gene Sr5 was postulated in Navruz and Steklovidnaya-24 based on its resistance reaction to race BCCBC (Table 5). Sr6and Sr11 were postulated in Siete-Cerros-66 based on its resistance reactions to races RKQQC, TPMKC, TKTTF, MCCFC and BCCBC (Table 5). Resistance

Table 2	Table 2 The origin and virulence phenotype of	nd virule.	nce p	henotyl	oe of F	uccini	a gram	inis f.	sp. tritic	Puccinia graminis f. sp. tritici races used in this study	used in	this stu	dy									
Race	Isolate	Origin	Vir	Origin Virulence profile	profile																	
			Sr5	Sr5 Sr21	Sr9e	e Sr7b	b Srll	I Sr6	Sr8a	Sr9~g	Sr36	Sr9b	Sr30	SrI7	Sr9a	Sr9d	SrI0	SrTmp	Sr24	Sr31	Sr38	SrMcN
RKQQC	RKQQC 99KS76A-1	USA	5	21	I	dΓ	I	9	8a	9 g	36	9b	I	I	9a	P6	I	I	I	I	I	McN
QTHJC	75ND717C	USA	5	21	T	I	Ξ	9	8a	9 g	I	9b	I	17	I	P6	10	I	Т	Т	I	McN
TPMKC	74MN1409	USA	5	21	9e	Дþ	Π	I	8a	9 g	36	I	I	17	I	P6	10	Tmp	I	I	I	McN
TTTF	02MN84A-1- 2	NSA	S	21	9e	Дþ	Ξ	9	8a	9 g	36	96	30	17	9a	p6	10	Tmp	I	I	38	McN
TTKSK	TTKSK 04KEN156/ 04	Kenya	5	21	9e	Дþ	Π	9	8a	9 g	I	6	30	17	9a	P6	10	I	I	31	38	McN
TTTSK	07KEN24-4	Kenya	5	21	9e	Дþ	Ξ	9	8a	9 g	36	9b	30	17	9a	P6	10	I	I	31	38	McN
TTKST	06KEN19-V- 3	Kenya	5	21	9e	7b	11	9	8a	9 g	I	96	30	17	9a	p6	10	I	24	31	38	McN
TRTF	06YEM34-1	Yemen	5	21	9e	Дþ	Π	9	I	9 g	36	9b	30	17	9a	P6	10	Tmp	Т	Т	38	McN
TKTTF		Turkey	5	21	9e	Дþ	I	9	8a	9 g	36	9b	30	17	9a	b6	10	I	I	I	I	McN
BCCBC	BCCBC 09CA115-2	USA	I	I	I	I	I	I	I	9 g	I	I	I	17	Ι	I	I	I	I	I	Ι	McN
MCCFC	59KS19	NSA	5	I	I	Дþ	I	I	I	9 g	I	I	I	17	I	I	10	Tmp	I	I	I	McN
- Indica	- Indication of avirulence	nce																				

gene Sr31 was postulated in Alex, Sadokat, Ziroat-70 and Otus Toba97 based on their susceptible reactions to races TTKSK, TTTSK and TTKST (Table 5); and Sr38 in Jagger and IZ-80 based on their susceptible reactions to races TTTTF, TTKSK, TTTSK, TTKST and TRTTF (Table 5). The landraces of Kaboi Panjakent, Surkhaki-5, Jayhun, Safedaki Pomir, and Safedaki Ishkoshim were resistant to races TTKSK, TTTSK and TTKST (Table 5). Only Sarvar was highly resistant to all the tested races (Table 5). If any previously described resistance genes were present in this group of accessions, they could not be postulated because the resulting ITs did not match those of any differential accessions. Thus, these accessions either carry combinations of previously described genes or new resistance gene/s.

Stripe rust seedling response assays

Postulations for Yr genes were conducted using 12 Pst races (Table 3). Yr9 and Yr17 were confirmed based on the stem rust gene postulations for Sr31 and Sr38 plus molecular markers because of their tight linkage with the respective genes within the 1BL.1RS wheatrye and 2NS/2AS translocations. These assays confirmed the presence of Yr9 in Alex, Sadokat, Ziroat-70, and Otus Toba97 and Yr17 in Jagger and IZ-80 (Tables 6, 8). Because Alex, Sadokat, Ziroat-70, Otus Toba97, Jagger and IZ-80 were resistant to most of the *Pst* races used in this study, including those carrying virulence for Yr9 and Yr17, thus it was not possible to postulate genes based on their ITs to the 12 Pst races used in this study (Table 6). The Yr27 was confirmed in Isfara based on the Yr27-virulent isolates AF87/12 and TR34/11 conferring ITs of 7 on Yr27 differential lines (Table 6). Sarvar, Fayzbakhsh, Otus Toba97, Vahdat, Oriyon, Sadokat and AIKT-20 were highly resistant (ITs 0-4) to all or nearly all races; thus, the genes they carry could not be postulated with the Pst races used in this study nor the molecular markers. These accessions carry combinations of previously described genes or new resistance gene/s (Table 6).

Leaf rust seedling response assays

For the leaf rust seedling evaluations, nine Pt races were used (Table 4). The number of resistant and susceptible accessions for each of the races is presented in Table 7. Lr16 was postulated in Iqbol, Table 3 The origin and virulence phenotype of *Puccinia striformis* f. sp. *tritici* races used in this study

Race	Origin	Virul	Virulence profile	rofile																		
		YrI	Yr1 Yr2 Yr3	Yr3	Yr4	Yr5	Yr6	Yr7	Yr8	Yr9	Yr9+	YrI0	Yr10 Yr15 Yr17 Yr24 Yr25 Yr27	YrI7	Yr24	Yr25		Yr32 YrSd YrSu YrSp YrAvS	YrSd	YrSu	YrSp	YrAvS
SE205/12	Sweden	1	2	3	I	I	9	7	8	6	$^{+6}$	I	I	17	1	25	I	32	Sd	I	I	AvS
UK94/519	UK	1	5	З	I	I	I	I	I	6	$^{+6}$	I	I	17	I		I	I	Sd	Su	I	AvS
DK66/02	Denmark	Ι	2	I	I	Ι	9	7	8	6	I	I	I	I			I	I	Sd	I	I	AvS
TJ01a/10	Tajikistan	1	2	ю	4	Ι	9	I	Ι	6	$^{+6}$	I	I	I	I	25	I	32	Sd	Su	I	AvS
ER02/03	Eritrea	I	5	I	I	I	9	٢	8	6	I	10	I	I	_		I	I	I	I	I	AvS
DK11/09	Denmark	I	I	б	4	I	9	I	I	I	I	I	I	I			I	32	Sd	Su	Sp	AvS
DK71/93	Denmark	1	5	б	I	I	I	I	I	I	I	I	I	I	I		I	32	Sd	I	I	AvS
AF87/12	Afghanistan	I	5	I	I	I	9	I	8	I	I	I	I	17	I	I	27	32	I	I	I	AvS
DK09/11	Denmark	1	5	б	4	I	9	٢	I	6	$^{+6}$	I	I	17	I		I	32	Sd	Su	Sp	AvS
DK122/09	Denmark	1	7	ю	4	I	9	I	I	6	$^{+6}$	I	I	17	1		I	32	Sd	Su	I	AvS
SE100/09 Denmark	Denmark	I	I	I	I	I	I	7	8	I	I	10	I	I	1	I	I	I	I	I	I	I
TK34/11	Turkey	I	- 2	I	I	I	9	٢	8	6	I	I	I	1	I	25	27	I	(Sd)	(Su)	I	AvS
- Indication	- Indication of avirulence																					

OTUS TOBA97, and HUAVUN INIA based on their susceptible reactions (ITs of 33 +) to race MHDSB (Table 7). *Lr26* was postulated in Alex, Sadokat, and Ziroat-70 based on their susceptible reactions (ITs 33 +) to races KFBJG, MHDSB, and TCRKG and molecular markers (Tables 7, 8). OTUS TOBA97 was resistant to all *Pt* races, except MHDSB (Table 7); therefore, the presence of *Lr26* was confirmed based on the stem rust, stripe rust and molecular marker analysis (Tables 7, 8). Nine accessions (Sarvar, Vahdat, PRINA/STAR, Zafar, AIKT-20, PASTOR/3/ VORONA, CMN82A.1294/2*, Murodi-2013, and Ganj) likely carry combinations of previously described *Lr* genes or new *Lr* gene/s.

Field stem rust responses

For all of the stem rust field evaluations in Kenya, Turkey, and USA, a high level of disease pressure was attained as severities were 100% in susceptible controls. Some accessions showing no discernible seedling resistance exhibited high levels of APR in the field evaluations (Table 5). Thus, despite susceptibility at the seedling stage for TTKSK and TTKST, accessions PASTOR/3/VORONA/CN079 (10MSS), CMN82A.1294/2* (50MR) and HUAVUN INIA (40MR) against the Pgt race TTKSK + TTKST were exhibited APR during 2010 and 2011 in Njoro (Table 5). Furthermore, the accessions Vahdat, Somoni, Iqbol, Fayzbaksh, Kaboi Panjakent, and Surkhaki-5 exhibited disease severities of 5 to 40% with R to MR infection types, whereas Murodi-2013, Ganj, Krasnodarskaya-99, and Babilo Pomir had severities of 20 to 40% with MR-MS or MS infection types against race TKTTF in Izmir (Table 5). To race MCCFC in the USA, Navruz, Starshina, Basirbey, Kaboi Panjakent, Surkhaki-5, Steklovidnaya-24, Jayhun. Safedaki Pomir, and Safedaki Ishkoshim exhibited severities of 5 to 40% with RMR to MRMS and MS infection types (Table 5). Four accessions exhibited all stage resistance against race TTKSK + TTKST, thirteen against race TKTTF, and 32 against race MCCFC (Table 5). Thereby, these lines carry seedling resistance genes that are effective into the adult plant stage and to diverse races at three different field sites (Table 5).

Race	Origin	Virul	ence prof	île									
		Lrl	Lr2a	Lr2c	Lr3	Lr9	Lr16	Lr24	Lr26	Lr3ka	Lr11	Lr17	Lr30
TDBJG	USA	1	2a	2c	3	_	_	24	_	_	-	_	_
TFBJQ	USA	1	2a	2c	3	_	-	24	26	-	-	_	-
TNRJJ	USA	1	2a	2c	3	9	-	24	_	3 ka	11	_	30
MLDSD	USA	1	_	-	3	9	-	-	_	-	-	17	-
MBDSB	USA	1	_	-	3	_	_	_	_	_	-	17	_
TBBGG	USA	1	2a	2c	3	_	_	_	_	_	-	_	_
KFBJG	USA	-	2a	2c	3	_	_	24	26	_	-	_	_
MHDSB	USA	1	_	-	3	_	16	_	26	_	-	17	_
TCRKG	USA	1	2a	2c	3	-	-	_	26	3 ka	11	_	30
Race	Origin	Virule	ence profi	le									
		LrB	Lr10	Lr14a	Lr18	Lr21	Lr28	Lr39	Lr42	Lr3bg	Lr14b	Lr20	Lr23
TDBJG	USA	_	10	14a	_	_	28	_	_	_	14b	_	_
TFBJQ	USA	_	10	14a	_	21	28	_	_	_	14b	20	23
TNRJJ	USA	_	10	14a	_	_	28	39	_	_	14b	20	_
MLDSD	USA	В	10	14a	_	-	-	39	-	3bg	14b	20	23
MBDSB	USA	В	10	14a	_	_	_	_	_	3bg	14b	20	_
TBBGG	USA	_	10	_	_	_	28		_	3bg	14b	20	23
KFBJG	USA	_	10	14a	_	_	28	_	_	_	14b	20	23
MHDSB	USA	В	10	14a	_	_	_	_	_	3bg	14b	20	_
TCRKG	USA	_	10	14a	18	_	28	_	_	3bg	14b	20	_

Table 4 The origin and virulence phenotype of Puccinia triticina races used in this study

- Indication of avirulence

Field stripe rust responses

Stripe rust APR was detected in the seedling-susceptible accessions of Vahdat, Isfara, and Ormon (severities of 10 to 20% with infection types of R to MR) and also in Tacikar and CMN82A.1294/2* (severities of 40 to 50% with MR-MS infection types) against *Pst* race TK34/11 (Table 6). Somoni and Tacikar also possess some APR as they exhibited a stripe rust severity of 40% with MS infection types against race TJ01a/10 in Tajikistan. A total of twenty-one and eighteen accessions had all-stage resistance as they were highly resistant at both the seedling and adult plant stages to *Pst* races TK34/11 and TJ01a/10 in Turkey and Tajikistan, respectively (Table 6). The rest of the wheat accessions were susceptible at the seedling and adult plant stages (Table 6).

Phenotypic assessments of *PBC* and *LTN* in the field

The presence of the *PBC* and *LTN* phenotypes were associated with the pleiotropic Sr2/Yr30/Lr27 and Lr34/Yr18/Sr57 APR genes. The *PBC* phenotype (score of 2–3) was observed in 11 accessions, and the *LTN* phenotype (score of 2–3) was observed in 13 accessions in the field (Table 8).

Molecular marker analysis

The molecular markers *Xscm9* (220 bp), *Xiag95* (1100 bp) and *Xrems1303* (309 bp) indicated the presence of the *Sr31/Yr9/Lr26* resistance genes in Alex, Sadokat, Ziroat-70, and OTUS TOBA 97. Marker *Xcfd43* (215 bp) indicated the presence of *Sr6* in SIETE-CERROS-66, and marker *VENTRIUP/LN2* (262 bp) indicated the presence of the *Sr38/Yr17/Lr37* genes in Jagger and IZ-80. Marker *Xgwm533*

Sr38	
and	
Sr31,	
Sr6,	
for	
lysis 1	
ana	
markei	
ecular	
mol	
and	
rust,	
stem rust, and mol	
to	
esponses	
eld r	
and fie	
es ai	
typ.	
ction	
infe	
Seedling	
Table 5	

Accession	Sr seedling re	ing resistance						
	RKQQC	QТНЈС	TPMKC	HTTF	TTKSK		TTTSK	
					Rep. 1	Rep. 2	Rep. 1	Rep. 2
Navruz	1	0;/1	3+	3+	4	4	4	4
Sarvar	0;	0;	;1-	0;	22+	22+	0;	0;
Vahdat	0;	11+	1 + 2	0;	4	4	4	3+
Yusufi	1 + 2	1 + 2	$^{1+}$	3+	4	4	3+	3+
Isfara	0;	$^{1+}$	1;	3+	4	4	3+	3+
Alex	1;	11+	0;1	1;	4	4	3+	3+
Oriyon	0;	11+	11+	3+	4	4	3+	3+
Sadokat	0;	11+	$^{1+}$	1+	4	4	3+	3+
Ziroat-70	0;	1 + 2	1	0;	4	4	3+	3+
Norman	4	1 + 2	0;1	3+	4	4	3+	3+
Somoni	1;1+	3+	3+	3+	4	4	3+	3+
Tacicar	4	3+	3+	3+	4	4	3+	3+
Ormon	3+	4	3+	3+	4	4	3+	3+
Iqbol	3+	3+	3+	1;	4	4	3+	3+
Starshina	22+	22+	4	3+	3+	3+	3+	3+
Shokiri	3+	3+	1;1+	3+	4	4	3+	3+
Fayzbaksh	0;	$^{1+}$	2^{-}	3+	4	4	3+	3+
PRINA/STAR	4	3+	4	3+	4	4	4	3+
BASRIBEY-95	2+	22+	3+	3+	4	4	3+	3+
Jagger	0;	0;	0;	3+	4	4	33+	3+
Kaboi Panjakent	1+	4	3+	4	2	2	1;	2
Surkhaki-5	2	4	3+	4	22+	22+	1;	2
Zafar	3+	2 + 3 -	3+	3+	4+	4+	4	3+
Steklovidnaya-24	3+	3+	3+	3+	4	4	4	3+
SIETE-CERROS-66	1;	3+	;0	33+	4	4	3+	3+
Krasnodarskaya-99	1;	3+	33+	3+	4	4	3+	3+
Jayhun	2+	4	3+	3+	22+	22+	2	2
IZ-80	1;	0;	1;1+	3+	4	4	4	4
AIKT-20	0;	11+	1	3+	4	4	4	3+
OTUS TOBA 97	•••	11+	1	0;1-	4	4	3+	3+

Table 5 continued	ed											
Accession			Sr	Sr seedling resistance	sistance							
			RF	RKQQC	QTHJC	JC	TPMKC	TTTTF	TTKSK		TTTSK	
									Rep. 1	Rep. 2	Rep. 1	Rep. 2
PASTOR/3/VORONA/CN079	ONA/CN	1079	0;		11 +		1 + 2	1 + 2	4	4	3+	3+
CMN82A.1294/2*	*.		1;		11+		1;1+	0;	4	4	3+	$^{3+}_{+}$
HUAVUN INIA			;1		11+		1;1+	3+	4	4	3+	$^{3+}_{+}$
Trakua Hatti			0;		11+		11+	3+	4	4	3+	$^{3+}_{+}$
Murodi-2013			22	+	1 +		1;2-	3+	4	4	3+	3+
CHEN/AE.SQ//WEAVER/3	VEAVER	/3	1.	1 + 2	1 + 2/2 +	2/2+	22+	3+	4	4	3+	3+
Ganj			33-	I	$^{2+}$		3-	3+	4	4	3+	3+
NAC/TH.AC//3 * PVN/3/MIR	* PVN/3/	MIR	3		2 + 3	3	2 + 3	3+	4	4	3+	3+
Safedaki Pomir			4		4		2+	3+	4	4	0;-1	2
Safedaki Ishkoshim	im		3+		4		3+	3+	4	4	1;	2-
Babilo Pomir			4		22+		3+	3+	4	4	4	4
Accession	Sr seec	Sr seedling resistance	istance				Sr Adult Plant Resistance	stance			Sr gene postulation based on	n based on
	TTKST	L	TRTTF	TKTTF	BCCBC	MCCFC	TTKSK + TTKST	TTKS + TTKST	TKTTF	MCCFC	seeding and molecular marker	cular marker
	Rep. 1	Rep. 2					2010	2011				
Navruz	4	3+	4	4	0;	4	50S	60MSS	60MSS	5RMR	<i>Sr5</i> ,+	
Sarvar	0;	22+	11 +	0;	0;	;0	20MR	20MR	5R	TR		
Vahdat	4	4	11 +	3^{+}	0;	;0	60S	20S	5R	TR		
Yusufi	3^{+}	3^+	$\frac{1}{1}$	4	0;	;1-	50S	809	80S	TR		
Isfara	$^{3+}_{3+}$	3+	$\frac{1}{1}$	4	0;	;1–	60S	S07	80S	TR		
Alex	4	3^+	2-	1	0;	;0	40S	50MSS	10RMR	TR	Sr31	
Oriyon	3^{+}	3^+	3+	3+	0;	;1-	50S	809	90S	5 RMR		
Sadokat	4	3+	+1	1	0;	;0	40S	30S	10RMR	10RMR	Sr31	
Ziroat-70	$^{3+}_{3+}$	$^{3+}_{3+}$	11 +	1	0;	;0	40S	809	20RMR	TR	Sr31	
Norman	3+	3+	11 + 11 + 11 + 11 + 11 + 11 + 11 + 11	4	0;	;0	40S	40S	70MSS	TR		
Somoni	3+	3+	+	3+	0;	;0	60S	809	5 RMR	TR		
Tacicar	3+	3+	1 + 2	3+	0;	11-	60S	40S	70MSS	TR		
Ormon	4	3+	4	4	0;	11-	80S	80S	70MSS	TR		
Iqbol	3+	3+	1;	3+	0;	;0	50S	80S	5RMR	TR		

D Springer

Accession	Sr seed	Sr seedling resistance	istance				Sr Adult Plant Resistance	tance			Sr gene postulation based on
	TTKST	r .	TRTTF	TKTTF	BCCBC MCCFC	MCCFC	TTKSK + TTKST	TTKS + TTKST	TKTTF	MCCFC	seedling and molecular marker
	Rep. 1	Rep. 2					2010	2011			
Starshina	1 + 2	22+	4	2	0;	4	SSM09	S0L	10RMR	TR	
Shokiri	3+	33 +	3 + 4	0;	0;	;0	40MSS	60S	10RMR	5 RMR	
Fayzbaksh	$^{+}_{+}$	3+	11+	3+	0;	;	70S	S06	5 RMR	TR	
PRINA/STAR	4	3 + 7	4	4	0;	;	40MSS	70S	40MSS	10MRMS	
BASRIBEY-95	3+	3+	4	4	0;	4	80S	70S	80S	20MS	
Jagger	3+	3+	4	1	0;	ö;	40MS	50MS	5R	TR	Sr38
Kaboi Panjakent	22+	2	4	4	0;	4	30RMR	20RMR	40MR	30MR	
Surkhaki-5	22 +	7	3+	4	0;	4	20MR	30RMR	40MR	TR	
Zafar	4		4	4	0;	;1-	60S	80S	80S	10RMR	
Steklovidnaya- 24	3+	$\frac{3}{2}$	3+ 3+	4	0;	4	60S	60S	80S	30MS	Sr5
SIETE- CERROS-66	4	3^+	3+	1	0;	0;	50MSS	40MSS	10RMR	TR	Sr6, Sr11
Krasnodarskaya- 99	$^{3+}_{3+}$	3+	⇔ +	3+	0;	0;	50S	80S	20MRMS	TR	
Jayhun	22+	22 +	4	4	0;	4	30MR	30MR	70MSS	40MR	
IZ-80	4	4	11 +	;1–	0;	;0	50S	809	20RMR	TR	38,+
AIKT-20	3^{+}	3+	$\frac{1}{1}$	••	0;	;0	40MS	50MS	20MR	TR	
OTUS TOBA 97	$^{3+}_{3+}$	3+	$^{11+}_{+}$	0;	0;	0;	80S	60MSS	10RMR	TR	Sr31
PASTOR/3/ VORONA/ CN079	3+	3+	11+	0;	0;	;	20MSS	10MSS	20RMR	10RMR	
CMN82A.1294/ 2*	$^{3+}_{3+}$	$^{3+}$	11+	<u>_</u>	0;	0;	40MRMS	50MR	30MR	5 RMR	
HUAVUN INIA	3+	$^{3+}_{3+}$	11 +	3+	0;	;0	30MR	40MR	30MSS	TR	
Trakua Hatti	3^{+}	3+	$^{3+}_{3+}$	$^{3+}_{3+}$	0;	;1	40S	100S	50MSS	5R	
Murodi-2013	3+	3+	4	3+	0;	1	60S	60MSS	30MS	5 RMR	
CHEN/AE.SQ// WEAVER/3	$^{3+}$	3+	4	3+ 5	0;	1 +	50S	50S	40MS	5RMR	

E I

Table 5 continued	pç										
Accession	Sr seed	Sr seedling resistance	istance				Sr Adult Plant Resistance	tance			Sr gene postulation based on
	TTKST	<u>۔</u>	TRTTF	TKTTF	BCCBC	MCCFC	TRTTF TKTTF BCCBC MCCFC TTKSK + TTKST TTKS + TTKST TKTTF	TTKS + TTKST	TKTTF	MCCFC	
	Rep. Rep. 1 2	Rep. 2					2010	2011			
Ganj	3+	3+	4	3+	0;	1 +/2+ 40S	40S	50S	40MR	5 RMR	
NAC/TH.AC// 3 * PVN/3/ MIR	3+	3+	4	3 +	0;	<u>+</u>	40S	60MSS	50MR	10RMR	
Safedaki Pomir 1 + 2 22+	1 + 2	22+	3+	3+	0;	4	I	I	SSM09	10RMR	
Safedaki Ishkoshim	7	;2-	3+	3+	0;	4	1	1	80MSS	20MR	
Babilo Pomir	4	;13 3+		3+	0;	;0	I	I	40MRMS 5R	5R	
Molecular marker analysis for Sr6, Sr31 and Sr38 are presented in Table 8.	r analysi.	s for Sn	5, <i>Sr31</i> and 2	1 Sr38 are	presented in	n Table 8.			,		

Deringer

Accessions exhibiting infection types of; 0 to 2 + were classified as resistant and those exhibiting infection types of 3-4 were classified as susceptible at the seedling stage. Adult plant rust severity was scored on a 0 to 100% basis and the infection responses on the size and type of uredinia where R (resistant), RMR (resistant to moderately resistant), MR (moderately resistant), MR-MS moderately resistant to moderately susceptible, MS (moderately susceptible), MS-S (moderately susceptible) and S (susceptible). APR was tested only against races TTKSK + TTKST, MCCFC, and TKTTF

Accession	Yr seed	Yr seedling resistance	ance										Yr adult plant resistance	lant	Yr gene postulation based on seedling and
	SE205/ 12	UK94/ 519	DK66/ 02	TJ01a/ 10	ER02/ 03	DK11/ 09	DK71/ 93	AF87/ 12	DK09/ 11	DK122/ 09	SE100/ 09	TK34/ 11	TK34/11	TJ01a/ 10	molecular marker
Navruz	7	7	7	7	7	7	7	7	7	7	6	7	ZSM07	100S	
Sarvar	1	1	0	1	4	2	2	2	2	1	0	7	20RMR	5R	
Vahdat	1	0	0	1	1	0	0	0	1	1	0	7	10RMR	10R	
Yusufi	4	Ζ	7	0	5	1	7	7	9	7	0	3	20RMR	10R	
Isfara	0	0	0	1	0	0	1	7	1	0	0	7	20RMR	10R	Yr27,+
Alex	L	Ζ	7	0	5	1	1	0	9	4	0	3	40MR	40MS	Yr9,+
Oriyon	4	2	0	0	4	0	2	7	0	4	3	2	30MR	20MR	
Sadokat	3	0	7	2	4	0	1	0	1	2	0	3	30MR	10R	Yr9,+
Ziroat-70	2	L	0	7	7	0	0	0	5	5	0	٢	SSM09	60S	Yr9,+
Norman	5	L	0	7	7	0	3	0	7	0	0	٢	50MS	100S	
Somoni	2	٢	0	9	1	0	1	9	9	5	0	2	60MR	40MS	
Tacikar	5	0	0	7	9	0	1	0	9	9	0	7	50MRMS	40MS	
Ormon	4	0	7	4	1	0	1	9	1	0	0	٢	10RMR	10R	
Iqbol	9	0	0	7	0	0	1	0	9	5	0	7	40MRMS	100S	
Starshina	5	L	7	0	0	0	9	9	9	7	0	4	30MR	10R	
Shokiri	б	7	7	7	1	0	0	7	0	7	б	ю	40MRMS	80S	
Fayzbaksh	4	0	1	1	ю	0	1	1	0	4	0	4	40RMR	20MR	
PRINA/STAR	٢	٢	7	7	4	9	5	0	9	7	0	1	40RMR	80S	
BASRIBEY-95	L	٢	7	7	1	0	7	7	9	7	0	7	20S	60S	
Jagger	9	Ζ	0	1	0	0	1	0	9	7	0	4	5R	10R	17,+
Kaboi Panjakent	2	٢	2	0	0	2	б	1	0	4	0	7	100S	20MR	
Surkhaki-5	2	٢	e,	0	0	0	2	0	0	4	0	7	100S	40MR	
Safedaki Ishkoshimi	٢	٢	٢	٢	7	9	L	9	9	L	0	б	20MR	70S	
Safedaki Pomir	7	٢	7	7	4	2	7	9	9	5	2	e,	20RMR	70S	
Babilo Pomir	7	٢	7	4	9	1	7	0	9	2	0	4	30MR	60MR	
Krasnodarskaya- 99	٢	0	٢	٢	1	0	٢	1	9	٢	0	ю	30MRMS	50S	
Jeyhun	٢	0	7	7	1	0	7	9	9	7	б	4	40MRMS	50S	
17 00	I	,													

Accession	Yr seedi	Yr seedling resistance	ance										Yr adult plant resistance	lant	<i>Yr</i> gene postulation based on seedling and
	SE205/ 12	SE205/ UK94/ DK66/ 12 519 02	DK66/ 02	TJ01a/ 10	ER02/ 03	DK11/ 09	DK71/ 93	AF87/ 12	DK09/ 11	TJ01a/ ER02/ DK11/ DK71/ AF87/ DK09/ DK122/ SE100/ TK34/ 10 03 09 93 12 11 09 09 11	SE100/ 09	TK34/ 11	TK34/11 TJ01a/ 10	TJ01a/ 10	molecular marker
AIKT-20	2	0	7	0	0	1	1	1	0	1	0	2	40MR	10R	
OTUS TOBA 97	4	0	0	1	7	0	0	0	0	5	0	4	30MR	10R	Yr9, +
PASTOR/3/ VORONA/ CN079	б	0	0	٢	0	0	0	0	9	6	0	\mathfrak{c}	20MRMS 100S	100S	
CMN82A.1294/ 2*	7	0	7	7	0	0	0	0	-	7	0	٢	40MRMS 20RMR	20RMR	
HUAVUN INIA 4	4	0	7	7	0	0	0	0	1	2	0	7	60MSS	10RMR	

Deringer

allu 117 5

Accessions exhibiting infection types of 0–4 were classified as resistant, those exhibiting 5–6 as moderately susceptible, and those exhibiting 7–9 as susceptible at the seedling stage. Adult plant rust severity was scored on a 0 to 100% basis and the infection responses on the size and type of uredinia where R (resistant), RMR (resistant to moderately resistant to moderately susceptible, MS (moderately susceptible), MS-S (moderately susceptible) and S (susceptible). APR was tested only against races TJ01a/10 and TR34/11

Table 7	Seedling infection	types to leaf	rust, and molecular	marker analysis for Lr26

Accession	Lr seedlin	ng resistar	ice							
_	TDBGG	TFBJQ	TNRJJ	MLDSD	MBDSB	TBBGJ	KFBJG	MHDSB	TCRKG	Lr gene postulation based on seedling and molecular marker
Navruz	;1-	3	3+	3	33+	33+	3+	3+	33+	
Sarvar	0;	0;	;	3	;	;	;	;	;	
Vahdat	;	;	;	;	;	;1-	32+	11 +	;1-	
Yusufi	;	;12	;1	33+	;	;1	3+	;	;1	
Isfara	;1-	33+	3	3	;	;11+	33+	1 + 2	12	
Alex	0;	;1	;	11+	;	;1-	33+	33+	33+	Lr26
Oriyon	;1-	;1	3	11+	;1+	;12-	3	3+	33+	
Sadokat	;	;1-	;	1 +	1-	;1-	2 + 3	3	;1	Lr26
Ziroat-70	;	;12	;	22+	11 +	;1-	2;3	3	;1	Lr26
Norman	;1-	3	3+	33+	3	;1	3+	33+	3+	
Somoni	2+	33+	3	22+	11 +	33+	22+	2+	33+	
Tacicar	;1-	;12	3	33+	;1-	;11+	33+	22+	33+	
Ormon	;	;1/ 22 +	33+	3	12	3	3	33+	;11+	
Iqbol	;12	2	;12	11+	;1	11+	11+	33+	11 + 2 -	Lr16
Starshina	;1-	3	3	3	22+	3	3+	3+	33+	
Shokiri	;	;1	;	22+	1 +	3	22+	33+	;1	
Fayzbaksh	33+	22 + ;	3+	;1	;	;	;	3+	;1	
PRINA/STAR	;1-	2 + 3	1	;1	11 +	1 + 2	;1-	3+	;11+	
BASRIBEY-95	;1-	33+	33+	2+	1 +	;11+	3+	;1-	11 +	
Jagger	3+	3+;	2+	2+	11 +	;1	33+	33+	1 + 2	
Kaboi Panjakent	3+	3+	3+	3 + 4	3+	3 + 4	3 + 4	3 + 4	3+	
Surkhaki 5	3+	33+	3+	3+	3 + 4	3 + 4	3 + 4	3 + 4	3+	
Zafar	;1-	;1+	;	11+	;1	;1-	;1	;1	11+	
Steklovidnaya- 24	;2	3 +	3+	12-	1 + 2	33+	3	3	12	
SIETE- CERROS-66	;12	3+	3+	3+	33+	3+	3+	3+	3+	
Krasnodarskaya- 99	2 + 3	3+	3+	33+	2 + 3	3+	3+	3+	3+	
Jayhun	3+	33+	3+	3+	;	3+	3+	3+	3+	
IZ-80	33+	3+	;1	33+	3	3	;	3+	11+	
AIKT-20	0;	0;	3	2	;	;	;	;	;	
OTUS TOBA 97	;	;12—	;	;1	;1—	;	;	33+	;1—	Lr16, Lr26
PASTOR/3/ VORONA	;	;12	;	;1	;1–	;1-	3	;	11+	
CMN82A.1294/ 2*	;	;12	;	;1+	;1–	;11+	3	33+	11+	
HUAVUN INIA	;	;12	0;	;12	;	;	11+	2 + 3	;1—	Lr16
Trakua Hatti	;2—	2	3+	3	2 + 3	2 + 3	33+	3+	11 + 2 -	
Murodi-2013	;	;1+	;12	12	12+	12+	33+	;	1 + 2	

Table 7 continued

Accession	Lr seedlin	ng resistan	ce							
	TDBGG	TFBJQ	TNRJJ	MLDSD	MBDSB	TBBGJ	KFBJG	MHDSB	TCRKG	Lr gene postulation based on seedling and molecular marker
CHEN/AE.SQ// WEAVER/3/ PASTOR	;1	22+	3	3	33+	33+	33+	33+	12	
Ganj	;	22+	;1	11 +	;1	;1	;	;	;1—	
NAC/TH.AC// 3*PVN/3/ MIRL	;	22+	;	11+	;1	;1	;	;	;1–	
Safedaki Pomir	3	2+		;1			3+		3+	
Safedaki Ishkoshim				1+			3+	3+		
Babilo Pomir										Not tested

Molecular marker analysis for Lr26 is presented in Table 8

Accessions exhibiting infection types of; 0 to 2 + were classified as resistant and those exhibiting 3–4 were classified as susceptible at the seedling stage

(120 bp), which is linked to the Sr2/Yr30/Lr27 pleiotropic resistance gene, was amplified in 25 accessions with the *PBC* phenotype (score 1-3) (Table 8). Markers XcsSr2 (172 bp) and wMAS000005 did not detect the presence of Sr2/ Yr30/Lr27 in any accessions, while marker Xgwm533 detected its presence in all accessions with the PBC phenotype (score 1–3) (Table 8). Initially, all accessions with and without the LTN phenotype (score 0-3) were screened with the csLV34 (150 bp) marker. In thirteen cases, this marker indicated the presence of the Lr34/Yr18/Sr57 APR resistance genes, which were subsequently validated by the wMAS000003 Kompetitive Allele Specific PCR (KASP) marker (Table 8). Use of KASP marker wMAS000005 positively detected the presence of Sr2/Yr30/Lr27 in Hope and CS-Hope DS 3B, but failed to do so in the Tajik accessions; thus, this KASP marker is located in the "Hope and CS Hope DS 3B" allele. The Xwmc364 (207 bp) marker was used on all accessions to detect the presence of Yr2, but all of them amplified a 201 bp marker allele, indicating the absence of Yr2.

Discussion

In this study, we identified the presence of majoreffect (seedling) and pleiotropic APR genes conferring resistance against three important rust diseases, i.e. stem rust, stripe rust and leaf rust pathogens in wheat cultivars, landraces and advanced breeding lines that are widely cultivated and used in the national wheat breeding program in Tajikistan. The major-effect resistance genes identified by seedling and adult plant responses, and molecular marker analysis were Sr5, Sr6, Sr11, Sr31/Yr9/Lr26, Sr38/Yr17/Lr37, Yr27, and Lr16. Additionally, the pleiotropic APR genes of Sr2/ Yr30/Lr27 and Lr34/Yr18/Sr57 were also identified based on the PBC and LTN phenotypes in the field and confirmed with linked molecular markers. The APR gene Lr37 was detected by a molecular marker (VENTRIUP/LN2), which is completely linked with the Sr38/Yr17 genes. In addition, pedigree information (http://wheatpedigree.net/) also was used to augment gene postulation data. A number of the wheat accessions showed resistance to all races of the three rusts used in this study, and their infection type pattern did not correspond to the avirulence/virulence profiles of the races as identified on the differential accessions. Therefore, the resistance genes present in these accessions could not be postulated. We conclude that

Accession	PBC		LTN Sr2/Yr30/Lr27	Jr27		Yr2	Sr6	Sr31/Yr9/Lr26	ALr26		Sr38/ v17/127	Lr34/Yr18/Sr57	'8/Sr57	Sr, Yr
			Xgwm533	XcsSr2	wMAS00 0005	Xwmc 364	Xcfd43	Xscm9	Xiag95	XREMS1303	VENTRIUP/ LN2 LN2	csLV34	wMAS00 0003	anu <i>Li</i> gene
Navruz	0	0	I	I	I	I	I	I	I	1	I	I	I	
Sarvar	ю	0	+	Ι	I	I	I	Ι	Ι	I	I	I	I	Sr2/Yr30/Lr27
Vahdat	7	б	+	I	I	I	I	I	I	*	I	+	+	Sr2/Yr30/Lr27, Lr34/ Yr18/Sr57
Yusufi	ю	-	+	I	I	I	I	I	I	*	I	I	I	Sr2/Yr30/Lr27
Isfara	1	Э	+	I	I	I	I	I	I	*	I	+	+	Lr34/Yr18/Sr57
Alex	7	б	+	I	I	I	I	+	I	+	I	+	+	Sr2/Yr30/Lr27, Sr31/ Yr9/Lr26, Lr34/ Yr18/Sr57
Sadokat	-	\mathfrak{c}	+	I	I	I	I	+	+	+	I	+	+	Sr2/Yr30/Lr27, Sr31/ Yr9/Lr26, Lr34/ Yr18/Sr57
Ziroat-70	7	б	+	I	I	I	I	+	+	+	I	+	+	Sr2/Yr30/Lr27, Sr31/ Yr9/Lr26, Lr34/ Yr18/Sr57
Iqbol	1	ю	+	I	I	I	I	I	I	*	Ι	+	+	Lr34/Yr18/Sr57
Shokiri	1	б	+	I	I	Ι	I	I	Ι	*	Ι	+	+	Lr34/Yr18/Sr57
PRINA/STAR	1	ю	+	I	I	I	I	I	I	*	Ι	+	+	Lr34/Yr18/Sr57
Jagger	0	0	I	*	*	Ι	I	I	Ι	I	+	I	I	Sr38/Yr17/Lr37
SIETE- CERROS-66	1	1	+	I	I	I	+	I	I	*	I	I	I	Sr6
IZ-80	1	1	+	I	Ι	Ι	I	I	I	*	+	Ι	I	Sr38/Yr17/Lr37
OTUS TOBA 97	7	б	+	I	I	I	I	+	+	+	I	+	+	Sr2/Yr30/Lr27, Sr31/ Yr9/Lr26, Lr34/ Yr18/Sr57
PASTOR/3/ VORONA/ CN079	7	1	+	I	I	I	I	I	I	*	I	I	I	Sr2/Yr30/Lr27
HUAVUN INIA	-	б	+	I	I	I	I	I	I	*	I	+	+	Lr34/Yr18/Sr57
Murodi-2013	7	7	+	I	I	I	I	I	I	*	I	+	+	Sr2/Yr30/Lr27, Lr34/

Euphytica (2019) 215:55

Xgwn533 XcsSr2 wMAS00 Xwmc Xcfd43 Xscm9 Xiag95 XREMS1303 UNITION csLV34 wMAS00 CHEN/AE.SQ/1 2 2 + - - - - + <t< th=""><th>4S00 Xwmc</th><th></th><th></th><th></th><th></th><th>Vul 7/1 u2 7</th><th></th><th></th><th>and I v</th></t<>	4S00 Xwmc					Vul 7/1 u2 7			and I v
VAE.SQ// 2 2 + - AVER/3 2 1 + -		Xcfd43	Xscm9	Xiag95	XREMS1303	VENTRIUP/ LN2 LN2	csLV34 wh	wMAS00 0003	gene
2 1 + -	I	I	I	I	*	I	++		Sr2/Yr30/Lr27, Lr34/ Yr18/Sr57
	I	I	I	I	*	I	I		Sr2/Yr30/Lr27
NAC/TH.AC// 2 1 + – – – – – – – – – MIRLO	I	I	I	I	*	1	1		Sr2/Yr30/Lr27
Safedaki 0 2 – * * Ishkoshim	I	I	I	I	*	I	++		Lr34/Yr18/Sr57

The presence of PBC (Pseudo-Black Chaff) and LTN (Leaf Tip Necrosis) phenotypes were assessed using 0-4 scale in the field, and in addition were confirmed with linked

molecular markers

these accessions carry previously described gene(s) in combinations or new genes. To elucidate the genetic basis of resistance in these widely resistant accessions, biparental crosses, allelism tests and/or additional phenotyping tests with a wider array of rust races should be implemented (Li et al. 2015; Randhawa et al. 2015). The resistance gene Sr5 in Navruz and Sr6 and Sr11 in Siete-Cerros-66 were identified in this investigation. Navruz is commonly used as a control in all wheat breeding nurseries and official trials (Husenov et al., 2015), and Siete-Cerros-66 has been cultivated by Tajik farmers since 1970 (Muminjanov et al. 2008). Sr5, Sr6, and Sr11 have been effective and valuable stem rust resistance genes; however, Pgt races with virulence for these genes are spreading in many wheat growing regions worldwide (Singh et al. 2015). Combinations of seedling and APR genes (i.e. Sr2/Yr30/Lr27, Sr31/Yr9/Lr26, Lr34/Yr18/Sr57. Lr16 etc.) were also present in some of the accessions (Table 8), thus being promising sources for improved resistance to rusts in Tajik breeding programs. Gene pyramiding using the pleiotropic APR genes of Sr2/ Yr30/Lr27 and Lr34/Yr18/Sr57 in a combination with seedling resistance genes in several wheat breeding programs has provided durable rust resistance (Ellis et al. 2014).

Four wheat accessions (Alex, Sadokat, Ziroat-70 and Otus Toba 97) were identified as carrying the Sr31/Yr9/Lr26 resistance genes. Accessions possessing this gene complex are known to have the 1BL.1RS wheat-rye translocation, originating from Petkus rye (Friebe et al. 1996). The Sr31/Yr9/Lr26 complex is very common in wheat accession due to the wide utilization of the wheat cultivars Kavkaz and Aurora in CIMMYT breeding programs worldwide (Rajaram et al. 1983). The individual genes in this complex have been overcome by virulent races of Pgt, Pst and Pt, respectively, in various wheat growing regions (Pretorius et al. 2000; Chen et al. 2010; Huerta-Espino et al. 2011; Wellings 2011). Sr31 has provided durable resistance to stem rust for more than 30 years, and still remains an effective source of resistance to many Pgt races with the exception of those in the Ug99 race group. Races of Pst with virulence for Yr9 have been reported from all major wheat production areas in Tajikistan based on trap nurseries and race surveys (http://wheatrust.org/). Additionally, virulence against the leaf rust resistance gene Lr26 is common in Tajikistan (Kolmer and Ordoñez 2007) and many

other parts of the world. Thus, although the resistance genes on the 1BL.1RS translocation do not confer a high degree of resistance towards new races of the rust pathogens, wheat accessions carrying this translocation are cultivated throughout the country. Two wheat cultivars widely cultivated in Tajikistan (Jagger and IZ-80) were identified as possessing the Sr38/Yr17/ Lr37 gene complex. Previous studies have characterized the Sr38/Yr17/Lr37 locus as a translocation of chromosome 2NS from Triticum ventricosum replacing the homoeologous region of 2AS in Triticum *aestivum*; thus, this translocation confers resistance against a range of races of Pgt, Pst and Pt (Helguera et al. 2003). The presence of Yr27 in Isfara and Lr16 in Iqbol, OTUS TOBA 97 and Murodi-2013 were postulated. Lr16 is known as an effective source of leaf rust resistance in wheat (Kolmer and Hughes 2013) and should provide stable resistance when pyramided with Lr27, Lr34, and Lr37 in the Tajik breeding program for the developing resistant wheat cultivar.

Both phenotyping (using 0-4 scale for the PBC phenotype) and genotyping (using the Xgwm533, XcsSr2, and wMAS000005 markers) were applied for detection of the Sr2/Yr30/Lr27 APR genes; thus, only 25 accessions with the Xgwm533 marker (score 1-3 for the PBC phenotype) were identified. However, only eleven accessions were considered to truly possess the Sr2/Yr30/Lr27 APR genes based on the Xgwm533 marker and PBC phenotype, i.e. score of 2 for medium pigmentation and 3 for high pigmentation (Table 8). The PBC phenotype is known to be associated with the Sr2/Yr30/Lr27 gene complex, although its expression is sometimes variable due to both the genotype and environment (McFadden 1930). In addition, the PBC phenotype is genetically associated with several quantitative trait loci (QTL) on the chromosome arms 2DS, 3BS, 4AL, and 7DS (Juliana et al. 2015). With respect to the molecular markers in the present study, XcsSr2 and wMAS000005 were only able to identify the Sr2/Yr30/Lr27 APR genes in the Hope and CS-Hope DS 3B lines, while the Xgwm533 marker positively detected the gene complex in 25 accessions. These results corroborate previous investigations that showed no perfect match between amplification of the XcsSr2/wMAS000005 and Xgwm533 markers in various accessions (Mago et al. 2011; Pretorius et al. 2012). Thus, in the present study, the PBC phenotype, with scores of 1-3 in 25 accessions, showed a high degree of correlation with amplification of the Xgwm533 marker. However, the Xgwm533 marker may also positively amplify even when Sr2/Yr30/Lr27 is not present in certain wheat accessions (Spielmeyer et al. 2003; Mago et al. 2011). Hope and CS-Hope DS 3B (172 bp) have been shown to carry Sr2/Yr30/Lr27 based on studies using the XcsSr2 marker (Mago et al. 2011). Initially, Sr2 was reported to be linked with the PBC phenotype in the cultivar Hope; thus, this phenotypic trait has become a valuable selection trait for wheat breeders in the field (McFadden 1930). The KASP marker wMAS000005 identified the allele in Hope and CS-Hope DS 3B, thereby identifying the presence of Sr2/Yr30/Lr27. However, this marker failed to amplify any signal in the Tajik wheat, thus indicating the absence of Sr2/ Yr30/Lr27. Molecular markers csLV34 and wMAS000003 successfully identified the presence of the Lr34/Yr18/Sr57 APR genes in 13 accessions; therefore, these markers can be reliably used with LTN phenotype for assessing APR genes. In addition to gene postulation, the Xwmc364 marker can be used to confirm the presence or absence of Yr2 gene. This Xwmc364 (207 bp) marker positively confirmed Yr2 in the Kalyansona and Heines VII differential accessions, but amplified the 201 bp or null allele in all of the Tajik accessions, suggesting the absence of Yr2.

In this study, we demonstrated that some of the evaluated accessions carry seedling and pleiotropic APR resistance genes against all the used rust races. Thereby, our results show that some of the wheat accessions may be used as a diverse source of rust resistance. The gene postulation, together with the use of molecular markers, successfully applied to detect the presence of known seedling and APR genes in some of the evaluated accessions. Moreover, the genetic basis of resistance in some accessions should be characterized through other genetic analyses because gene postulation and molecular markers failed to do so in this study. In the meantime, these accessions can be used by the national wheat breeding program in Tajikistan as crossing parents to develop new varieties with durable rust resistance.

Acknowledgment Funding from the Monsanto's Beachell-Borlaug International Scholars is gratefully acknowledged. We thank Kenyan Agricultural and Livestock Research Organization Food Crops Research Center and CIMMYT-Kenya for conducting stem rust field screenings in Kenya, Njoro. The authors appreciate Dr. James Kolmer for his supervision in the leaf rust seedling resistance test at USDA-ARS-CDL.

Author's contribution MR designed the study and was responsible for conducting all experiments. MO and HM developed some of the wheat accessions and provided seeds. MNR and BJS supervised the stem rust seedling and adult plant tests in the University of Minnesota and USDA-ARS-CDL in USA. MSH supervised the stripe rust seedling test in the GRRC in Denmark. KN supervised the stem rust and stripe rust seedling and adult plant tests in the RCRRC in Turkey. MNR, BJS, and EJ supervised the overall study. MR wrote the manuscript and all authors contributed to writing and editing the manuscript.

Compliance with ethical standards

Conflict of interest All authors have no conflict of interest.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http:// creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

References

- Ali S, Rodriguez-Algaba J, Thach T, Sørensen CK, Hansen JG, Lassen P, Nazari K, Hodson DP, Justesen AF, Hovmøller MS (2017) Yellow rust epidemics worldwide were caused by pathogen races from divergent genetic lineages. Front Plant Sci 8:1–14. https://doi.org/10.3389/fpls.2017.01057
- Berlin A, Rahmatov M, Muminjanov H, Yuen J (2015) Sexual reproduction contributes to genotypic variation in the population of *Puccinia graminis* in Tajikistan. Eur J Plant Pathol 141:159–168
- Chen XM (2005) Epidemiology and control of stripe rust [*Puccinia striiformis* f. sp. *tritici*] on wheat. Can J Plant Pathol 27:314–337
- Chen X, Penman L, Wan A, Cheng P (2010) Virulence races of *Puccinia striiformis* f. sp. *tritici* in 2006 and 2007 and development of wheat stripe rust and distributions, dynamics, and evolutionary relationships of races from 2000 to 2007 in the United States. Can J Plant Pathol 32:315–333
- Davlatov SK, Baikova EV (2011) Altitudinal limits of *Berberis* L. in Tajikistan. Contemp Probl Ecol 4:164–166
- Edwards K, Johnstone C, Thompson C (1991) A simple and rapid method for the preparation of plant genomic DNA for PCR analysis. Nucleic Acids Res 19:1349
- Ellis JG, Lagudah E, Spielmeyer W, Dodds P (2014) The past, present and future of breeding rust resistant wheat. Front Plant Sci 5:1–13. https://doi.org/10.3389/fpls.2014.00641
- Eshonova Z, Morgounov A, Paroda R, Qosymov F, Khusaynov I, Yurov A, Naimov S, Hikmatov N, Muminjanoy H (2005) Wheat breeding and seed production in different ecological zones of Tajikistan. In: Morgounov A, McNab A,

Campbell KG, Paroda R (eds) Increasing wheat production in Central Asia through science and cooperation. Proceedings of the first Central Asian wheat conference, 10–13 June 2003, Almaty. CIMMYT, pp 58–61

- FAO (2015) Wheat Landraces in farmers' fields in Tajikistan: National survey, collection, and conservation, 2013–2015.
 In: Husenov B, Otambekova M, Morgounov A, Muminjanov H. Ankara, Turkey. http://www.fao.org/3/a-i5187e. pdf. Accessed 19 Feb 2019
- Flor HH (1971) Current status of the gene-for-gene concept. Ann Rev Phytopathol 9:275–296
- Friebe B, Jiang J, Raupp WJ, McIntosh RA, Gill BS (1996) Characterization of wheat–alien translocations conferring resistance to diseases and pests: current status. Euphytica 91:59–87
- Helguera M, Khan IA, Kolmer J, Lijavetzky D, Zhong-qi L, Dubcovsky J (2003) PCR Assays for the *Lr37-Yr17-Sr38* cluster of rust resistance genes and their use to develop isogenic hard red spring wheat lines. Crop Sci 43:1839–1847
- Hovmøller MS, Sørensen CK, Walter S, Justesen AF (2011) Diversity of *Puccinia striiformis* on cereals and grasses. Ann Rev Phytopathol 49:197–217
- Hovmøller MS, Rodriguez-Algaba J, Thach T, Sørensen CK (2017) Race typing of *Puccinia striiformis* on wheat. In: Periyannan S (ed) Wheat rust diseases: methods and protocols. Springer, New York, pp 29–40
- Huerta-Espino J, Singh RP, Germán S, McCallum BD, Park RF, Chen WQ, Bhardwaj SC, Goyeau H (2011) Global status of wheat leaf rust caused by *Puccinia triticina*. Euphytica 179:143–160
- Husenov B, Makhkamov M, Garkava-Gustavsson L, Muminjanov H, Johansson E (2015) Breeding for wheat quality to assure food security of a staple crop: the case study of Tajikistan. Agric Food Secur 4:1–8
- Jin Y, Singh RP, Ward RW, Wanyera R, Kinyua M, Njau P, Fetch T, Pretorius ZA, Yahyaoui A (2007) Characterization of seedling infection types and adult plant infection responses of monogenic Sr gene lines to race TTKS of Puccinia graminis f. sp. tritici. Plant Dis 91:1096–1099
- Juliana P, Rutkoski JE, Poland JA, Singh RP, Murugasamy S, Natesan S, Barbier H, Sorrells ME (2015) Genome-wide association mapping for leaf tip necrosis and pseudo-black chaff in relation to durable rust resistance in wheat. Plant Genome 8:1–12
- Juliana P, Singh RP, Singh PK, Crossa J, Huerta-Espino J, Lan C, Bhavani S, Rutkoski JE, Poland JA, Bergstrom GC, Sorrells ME (2017) Genomic and pedigree-based prediction for leaf, stem, and stripe rust resistance in wheat. Theor Appl Genet 130:1415–1430
- Knott (1989) Breeding methods. In: Frankel R, Grossman M, Linskens HF, Maliga P, Riley R (eds) The wheat rusts breeding for resistance, vol 12. Monographs on theor appl gen. Springer, Berlin, Heidelberg, pp 126–148
- Kolmer JA (2005) Tracking wheat rust on a continental scale. Curr Opin Plant Biol 8:441–449
- Kolmer JA, Hughes ME (2013) Physiologic specialization of *Puccinia triticina* on wheat in the United States in 2011. Plant Dis 97:1103–1108

- Kolmer JA, Ordoñez ME (2007) Genetic differentiation of *Puccinia triticina* populations in Central Asia and the Caucasus. Phytopathology 97:1141–1149
- Lagudah ES, McFadden H, Singh RP, Huerta-Espino J, Bariana HS, Spielmeyer W (2006) Molecular genetic characterization of the *Lr34/Yr18* slow rusting resistance gene region in wheat. Theor App Genet 114:21–30
- Li H, Vikram P, Singh RP, Kilian A, Carling J, Song J, Burgueno-Ferreira JA, Bhavani S, Huerta-Espino J, Payne T, Sehgal D, Wenzl P, Singh S (2015) A high density GBS map of bread wheat and its application for dissecting complex disease resistance traits. BMC Genom 16:1–15
- Lin F, Xu SC, Zhang LJ, Miao Q, Zhai Q, Li N (2005) SSR marker of wheat stripe rust resistance gene *Yr2*. J Triticeae Crops 25:17–19 (in Chinese with an English abstract)
- Long DL, Kolmer JA (1989) A North American system of nomenclature for *Puccinia recondita* f. sp. *tritici*. Phytopathology 79:525–529
- Mago R, Miah H, Lawrence GJ, Wellings CR, Spielmeyer W, Bariana HS, McIntosh RA, Pryor AJ, Ellis JG (2005) Highresolution mapping and mutation analysis separate the rust resistance genes *Sr31*, *Lr26* and *Yr9* on the short arm of rye chromosome 1. Theor Appl Genet 112:41–50
- Mago R, Brown-Guedira G, Dreisigacker S, Breen J, Jin Y, Singh R, Appels R, Lagudah ES, Ellis J, Spielmeyer W (2011) An accurate DNA marker assay for stem rust resistance gene Sr2 in wheat. Theor Appl Genet 122:735–744
- McFadden ES (1930) A successful transfer of emmer characters to vulgare wheat. J Am Soc Agron 22:1020–1034
- McIntosh RA, Dubcovsky J, Rogers WJ, Morris C, Xia XC (2017) Catalogue of gene symbols for wheat: 2017 supplement. https://shigen.nig.ac.jp/wheat/komugi/genes/ macgene/supplement2017.pdf. Accessed 19 Feb 2019
- McNeal FH, Konzac CF, Smith EP, Tate WS, Russell TS (1971) A uniform system for recording and processing cereal research data. ARS-USDA, Washington, pp 34–121
- Muminjanov H, Eshonova Z, Morgounov A (2008) Wheat yield potential improvement in Tajikistan. In: Reynolds MP, Pietragalla J, and Braun H-J (eds) Challenges to international wheat breeding. Proceedings of the international symposium on wheat yield potential, 20–24 Mar 2006, Obregon. CIMMYT, pp 87–90
- Oelke LM, Kolmer JA (2004) Characterization of leaf rust resistance in hard red spring wheat cultivars. Plant Dis 88:1127–1133
- Peterson RF, Campbell AB, Hannah AE (1948) A diagrammatic scale for estimating rust severity on leaves and stems of cereals. Can J Res 26:496–500
- Pett B, Muminjanov H, Morgunov A, Rahmatov M, Sarkisova T (2005) Wheat diseases & pests observation for selection of resistant varieties in Tajikistan. Agromeridian Theor Appl Agric Res J 1:83–87
- Pretorius ZA, Singh RP, Wagoire WW, Payne TS (2000) Detection of virulence to wheat stem rust resistance gene *Sr31* in *Puccinia graminis*. f. sp. *tritici* in Uganda. Plant Dis 84:203
- Pretorius ZA, Jin Y, Bender CM, Herselman L, Prins R (2012) Seedling resistance to stem rust race Ug99 and marker analysis for *Sr2*, *Sr24* and *Sr31* in South African wheat cultivars and lines. Euphytica 186:15–23

- Rahmatov M, Muminjanov H, Eshonova Z, Morgounov A, Hede A, Johansson E (2011) The national wheat breeding program for development of high yielding and rusts resistant of bread wheats for Tajikistan. In: McIntosh R, Proceedings of the Borlaug global rust initiative technical workshop, 11–16 June 2011, St Paul, p 174
- Rahmatov M, Eshonova Z, Ibrogimov A, Otambekova M, Khuseinov B, Muminjanov H, Morgounov A, Merker A, Hede A (2012) Monitoring and evaluation of yellow rust for breeding resistant varieties of wheat in Tajikistan. In: Yahyaoui A, Rajaram S (eds) Meeting the challenge of yellow rust in cereal crops. Proceedings of the 2nd, 3rd and 4th regional conferences on yellow rust in the Central and West Asia and North Africa (CWANA) region, 10–12 Oct 2009, Antalya. ICARDA, pp 318–325
- Rahmatov M, Rouse MN, Steffenson BJ, Andersson SC, Wanyera R, Pretorius ZA, Houben A, Kumarse N, Bhavani S, Johansson E (2016) Sources of stem rust resistance in wheat–alien introgression lines. Plant Dis 100:1101–1109
- Rahmatov M, Hovmøller MS, Nazari K, Andersson SC, Steffenson BJ, Johansson E (2017) Seedling and adult plant stripe rust resistance in diverse wheat–alien introgression lines. Crop Sci 57:2032–2042
- Rajaram S, Mann CE, Ortiz-Ferrara G, Mujeeb-Kazi A (1983) Adaptation, stability and high yield potential of certain 1B/ 1R CIMMYT wheats. In: Sakamoto S (ed) Proceedings of the 6th international wheat genetic symposium, Kyoto, pp 613–621
- Randhawa MS, Bariana HS, Mago R, Bansal UK (2015) Mapping of a new stripe rust resistance locus *Yr57* on chromosome 3BS of wheat. Mol Breed 35:1–8
- Roelfs AP, Singh RP, Saari EE (1992) Rust diseases of wheat: concepts and methods of disease management. CIMMYT, Mexico
- Rouse MN, Wanyera R, Njau P, Jin Y (2011) Sources of resistance to stem rust race Ug99 in spring wheat germplasm. Plant Dis 95:762–766
- Saal B, Wricke G (1999) Development of simple sequence repeat markers in rye (*Secale cereale* L.). Genome 42:964–972
- Shiferaw B, Smale M, Braun H-J, Duveiller E, Reynolds M, Muricho G (2013) Crops that feed the world 10. Past successes and future challenges to the role played by wheat in global food security. Food Secur 5:291–317
- Singh RP, Hodson DP, Jin Y, Lagudah ES, Ayliffe MA, Bhavani S, Rouse MN, Pretorius ZA, Szabo LJ, Huerta-Espino J, Basnet BR, Lan C, Hovmøller MS (2015) Emergence and spread of new races of wheat stem rust fungus: continued threat to food security and prospects of genetic control. Phytopathology 105:872–884
- Solh M, Nazari K, Tadesse W, Wellings C (2012) The growing threat of stripe rust worldwide. In: McIntosh R (ed) Proceedings of the Borlaug global rust initiative technical workshop, 1–4 Sept 2012, Beijing, pp 1–10
- Spielmeyer W, Sharp PJ, Lagudah ES (2003) Identification and validation of markers linked to broad-spectrum stem rust resistance gene *Sr2* in wheat (*Triticum aestivum* L.). Crop Sci 43:333–336
- Stakman EC, Stewart DM, Loegering WQ (1962) Identification of physiologic races of *Puccinia graminis* var. *tritici*.

United States Department of Agriculture, Agricultural Research Service, Beltsville, p E-617

- Szabo L, Cuomo C, Park R (2014) Puccinia graminis. In: Dean RA, Lichens-Park A, Kole C (eds) Genomics of plant-associated fungi: monocot pathogens. Springer, Berlin, Heidelberg, pp 177–196
- Tsilo TJ, Chao S, Jin Y, Anderson AJ (2009) Identification and validation of SSR markers linked to the stem rust resistance gene *Sr6* on the short arm of chromosome 2D in wheat. Theor Appl Gen 118:515–524
- Wellings C (2011) Global status of stripe rust: a review of historical and current threats. Euphytica 179:129–141
- Yahyaoui A, El Ahmed M, Naimi M, Ketata H, Morgounov A, Torabi M, Cetin L, Saidov M, Koyshibaev M, Djunusova M (2012a) Prevalent yellow rust pathotypes in CWANA. In: Yahyaoui A, Rajaram S (eds) Meeting the challenge of yellow rust in cereal crops. Proceedings of the 2nd, 3rd and 4th regional conferences on yellow rust in the Central and

West Asia and North Africa (CWANA) region, 22–26 Mar 2004, Islamabad. ICARDA, pp 137–138

- Yahyaoui A, Ketata H, Torabi M, Morgounov A, Braun H, Mosaad M, Djumakhanov B, Koichibayev M (2012b) Cereal rust monitoring in Central and West Asia and North Africa: current status and future challenges. In: Yahyaoui A, Rajaram S (eds) Meeting the challenge of yellow rust in cereal crops. Proceedings of the 2nd, 3rd and 4th regional conferences on yellow rust in the Central and West Asia and North Africa (CWANA) Region, 22–26 Mar 2004, Islamabad, Pakistan. ICARDA, pp 155–170
- Zadoks JC, Chang TT, Konzak CF (1974) A decimal code for the growth stages of cereals. Weed Res 14:415–421

Publisher's Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.