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Abstract Phenomics or automated phenotyp-

ing (AP) is an emerging approach, identified as a

priority for future crop breeding research. This

approach promises to provide accurate, precise, fast,

large-scale, and accumulated phenotyping data which

when integrated with corresponding genomic and

environmental data is expected to trigger a great leap

forward in plant breeding. However, despite promis-

ing applications, AP adoption in plant breeding is still

in its infancy. It is unclear to many plant breeders how

or if much of the enormous volume, diversity, and

velocity of imaging and remote-sensing data gener-

ated by AP is going to be usefully integrated into

breeding programs. This paper develops an econom-

ical model of heterogeneous breeders’ decision-

making to examine adoption decisions regarding

whether to adopt AP or continue using conventional

phenotyping. The results of this model indicate that

many interlocking factors, including genetic gain/ex-

pected return, variable and sunk costs, subsequent rate

of technology improvement, and breeders’ level of

aversion to AP, are at work as breeders determine

whether to adopt AP. This study also provides a

numerical example to show the impact of breeders’

aversion toward the adoption of a new technology

(e.g., AP) on the expected return generated from

breeding a new wheat variety.
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Introduction

There is a widespread and long-standing agreement

that global improvement in crop productivity has

mainly been achieved through the development and

adoption of new agricultural technologies (Hurley

et al. 2016; Hurley et al. 2014; Alston et al. 2010;

Alston et al. 2000). Greater crop production is forecast

to be needed to ensure food security as competition for

scarce land and water resources intensifies in the face

of climate change, and population and income growth

(Hunter et al. 2017). Most of the increase in this
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production must come from lands already in cultiva-

tion—80% of the global growth in crop production

must come from intensification in the form of yield

gains, 10% from cropping intensities, and 10% from

arable land expansion (FAO 2012). Plant genomics

and phenomics represent the most promising tools for

accelerating yield gains, and plant breeding is at heart

of that mission. One place of particular focus for some

is the selection process, whereby breeders select

materials for further development based on phenomic

expression. While many breeders have adopted

genomics and various advanced genetic breeding or

selection processes, for the most part, plant breeders

have not exploited many of the opportunities for

mechanisation or intensive analysis now available due

to enhanced sensing, imaging and phenotype data

collection.

A phenotype is the composite of an observable

expression of a genome for traits in a given environ-

ment. Traits could be visible to the naked eye

(conventional phenotype, CP), or visible by using

technical procedures. Phenomics—the systematic

genome-wide study of an organism’s phenotype—is

an emerging approach that aims to automate and

standardize the phenotyping process to capture infor-

mation about the minutiae of plant growth, composi-

tion and performance by using a wide array of non-

invasive and non-destructive imaging and remote

sensing techniques, including high-throughput meth-

ods of data acquisition and analysis. This approach

promises to deliver accurate, precise, fast, large-scale,

and accumulated data in controlled and varying

environmental conditions and to provide the opportu-

nity to ‘datify’ or turn into data phenotyping activities

that were previously un-quantified (Kumar et al. 2015;

Singh and Singh 2015, Newell and Marabelli 2015).

Interdisciplinary collaboration of expertise including

biologists, engineers, and computer scientists is cru-

cial for the implementation of phenomics or auto-

mated phenotyping (AP) into practice (Cobb et al.

2013; Kumar et al. 2015).

In plant breeding, AP could be used to screen

germplasm collections for desirable traits (forward

phenomics) and to dissect traits shown to be of value to

reveal their mechanistic basis, including various

physiological, biochemical, and biophysical processes

and genes controlling these traits (reverse phenomics)

(Singh and Singh 2015; Kumar et al. 2015). The

greatest benefit of AP would be achieved if this

technology allows breeders to select superior plants

that would otherwise be rejected by using CPmethods.

With the deluge of cheap high-throughput genotype

data and the rapid developments in plant molecular-

based breeding technologies, there is an increased

interest in AP as an approach that will provide precise

and correspondingly high-throughput phenotypic data

to harness the potential of genomic investigations,

including mapping initiatives and training genomic

selection (GS) models. This is especially important

when breeding for quantitative traits (QT), such as

yield and drought tolerance, as these traits usually

show continuous phenotype variation due to their

polygenic inheritance and environmental influence

and, thus, need to be repeatedly measured during the

life cycle of a plant in multi-environmental conditions

(Bassi et al. 2016; Desta and Rodomiro 2014; Cobb

et al. 2013).1

Despite promising applications, the adoption of AP

in plant breeding is still in its infancy (Australian

Government, GRDC 2017; Kumar et al. 2015). It is

still not clear to many plant breeders if or howmuch of

the generated AP data could be usefully integrated into

breeding programs. The enormous volume, diversity,

and velocity of imaging and remote-sensing data

generated by AP makes it a ‘big data’ problem. An

essential factor for the application of AP will be the

ability to present related information as tools that

support decision-making in breeding programs. Much

work is needed to address issues of ease of access, ease

of use and data management before AP technologies

are likely to see widespread uptake in plant breeding.

The development of ontology-based big data

1 Traits can be grouped into two genetic categories: (1)

qualitative traits and (2) quantitative traits (QTs). Qualitative

traits are generally governed by one or a few major genes, called

oligogenes, where each of these genes produces a large effect on

the trait phenotype. Qualitative traits have Mendelian inheri-

tance (high heritability), provide discrete/discontinuous pheno-

typic variation, and the phenotypic expression of oligogenes is

generally minimally affected by the environment. Therefore, as

their phenotypes are good indicators of their concerned geno-

type loci, qualitative traits are easy to manipulate and evaluate in

a breeding program (Singh and Singh 2015). QTs are governed

by many genes, called polygenes. Each of these genes has a

small effect on trait phenotype; the effect of each gene is too

small to be individually identified; and the effects of all

polygenes affecting a trait are cumulative. QTs show continuous

phenotypic variation (non-discrete) because of the polygenic

inheritance and environmental influences, and thus, cannot be

grouped into distinct phenotyping classes.
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management is needed to facilitate the integration of

metadata to establish genotype, phenotype and envi-

ronmental-data-point relationships that create mean-

ingful insights and provide opportunities to enhance

the breeding process (Kumar et al. 2015; International

Plant Phenotyping Network 2016; Phenospex 2016).

This paper develops an economical model of

adoption decision to assess breeders’ attitude towards

the adoption of the AP approach; the assumption of

breeder homogeneity is relaxed. Breeders’ preferences

towards technology adoption are assumed linked to

the characteristics of the technology. Breeders,

according to their preferences, choose the technology

for which they obtain the highest return or profit. Thus,

heterogeneous breeders are assumed to differ in the

relative gain or profit they generate from breeding a

cultivar under AP and CP. The model focuses on the

evolving nature of technologies, assuming that breed-

ers may expect a future technology improvement in

AP which could affect their decisions to adopt AP at

the present time and in the future.

Among the parameters in the model, we analyze the

importance of breeder’s aversion toward the adoption

of a new technology. For that, we provide a numerical

example to describe how the rate of aversion may

affect the expected return perceived by heterogeneous

breeders from the adoption of a new technology,

which in turn may affect their decision to adopt the

technology.

Automated plant phenotyping

Several phenotyping facilities have been established

and some are currently underway to develop con-

trolled and field-based AP. A variety of wavelength-

range cameras are available to capture signals from the

visible and infrared spectrum of light (Fig. 1). The

image technology includes: (1) visible (VIS) camera

RGB (red, green, and blue) to quantify the phenotype

plant architecture, height, stem diameter, leaf number

and area, color classification, and growth rate; (2) near

infrared (NIR) imaging which provides detailed

information on the watering status of plant leaves

and their reaction to water availability (e.g., drought),

and combined with specially-designed NIR unit for

roots can monitor the relative water content of the soil

surface; (3) infrared (IR) imaging measures above

ground plant water content and sense levels of abiotic

stress; (4) fluorescence (FLU) imaging for stress

identification and quantification, photosynthesis and

chlorophyll contents; (5) and hyperspectral

(HYPERS) imaging for measuring abiotic and biotic

stresses, pigment composition, nitrogen (N) use effi-

ciency, and other biochemical features (Kumar et al.

2015; LemnaTec 2018).

Field-based phenotyping combines advances in

sensing technologies, aeronautics, robotics, automatic

image acquisition, and automated environmental data

collection (Araus and Cairns 2014).

Plant breeding and the need for automated

phenotyping

The most common techniques used in plant breeding

are presented in Table 1. These techniques may

involve the introduction of new genetic variation and

the identification and tracking of genes for key traits,

in order to achieve greater genetic gain (DG) from

selection and to accelerate the breeding cycle. Regard-

less of the technology used, the following general

steps are associated with plant breeding: (1) defining

the objective(s) of the breeding program, including

such factors as improved farmer and/or processor

productivity, new product attributes to satisfy con-

sumer preferences, and improved environmental

impacts; (2) developing population or germplasm

400 nm 750 nm
VIS

FLU

800 nm450 nm 500 nm 550 nm 650 nm600 nm 700 nm 1000 nm900 nm 2000 nm 5000 nm 10000 nm 15000 nm

NIR IR

HYPERS

Wavelength (nm):

Source: LemnaTec, 2018

Fig. 1 Imaging technologies

123

Euphytica (2018) 214:148 Page 3 of 15 148



collections that include the genetic variations of

interest; and (3) identifying and selecting individuals

with superior characteristics. If successful, selection

produces a new population that is phenotypically and

genetically different from the base population. The

new population is then used to develop new varieties

that eventually, after evaluation and certification, find

their way to a farmer’s field.

The most common selection methods used in plant

breeding are presented in Table 2. Traditionally,

selection of superior plants involves visual assessment

for traits—otherwise known as conventional pheno-

type (CP) selection. In the field, breeders focus on a

plant’s appearance—they use the field to visually

study plant phenotypic expression in different envi-

ronmental conditions and to select the type of lines

they will use to identify traits that have the potential to

improve agronomic features, offer higher yields or

produce specific qualities. However, CP methods are

labour and time intensive, environmentally sensitive

and costly. The data collected are frequently subjec-

tively encoded and can vary significantly. In addition,

CP has a limited capacity for measuring traits in very

large genetic populations, particularly for low heri-

tability and dynamic traits that have phenotypes that

change with time and environment and, thus, require

to be repeatedly measured during the life cycle of a

plant in multi-environment trials.

Recently, advances in genomics technologies (i.e.,

next generation sequencing technologies) have pro-

vided a better understanding of the genetic basis of a

trait and improved the efficiency of selection through

the use of marker selection methods (Table 2). The

integration of molecular-marker and conventional

selection methods into the breeding programs can

improve the precision and accelerate the breeding

cycle, as markers can be screened before the plant is

grown rather than measured in seeds or at the seedling

stage. The ability of markers to predict the phenotype

of a trait allows breeders to select for multiple

generations each year in a greenhouse.2

The genomic selection (GS) or genome-wide selec-

tion (GWS) model is seen as a promising molecular-

based selection approach. GS generates marker effects,

called genomic estimated breeding values (GEBVs),

across the whole genome of a breeding population (BP)

based on a statistical model developed in a training

Table 1 Techniques used in plant breeding. Sources Lusser et al. (2011), Acquaah (2012), Benkeblia (2014) and Mahesh (2016)

Traditional techniques

Emasculation; hybridization; wide crossing; chromosome doubling; chromosome counting; male sterility; triploidy; linkage

analysis; and statistical tools

Random mutation techniques

Mutagenesis; tissue culture; haploidy; isozyme; markers; in situ hybridization; Molecular markers; DNA sequencing; plant

genomic analysis; bioinformatics; Microarray analysis; primer design; and plant transformation

New biotechnological techniques

Oligonucleotide-directed mutagenesis (ODM); Cisgenesis/intragenesis; genome editing (e.g., Zink finger nuclease (ZFN);

TALENS & CRISPRs; GM rootstock grafting; RNA-dependent DNA methylation (RdDM); Reverse breeding; and agro-

infiltration

Table 2 Selection methods in plant breeding. Sources: Benkeblia (2014) and Singh and Singh (2015)

Conventional selection methods/conventional phenotype (CP) selection Pedigree selection; mass selection; pure line selection;

bulk population selection; and single-seed descent selection

Molecular selection methods/marker selection methods marker-based selection (MBS); marker-assisted selection (MAS); marker-

assisted backcrossing (MABC); marker-assisted recurrent selection (MARS); genomic selection (GS) or genome-wide selection

(GWS)

2 Note that the new molecular methods supplement and extend,

but do not replace, conventional breeding. The ultimate test of

value of a genotype is its performance in the targeted

environment. For instance, although molecular selection based

on molecular markers can be used in early generations at F2,

population size at F2 is often very large, and thus, it is not

efficient to perform molecular selection at this stage. Breeders

usually use conventional breeding based on phenotypic selec-

tion up until generation F4, after which they use molecular

selection in order to increase the frequency of desirable alleles

(Bonnett et al. 2005; Richards et al. 2010).
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population (TP). The training population includes

related individuals that have been both genotyped and

phenotyped, while the breeding population includes the

descendants of a TP that are only genotyped but not

phenotyped. GS has the ability to consider the effects of

all markers spread across the genome, thus capturing

moreof the genetic varianceof additive effects/breeding

value. GS does not eliminate phenotypic selection but

rather replaces many of the selections with whole-

genome predictions. The greater the phenotypic simi-

larity between the true breeding value in the TP and the

expected GEBV in the BP, the greater the accuracy of

the prediction model. Therefore, precision phenotyping

is important for evaluating a trainingpopulationbecause

the resulting dataset serves as a foundation for GS to

build the accuracy of the statistical models (Desta and

Rodomiro 2014; Cobb et al. 2013).

However, like conventional selection methods, the

application of molecular methods has not measurably

improved the selection of QTs. As previously indi-

cated, QTs show continuous phenotypic variation due

to the low level of inheritance of polygenes and the

influence of environmental factors. These character-

istics usually result in a deviation from the genetic

variance of additive effects (breeding value) (r2A).
3

This deviation could be due to the dominant effects

(r2D)), epistatic effects (r
2
P), and/or the variance (r

2
GE)

arising from the interaction between the genotype and

environment (G� E).

Previous studies of quantitative trait loci (QTL), e.g.,

Crossa et al. 2014; Nakaya and Isobe 2012; Singh and

Singh2015; andThomas2010, suggest that toovercome

G� E it is important to accumulate and evaluate field

phenotypes of QT by planting the mapping popula-

tions in replicated trials conducted over different

environments and years. For overcoming dominant

and epistatic effects, Lu et al. (2011), Nakaya and

Isobe (2012) and Singh and Singh (2015) and

suggested the use of mapping causative loci such as

interval mapping, association mapping/linkage dise-

quilibrium (LD), and genome-wide association studies

(GWAS). Mapping causative loci includes pheno-

typic, genotypic and pedigree data.

The discussion so far suggests that the application of

genomic information may trigger a great leap forward

in plant breeding, but only if linked and integrated with

corresponding phenomic and environmental informa-

tion (Fig. 2). Figure 2 summarizes the processes that

have to be taken before the application of automated

phenotyping in plant breeding programs. In light of this

challenge, several phenomic facilities [e.g., Julich

Plant Phenotyping Centre, Australian Plant Phe-

nomics, and Canada Plant Phenotyping and Imaging

Research Centre (P2IRC)] and networks (e.g., Inter-

national Plant Phenotyping Network, and European

Plant PhenotypingNetwork) have been established and

are operating at the national and global level. Looking

forward, improvements in digital phenotyping tech-

nology, computing capacity, and statistical methodol-

ogy should pave theway to efficiently archive, retrieve,

analyze, integrate, and interpret phenomic data. The

compelling social science research question is where

will those innovationsmost likely be adopted and used.

Breeders’ decision to adopt automated plant

phenotyping

Model assumptions

The model builds on previous work by Fulton and

Giannakas (2004) and Awada and Yiannka (2012)

who study the decision-making and welfare of

heterogeneous consumers and producers in differenti-

ated markets. In this model, we assume a group of

heterogeneous breeders, each of whom is trying to

optimize their relative profit function and needs to

decidewhether to adopt AP or to keep usingCP.At time

t, a breeder with attribute A has the following profit

function:

pAPt ¼ RAP � CAP þ dA
� �

� Kt

if a cultivar is produced usingAP
ð1Þ

pCPt ¼ RCP � CCP if a cultivar is produced usingCP

ð2Þ

where pAPt and pCPt are the per unit profits associated

with breeding a cultivar using AP and CP, respec-

tively. The RAP and RCP are the economic revenue, and

CAP and CCP are the costs of breeding a cultivar under

AP and CP, respectively. CAP and CCP include the cost

of breeder’s activities, input costs, cost of informa-

tion/data, and costs of quality testing, variety registra-

tion and release under each approach. Parameter A

3 Additive effects are also know as the breeding values as they

are predictably transmitted to progeny.
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captures heterogeneous breeders’ preferences and,

thus, differences in their willingness to adopt AP. The

sources of heterogeneity can reside in breeders’

experience, education, management skills, manage-

ment of large/small scale breeding program, and

information sources, among other attributes. A is

assumed to be uniformly distributed with a unit

density f Að Þ ¼ 1 in an interval A 2 0; 1½ �, such that

the greater is the differentiating A (i.e., A value is

closer to 1), the lower is the breeder preference for AP.

The parameter d is the cost enhancement factor that

captures the degree of aversion to AP and is assumed

to be a non-negative constant across all breeders.

Thus, dA denotes the additional cost that a breeder

with attribute A incurs when adopting AP.4 The term

Kt is the sunk cost at time t—an expense that typically

incurred at the time of adoption and cannot be

recovered once spent (e.g., training to operate the

new technology, R&D, and specialized asset costs).

Since AP is an emerging technology and many

breeders are still uncertain about its integration into

breeding programs, there is an option value to waiting

before expending (‘sinking’) the costs of adoption.

Thus, Kt can be seen as the loss that a breeder sustains

by not waiting until the next period to adopt the

technology and the delayed benefits from the subse-

quent higher rate of improvement.

In this study, the genetic gain (DG) is used to

determine the revenue, R, from breeding a cultivar.

Following Brennan (1989), the economic revenue

from breeding a new cultivar of crop i is given by:

Ri ¼ YES DGiyWiy þ 1þ DGiy

100

� �
DGiqWiq

� �� �
ð3Þ

High-Throughput Phenotype (HTP)
• Data Storage &Management
• Image processing & Extract

Phenotypic data

Da
ta
In
te
gr
at
io
n

GWAS & QTL & Gene & Marker Discovery

Marker Assisted Breeding(MAS;GS) &
Genetic Engineering

Adenine
Thymine
Guanine
Cytosine

Image Acquisition

High throughput Genotype (HTG)

Fig. 2 Integration of genomic, phenomic and environmental data

4 Due to the economies of scale and affordability, breeders who

are managing larger programs are more likely to adopt AP. In

this case, the value of the parameter A is closer to 0, indicating a

stronger preference for the adoption of AP, the additional cost

dA is lower, and thus, the adoption of AP is larger.
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where Y is the mean yield (tonne/ha) before the

introduction of the new cultivar, E is the crop i total

growing area (ha); and S is the share of area E sown to

the new cultivar (the adoption rate of the new

cultivar); DGiy is the percentage genetic gain in trait

affecting yield; Wiy is the unit value of DGiy; DGiq is

the percentage genetic gain in traits affecting quality;

and Wiq is the unit value of DGiq.

Regardless of the technique or selection method

employed, the genetic gain (DG) from selection serves

as a universal concept for quantifying improvements

in a cultivar. Hence, it is called the breeders’ equation.

DG is the predicted change in the mean value of a trait

within a population that happens by selection, and

results in the introduction of a new cultivar in characters

affecting yield and/or quality. The genetic gain is given

by:

DG ¼ h2rpi=L ð4Þ

where h2 is the heritability parameter and represents

the probability that a trait will be transmitted from

parents to offspring. h2 in Eq. (4) is used in its narrow

sense representing the proportion of phenotypic vari-

ation due to additive genetic effects (h2 ¼ r2A=r
2
P).

The additive effect/breeding value is important in

plant breeding as it represents what is transferred to

offspring and can be changed by selection. As

previously indicated QTs are more difficult to breed

because of the large impact of dominance and epistatic

effects, which reduce heritability. The term rp is the

phenotypic variability in the original source popula-

tion (parental population), which is positively associ-

ated with genetic diversity, and affected by the

environment and the interactions between genotype

and the environment (G� E). The term i is the

selection intensity, expressed in units of standard

deviation frommean, and represents the fraction of the

current population retained and used as parents to

produce the next generation (i.e., if the whole popu-

lation is retained, i is zero). Finally, the term L is the

length of cycle interval, which is usually one gener-

ation (i.e., how quickly a generation can be completed

and the number of possible generations per year)

(Acquaah 2012; Moose and Mumm 2008).

Automated phenotyping enables breeders to improve

DG by: (1) estimating h2 through the use of large-scale

selection of (phenotype 9 genotype) association data

(GWAS) and large training population in GS that is

phenotyped and genotyped to estimate breeding value

(GEBV). In addition, automated phenotype can

improve h2 by determining the environmental effects

on traits at multiple field environmental conditions

(G 9 E); (2) increasing rp by introducing new genes,

a large phenotypic variance would provide the breeder

with a wide range of variability from which to select,

and thus resulting in a higher DG; (3) increasing

selection intensity, i, by helping breeders to choose a

lower proportion of individuals having a mean supe-

rior to the population mean; and (4) shortening cycles

(L), as individuals can be chosen in early growing

stage.

Breeder’s decision-making

A breeder’s adoption decision is determined by

comparing the profit derived from producing a cultivar

under CP and AP so the breeder with a differentiating

attribute Ât ¼
ðRAP�RCPÞ� CAPþKtð Þ�CCP½ �

d (found by

equating pAPt ¼ pCPt Þ is indifferent between breeding

a cultivar under AP and CP (Fig. 3). Breeders with

attributes A 2 0; Ât

� �
find it optimal to breed under

AP, while breeders with attributes A 2 Ât; 1
� 	

breed

using CP. Given that breeders are uniformly dis-

tributed in the interval 0; 1½ �, the indifferent breeder Ât,

determines the share of AP and CT at time t, given by

Eqs. (5) and (6), respectively.

xAPt ¼ Ât ¼
ðRAP � RCPÞ � CAP þ Ktð Þ � CCP½ �

d
ð5Þ

xCPt ¼ 1� Ât

¼ d� ðRAP � RCPÞ � CAP þ Ktð Þ � CCP½ �
d

ð6Þ

Equation (5) shows that for the AP to have a

positive adoption the following conditions must hold:

RAP [ RCP � CCPð Þ þ CAP þ Ktð Þð Þ and/or

CAP þ Ktð Þ\ RAP � RCPð Þ � CCPð Þ. Otherwise, the

profit curve of the AP, pAPt , will lie below the profit

curve of the CP, pCPt ; for all A values, and all breeders

will not adopt AP and continue using CP (Fig. 3).

Figure 3 depicts the profit curves, the adoption

shares, and aggregate breeder welfare when the

revenue, cost, and breeder preference parameters are

such that both AP and CP enjoy a positive share. At
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time t, breeder welfare is given by the area below the

pCPt curve plus the green dashed area in Fig. 3.

The above results are based on the assumption that

a plant breeder is trying to make a decision whether to

adopt AP or to keep using CP by optimizing their

relative profit function. However, if AP is a comple-

mentary technology that is used, alongside, with the

exciting CP technology, or a technology that offers a

new information that is not provided by CP, the

decision to adopt AP doesn’t affect the use of CP. In

this case, the profit function of CP (i.e., pCPt ; Eq. 2)

does not enter into the breeders’ analysis process to

adopt AP, and thus, a breeder decision is determined

by only examining the profitability of AP (i.e., pAPt ;

Eq. 1). That is, for AP to have a positive adop-

tion/market share the following condition must hold:

RAP [ CAP þ dAþ Ktð Þ, for all values of A 2 0; 1½ �:
At time t þ 1, if AP improves, the sunk cost, Kt,

decreases. Assuming that the technology improve-

ment decreases Kt by a constant rate a� 0; 1ð Þ (a could

address aspects such as improvement in robotics and

automation, big data management, training and edu-

cation needed and collaborations) the profit function,

ceteris paribus, of the breeder with attribute A from

the adoption of AP at time t þ 1 is given by:

pAPtþ1 ¼ RAP � CAP þ dA
� �

� Kt 1� að Þ
if a cultivar is produced usingAP

ð7Þ

At time t þ 1, the indifferent breeder with attribute

Âtþ1 is given by equating Eqs. (2) and (7):

Âtþ1 ¼
ðRAP�RCPÞ� CAPþKt 1�að Þð Þ�CCP½ �

d . In Fig. 3, breed-

ers with A 2 0; Âtþ1

� �
find it optimal to adopt AP,

while breeders with A 2 Âtþ1; 1
� 	

keep breeding by

using CP. The breeder with Âtþ1 determines the

adoption/share of AP and CP at time t þ 1, given by

Eqs. (8) and (9), respectively.

xAPtþ1 ¼ Âtþ1

¼ ðRAP � RCPÞ � CAP þ Kt 1� að Þð Þ � CCP½ �
d

ð8Þ

xCPtþ1 ¼ 1� Âtþ1

¼ d� ðRAP � RCPÞ � CAP þ Kt 1� að Þð Þ � CCP½ �
d

ð9Þ

Equation (9) shows that the greater the rate of

technology improvement (a) the lower the sunk cost,

Kt, and thus the higher the proportion of breeders who

use AP at time t þ 1. This is shown graphically in

Fig. 3 by shifting the profit curve of AP upward from

pAPt to pAPtþ1 indicating an increase in the return to

breeders from using AP by Kt að Þ, and, thus, an

increase in the proportion of breeders who adopted AP

by the interval Ât; Âtþ1

� 	
. Breeders who were using CP

at time t decided to start using AP at time t þ 1 as a

Ât+1

RAP −(CAP +(Kt (1−α))

Xt+1
AP Xt+1

CP

π t+1
AP

0 1

π

Ât

Xt
AP Xt

CP

RAP − (CAP +Kt )

πCP

π t
AP

δδ

α

RCP −CCP

Fig. 3 Breeder’s decisions

to adopt AP or keep using

CP
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result of the improvement in AP technology. At time

t þ 1, breeder welfare is given by the area below the

pCPt curve plus the green and red dashed areas in

Fig. 3, indicating an increase in breeder welfare by the

dashed red area as a result of technology improvement

að Þ.
In addition to decreasing any sunk cost, technology

improvement, a, may increase the genetic gain (DG)
from selection, which in turn improves the return, RAP,

from the adoption of AP. The result is an upward

parallel shift in the profit curve of AP in Fig. 3, and in

an increase in the adoption of AP.

It is clear that the subsequent rate of improvement is

an important determinant in advancing the adoption of

AP by plant breeders. Progress in developing inter-

disciplinary technologies that empowers AP is moving

forward rapidly. Tremendous investments in phe-

nomic projects—Awada et al. (2017) reported that

more than 33 plant phenotyping facilities were devel-

oped and seven networks were established around the

world—are underway to develop standards and

ontologies for trait measurement and to facilitate the

integration of the large volume of phenotypic data

with other big data relevant to plant breeding.

An important parameter in the model is breeder

aversion, d, to AP. Notice that, the parameter d is the

slope of the AP profit function, and represents the rate

of AP adoption associated with the differentiating

attribute A. For simplicity and without loss of

generality, we initially assumed that d is constant

across all breeders over time. However, as a result of

technological change and increase in the information

available on AP, dmay have variable values over time,

which in turn may result in a non-linear adoption of

AP. Figure 4 shows the impact of a change in the value

of the parameter d. Lower d, ceteris paribus, leads to a
decrease in the cost, dA, for all breeders (see Eq. 1)

and, thus, higher AP adoption, xAPt , (see Eq. 5). In

Fig. 4, the decrease in d causes the AP profit curve to

rotate counter-clockwise from pAPt to pAP
0

t , resulting in

an increase in the adoption of AP by the segment

Ât; Â
0
t

� 	
. Breeders’ welfare increases by the blue dotted

area in Fig. 4.

The impact of different levels of breeder aversion

on the expected return and the adoption

of a technology

This section provides a numerical example to describe

how the rate of aversion, d, may affect breeder’s

decision-making to adopt a new technology. We focus

on the sensitivity of the expected return perceived by

heterogeneous breeders having different levels of

aversion toward the adoption of a technology (e.g., AP

technology). Breeders characterized with high rate of

aversion d seems to perceive the value of future returns

less valuable than the return perceived by breeders

Ât
'0 1

π

Ât

RAP − (CAP +Kt )

πCP

π t
AP

δ
RCP −CCP

π t
AP '

δ '

Welfare gain

Fig. 4 Impact of a decrease

in breeder aversion on the

adoption of AP
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with low d. Basically, breeders adjust the discount rate
on the future returns by d to reflect the risk they

perceive by adoption the new technology. The higher

the risk they perceive, the higher is d, and thus, the

lower is the future return from the adoption of a

technology.

In this example, we use wheat crop data in

Saskatchewan, Canada. Because wheat is a self-

pollinating non-hybrid crop, farmers can save har-

vested seeds without significant yield deterioration.

This reduces the ability to repeatedly capture a return

of the value created with the release of a new variety

and discourages private investments in wheat breed-

ing, the result is a high concentration of Canada’s

wheat breeding in public-funded programs, and an

economic return that is mostly captured by farmers.

As previously indicated in Eq. (5), for the AP to

have a positive adoption the following conditions must

hold: RAP [ RCP � CCPð Þ þ CAP þ Ktð Þð Þ: In this

example, RAP is assumed to be equal to the return

from the introduction of a new wheat variety when the

percentage of genetic gain, DG; in trait is affecting

yield (i.e., RAP ¼ YES DGiyWiy

� 	
and

1þ DGiy

100


 �
DGiqWiq

� �
¼ 0 (see Eq. (3)).

Taking into account the rate of aversion,d; the

present value of the social returns (PVR) from the

release of a new cultivar can be estimated as:

PVR ¼
X Rt 1þ gð Þ

1þ r þ dð Þ½ �t

¼
X YES DGiyWiy

� 	
1þ gð Þ

1þ r þ dð Þ½ �t
for t ¼ 1. . .n

ð10Þ

where Rt ¼ YES DGiyWiy

� 	
is the annual social return

from releasing a new wheat variety, calculated based

on an average target growing area sowing to wheat in

Saskatchewan, E, of 5.3 million ha with mean yields,

Y , of 2.34 t/ha in the years 2001–2017; a new variety is

assumed to have a genetic gain in yield/yield advan-

tage, DG, of 2%; and wheat price,W , is $226/t

(Statistics Canada, CANSIM Tables: 001-0010; 002-

0043). The rate of adoption of a new wheat variety, S,

is derived from Covey (2012). In Covey (2012), a

prediction model was built to derive the adoption

pattern of wheat varieties in Western Canada, which

depends on the yield advantage, available varieties,

maturity, resistance to sawfly, rust, lodging, clearfield,

midge and loose smut, and the number of years since

release. Based on this study, a wheat variety reaches its

maximum adoption of 10.57% of wheat area in

Western Canada in the thirteenth year after its release.

The term g in Eq. (10) is the expected growth rate, a

normal random variable with mean 2 and 1% standard

deviation (g ¼ lþ rz). The growth rate reflects the

expected fluctuation in the price over the covered

period. The term r is the real discount rate and is equal

to 5%; d is the rate of breeder aversion; (r þ d)
represents the risk-adjusted discount rate which

reflects the relationship between risk and return; and

t is the adoption period, representing the total life of

the new variety after its release, assumed to be equal to

forty-five years.

Estimation of total return

Using Eq. (10), the estimated annual returns for the

base run d � 0ð Þ from the release of a new wheat

variety are presented in Table 4 in Appendix 1.

Table 4 shows that the return rises to a maximum of

$5.9 million in year thirteen before declining as the

variety is overtaken by newer and more competitive

varieties and gradually replaced. Total returns are

equal to $161.2 million, and total present value of the

returns (PVR) is $78.2 million at 5% discount rate.

Since plant-breeding programs are highly charac-

terized with uncertainty, a Monte Carlo simulation

(MCS) analysis is used to account for the variability in

the related variables, and to produce a distribution of

possible return values. Using MCS with 2000 runs, the

key statistics on the estimated returns based upon the

probability distributions of the related variables, are

summarized in Table 3. Results of the base run are

presented in Table 3, column 1, and the distribution

and frequency of the base run PVR are graphed in

Fig. 5a, b, respectively. The mean of PVR for the base

run is found equal to $78 million with a standard

deviation of $0.57 million. The mean of the Monte

Carlo simulations is found close to the analytical

result.

Columns 2–6 in Table 3 present the sensitivity of

the expected PVR results to different values of the

breeders’ aversion rates. Compared to the base run,

when breeders’ aversion, d, is equal to 2%, the mean of

the PVR decreases by 21%, and when d ¼ 50%, the

return decreases by 69%, indicating the high sensitiv-

ity of the results to the rate of aversion.
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Table 3 shows that the expected return from the

adoption of a new technology to improve wheat

varieties decreases when d increases, indicating that

breeders with higher d, tend to discount the return at

higher rate, and thus, to perceive lower return, which

in turn may negatively influence their adoption of the

technology.

The above framework can be applied to analyze the

impact of breeders’ aversion on the expected return

generated from the introduction of any new crop

variety. However, in the case of genetically modified

and hybridized crops, which are heavily concentrated

in the private sector, the emphasis would be mostley

on the economic returns to the seed breeding compa-

nies. In this case, the return would be determined

based on the market size and structure and on the

public sector policies within the geography area under

study.5

Future research

Clearly the next step is to operationalize the theoret-

ical model by collecting specific data on each of the

Table 3 Sensitivity analysis a Monte Carlo simulation: the impact of different values of breeders’ aversion rate (d) on the present

value of the returns (PVR)

Rate of breeder aversion (%)

Base run

d � 0 d ¼ 2 d ¼ 5 d ¼ 10 d ¼ 15 d ¼ 50

Mean PVR �106$
� �

78.01 61.51 45.65 30.23 22.10 6.77

Standard deviation �106$
� �

.57 .68 .77 .81 .81 .52

Minimum �106$
� �

76.00 59.16 42.16 27.29 19.50 4.57

Maximum �106$
� �

79.90 64.04 48.20 33.13 24.60 8.51

Upper limit at 95% confidence level �106$
� �

78.04 61.54 45.68 30.27 22.13 6.80

Lower limit at 95% confidence level �106$
� �

77.98 61.48 45.61 30.19 22.06 6.75

Monte Carlo Simulation is based on 2000 runs. Returns calculation is based an average target growing area, E, of 5.3 million ha with

mean yields, Y , of 2.34 t/ha (2001-17); new variety has a genetic gain in yield/yield advantage, DG, of 2%; wheat price,W , is $226/t

(Statistics Canada, CANSIM Tables: 001-0010; 002-0043); discount rate is equal to r = 5% per annum; expected growth rate, g; has
mean 2% and 1% standard deviation (i:e:; g ¼ lþ rz); and rates of adoption of new wheat variety in Western Canada are obtained

from Covey (2012)

Fig. 5 Base run result of the present value of the returns (PVR)

5 Hybridized crops are characterized by their ability to exhibit

heterosis – the ability of offspring to outperform their parents

with respect to different characteristics and agronomical

important traits. Heterosis effects disappear after the cultivation

of the first generation (F1), which compels farmers to purchase

new seeds every year, and makes it profitable for private seed

company to invest in breeding hybrid crops. In the case of

genetically modified crops patents prevent farmers from saving

their seed and secure monopoly profits to the seed companies.
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model parameters to examine the adoption of AP

technology by plant breeders. Data collection and

subsequent profitability framework analyses (i.e.,

benefit–cost ratio and internal rate of return) will also

allow the calculation of the return to investment in AP

technology by plant breeders. However, as AP tech-

nology is still in its developing stage, there is a paucity

of accurate information about the costs (variable and

fixed costs) of breeding a new variety using AP and on

the contribution of this technology in achieving a

greater genetic gain and thus a greater return from

breeding. Moreover, collecting data on breeders’

heterogeneity and their level of aversion to AP is a

complex, largely empirical task. The nature and

formation of a breeders’ behaviour involves a psy-

chological process that breeders go through, starting

with recognizing the need for AP and then interpreting

information, making an adoption decision, and imple-

menting the technology in their programs. The process

blends elements from four types of social sciences—

psychology, sociology, anthropology, and economics.

Typically, data collection implies the use of diverse

research methods including survey research, inter-

views, statistical analysis, econometrics, social net-

work analysis, case studies, behavioural experiments,

and model building, among other approaches.

Conclusion

Some researchers believe that the adoption of the latest

high-throughput genomics and phenomics technolo-

gies by plant breeders can deliver better new cultivars

and accelerate the process of breeding. While in the

last two decades we have witnessed a large adoption of

genomic technologies, the adoption of automated

phenotyping/phenomics by plant breeders is still in its

infancy. The question remains whether widespread

adoption of phenomics can happen? And what will it

take to be realized?

Adoption of new technology is always difficult to

anticipate. While the literature is rife with examples of

innovators capturing first-mover advantage, including

lock-in and network effects (Shapiro andVarian 1999),

there are many real impediments to realizing that

vision. Just because a new method improves output

does not assure uptake and use. Sunk costs, individual

characteristics and preferences, and uncertainty about

the evolution of the technology are all factors that

could limit adoption and use of a new technology. The

emergence of AP approaches, the enormous volume,

diversity, and velocity of imaging and remote-sensing

data generated by AP, and the difficulty of linking this

data to genotypic and environmental data looks

exciting but could end up stranded. This paper has

explored one way to model this decision space. A

theoretical model of heterogeneous breeders is built to

analyze breeders’ decision-making as they ponder

whether to adopt automated phenotyping or to keep

using conventional phenotyping. The model focuses

on the evolving nature of technologies, which assumes

that future R&Dwill improve the technology and, thus,

breeders may have an incentive to wait to adopt AP to

mitigate the impacts of sunk cost. The result of this

model indicates that many interlocking factors are at

work as breeders determine whether to adopt AP. We

found that factors, including the expected return,

adoption costs, the rate of technology improvement,

and breeders’ preference and degree of aversion to AP

can affect the present and future adoption of AP. A

priori it is not possible to determine the adoption path

for this technology—practical estimation of the model

parameters and manipulation of the model is necessary

to determine the likely path.

This paper does not address the impact of the

institutional policy framework on the adoption of AP

in plant breeding programs. Future research may focus

on the role that might be played by regulatory and

governance models in facilitating or delaying the

adoption and application of the phenomics technology

in plant breeding. Future research may address the

mechanisms for the protection of Big Data process,

such as access, sharing, and reuse of the data generated

by the automated phenotyping technology.
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Appendix 1

See Table 4.

Table 4 Adoption rate and annual return from adoption: base run rate of aversion equal zero (d � 0)

Years after the release, t Average rate of adoption, Sa (%) Revenueb �106$
� �

¼ YES DGW½ � Present value revenuec �106$
� �

1 5.20 2.89 2.83

2 6.00 3.34 3.05

3 7.00 3.89 3.42

4 7.80 4.34 3.60

5 8.30 4.61 3.73

6 9.00 5.00 3.86

7 9.20 5.11 3.72

8 9.80 5.45 3.75

9 10.00 5.56 3.65

10 10.20 5.67 3.51

11 10.40 5.78 3.41

12 10.45 5.81 3.29

13 10.57 5.88 3.23

14 10.45 5.81 3.00

15 10.40 5.78 2.83

16 10.20 5.67 2.62

17 10.00 5.56 2.44

18 9.90 5.50 2.33

19 9.50 5.28 2.16

20 9.30 5.17 2.02

21 9.00 5.00 1.82

22 8.90 4.95 1.75

23 8.50 4.73 1.60

24 8.00 4.45 1.40

25 7.70 4.28 1.30

26 7.00 3.89 1.12

27 6.50 3.61 1.01

28 6.00 3.34 0.87

29 5.50 3.06 0.76

30 5.00 2.78 0.65

31 4.80 2.67 0.60

32 4.30 2.39 0.51

33 4.00 2.22 0.45

34 3.80 2.11 0.41

35 3.50 1.95 0.36

36 2.80 1.56 0.27

37 2.20 1.22 0.21

38 2.00 1.11 0.17

39 1.80 1.00 0.15

40 1.20 0.67 0.10
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