
Bayesian analysis of complex traits in pedigreed plant
populations

M. C. A. M. Bink Æ M. P. Boer Æ C. J. F. ter Braak Æ
J. Jansen Æ R. E. Voorrips Æ W. E. van de Weg

Received: 26 January 2007 / Accepted: 17 July 2007 / Published online: 4 August 2007

� Springer Science+Business Media B.V. 2007

Abstract A Bayesian approach to analyze complex

traits is presented that can help plant eneticists and

breeders in exploiting the marker and phenotypic data

on pedigreed populations as available from ongoing

breeding programs. The statistical model for the

quantitative trait may include non-genetic and genetic

components. The latter component can be divided

into QTL on known marker linkage groups, major

genes and a polygenic component. The full proba-

bility model, prior assumptions on model variables

are presented and criterion for model selection and

posterior inferences are given. Simulated data on a

known pedigreed population structure of the EU

project HiDRAS was used to illustrate the use of the

Bayesian approach to analyze complex traits. It was

shown that estimates for QTL parameters were more

accurate when non-genetic factors were included in

the model and when a polygenic component was

included when not all linkage groups were analyzed

simultaneously. The Bayesian approach has been

implemented into the software package FlexQTL and

allows plant breeders explore their pedigreed popu-

lations for segregating QTL alleles that are relevant

in their breeding program.

Keywords Bayesian analysis � Markers �
Markov chain Monte Carlo � Pedigree �
Quantitative trait loci

Abbreviations

QTL Quantitative trait loci

FPM Finite polygenic model

TIM The infinitesimal model

MCMC Markov chain Monte Carlo

HPD Highest posterior density

HPI Highest posterior intensity

Introduction

Breeders and geneticists have developed and applied

statistical methods to identify quantitative trait loci

(QTL) based on genetic marker and quantitative trait

data. These methods were designed to answer basic

questions concerning QTL (e.g. number, mode, and

magnitude) and to map QTL on the genome to

facilitate their application in breeding programs. In

plant QTL mapping experiments, populations derived

from specific crosses of inbred lines have predomi-

nantly been used, see e.g., Jansen in Balding et al.

(2003). However, major reasons exist to study

complex populations derived from multiple founders
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or taken from ongoing breeding programs. Here we

provide three of them. Firstly, improved exploration

of QTL variation: It is very likely that if a population

arises from many founders multiple alleles are

present, thereby increasing the probability to detect

the most valuable QTL allele. Secondly, practical

relevance of identified QTL alleles: Experimental

line crosses often do not represent the (commercial)

breeding populations. And thirdly, improved cost

effectiveness of QTL mapping: Costs for marker

genotyping decline rapidly; hence trait phenotyping

becomes relatively more expensive. Breeding pro-

grams routinely evaluate the trait phenotypes of many

progeny with replication at several locations.

The above incentives should convince plant

geneticists and breeders to exploit the data on

pedigreed populations as available from ongoing

breeding programs. However, the analysis of this type

of data has been hampered by the absence of flexible

and robust statistical methods and software tools.

Important criteria for QTL mapping in complex data

may be summarized as:

1. Robustness and flexibility with regard to tackling

structures in the data, especially pedigree structures,

i.e. individuals may cover several generations, the

population may consist of several families, who may

differ in size but may also be related.

2. Incompleteness of marker information; this holds

on multiple levels, i.e. an individual’s marker

data may be partially or fully, dominant marker

scoring, or non-informative meioses.

3. Non-genetic factors may contribute to the phe-

notypic trait variation which, if ignored, will

reduce power and accuracy of the estimates of

genetic parameters. However, pre-correction for

these factors may lead to biased estimates.

4. The number of segregating QTL is unknown.

Also, the mode of action of QTL is unknown and

may interact with the genetic or environmental

background in which it is expressed.

In this paper we accommodate these criteria by

applying a Bayesian approach, see e.g., Gelman et al.

(2004). The Bayesian approach provides practical

methods for making inferences from data using

probability models for quantities we observe (e.g.,

traits and markers) and for quantities we wish to learn

about (e.g., genes). An essential characteristic is the

explicit use of probability distributions to quantify

uncertainty. In a Bayesian analysis the prior knowl-

edge is integrated with the likelihood of the data and

the resulting posterior distribution represents the

accumulated knowledge on the parameters of interest.

A Bayesian framework with Markov chain Monte

Carlo (MCMC) see e.g., Gilks et al. (1996) algo-

rithms provides a powerful tool for estimating the

chromosomal location, the contribution of genes

affecting complex traits and, potentially, gene-by-

gene and gene-by-environment interactions. Note that

we will not consider interactions here as they are

beyond the scope of this paper.

In this study we assume that the quantitative trait

may also be affected by non-genetic factors, e.g., year

and location in which phenotypes were scored, as

well as a polygenic component representing many

small genes, undetectable via linked markers. After

describing the probability model and its variables

with their prior distributions, we will present results

from the analyses of simulated data to dissect

complex traits into their underlying genetic compo-

nents. For the simulated data set we use the known

pedigree structure of a dataset on 13 related full-sib

populations that is currently produced within the EU

project HiDRAS (http://www.hidras.unimi.it/).

Methods

Linear regression model

Let h denote the vector with model parameters

affecting the trait of interest. Using standard regres-

sion notation, we can express the relationship

between observed phenotypes to the unknown param-

eters in the following linear model

y ¼ Hhþ e; ð1Þ

where y is the vector with observed phenotypes for

the quantitative trait; H is the design matrix linking

model parameters to the phenotypes, and e is the

environmental error. The environmental errors are

assumed to be independent and identically and

normally distributed, i.e., e�Nð0; r2
eÞ.

Principle of Bayesian analysis

Gelman et al. (2004) divide the process of a Bayesian

data analysis into the following steps: 1. Setting up a

86 Euphytica (2008) 161:85–96

123

http://www.hidras.unimi.it/


full probability model; 2. Calculating and interpreting

the appropriate posterior distribution; and 3. Evalu-

ating the fit of the model and the implications of the

resulting posterior distribution.

Let p(h,y) represent the joint probability of the

model parameters (h) and the data (y). The terms p(y)

and p(h) represent the marginal distributions of the

data and the set of parameters, respectively. Also, let

pðh yj Þ and pðy hj Þ represent the conditional distribu-

tions of the parameters given the data and the reverse,

respectively. Then, the joint probability distribution

of h and y is

pðh; yÞ ¼ pðyÞpðh yj Þ; ð2Þ
pðh; yÞ ¼ pðhÞpðy hj Þ ð3Þ

The combination of (2) and (3) leads to

p h yjð Þ ¼ p hð Þp y hjð Þ=p yð Þ: The marginal distribution

of the data, p(y) after having observed the data is a

fixed constant and the conditional distribution

becomes proportional to,

p h yjð Þ / p hð Þp y hjð Þ: ð4Þ

This Eq. 4 points to the well-known Bayes’ rule

(Bayes 1763) that the posterior probability is propor-

tional to the product of the prior probability and the

likelihood of the data. The concept of a Bayesian

analysis is shown in Fig. 1. The prior distribution is

relatively flat representing vague knowledge on our

parameter of interest. The posterior distribution is

relatively peaked, indicating an increase in knowl-

edge (certainty) on the parameter, and its position is

intermediate between the prior distribution and the

likelihood of the data being a weighted average of the

two information sources.

Population characteristics

We consider diploid populations with known pedi-

gree structure among all its individuals. These

populations may either originate from fully inbred,

homozygous parents or from outbred, heterozygous

parents. The pedigree information specifies the two

parents of every individual. The two parents of

founder individuals are unknown. Next to the infor-

mation on the pedigree relationships, the data consist

of phenotypic trait values, y, and marker genotypes,

m, for individuals in a mapping population. We

assume that marker loci are organized into a linkage

map with known distances and recombination rates,

applying the Haldane mapping function, (Haldane

1919). The genotypes for markers are assumed to be

co-dominantly scored, i.e., both alleles known.

Within the linkage map putative QTL may occur at

any position, i.e., the unknown position has a

continuous distribution. In general the genotypes, g,

for these putative QTL are unobservable, except at

completely informative markers, but their probability

distribution can be inferred from the observed marker

data by using a multipoint method, e.g., Jiang and

Zeng (1997). This probability distribution is used as

the prior distribution of QTL genotypes in the

proposed Bayesian framework. The primary interest

in QTL mapping is inferring the number, locations

and effects of QTL on one or multiple chromosomes.

In absence of genetic marker data, the genetic

component of quantitative traits may be modeled via

polygenic variance component or via individual

major genes (Kennedy et al., 1992; Janss et al.

1995; Pong-Wong et al. 1999; Bink 2002). We will

refer to the first as the infinitesimal model (TIM) and

to the latter as finite polygenic model (FPM). The

assumptions for the FPM model and the QTL model

are identical, except that the genes in the FPM model

are anonymous, i.e., they are not linked to markers

and the individuals’ genotypes are inferred from

pedigree and phenotypic data. So, the transmission of

alleles at a QTL can be inferred from the known

transmission patterns of linked markers whereas the

value

ytis
ne

d

Likelihood

Posterior

Prior

Fig. 1 Probability distributions representing the principle of

Bayesian analysis: The posterior probability distribution

(black, solid) is the product of the prior probability distribution

(brown, dotted) and the likelihood distribution of the data

(blue, dashed). The area of each probability distribution sums

to 1.0. The 0.90 Highest Density Region (HDR) of each

distribution are indicated by horizontal lines
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alleles of a FPM gene obey only the Mendelian

transmission rules.

Fixed number of QTL

The QTL is assumed to be bi-allelic, allowing three

genotypes to be distinguished, i.e., AA, Aa, and aa,

having genotypic values equal to +a, d and �a,

respectively. The variables a and d represent the

additive and dominance effects of a single gene. For

convenience, we will assume absence of dominance,

i.e., d = 0, and omit dominance in the remainder of

this section. The allele frequency of the positive

allele A is denoted by fa, and may take any value

between 0 and 1 with equal prior probability. To

define the full probability model we expand the

concise linear model (1) into several factors that may

affect our trait of interest,

y�N XbþWaqtl þ Vafpm þ Zu; r2
e

� �
; ð5Þ

where b is a vector containing an overall mean (l)

and all non-genetic variables affecting the trait of

interest, which may include year and location effects.

The vectors aqtl and afpm represent the additive

genetic contributions of a gene in the QTL or FPM

models, respectively. The vector u contains the

polygenic effect of individuals, accounting for joint

contribution of small genes not captured by the QTL

or FPM models. The incidence matrices X, W, V, and

Z connect the phenotypes to non-genetic variables,

QTL, FPM, and TIM, respectively. The elements of

matrices W and V depend on the genotype assigned

to each individual. For an additive model, the

elements in W and V are equal to +1, 0, or �1,

when an individual has the positive homozygous

genotype AA (increasing the phenotypic value), the

heterozygous genotype Aa (aA), or the negative

homozygous genotype aa (decreasing the phenotypic

value), respectively. The dimensions of matrices W

and V depend on the number of QTL and FPM genes,

respectively, in the model.

Random number of QTL

The number of QTL and FPM genes are treated as

random variables in our Bayesian analysis, similar to

previous studies by e.g., (Fisch et al. 1996; Heath

1997; Sillanpaa and Arjas 1998; Uimari and Sillanpaa

2001; Bink et al. 2002). Treating the number of genes

as a random variable in a Bayesian framework can be

facilitated by the use of the Reversible Jump sampler

(Green 1995; Waagepetersen and Sorensen 2001).

Prior assumptions

The non-genetic variables are assumed to follow a

Normal distribution a priori. The variance of this

Normal distribution is unknown and this random

variable is assumed to follow a scaled inverse chi-

square distribution, e.g., Sorensen and Gianola (2002,

p. 85). In case of the overall mean, always present in

the model, the mean of the Normal prior was data-

dependent, l̂ ¼ y ¼ 1
n

Pn
i yi. The prior distribution for

the residual variance r2
e

� �
is taken to be a scaled

inverse chi-square distribution. Let matrix A denote

the matrix of additive genetic relationships, e.g.,

Lynch and Walsh (1998) given the known pedigree of

all individuals. Then, the prior for the polygenic

effects can be taken as

u Ar2
u�N 0;Ar2

u

� ��� ; ð6Þ

where r2
u is the additive genetic variance, which is

assumed to follow a scaled inverse chi-square

distribution as well. The additive effects of the

QTL (and FPM genes) are assumed to follow a

univariate Normal distribution where the variance

assumed to be both data-dependent and dependent on

the number of QTL (or FPM genes) in the model, as

previously proposed by (Yi 2004; Yi et al. 2005). Let

r̂2
y ¼ 1

n

Pn
i yi � �yð Þ2 denote the estimate of the phe-

notypic variance of the trait, then,

pðaÞ�N 0; r2
aðNQTLÞ

� �
ð7Þ

where r2
aðNQTLÞ

¼ r2
a

�
NQTL and r2

a

.
2:0� r̂2

y

� �

�Beta 2; 10ð Þ. This implies that the variance of the

normal distribution shrinks when the number of genes

in the model increases and vice versa. The number of

QTL is here assumed to have a Poisson distribution

with mean j, e.g., Heath (1997), Sillanpaa and Arjas

(1998). The prior mean for the number of QTL

affecting the trait was equal to 1.0 in this study. The

influence of the value for j on the posterior for the

number of QTL can be examined by applying

different values. The position for the jth QTL is
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specified in centiMorgan (Haldane 1919), and

denoted by k, and we assume that the position of a

QTL takes a uniform prior distribution along the

entire genome. The variance explained by all QTL

jointly is calculated as

XNQTL

j

2 fa;j 1� fa;j
� �

a2
j

� �
; ð8Þ

where Hardy Weinberg equilibrium is assumed in the

initial founder population (Falconer 1989) and link-

age equilibrium among QTL. The variance explained

by all FPM genes jointly can be calculated similarly.

Joint posterior distribution

Let P and M denote the pedigree and marker data,

respectively, and let h ¼ b; u; aQTL; aFPM ; r2
e

� �
, then

the joint posterior distribution of all unknowns can be

written as (omitting matrices X and Z),

p h; fa;NQTL; k;W;NFPM ;V y;M;Pjð Þ
/ p y h;W;Vjð Þp W fa;NQTL; k;M;P

��� �

p V fa;NFPM ;Pjð Þp h; fa;NQTL; k;NFPMð Þ;
ð9Þ

where the first term is the conditional distribution of

the phenotypic data given all unknowns from Eq. 5.

The second term is the probability distribution of

QTL genotypic states (genotypes) conditional on the

number and locations of QTL, the QTL allele

frequencies, and the pedigree and marker data. The

third term is the probability distribution of FPM

genotypic states conditional on the number of FPM

genes, the allele frequencies and the pedigree data.

The final term in Eq. 9 is the joint prior distribution of

the model variables.

Posterior computations

The calculation of the above joint posterior distribu-

tion is analytically intractable, and we apply a

Markov chain Monte Carlo (MCMC) approach (Gilks

et al. 1996) to obtain draws from the joint posterior

distribution. Different MCMC sampling algorithms

are used , i.e., the Gibbs sampler (Gelman et al. 1995;

Sorensen and Gianola 2002) when the full conditional

sampling distributions have a recognizable kernel,

and the Metropolis Hastings algorithm (Gelman et al.

1995) when the sampling distribution has an

unknown kernel. To allow changes in model dimen-

sion, i.e., increase or decrease the number of QTL or

FPM genes in the model, we use the reversible jump

MCMC method (Green 1995). The probabilities of

proposals for an increase or a decrease were both

equal to 0.40 at a given cycle of the Markov chain, if

neither an increase nor a decrease was proposed all

variables of the current model were updated.

Posterior inference and model selection

The draws obtained from the joint posterior distribu-

tion are used to calculate the marginal posterior

distributions for the variables of interest. These draws

are used to calculate point estimates such as the

mean, mode, and standard deviation, but also to

summarize the distribution by a region of the sample

space covering a specific probability. The highest

density regions (HDR) are those regions that occupy

the smallest possible volume in the sample space or

in other words, every point in the region has

probability density at least as large as every point

outside that region (Hyndman 1996). In case of a

unimodal symmetric distribution, e.g., a Normal, an

HDR coincides with the usual probability region

symmetric around the mean. However, in case of a

multimodal distribution, an HDR often consists of

several disjoint subregions. In Bayesian analysis,

HDR’s are applied to the posterior distributions and

are called ‘credible sets’, ‘plausible sets’, ‘Bayesian

confidence sets’ or ‘highest posterior density

regions’. We will use the Highest Posterior Density

regions covering 0.90 probability (HPD90) in the

posterior inferences. In Fig. 1 it can be seen that the

HPD90 (of the posterior) is relatively small compared

to the 90% credible regions of the prior distribution,

indicating that the knowledge increased substantially

after including the information from the data. The

number of QTL and their positions in a certain

chromosome is of main interest. The chromosome is

divided into small intervals (bins) and the number of

QTL per bin per cycle is used to calculate the

posterior QTL intensity (Sillanpaa and Arjas 1998).

For the posterior inference on the chromosomal

positions of the QTL we use 0.90 Highest Posterior

Intensity (HPI90).
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So, an essential characteristic of a Bayesian

analysis is the explicit use of probability to quantify

uncertainties in posterior inferences based on statis-

tical data analysis. The model described above

includes different genetic components, i.e., QTL

and major gene bi-allelic effects and polygenic

effects. Also, one or more non-genetic effects can

be included when these explain substantial parts of

the phenotypic variation of the quantitative trait of

interest. The first model selection criterion will be

proportion of phenotypic variance explained. When

the HPD90 of the marginal posterior distribution

includes the value zero for a particular variable, one

may exclude this variable from the model.

The Bayesian analysis offers the ability to utilize

data containing unbalanced structures and to study

and select among complex models. Whether model

selection will be successful depends on the quality

and quantity of the data, in absence of these, the

posterior inference will reflect the prior knowledge.

We use Bayes factors (Kass 1993; Kass and Raftery

1995) as a measure of evidence coming from the data

for different QTL models (Table 1).

Data

Simulated data is used to demonstrate the applica-

bility of our Bayesian approach to analyze genetic

components underlying quantitative traits. The sim-

ulation is based on a subset of the pedigreed apple

population of the EU-project HiDRAS (http://www.

hidras.unimi.it/). The core of the population is an

incomplete di-allel design (Fig. 2), where the 604

individuals of the 13 full sib mapping populations are

connected to each other through their 15 parents.

However, the pedigrees of the parents are known

from breeding records (see Fig. 3) and trace up to

four generations back in time. Note that in the

EU-project DNA was still available for most of the

ancestors (here we assume all individuals will

have marker data available).

We simulated 2 chromosomes of 100 cM with

each 11 markers equi-distantly spaced. We allowed 2

alleles per locus, alleles were equally probable to be

assigned to the 26 founders assuming linkage equi-

librium among loci. Note that only 2 chromosomes

were simulated for reasons of conciseness and

clearness.

The quantitative trait was affected by 4 QTL all

similar in size, positioned at 25 and 75 cM on

chromosomes 1 and 2. The heritability of the 4 QTL

jointly was approximately 0.32. A small polygenic

variance was simulated, i.e., heritability equal to

0.03. No FPM gene effects were simulated. Further-

more, we simulated a substantial contribution of a

non-genetic factor (NGF), i.e., explaining 0.32 of the

total phenotypic variance. This non-genetic factor

was simulated by randomly assigning 21 classes (e.g.,

7 locations · 3 years) to all individuals. The effects

pertaining to these 21 classes were randomly drawn

from a Normal distribution. Note that this non-

genetic factor does not involve any interaction

structure with the genetic factors and only the

variance due to the (single) non-genetic factor is of

importance.

Before analyzing the data using different models,

the phenotypic trait records were scaled such that the

phenotypic variance was equal to 1.0.

Table 1 Interpretation of Bayes factors for two competing

models, similar to (Kass and Raftery 1995)

2 ln(Bayes factor) Evidence against

Model 0

0.0–2.0 Hardly any

2.0–5.0 Positive

5.0–10.0 Strong

10.0– Decisive

Twice the natural logarithm (2 ln) of a Bayes factor is on the

same scale as the familiar deviance and likelihood ratio test

statistics

R
E

H
T

A
F

1
P

2
P

5
P

6
P

7
P

01
P

11
P

31
P

4 1
P

51
P

MOTHER

P3 48 48
P3 51 51
P6 51 51
P7 48 48
P8 27 51 51 129
P9 49 49

P10 51 51
P12 50 26 50 126
P14 51 51

50 75 99 51 51 26 102 51 49 50 604

Fig. 2 Incomplete di-allel design of 13 Full Sibs populations

of the simulated dataset. Some of the 15 parents are both used

as mother and as father in design
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Results

Models without marker data

The analysis of pedigree and phenotypic data on the

quantitative trait, ignoring marker data, revealed

clearly a genetic component (Fig. 4). Fitting only

an overall mean, resulted in an posterior mode (and

mean) estimate for the error variance of 1.00 with a

0.90 probability interval equal to 0.90 to 1.10. Fitting

the non-genetic factor with a Normal prior resulted in

a clear decrease of the estimated of the error variance

while the posterior credible region for the NGF

variance was considerably large with a long right tail.

The posterior distribution for the NGF variance was

very stable across all different models considered in

this study (see also Fig. 5). When allowing both

components TIM and FPM, the TIM was favored to

explain the variance of the phenotypic trait, while the

FPM variance had most probability mass at or close

to zero (Fig. 4). This seems counter-intuitive as the

QTL and the FPM models have similar assumptions.

The TIM model was able to fit all genetic variance,

including the 4 QTL, as previously shown by (Bink

2002) for simulation scenarios without selection.

These results may change dramatically when the

simulated dataset included selection, in that case the

trait variance may be better explained by the FPM

(Bink 2002).

Models with marker data, all linkage groups

Fitting the model with a QTL for the analysis of

pedigree, marker and phenotypic data resulted in

clear evidence for one or more QTL explaining the

phenotypic variation of the quantitative trait (Fig. 5

a). Accounting for the non-genetic factor clearly

improved the estimated posterior density for the QTL

and error variance components. The HPD90 regions

were much smaller, and posterior mode estimates

were close to the values used in the simulation of the

data set (Fig. 5a, b). The posterior mode of the error

variance shifted from 0.72 to 0.34 and HPD90 region

Gol denDel Mf l or821 RomBeaut y Wagenerap Jonat han Del i ci ous F_Crandal l Ral l sJan Ri bPi ppi n Bl enhei mO Ant a34. 16 PRI830- 101 Jef f eri es Cl ochard O53T136 F_Mel ba McInt osh St arr Weal t hy

F1_9433- 2- 2 F1_9433- 2-8 Idared Mel rose Crandal l Wi nesap Fuj i Cox Z185 F_X- 4355 X- 2599 F_Il l _#2 Chant ecl er X- 6823 TN_R10A8 Mel ba NJ130

F2_26829- 2-2 Ki dsOrRed X- 4355 X- 3188 Il l _#2 Rubi net t e X-6417 NJ12 NJ117637

PRI14- 126 PRI14- 152 PRI14- 510 Gal a NJ123249

Pri ma PRI668- 100 PRI612- 1 Rei DuMans PRI672- 3

X- 3177 RedWi nt er X- 2771 Fl ori na Coop- 17 X- 6799 GranSmi t h X- 4638

RedWi n3177 X-3263 X- 3143 Gal ari na X- 6564 X- 6820 X- 4598 X- 6681 X-3259 Bauj ade Dori anne X- 6679 X- 6808

X-3318 X- 6683 X- 6398 X- 3305 12_I01 I_CC03 12_K01 12_L01 12_O03 I_BB02

I_J01 12_F01 12_J01 I_W01 I_M01 12_N01 12_P01

Fig. 3 Pedigree structure of the simulated dataset. The 13 Full Sib populations (orange boxes) are at the lower part of pedigree; their

15 parents (red boxes) are related through their intermediate (light blue) and founder (dark blue) ancestors. The Pedimap software (R.

Voorrips, pers. comm.) was used to produce this figure
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decreased in length from 0.16 down to 0.12. The

inclusion of a polygenic component (TIM) did not

further improve the estimates for the QTL parame-

ters, which may be due to the small value for this

component in the simulated data set (results not

shown). The estimates for the Bayes factors provided

strong evidence for the 2 QTL model for chromo-

some 1 (Table 2), which was the model used in the

simulation. Including the non-genetic variable into

the model significantly improves the model selection,

i.e., the estimates of the Bayes factor become much

more decisive (Table 1).

Models with marker data, excluding linkage

group 2

When analyzing only 1 chromosome, the variance

explained by QTL clearly decreased and the error

variance increased (Fig. 5b, c). The estimation of the

posterior distribution of the non-genetic variable was

very similar in all analyses. For the analysis of the

first chromosome solely, the inclusion of the TIM

component resulted in a sharper posterior density for

the QTL variance, i.e., the length of the HPD regions

decreased from 0.20 down to 0.16. Also the estimated

posterior mode decreased from 0.18 down to 0.14,

which may indicate that there was some overestima-

tion of the QTL variance for a single linkage group

when not accounting for QTL on other linkage

groups. The posterior density for the error variance

shifted to smaller values but its credible region

became larger, indicating that there seemed to be

some difficulty to dissect the polygenic and error

variance components (Fig. 6).

The prior mean for the number of QTL at this

single linkage group was equal to 1.0. The

estimated posterior mean for the number of QTL

were 3.5 and 2.4 for the models excluding and

including the TIM component into the model. This

suggests that there was an over-fitting of QTL on

chromosome 1 when the model cannot account for

the QTL on chromosome 2. These latter QTL may

be accommodated via the inclusion of a TIM as the

number of QTL fitted onto chromosome 1 become

more consistent with the simulated number (2) of
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Fig. 4 Marginal posterior densities of variance components of

non-QTL models. Components are error variance (ERR), non-

genetic factor variance (NGF), the infinitesimal model

polygenic variance (TIM), and finite polygenic model variance

(FPM). The models were (a) overall mean; (b) overall

mean + NGF; (c) overall + NGF + TIM; (d) overall mean +

NGF + TIM + FPM. The estimates for the posterior mean and

0.90 highest posterior density region (between brackets) are

given for the variance components
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QTL. This was also reflected in the Bayes factor

estimates, models with more QTL on chromosome

1 were favored when ignoring the QTL on

chromosome 2 (Table 2).

Discussion

In this study we presented a Bayesian approach for

dissecting the phenotypic variation of a quantitative

trait into genetic and non-genetic components. Given

the pedigree and phenotypic data the evidence for a

genetic component of the quantitative trait can be

asserted. The next step would then be to include

genetic marker data into the analysis to map QTL to

known marker linkage groups. The approach taken

here (only 2 chromosomes in the simulation) is also

applicable to more realistic plant breeding situations

in which the number of chromosomes and genome

size is much larger.

ERR
QTL

0.72 [0.65,0.81]

0.33 [0.20,0.47]
ERR
QTL
NGF

0.34 [0.28,0.40]

0.36 [0.26,0.44]

0.36 [0.20,0.68]

ERR

QTL

NGF

0.44 [0.38,0.50]

0.18 [0.10,0.30]

0.34 [0.20,0.68]

ERR

TIM
QTL

NGF

0.32 [0.24,0.40]

0.20 [0.08,0.34]

0.14 [0.06,0.22]

0.36 [0.20,0.68]

0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00

0.00 0.25 0.50 0.75 1.000.00 0.25 0.50 0.75 1.00

variance

d
en

si
ty

d
en

si
ty

variance

variance variance

d
en

si
ty

d
en

si
ty

(a) (b)

(d)(c)

Fig. 5 Marginal posterior densities of variance components

for QTL models. Components are error variance (ERR), non-

genetic factor variance (NGF), the infinitesimal model

polygenic variance (TIM), and Quantitative Trait Loci variance

(QTL). The models were (a) overall mean + QTL; (b) overall

mean + NGF + QTL; (c) overall + NGF + QTL (chromosome
2 excluded); (d) overall mean + NGF + TIM + QTL (chromo-
some 2 excluded)

Table 2 Estimates of (2ln) Bayes factors for the number of QTL on chromosome 1. Negative estimates may interpreted as evidence

against model 1, i.e., in favor of model 0 (see Table 1)

Model 0 (#QTL) / Model 1(#QTL)

1/0 2/1 3/2 4/3 5/4

QTL 8.3 7.6 1.1 0.2 �0.6

NGF + QTL n.a. 30.1 �0.2 �0.9 n.a.

NGF + QTL (excl. chromosome 2) n.a. 23.9 5.9 1.8 0.5

NGF + TIM + QTL (excl. chromosome 2) n.a. 13.7 0.1 �0.4 �1.0

n.a. = not available, due to insufficient MCMC-draws from one of the two models

The models were [a] overall mean + QTL; [b] overall mean + NGF + QTL; [c] overall + NGF + QTL (chromosome 2 excluded);

[d] overall mean + NGF + TIM + QTL (chromosome 2 excluded), (cf. Fig. 5).
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Accurate knowledge on the positions of QTL and

their contributions to the important traits opens the

possibilities for marker assisted breeding and selec-

tion. Including pedigree structures also means that it

becomes feasible to utilize data from breeding

programs and more importantly to accumulate data

over time and to improve the accuracy of parameter

estimates for QTL and polygenic background which

likely improves the efficiency of the breeding

program (Podlich et al. 2004).

An ongoing discussion in modeling QTL is the

number of alleles that may be expected in plant

populations. Here, we used the bi-allelic model,

which allows relatively simple extensions to domi-

nance and epistatic actions of the QTL (Yi 2004; Yi

et al. 2005). A single bi-allelic QTL model was

shown to be less robust to situations with a simulated

single multi-allelic QTL than the reverse scenario

(Hoeschele et al. 1997). However, the latter case has

been successfully accommodated by allowing multi-

ple closely-linked bi-allelic QTL where the number

of QTL is a random variable (results not shown).

Alternatively to the bi-allelic QTL is the model

assuming two unique allelic effects for every founder

of the mapping pedigree, as may be done in a

regression context (Jansen et al. pers. comm.).

Another approach might be to include the number

of alleles for a single QTL as a random variable in the

model as was recently proposed (Jannink and Wu

2003). The estimation of the number of alleles may

be hampered by the fact that only a limited number of

founder alleles will be transmitted to the mapping

populations and the differences in size of the allelic

effects may not be large enough to distinguish all of

them (Jannink and Wu 2003).

In our study we applied model selection for the

number of QTL by allowing jumps between models

differing in the number of QTL, i.e., a reversible

jump sampler (Green 1995) was implemented to add

or delete a QTL in the Markov chain simulation. The

estimates for the Bayes factors (Kass 1993; Kass and

Raftery 1995) were used to examine the evidence

from data on the number of QTL affecting the

quantitative trait. The use of Bayes factors seems

more appropriate than the use of posterior probabil-

ities for inference on the number of QTL as the latter

are more sensitive to the prior specification (results

not shown). Another Bayesian approach for QTL

model selection may be to include all markers along

the genome into the linear model and applying
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Fig. 6 Marginal posterior intensity, prior intensity and highest

posterior intensity regions (HPI90) for the position of the QTL

on chromosome 1. The models were (a) overall mean + QTL;

(b) overall mean + NGF + QTL; (c) overall + NGF + QTL

(chromosome 2 excluded); (d) overall mean + NGF + TIM +

QTL (chromosome 2 excluded), (cf. Fig. 5)
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shrinkage to the individual marker contributions

(Meuwissen et al. 2001; Xu 2003; ter Braak et al.

2005). That approach may be appealing as a fixed

model space is assumed and the use of a reversible

jump sampling algorithm can be avoided. However,

the interpretation of the estimates for the QTL effects

may be complicated due to shrinkage. A somewhat

intermediate method is the use of a composite model

space (Yi et al. 2005; Yi 2004) where the model

parameter space is fixed but latent variables are

introduced to indicate whether a putative QTL

contributes to the quantitative trait.

In conclusion, we have presented a Bayesian

approach that can be very flexible in modeling

complex traits, allowing both genetic and environ-

mental factors. The Bayesian approach automatically

provides useful information on the remaining uncer-

tainty on the estimates of the genetic variables,

accounting for the uncertainty in other variables. The

approach is very well suited for utilizing data from

ongoing breeding programs as it automatically

accounts for relationships among all individuals by

including the known pedigree information. The

Bayesian approach has been implemented into the

software package FlexQTLTM (www.flexqtl.nl).
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