
Vol.:(0123456789)

Erkenntnis
https://doi.org/10.1007/s10670-023-00761-9

1 3

ORIGINAL RESEARCH

Meta‑inductive Justification of Inductive Generalizations

Gerhard Schurz1 

Received: 12 February 2023 / Accepted: 19 November 2023 
© The Author(s) 2024

Abstract
The account of meta-induction (G. Schurz, Hume’s problem solved: the optimality 
of meta-induction, MIT Press, Cambridge, 2019) proposes a two-step solution to 
the problem of induction. Step 1 consists in a mathematical a priori justification of 
the predictive optimality of meta-induction, upon which step 2 builds a meta-induc-
tive a posteriori justification of object-induction based on its superior track record 
(Sect. 1). Sterkenburg (Br J Philos Sci, forthcoming. 10.1086/717068/) challenged 
this account by arguing that meta-induction can only provide a (non-circular) jus-
tification of inductive predictions for now and for the next future, but not a justifi-
cation of inductive generalizations (Sect. 2). This paper develops a meta-inductive 
method that does provide an a posteriori justification of inductive generalizations, 
in the form of exchangeability conditions (Sect.  3). In Sect.  4, a limitation of the 
proposed method is worked out: while the method can justify weakly lawlike gen-
eralizations, the justification of strongly lawlike generalizations (claimed to hold for 
all eternity) requires epistemic principles going beyond meta-induction based on 
predictive success.

1 Introduction

The problem of induction was raised by David Hume 250 years ago. Hume argued 
that all standard methods of justification fail when applied to the task of justifying 
induction, broadly conceived as the projection of observed patterns from the past 
to the future. Most importantly, induction cannot be justified by induction from the 
observation of its past success as follows:

Inductive justification of induction: Induction has been successful in the past, 
thus by induction it will be successful in the future.
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This argument is circular and without justificatory value. As Salmon (1957, p. 
46) has pointed out, counter-induction (that predicts the opposite of induction) can 
be pseudo-justified in the same circular manner:

Counter-inductive justification of counter-induction: Counter-induction was 
unsuccessful in the past, thus by counter-induction it will be successful in the future.

That circular arguments may ‘pseudo-justify’ mutually inconsistent conclusions 
has been shown also for other kinds of circles (Douven, 2011, sec. 3.2).

A probabilistic version of the circularity problem besets the justification of a prior 
distribution for the predictions of event probabilities. While the predictive success of 
a chosen prior depends on the future course of events, this future course can only 
be assessed by probabilistic induction based on a given prior. Bayesians reply that 
the influence of the prior can be washed out by conditionalizing the posteriors on 
increasing amounts of evidence, but this reply has two limitations: (i) Not all prior 
distributions can be washed out in this way, not even in the long run. For exam-
ple, Carnap’s  m† measure that assigns a uniform probability (density) to all pos-
sible event-sequences cannot, because it makes inductive learning impossible (Car-
nap, 1950, pp. 564–566). (ii) In the short run the situation is worse: for every finite 
amount of evidence there exists a suitably biased prior that resists learning from this 
evidence (Schurz, 2019, sec. 4.5).

In conclusion, the crucial challenge of Hume’s problem is to find a non-circular 
justification of induction. Such a justification has to be a priori in the sense that it 
does not assume anything about the future or the unobserved part of the world. A 
justification attempt of this sort was proposed in Reichenbach’s “best-alternative” 
account to induction. Reichenbach (1949) argued that induction is the best one can 
do to achieve successful predictions. What Reichenbach attempted here is an opti-
mality justification. Optimality justifications are epistemologically weaker than reli-
ability justifications. They do not establish that a prediction method is reliable, in the 
sense that its predictive success is greater than a certain threshold that is greater than 
random success. An a priori demonstration of the reliability of induction is impos-
sible because of the possibility of skeptical scenarios in which no method can be 
successful. Skeptical scenarios refute the possibility of reliability justifications, but 
are compatible with optimality justifications, because even in skeptical scenarios a 
method may be the ’best-of-a-bad-lot’.

Reichenbach’s best-alternative account failed because Reichenbach applied it to 
induction at the level of events, called object-induction. What blocks Reichenbach’s 
account is the possibility of methods that are superior to scientific object-induction, 
e.g., methods based on clairvoyance, or more generally, based on ’paranormal’ 
information channels by means of which certain agents could ’see’ the future, i.e., 
receive temporally backward-directed signals from it, independent from information 
about the past. This possibility cannot be excluded a priori (Skyrms, 1975, ch. III.4; 
Schurz, 2021).1 Schurz (e.g., 2019) develops a new optimality approach by applying 
induction at the level of meta-methods, called meta-induction. Meta-induction can 

1 Reichenbach recognized the possibility of clairvoyance and argued that if a successful future-teller 
existed, then the inductivist could recognize this by applying induction to the success of prediction meth-
ods (1949, 476f). But Reichenbach didn’t make anything out of this observation; in particular he did not 
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handle the clairvoyant objection because if there would really be an accessible pre-
diction method that is superior to scientific induction, meta-inductivists would base 
their predictions on this method.2

More generally, meta-inductive methods try to find an optimal prediction method 
by basing their prediction on the predictions and the observed track records of 
the set of accessible methods. This set is called the pool of candidate methods. A 
method M is accessible to a subject S if M is at least externally accessible to S, 
which means that S has access to M’s predictions but need not understand M. If S 
understands M and can perform M by itself, we say that M is internally accessible 
to S. A merely externally given method must be ‘played’ by a real agent. In contrast, 
internally accessible methods may be simulated by the meta-inductivist itself.

The candidate pool contains object-level methods of various sorts, including 
object-inductive methods as well as non-inductive or other ‘alternative’ methods. 
Object-inductive methods may be simple or complex; purely observation-based or 
based on scientific theories. A simple version of object-inductive methods are the 
Carnapian λ-rules employed in Douven’s (2023) evolutionary simulations. They pre-
dict the probability of an unobserved binary event  en+1 ∈ {1,0} conditional on a 
sequence of observed events  e1,…,en as

where  n1 is the number of 1s in  e1,…,en; λ = 0 yields the straight rule and λ = 2 
Laplace’s rule of succession. Generally considered, the number of possible inductive 
methods is countless, all of them projecting some sort of observed pattern to future 
or unobserved cases. Importantly, the meta-inductive account does not need a sharp 
general definition of an ’inductive method’. On the other hand, clear examples of a 
non-inductive method are counter-inductive methods, blind guessing methods, and 
agent-based methods relying on purported clairvoyance.

Besides object-level methods the candidate pool may also contain other meta-
methods, which is important for two reasons: first, because only under this assump-
tion meta-induction can be optimal also in regard to other accessible meta-meth-
ods, and second, because in this way an infinite regress of meta-levels is avoided. 
Abstractly speaking a prediction method is a device that (at any time point n) pro-
duces a prediction in application to a method-specific input. While the input of 

P(en+1 = 1 | e1,… , en) =
n1 +

�

2

n + �
,

2 Pitts (2023) objects that that the approach of meta-induction cannot simultaneously admit the a priori 
possibility of clairvoyance and reject it on a posteriori grounds, because its standard rejection is based 
on its contradiction with the results of scientific object-induction. Schurz (2023, sec. 3) replies that the 
meta-inductive rejection of clairvoyance is not based on the a priori assumption of object-induction, but 
on the a posteriori ground of its poor empirical success record.

try to show that by this observation the inductivist could have an equally high predictive success as the 
future-teller (cf. Skyrms 1975, ch. III.4).

Footnote 1 (continued)
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object-level methods consists of observed object-level events, that of meta-methods 
includes the success records and predictions of other methods.

By transforming the best-alternative account to the meta-level, the optimality of 
meta-induction becomes mathematically demonstrable. The demonstration is car-
ried out in the framework of prediction games. A prediction game consist of an infi-
nite sequence of (binary or real-valued) events  e1,  e2,…, whose (normalized) values 
lie in the real-valued interval [0,1], together with a given meta-inductive method MI 
and a candidate pool C of methods (or ‘players’) that are accessible to MI. In each 
round (or discrete time point) n = 1, 2,…, each method M ∈  {MI}∪ C delivers a 
prediction  predn+1(M) of the next event  en+1. The predictions, too, take their values 
in [0,1]. Importantly, it is permitted to predict weighted averages or probabilities of 
event values. The predictions are scored by a convex loss function, loss(predn,en), 
normalized within the interval [0,1]. Convexity means that for any two predictions 
and weight w∈[0,1] the loss of their w-weighted average is not greater than the 
w-weighted average of their losses. Typical convex loss functions are the absolute 
distance |predn−en| between  en and  predn, or the squared distance  (predn−en)2 that is 
especially suited for the prediction of probabilities (see Sect. 2). The score obtained 
by a method M in round n is defined as 1−loss(predn(M),en), M’s cumulative score 
or absolute success achieved in round n,  Sn(M), is the sum of M’s scores until round 
n, and M’s average score or success rate at round n,  sn(M), is defined as  Sn(M)/n. 
For binary predictions with an absolute loss function, their average score is identical 
to their truth frequency.

Based on theorems in machine learning (Cesa-Bianchi & Lugosi, 2006), Schurz 
shows that a certain form of meta-induction, called attractivity-based meta-induc-
tion, is universally optimal among all accessible methods. MI predicts a weighted 
average of the predictions of the candidate methods3:

(1) predn+1(MI) = Σ1≤i≤mwn(Mi)·predn+1(Mi),
  using the following normalized (w) and unnormalized (w′) weights: 

w′n(Mi) = exp(η·Sn(Mi)), with η = 
√
8 ⋅ ln(m)/(n + 1) (Schurz, 2019, (6.8)),

   and  wn(Mi) = w′n(Mi)/Σ1≤i≤mw′n(Mi).
(2)  Optimality result for MI: For every possible event sequence  e1,  e2,… and can-

didate pool C = {M1,…,Mm}:

 (2.1) MI’s ‘long run’ average score  (limn→∞  sn(MI)) is never worse and some-
times better than that of the best candidate methods.

 (2.2) In the ‘short run’, small losses of MI compared to the actually best method, 
so-called ‘regrets’, are unavoidable, because MI bases its prediction of the 

3 The weights in (1) are equivalently definable as negative exponentials w′n(M) = exp(−η·Lossn(M)) of 
the cumulative losses  Lossn(M) =def ∑1≤i≤nloss(predi(M),ei), since  Lossn(M) = n−Sn(M) and the constant 
factor exp(−η·n) cancels by normalization.
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next event on the past track records of the candidate methods; however, 
these regrets have the following tight worst-case bound:4

max({sucn(Mi): 1 ≤ i ≤ m}) −  sucn(MI) ≤ 1.77·
√

ln(m) / n,

so they become quickly negligible when the number of rounds (n) grows 
larger than the number of competing methods (m) (ibid., th. 6.9).

  
This optimality result holds for all prediction games, even in ‘paranormal’ envi-

ronments that host clairvoyants or adversarial methods that try to deceive MI, as 
well as in chaotic environments in which the method’s average scores do not con-
verge to a stable performance ordering but oscillate around each other forever. Note 
that not all meta-inductive methods are universally optimal in the sense of result 
(2). For example, the method Imitate-the-best (ITB) that always predicts what the 
hitherto most successful candidate method predicts is provably non-optimal (Schurz, 
2019, sec. 6.3), as well as success-weighted meta-induction that directly uses the 
method’s success rates as their weights (ibid., sec. 6.8.1). MI is optimal because the 
weight its assigns to a candidate method reflects its ‘attractivity’ (or ‘regret’), which 
means that  wn(Mi) increases with  Mi’s success but converges to zero if  Mi continues 
to perform worse than MI. So if the candidate pool contains a sustainably superior 
method M*, MI will soon assign almost all weight to M* and converge predictively 
towards ITB.

Prediction games and corresponding optimality results have been generalized in 
three respects: (1.) to discrete prediction games with non-convex loss functions, (2.) 
to prediction games with an increasing pool of candidate methods, and (3.) to action 
games in which choices of actions instead of predictions are optimized (Schurz, 
2019, sec. 6.7, 7.3, 7.5).

By itself, the a priori optimality of meta-induction does not entail anything 
about the rationality of object-induction. Which prediction method, or combination 
of methods, is meta-inductively evaluated as optimal is an a posteriori matter that 
depends on the empirically given track record of the accessible methods. The pos-
sibility of superior non-inductive methods cannot be excluded a priori. However, the 
a priori justification of meta-induction bestows us the following a posteriori justi-
fication of object-induction: to the extent that object-inductive prediction methods 
were observed as more successful than all accessible non-inductive methods, we are 
meta-inductively justified in continuing to favor object-inductive prediction methods 
in the future. This argument is no longer circular, because a non-circular justification 
of meta-induction has been independently established.

Summarizing, Schurz’ account of justifying induction consists of two parts: (i) 
the a priori (mathematical) justification of meta-induction, and (ii) the a posteriori 
(empirical) justification of object-induction based on (i). The next section discusses 

4 The loss term in (ii) simplifies the loss term of th. 6.9(ii) of Schurz (2019) and follows from it, since √
2 ⋅ ln(m)/n +

√
ln(m)/8 ⋅ n2 ≤ 

�√
2 +

√
l/8

�
⋅

√
ln(m)/n and 

�√
2 +

√
l/8

�
 ≤ 1.77.
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a recent challenge to the meta-inductive account by Sterkenburg (forthcoming), who 
(in reply to a paper of Douven, 2023) argues that meta-induction can offer a justifi-
cation of object-inductive predictions only for now and for the next time point, but 
not for the infinite future.

2  Sterkenburg’s Challenge: What Can Meta‑induction Justify?

Douven (2023) supports the meta-inductive approach, arguing that “this justifica-
tion has accomplished something quite remarkable” (ibid., p. 384), but he contin-
ues that this “account leaves an important aspect of our object-inductive practices 
unexplained, to wit, that these practices have been highly successful” (ibid., p. 
382). Douven is asking here for an a posteriori explanation of the high success of 
object-induction based on contingent properties of our actual world. Clearly, the 
a priori results about meta-induction cannot answer this question and one should 
not expect that they can. The obvious minimal explanation of the observed suc-
cess of (object-) induction must be that the part of the world to which induction 
has been applied in the past was to some degree uniform, i.e., it exhibited certain 
(strict or statistical) regularities that have been inductively projected. This expla-
nation follows even analytically, since the success of any particular method of 
induction rests on the projectability of a certain pattern from observed to unob-
served events, and this projectability constitutes a regularity that explains the 
method’s success. For Douven this minimal explanation, although correct, is too 
weak: it does not explain why methods of induction developed as rapidly and 
successfully as they actually did. Based on an evolutionary simulation of differ-
ent learning methods Douven (2023) provides a deeper explanation of the suc-
cess of induction that, roughly speaking, consists in social learning combined 
with an evolutionary optimization of learning parameters. This is not the place to 
review the results of Douven’s fascinating work but to explore its epistemological 
assumptions and their justification by meta-induction. Douven understands the 
notion of “success” not merely as induction’s success as observed in the past, but 
as induction’s general success, including its future success. As a consequence, 
Douven’s question faces the problem of induction: before one can ask for an 
explanation of the general success of induction, one has to be justified in believ-
ing in this success. Douven is aware of the induction problem involved in his 
question and writes: “There is strong inductive evidence that induction is highly 
successful, which requires that our world satisfy certain uniformity conditions. 
The reliance on induction here is entirely justified in light of Schurz’s results” 
(2023, p. 402).

In conclusion, Douven (2023) argues that the application of meta-induction to 
the superior track record of scientific induction provides an a posteriori justification 
of the general success or rationality of object-induction, and he offers an explana-
tion of this general success. This is the point where Sterkenburg’s challenge hooks 
in. According to Sterkenburg, the account of meta-induction cannot provide what 
Douven’s evolutionary explanation requires, namely a justification of the general 
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rationality of object-induction (with “induction” Sterkenburg means “object-induc-
tion”). Sterkenburg (forthcoming, sec. 6, §§ 2–4) argues that meta-induction can 
only provide

 i. a justification of the rationality of induction that holds for now, but not neces-
sarily for all times, and

 ii. a justification that holds only in application to the next time point, but not for 
the indefinite future.

Sterkenburg does not clearly distinguish between these two versions of his 
objection. For example, when he writes that meta-induction cannot show that 
object-induction “is a good procedure to follow in general”, it remains unclear 
whether he means this in the sense of (i) or (ii). Yet the distinction between the 
two versions of the objection is highly important.

We think that objection (i) can be easily remedied. With “for now” it is meant 
that the justification is relative to the present evidence. What has to be done to 
deal with this objection is to recall the central distinction between an a priori 
and an a posteriori justification. What Sterkenburg’s point (i) accentuates is that 
the meta-inductive justification of an object-level method is always a posteriori, 
relative to the given track record of the competing methods for given prediction 
targets, and could be overruled by future evidence. Sterkenburg is right that an a 
posteriori justification of object-induction is weaker and more restricted than an 
a priori justification. But given the insight that an a priori justification of object-
induction is impossible, the replacement of this unaccomplishable goal by the 
attainable goal of a non-circular a posteriori justification should not be seen as 
a disadvantage, but as epistemological progress. The a posteriori nature of the 
given justification of object-induction is not different from the confirmation of 
scientific theories, which, too, is always relative to the actual evidence and can 
be overthrown by future evidence. In footnote 2 of his article, Sterkenburg sug-
gests that this analogy is problematic, but I cannot see why, because theories can 
of course figure as prediction methods and be meta-inductively evaluated by their 
predictive success.

In conclusion, the “for now” argument seems to have an easy treatment. In 
contrast, objection (ii) constitutes a genuine challenge for the meta-induction 
project. This objection says that even conditional on the actual success records 
that favor object-induction, all that meta-induction can justify is our belief in the 
rationality of object-induction in application to the next time point, but not for the 
infinite future. For prediction games as standardly presented, this objection seems 
to apply, because the prediction or hypothesis recommended by meta-induction 
concerns only the next time point.

To defeat this objection we first have to ask: what would the recommenda-
tion of a prediction method M, conditional on the present evidence, for all future 
time points precisely mean? Clearly not that M is the recommended method at all 
future time points, as this would amount to an a priori justification. It can only 
mean that M is the presently recommended method for predictions of events at all 
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future time points. Showing this requires the extension of the notion of a predic-
tion game from predictions of next events to predictions of events in the distant 
future. We will see soon that this is indeed possible. So what we have to show, 
to rebut Sterkenburg’s second objection, is that in sufficiently induction-friendly 
environments meta-induction is likely to favor an object-inductive prediction 
method that is intrinsically general in that it applies not only to the next event 
but equally to events in the distant future. For example, the Carnapian λ-rules are 
intrinsically general in this sense; our formal explication of this generality will be 
the principle of exchangeability (see Sect. 3).

The next section is devoted to the development of a method by which a meta-
inductive a posteriori justification of inductive generalizations is indeed possible. 
Before we get to this we have to clarify a more fundamental epistemological ques-
tion, concerning the relation between the justification of an epistemic method and 
the justification of the beliefs recommended by this method. In each round, meta-
induction gives us an a posteriori justification of a particular method (if it accumu-
lates nearly all weight) or of a combination of methods, because by following the 
meta-inductively recommended method we optimize predictive success. This does 
not automatically imply, however, that we are justified in believing the individual 
predictions recommended by that method, for reasons that will be immediately 
explained. Sterkenburg does not consider this problem, but it comes up when he 
argues that meta-induction should give us reason to believe that induction is suc-
cessful. If this is interpreted as having reason for believing that inductive predictions 
are probably true, then this is not granted but requires more argumentation. There 
are two major reasons for why the justification of a method may not be sufficient to 
justify the belief in its recommended predictions:

(1.) The first reason pertains to qualitative yes-or-no predictions, e.g., whether it 
will rain tomorrow or not. In some environments a meta-inductively optimal method 
may be only slightly better than random guessing, and its success probability may be 
too small to adopt its prediction as a qualitative belief and base one’s actions on it. In 
this case a rational utility maximizer will still apply the optimal method but suspend 
judgement in regard to the predictions’s truth value. What can at most be reasonably 
inferred from a meta-inductive event-prediction is that it is more probable than all 
competing event-predictions. This is a rather weak belief. What is really important is 
a good estimation of the numerical probabilities of the possible events. Fortunately, 
this can be provided by meta-induction, namely by applying meta-induction to the 
predictions of probabilities. This is called a probabilistic prediction game (Schurz, 
2019, sec. 7.1; Sterkenburg, 2020). Here, the candidate methods predict probabil-
ity distributions over the possible values of the next event, conditional on the past 
events. The deviation of the predicted probabilities from the event value that has 
been actually realized is scored by a proper scoring function such as the quadratic 
loss (which is assumed by us). It is well-known that under proper scoring, forecast-
ers will maximize their average score if they predict the objectively correct prob-
abilities. The meta-inductivist predicts a weighted average of the distributions in the 
candidate pool C , with weights defined as in (1) of sec. 1. Also Douven (2023) and 
Sterkenburg (forthcoming) develop their accounts in the framework of probabilistic 
games and the remainder of this paper will focus on probabilistic games.
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One advantage of meta-inductive probability aggregation over Bayesian learn-
ing by conditionalization lies in the fact that is not restricted to a particular class 
of prior distributions, but permits the inclusion of any prior distribution in one’s 
candidate pool. What is more important: the optimality theorem of Sect. 1 applies 
equally to probabilistic prediction games. For these games it yields the result that 
meta-induction provides an optimal probability distribution over the next event(s) 
conditional on the evidence about past events (Schurz, 2019, memo (7.2)). Since 
in probabilistic games, the methods are given as probability distributions, it 
seems that the a posteriori justification of a method and that of a particular degree 
of belief coincide in this case, and therefore the problem of the transition from 
the a posteriori justification of a method to the justification of a degree of belief 
is solved.

(2.) Even the latter conclusion is not generally warranted, but only if the opti-
mal probabilities are about observable events that are relevant to our success in 
actions, so that rational utility maximizers must implicitly adopt these optimal 
probabilities in order to maximize their expected utility. This becomes different if 
the prediction method is theory-based and involves theoretical (i.e., non-observa-
ble) concepts or variables. The meta-inductive justification of a theory-based pre-
diction method justifies our belief in the empirical predictions of this method, but 
not necessarily our belief in its theoretical superstructure, as this superstructure is 
not directly practically relevant. For example, if I use the empirical predictions of 
Newton’s laws to predict the trajectory of a planet, then (by the arguments below) 
I implicitly adopt the belief in these empirical predictions, but I need not neces-
sarily believe in the reality of gravitational forces. Thus, meta-induction leaves 
room for the suspension of judgement in regard to theoretical claims. This corre-
sponds to the instrumentalistic position in philosophy of science, exemplified for 
example by van Fraassen (1989), according to which we are warranted to believe 
in the empirical adequacy of scientific theories (their past and future predictive 
success), but not in their realistic truth. This does not mean that scientific theory 
realism is unjustifiable; it only means that meta-induction by itself does not give 
us this justification. The transition from the empirical adequacy of a theory to its 
theoretical truth does not correspond to a (meta-) inductive, but to an abductive 
inference (or inference to the best explanation). Its justification requires stronger 
epistemological assumptions that cannot be discussed here (Schurz, 2022, sec. 
5.2); only in Sect. 4, where we discuss the limitations of our approach, the abduc-
tive justification of theoretical assumptions will become relevant.

We argue that at least for beliefs whose truth-probabilities are immediately rel-
evant to our success in actions, the suspension of judgement is not an alternative 
because we are forced to act in some way, and as rational utility maximizers we will 
act as if we have certain degrees of belief, namely those degrees of beliefs from 
which we think they maximize predictive success and expected utility. Therefore we 
propose the following optimality principle that justifies the transition of the justifica-
tion of a method to the justification of the beliefs recommended by it:
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(3) Optimality principle: If probabilistic meta-induction recommends a probability 
distribution  PMI as optimal in the class C of accessible probabilistic methods and 
a rational utility maximizer X is practically forced to act as if she prefers one 
of the distributions in C , then it is rational for X to adopt  PMI as her degrees of 
belief.

The reason behind (3) is that we regard it as an a priori requirement of cognitive 
coherence that our explicit (degrees of) beliefs should agree with the implicit ’as-
if’ beliefs that are embodied in our actions. The program of retrieving a person’s 
implicit degrees of belief from her actions and utilities is prominently realized in the 
idea of defining rational degrees of beliefs in terms of fair betting quotients (going 
back to Ramsey and de Finetti). Standard Bayesians tend to identify a person’s 
degrees of beliefs with these implicit degrees of beliefs. Under this assumption the 
above-mentioned principle of cognitive coherence becomes analytically true. For 
rational justifications, however, it is important that a person’s degrees of beliefs are 
explicit in the sense of being consciously accessible by introspection, which need 
not be true for implicit degrees of belief. In fact, findings in cognitive psychology 
have discovered biases of people’s self-assessment of their degrees of beliefs that 
point in the direction of overconfidence (Hoffrage, 2004). Therefore the coherence 
principle expresses an epistemologically important rationality condition.

The optimality principle shows us the principled way how a meta-inductive justifica-
tion of inductive generalizations can work. We have to show two things: (1.) In suit-
ably induction-friendly environment the chances are high that the meta-inductively 
recommended probability distribution  PMI is intrinsically general, in the sense of being 
(approximately) exchangeable, which means roughly speaking that  PMI is applicable to 
arbitrary future time points conditional on arbitrary sequences of past events. (2.) If  PMI 
turns out to be (approximately) exchangeable, then this does not rest on accidental fea-
tures of the actual sequence of events or the chosen candidate pool of methods, so that 
it is practically not possible to reach the same success with a non-exchangeable method. 
This means that the utility maximizer must act as if his degrees of belief are exchange-
able, which by principle (3) justifies him to believe in the principle of exchangeability. 
Points (1.) and (2.) will be worked out in the next section.

3  Meta‑inductive Justification of Exchangeability

The most basic kind of an inductive-probabilistic generalization is de Finetti’s 
(1937/64) principle of exchangeability (or symmetry, as Carnap, 1950, 434ff., called 
it). Exchangeability asserts that the probability distribution is invariant w.r.t. arbi-
trary permutations of the individual constants  ai or time points i∈ℕ enumerating the 
individual events of the given sequence. We first introduce some technical notions 
needed for expressing this principle:

• P(−) ranges over epistemic probability functions (interpreted as rational degrees 
of beliefs), and  Pi,n is the probability distribution predicted by method no. i at 
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time n. We write  Pi (instead of  Mi) for a probabilistic prediction method; thus  Pi 
∈ C . Probabilities are expressed in the terminology of mathematical variables; 
we include the special case of a binary event variable expressed in logical nota-
tion (which for some is more easily understandable).

• The prediction target is represented by an event variable E that is formally a 
function from the domain of natural numbers ℕ = {1,2,…} representing individ-
uals or time points into a value space Val, E:ℕ→Val, where Val = {w1,…,wq} is 
a finite space of possible values of E. For example, E may be the event variable 
“weather conditions” with value space {sunny, cloudy, rainy, snowy}.

• Ei =def E(i) denotes the result of the realization of E at time point (or individ-
ual) i; thus  Ei ∈ Val. A binary event variable is denoted as ±E with value space 
Val = {1,0}, where 1 designates E and 0 ¬E; so the realizations of ±E expressed 
in a logical language are ±  Ei ∈ {Eai, ¬Eai}.

• ei is the actual event value at time i and P(ei) abbreviates P(Ei=ei), i.e. the pre-
dicted probability that the outcome of E’s realization at time i is the particular 
value that actually occurred. The comma stands for conjunction; so P(e1,…,en) 
stands for P(E1=e1  ∧ … ∧  En=en).

• Similarly, P(Ei = v) is the probability that the outcome of E’s realization at time i 
is the particular value v, where v and  vi are variables ranging over arbitrary event 
values in Val. P(Ei) denotes a distribution P(Ei=v) over all possible values v ∈ Val.

Using this terminology, the prediction  predn+1(Pi) of each method  Pi∈ C delivered 
in round n is a probability distribution

conditional on the actual event values  e1,…,en and possibly on further method-
specific evidence that is left implicit. Attractivity-based meta-induction predicts the 
weighted average of these probability distributions.

The principle of exchangeability can now be expressed as follows:

(4) Exchangeability of a distribution P for a given event variable E (conditionalized 
version):

  For every n ∈ ℕ,  v1,…,vk ∈ Val(E)n+1and permutation π:ℕ→ℕ permuting 
finitely many individual indices:

  P(En+1=vn+1 |  E1=v1,…,En=vn)  =  P(Eπ(n+1)=vn+1 |  Eπ(1)=v1,…,Eπ(n)=vn).
  In particular, for a binary event variable ± E in logical notation:
  P(Ean+1 | ±Ea1 ∧ … ∧ ±Ean)  = P(Eaπ(n+1) | ±Eaπ(1) ∧ … ∧ ±Eaπ(n)), 
  for all ±  Eai ∈ {Eai,¬Eai}.

Exchangeable epistemic probabilities of events depend only on their observed 
frequencies, but not on the order of the observed events. For example, P(Ea4 |   
Ea1 ∧ ¬Ea2 ∧  Ea3) = P(Ea7  |   Ea2 ∧ ¬Ea1 ∧  Ea4) = P(an unobserved individual is 
E | two out of three observed individuals were E). Informally speaking this entails 

Pi,n(En+1|e1,… , en),

PMI,n(En+1|e1,… , en) = Σ1≤i≤mwn

(
Pi
)
⋅ Pi,n(En+1|e1,… , en)
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the inductive assumption that the probabilistic tendencies of individuals do not 
depend on their mere location in space and time. Exchangeable epistemic prob-
abilities are adequate for event sequences resulting from independent repetitions 
of some physical process, called ‘random experiment’, whose unknown statisti-
cal probabilities (expressed by lower-case p) are IID (independently identically 
distributed) and, therefore, satisfy the product rule, p(v1,v2) = p(v1)·p(v2) (Gillies, 
2000, 71, 77). By de Finetti’s famous representation theorem, an exchangeable 
(conditional) epistemic probability function can be identified with an expecta-
tion value of statistical probabilities (p’s), whose weights are the posteriors of the 
possible p’s (cf. Spielman, 1976; Schurz, 2019, prop. 4.2).

We argue that belief in the exchangeability of  PMI is meta-inductively justi-
fied if three conditions are satisfied that are significantly stronger than the meta-
inductive justification conditions for single event predictions. These conditions 
are:

1. Approximate PMI-exchangeability: Conditional on the actual track record, the 
meta-inductively optimal a posteriori distribution  PMI,n satisfies exchangeability 
for the given event variable E, at least approximately, for all prediction games 
that have been performed.

2. Sufficient track record: Sufficiently many probabilistic prediction games with 
prediction target E, applied to varying sequences of E-events, have been per-
formed, to exclude the practical possibility of designing exchangeability or non-
exchangeability by artificial means.

3. Minimal richness: The candidate pool contains at least (i) a basic object-inductive 
rule (straight rule or a Carnapian λ rule with small λ), which (given a sufficient 
track record) will detect an objective IID distribution if it is there, and (ii) for 
every event value w ∈ Val(E) a method  Pw predicting constantly a high probability 
of w, which prevents that  PMI can be exchangeable if the event sequence is not 
governed by statistical IID probabilities.

The a posteriori justification of our belief in the exchangeability of  PMI,n given 
these three conditions proceeds as indicated above (where with “exchangeability” I 
mean “approximate exchangeability”): By 1. we are entitled to employ the exchange-
able distribution  PMI and because of conditions 2. and 3. it is not practically pos-
sible for the utility maximizer to reach the same success with a non-exchangeable 
method; so by the optimality principle (3) her belief in the exchangeability of  PMI is 
justified. In what follows the three conditions are motivated in more detail.
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3.1  Condition 1: Approximate  PMI‑Exchangeability

Of course it cannot be expected that after a finite amount of evidence  PMI is pre-
cisely exchangeable. Therefore we merely require approximate exchangeabil-
ity, meaning that the average difference between two permuted probabilities is 
smaller than a small pragmatically fixed approximation threshold ε:

(5) Approximate exchangeability of P for event variable E:
  For all permutations π:ℕ→ℕ, n ∈ ℕ and   v1 ,… ,v n+1 ∈ Val(E)n+1:|P(En+1=vn+1 

|  E1=v1,…,En=vn) − P(Eπ(n+1)=vn+1 |  Eπ(1)=v1,…,Eπ(n)=vn)|  ≤   ε.

Since  PMI is a weighted average of candidate distributions,  PMI will be exchange-
able in a robust weight-invariant sense if and only if all candidate distributions 
in C of significant weight are themselves exchangeable. The if-direction of this 
claim is proved in theorem (11) below. Concerning the only-if direction, it may 
of course happen that the weights of two non-exchangeable distributions  P1 and 
 P2 are just so adjusted that  PMI becomes exchangeable, but this fine-tuning breaks 
down for minimal weight-variations. For example, assume a non-exchangea-
ble  P1 with  P1,n(Ean+1|S) = 0.1 conditional on a sequence S of n ±E-events and 
 P1,n(Eaπ(n+1)|πS) = 0.9 conditional on the permuted sequence πS, and a second non-
exchangeable distribution  P2 with  P2,n(Ean+1|S) = 0.9 but  P2,n(Eaπ(n+1)|πS) = 0.1. 
Then with weights  wn(P1) =  wn(P2) = 0.5  PMI,n will come out as exchangeable, but 
small weight deviations will make  PMI,n non-exchangeable.

As explained, a successful probability distribution can only be expected to be 
robustly exchangeable for event-sequences whose finite frequencies converge to sta-
tistical IID probabilities. The question is how this property of event sequences can 
be recognized by meta-induction. This is the point where the two further conditions 
come into play.

3.2  Condition 2: Sufficient Track Record

In a standard probabilistic prediction game, all that is meta-inductively determined 
are MI’s probabilities of the possible values (v) of the next event conditional on the 
sequence of actual past events, i.e.

(6) PMI,n(En+1|e1,…,en) = Σ1≤i≤mwn(Pi)·Pi,n(En+1|e1,…,en), for n = the present time.

However, the exchangeability condition applies to probabilistic predictions of 
arbitrary future events  En+m,  PMI,n(En+m|e1,…,en); so we have to devise games for 
predictions in the more distant future. Moreover, the exchangeability condition 
refers to predictions conditional on arbitrary possible event sequences of the form 
 E1=v1,…,En=vn and it requires the invariance of  PMI for all event-reorderings. 
If  PMI would be determined only conditional on the actual event sequence,  PMI 
could be artificially made exchangeable, just by extending  PMI to all non-tested 
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event-sequences in a way so that exchangeability holds. More importantly, by a sim-
ilarly trivial definitional extension  PMI could easily be made non-exchangeable. For 
example, assume C contains a successful exchangeable probabilistic method P (e.g., 
straight rule) and  v1,…,vn is a sequence of event values that permutes the sequence 
of actual values  e1,…,en, i.e., preserves their frequencies. Then we could add a non-
exchangeable distribution  Pnon-ex to C that predicts deviantly just for this sequence 
and predicts otherwise like P. Assuming that P and  Pnon-ex are the only methods of 
significant weight, the meta-inductive aggregation of the two distributions will be 
non-exchangeable, too. But as soon as we perform another prediction game with a 
realization of the permuted event sequence  v1,…,vn, then assuming IID conditions 
the success of  Pnon-ex will disappear and  PMI’s exchangeability is restored. Surely 
one could go on in artificially designing non-exchangeable variants of P for further 
untested event sequences, but the more event sequences have been tested, the more 
complicated and arbitrary these piecewise concatenated distributions will become, 
so that for reasons of cognitive economy their inclusion in the candidate pool will be 
unreasonable and sooner or later even unfeasible.

In conclusion, to block the practical possibility of making distributions exchange-
able or non-exchangeable by artificial design, we have to perform not only one, but 
many prediction games, generating meta-inductive probabilities  PMI,n(En+m|E1=v1, 
…En=vn) not only for the actual event sequence  e1,…,en, but for various further 
sequences  v1,…vn, and not only up to the next time n+1 but up to arbitrary time 
points n+m in the distant future. At this point an important generalization of predic-
tion games has to be introduced. The optimality theorem for MI relies merely on the 
fact that all methods in C are applied to the same sequence of prediction tasks and 
are scored by a proper loss function that determines MI’s weights and predictions; 
the particular format of these tasks is inessential. For example, instead of predictions 
of the next event, the prediction task may consist in predictions of events lying in 
the distant future, or in predictions of finite sequences of future events, or of event-
averages in samples of future events, which corresponds to the standard method of 
training and test samples (Schurz, 2019, sec. 7.4). To test for exchangeability, the 
weights of the candidate methods are determined separately in each of these varied 
prediction games, so they need not be the same in these games, although as will 
be argued below, under IID conditions the weight of all successful methods will be 
approximately the same.

Note that in extended prediction games, the time points of the events and of the rounds 
of the game need not coincide: in round n probabilities of the form Pi,n(ejn+1 |ej1 ,… , ejn ) 
are predicted. Even prediction tasks of the form P(e3|e4,  e5,  e2,  e1) are admitted, in which 
an event is post-facto predicted by events lying in its past and in its future; these tasks are 
called interpolations.

We argue that belief in the approximate exchangeability of  PMI is meta-induc-
tively justified only if MI’s optimal probabilities in prediction games with permuted 
but frequency-invariant event-sequences are ε-approximately equal. One may object 
that prediction games for distant futures are practically impossible, because their 
iteration would take too long. This objection can be defeated by a further generaliza-
tion: the ‘predicted’ events need not actually lie in the future, they may also lie in 
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the past. All that is required is that the predicted events are use-novel in the sense of 
Worrall (2006), which means that their knowledge has not been used in the design 
of the methods. Thus, “predictions” may be applied post-facto to known events in 
the past  (en−m, …,en−k for k < m < n), by ’predicting’ past events based on the val-
ues of their predecessor events, provided the methods are defined independently 
from knowledge of the ’predicted’ events (cf. Thorn & Schurz, 2020 for post-facto 
prediction games based on real-world data). The difference between the time of the 
predicted event and that of the latest conditionalizing event is called the prediction 
interval. By post-facto predictions, prediction intervals may be extended to time 
spans as long as the entire past for which we possess information about the predic-
tion target. Examples of long-term scientific post-facto predictions are the predic-
tions of ice ages (occurring in intervals of about 100,000 years), volcano eruptions 
(in intervals of around 50 years) or climatic changes.

A possible objection against post-facto predictions could point out we can only 
acquire knowledge about past events by employing induction.5 Is this circular? To 
infer the temperature on our earth some hundred thousands of years ago, scientists 
use empirical laws correlating present observations with the temperature at that time. 
One example is the empirical correlation between the temperature at that time and 
the oxygen isotope composition of Greenland ice layers from that historical age (cf. 
Petit et al., 1999). The latter laws have been justified by (object-) inductive methods 
applied to samples of actual observations, where these (object-) inductive methods 
are in turn justified by meta-induction applied to their success records. This is not 
circular, because the a posteriori justification of an inductive-probabilistic method 
is relative to the prediction target(s) for which its tracks record has been determined. 
The inductive generalizations that have been justified in experiments about the pre-
dictability of temperatures from the oxygen isotope composition of preserved layers 
of ice are used, in a second step, to justify the predictive success of long-term post-
facto predictions of climatic changes.

Our opponent could push his objection further and argue that even with post-
facto predictions the exchangeability of  PMI can only be tested for events within 
prediction intervals that are within one’s epistemic reach. We call these intervals 
predictively assessable. They may cover long time spans, for some prediction tar-
gets even as long as the life time of our universe (15 billion years), but not infinitely 
long, because the infinite future is not predictively assessable. In what follows we 
call generalizations over predictively assessable time span weak generalizations, 
as opposed to strong generalizations that are claimed to hold for the whole infinite 
future. Since weak and strong generalizations are predictively equally successful, we 
have to admit that the justification of the transition from a weak to a strong generali-
zation goes beyond what meta-induction over success rates can give us. One obvious 
possibility of justifying this transition is by reasons of simplicity; this question will 
be taken up in Sect. 4.

Conditions 1 and 2 specify the track record of prediction methods required for 
justifying the belief that  PMI is approximately exchangeable and, thus, that the event 

5 This was pointed out by a referee.
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sequence is governed by an IID. Critics might object that even under IID conditions 
these conditions need not obtain for certain ’degenerated’ candidate pools. At this 
point our third condition steps in.

3.3  Condition 3: minimal richness of C

If the candidate pool C is not minimally rich, then even if the event sequence is IID, 
a non-exchangeable candidate method may predict better than an exchangeable one, 
with the result that  PMI will also come out as non-exchangeable (we say “exchange-
able” short for “approximately-exchangeable”). For example, assume the objective 
probability of a binary event, p(1), is 0.6, and C contains two methods,  P1 being 
exchangeable and predicting constantly P(1) = 0.8, and  P2 being non-exchangeable 
and predicting P(1) = 0.7 on even times and P(1) = 0.5 on odd times. Then  P2 will 
perform better and attain a higher weight than  P1, whence also  PMI will be non-
exchangeable, although the event sequence is in fact IID. Therefore certain methods 
that figure as indicators of IID- respectively non-IID conditions have to be included 
in the pool, as follows:

(1.) Some basic object-inductive probabilistic method has to be included in C that 
detects that the event sequence is IID (if it is IID) by maximally exploiting it. For 
simplicity we assume that this is the straight rule,  Pst, that transfers the observed 
frequency to the predicted instance. The long-run optimality of  Pst for IID sequences 
drives the weights of all inferior and in particular of all non-exchangeable methods 
to low values. Informally this is seen as follows: Assume a binary event sequence 
governed by an objective IID probability p(1) = p. It is well-known that the method 
 Pp that constantly predicts p minimizes the expected cumulative (squared) loss 
among all (non-clairvoyant) methods. The standard error of the frequency after 
n rounds compared to p is 

√
p ⋅ (1 − p) ∕ n . So  Pst’s expected (squared) per-round 

regret compared to  Pp is p·(1 − p)/n, which quickly converges to zero. Every pre-
diction method P* that differs from  Pst for a non-negligible share of times experi-
ences an additional loss compared to  Pst that accumulates with n; in particular this 
must hold for a non-exchangeable P*. Since weights are negative exponentials of the 
cumulative losses (cf. fn. 3), P*’s expected weight becomes small for increasing n. 
This is cashed out in the following theorem, in which E(wn(P)) denotes the expected 
weight of method P as calculated from its expected cumulative loss:

 (10) Theorem: Assume a binary event sequence  e1,  e2,… governed by an objective 
IID probability p(E = 1) = p. Let P* be a suboptimal prediction method that 
predicts p + δ in q% of times and predicts like  Pst otherwise. Then the ratio 
between the expected weights of  Pst and P* after n rounds is

   E(wn(Pst))/E(wn(P*))  ≥  exp(η·q·[n·(δ2 + 2·δ·p·(1−p)) −  log2(n+1)·p·(1−p)]),
   with η = 

√
8 ⋅ ln(m)/(n + 1) the constant in (1).

Example: If δ = 0.2, q = 40%, p = 0.7, m = 100, and n = 1000, 
then E(wn(Pst)) / E(wn(P*))  ≥  11,638.
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Proof See appendix.

In conclusion, under IID conditions only methods that predict values that are 
close to the true statistical probability will attain significant weight for increasing 
n. All these methods are approximately exchangeable and their weights are approxi-
mately equal over all tested event sequences. This implies that also  PMI,n will be 
approximately exchangeable, being exposed to a small additional approximation loss 
as computed in theorem (11) below. In this theorem we abbreviate, for any given 
sequence of event values  v1,…,vn+1∈  Valn+1 and permutation function π, the abso-
lute difference between the probabilities for the sequence and the permuted sequence 
predicted by method P as: 

Similarly for ΔMI,n,π. We abbreviate  Pn(En+1=vn+1|E1=v1,…,En=vn) as P(v ) and 
likewise the permuted prediction as P(π(v)).

 (11)  Theorem: Let S(n) be the set of candidate methods P that are ε-approximately 
exchangeable at time n, 1−ε1 their weight sum for their prediction of P(v ), and 
ε2 an upper bound of the sum of their (unsigned) weight-differences, ΣP∈S(n) 
|wn(P) −  wn,π(P)|, between the weights for the prediction P(v ) and the permuted 
prediction P(π(v)). Then:

   ΔMI,n,π ≤  ε1 + (1−ε1)·ε +  ε2.

Proof See appendix.

(2.) On the other hand, if the event sequence is not IID, then there must be meth-
ods in C that can detect this non-exchangeability. This is the purpose of the methods 
 Pw that constantly predict a high probability of the value w (for all w ∈ Val). To see 
how this works, assume again that the objective probability p(1) of a binary event 
E = 1 changes at time n + 50 from 0.1 to 0.9 (for similar arguments cf. Gillies, 2000, 
pp. 69–83). A realistic example of this sort is the increased probability of a tornado 
occurrence (per season) in Western Europe.  Pst,n would transfer the observed fre-
quency indiscriminately to all future events  en+m and would be moderately success-
ful in games predicting the near future (small m) but unsuccessful in games predict-
ing the distant future (m ≥ 50), but if  Pst is the only method in C , then  PMI,n would 
nevertheless imitate  Pst,n and stay exchangeable. At this point the constant methods 
 Pw come into play; in the binary case  P1 and  P0. The distribution P1

n
 would receive a 

low weight for predicting events in the near and a high weight for predicting events 
in the distant future, and vice versa for P0

n
 . Based on the success rates of  Pst,n, P

1
n
 

and P0
n
 for different prediction intervals,  PMI,n would predict a value close to 0.1 for 

the near future and a value close to 0.9 for the distant future; so  PMI,n would not be 
approximately exchangeable.

ΔP,n,�=def |Pn(En+1=vn+1|E1=v1,… , En=vn) − Pn(E�(n+1)=v�(n+1)|E�(1)=v1,… , E�(n) =vn)|.



 G. Schurz 

1 3

We emphasize that the minimal richness condition does not impose a dogmatic 
restriction, since arbitrary other methods may be included in the pool. The condi-
tion merely exploits mathematical results that grant to certain object-level methods 
certain success rates in particular types of environments. This guarantees that IID-
probabilities will be detected if they are there; and similarly, deviations from them 
will be recognized if they are present.

In conclusion, we argue that if we perform many prediction games over varying 
event sequences and prediction intervals (condition 2) with minimally rich candidate 
pools (condition 3), and if in all these games the meta-inductivist’s probability func-
tion  PMI comes out as approximately exchangeable (condition 1), then no further 
practically feasible way is open to achieve the same success with a non-exchangea-
ble probabilistic method. So by the optimality principle (3) the epistemic agent is a 
posteriori justified to believe in the exchangeability of  PMI, relative to the presently 
available evidence.

Still more is possible. Recall that an exchangeable P is identical with an expec-
tation value of statistical probabilities. So, if we are justified in believing that  PMI 
is exchangeable, we are also justified in believing that the predicted events are 
governed by an objective-statistical probability distribution, so that we can inter-
pret  PMI as an optimal estimation of the expected statistical probability  pMI, i.e., 
 PMI(En+1 = v|e1,…,en) =  pMI(Ex = v), with “Ex” denoting the event at variable time 
points.

There will of course be domains and prediction targets whose frequencies do 
not converge to IID probabilities. In these domains a meta-inductive justification of 
exchangeability and expected statistical probabilities is not possible, although the 
meta-inductive optimality theorem for predictions still applies. However, the pro-
posed account can be generalized from IID distributions to more complex forms 
of inductive regularities, such as Markov chains. In Markov chains of kth order, 
an event’s probability depends on the k previous events. Markov chains are not 
exchangeable in the basic sense, but in a generalized sense, called partial exchange-
ability. The latter condition asserts that all blocks of n ≥ k consecutive events with 
the same starting event and the same transition frequencies between two events have 
the same probability (Diaconis & Friedman, 1980). An elaboration of our argument 
for these and other more complex forms of inductive generalizations is left to future 
work.

We now come to the final step: the same procedure can be applied to the success 
rates of prediction methods. Here we assume a prediction game in which the suc-
cess rates of various prediction methods are predicted based on their track record. 
Provided the success frequencies are governed by statistical success probabilities, 
then by applying meta-induction to that game we obtain optimal estimations of the 
statistical reliabilities of methods that are turned into a posteriori justified beliefs 
about their statistical reliabilities by the optimality principle.

Does the last result contradict the distinguishing property of the meta-inductive 
approach that it can offer only an optimality justification, but not a reliability justi-
fication (as argued by Sterkenburg, forthcoming, in several places, e.g. in sec. 3.1, 
6th §)? No, the contradiction is only apparent, because this distinguishing property 
concerns only the a priori part of the meta-inductive account—which is, of course, 
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crucially relevant for the possibility of a non-circular justification. It is impossible to 
give an a priori justification of the reliability of meta-induction; the only possible a 
priori justification is an optimality justification. But based on this a priori optimal-
ity justification it is indeed possible, under certain observable conditions, to give an 
a posteriori justification of estimated statistical probabilities, and therefore also of 
expected statistical reliabilities.

4  Weak versus Strong Generalizations: From Meta‑induction 
to Abduction

In the previous section we described the meta-inductive justification of weak induc-
tive generalizations, in the form of exchangeability principles over predictively 
assessable time spans. In this section we discuss the transition from weak to strong 
generalizations, i.e., universal generalizations over the whole infinite future. Both 
weak and strong generalizations may be strict or probabilistic (see below). The jus-
tification of the transition from weak to strong generalizations requires epistemic 
principles that go beyond optimal predictive success, since their assessable predic-
tive success is precisely the same. In this section we discuss epistemic principles 
that may warrant this transition, emphasizing that the justification of these principles 
goes beyond the scope of this paper.

Consider special science generalizations like the following:

 (12) Weak generalizations:
   All ravens are black.
   95% of all birds can fly.

That all ravens are black is a frequently used example of a general law. But bio-
logically informed persons know that this generalization does not express a law 
of nature (and likewise for the birds-can-fly example). Color mutations of ravens 
are possible. However, until now no color-mutated ravens are known (except for 
ravens suffering from leucism). So until now the generalization “All (non-leucistic) 
ravens are black” is unfalsified. Should we interpret this generalization as a weak 
or strong one? We think that most biologists would be careful and assess this gen-
eralization merely for the “practically foreseeable future”, e.g. for the next 1000 or 
even 10,000 years. Different prediction intervals, taking different risks, are possible, 
but our main point is that when scientists assert a generalization like this, they usu-
ally do not mean that it holds for the infinite future, but merely for the predictively 
assessable future.

Prima facie, there are two epistemic criteria regulating the acceptability of gen-
eralizations: safety versus simplicity. The two criteria pull in opposite directions. 
Weak generalizations are probabilistically safer than strong ones, which speaks in 
favor of weak generalizations. But strong generalizations are simpler, because the 
precise formulation of the restriction of “assessable” future time spans is compli-
cated and depends on various contextual factors, which speaks in favor of strong 
generalizations.
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The simplicity of a generalization G may be measured by the shortest length of 
a formula expressing G in a given system of primitive symbols (cf. the criterion 
of “minimal description length” in machine learning; Grünwald, 2000). Simplicity 
is an instrumentalistic evaluation criterion that is prima facie unrelated to the truth 
chances of generalizations. It is an inverse measure of the cognitive cost of a pre-
diction method that is not covered by standard meta-induction based on predictive 
success. One could attempt to include simplicity in the meta-inductive evaluation 
by adding a simplicity component to the scoring function. There are different possi-
bilities of aggregating the predictive success score with a simplicity score. A simple 
way (proposed in Schurz, 2019, sec. 7.4) is to add an additional complexity term to 
the predictive loss of  Pi, with a subsequent renormalization. Provided that the aggre-
gated score is convex, the meta-inductive optimality theorem will still apply for this 
aggregated score. Another possibility would be to use simplicity as a ceteris paribus 
criterion, establishing a preference among predictively equally successful methods.

The justification of the preference for strong over weak generalizations by their 
greater simplicity is instrumentalistic in nature: it does not entail a justification of 
the truth-closeness of strong generalizations. The simplicity advantage is certainly 
not all what scientists mean when they asserts a strong generalization. Consider the 
following physical science generalizations:

 (13) Strong generalizations: All salt dissolves in water (at normal temperatures).

All  Cs137-atoms decay with probability 0.5 within 30.12 years.
Why are physicists or chemists so sure that these generalizations are strongly univer-

sal? Because they are regarded as genuine laws of nature, or physical necessities. This 
justification is more than a mere reason of simplicity. It attempts to offer an explanation 
for the general truth, compressed in the physical necessity claim. In other words, this 
justification is based on an inference of abduction, or inference to the best explanation 
(IBE).

The justification of abductions or IBEs, if possible at all, is more difficult than the 
justification of inductive inferences and we cannot give here a comprehensive account 
of the involved problems. Strong generalizations that are abductively justified by claims 
of physical necessities are called strongly lawlike. The strong lawlikeness of generaliza-
tions figures as the explanation of their meta-inductively justified generality—which 
without this abductive step would merely have a weak interpretation.

Strongly lawlike generalizations are considered as unbreakable by (human or 
other) interventions. In contrast, weak generalizations are breakable by interven-
tions, although they are clearly not just accidental generalizations such as “All 
apples in this basket are red”. Rather, they are the effect of a combination of con-
tingent conditions and lawlike mechanisms, whence we call them weakly lawlike. 
For example, that all ravens are black is caused by the fact that their color is the 
phenotypic expression of certain raven genes that cannot be easily altered. But they 
could be altered, and this is the difference to the solubility of salt in water, which 
can be derived from the application of fundamental physical equations to water and 
salt molecules.
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Neglect of the difference between weak and strong lawlikeness has caused mis-
understandings concerning the term “law of nature”. Those philosophers who argue 
that no genuine laws can be found in the special (non-physical) sciences (e.g. Ear-
man & Roberts, 1999) understand laws in the strong sense, while those who argue 
that each special science has its own laws (e.g. Lange, 2009) understand laws in the 
weak sense.

The epistemic justifiability of abductive inferences to observation-transcending 
explanations (such as physical necessities) is controversial. Some philosophers reject 
these inferences throughout (e.g. van Fraassen, 1989), others accept abductions only 
in the natural sciences but not in metaphysics (e.g. Ladyman, 2012), while others 
advocate abductive inferences also in philosophy (e.g. Armstrong, 1983; William-
son, 2016). Schurz (2022, sec. 5.2) argues that theory-generating abductions are jus-
tified under restricted conditions: the abducted hypothesis must be instrumentally 
optimal and must appear as an isomorphic submodel in all of its equally successful 
competitors.

5  Conclusion

Let us summarize. What is possible is a meta-inductive justification of weak 
(inductive) generalizations based on the assessable predictive success records of 
the accessible methods. What is also possible is a meta-inductive justification of 
strong generalizations based on their instrumentalistic success records, aggregat-
ing predictive success and simplicity into one score. But what is not possible is 
a meta-inductive justification of strong generalizations in terms of their probable 
truth. This justification must be based on an abduction, explaining meta-induc-
tively justified generalizations by their nature as strongly lawlike generalizations, 
or physical necessities.

In conclusion, the justification of strongly lawlike generalization requires an 
interplay of a (meta-) inductive and an abductive inference step. In this inter-
play, meta-induction has the task of providing an a posteriori justification of the 
explanandum of the abduction, which is a weakly lawlike inductive generalization 
over assessable prediction intervals. The inference to a strongly lawlike generali-
zation proceeds by an abduction, whose epistemic justifiability is controversial, 
is more difficult than the justification of induction and lies beyond the scope of 
this paper.

Appendix

Proof of theorem (10)  Assume the conditions of theorem (10).

(a) Under IID conditions, the predictor with minimal expected cumulative (squared) 
loss is the constant p-predictor  Pp, whose expected (squared) loss in each round 
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is p·(1 − p)2 + (1 − p)·p2. So  Pp’s cumulative (squared) loss after n rounds is 
 Lossn(Pp) = n·[p·(1 − p)2 + (1 − p)·p2] = n·p·(1 − p).

(b) The expected deviation of  Pst’s prediction from the true value p at time n (due 
to the deviation of the finite frequencies from the limit) is 

√
p ⋅ (1 − p)/n , as 

explained in the text. So the expected squared surplus loss of  Pst after n rounds 
(compared to  Lossn(Pp)) is given as Σ1≤i≤np·(1 − p)·(1/i), which is abbreviated 
as S.

(c) By (a) and (b), the expected cumulative loss of  Pst is
  E(Lossn(Pst)) = n·p·(1 − p) + S.
(d) The expected per-round loss of the constant p − δ predictor,  Pp−δ, compared to 

 Pp, is p·((1 − p + δ)2 − (1 − p)2) + (1 − p) ((p − δ)2 −  p2) = δ2 + 2·δ·p·(1 − p). Since 
P* predicts like  Pp−δ in q·100% of all times and otherwise like  Pst, the expected 
cumulative loss of P* is given as

  E(Lossn(P*)) = (1 − q)·[n·p·(1 − p) + S] + q·[n·(p·(1 − p) + δ2 + 2·δ·p·(1 − p))].
(e) The difference between the expected losses of P* and  Pst is computed as
  E(Lossn(P*)) − E(Lossn(Pst) = 
   =  − q·[n·p·(1 − p) + S] + q·[n·(p·(1 − p) + δ2 + 2·δ·p·(1 − p))]
   = q·[n·(δ2 + 2·δ·p·(1 − p)) − S] ≥ q·[n·(δ2 + 2·δ·p·(1 − p)) −  log2(n + 1)·p·(1 − p)], 

because S =def p·(1 − p)·Σ1≤i≤n(1/i) and  log2(n + 1) is an upper bound of Σ1≤i≤n (1/i).
(f) The weight ratio is given (by (2) in Sect. 1) as
  E(wn(Pst))/E(wn(P*)) = exp(η·(E(Lossn(P*) − E(Loss(Pst)) (by fn. 3) which by 

inserting the inequality in (e) gives the result. Q.E.D.

Proof of (11) We assume (without restricting the assumptions) that  PMI,n(v) ≤  PMI,n(π(v
)). Then:

ΔMI,n,π =def  PMI,n(v) −  PMI,n(π(v))  ≤   ε1 + ΣP∈S(n)(wn(P)·P(v) −  wn,π(P)·P(π(v)),
since ΣP∉S(n)(wn(P)·P(v) −  wn,π(P)·P(π(v))  <   ΣP∉S(n)wn(P) = ε1,
 ≤  ε1 + ΣP∈S(n)wn(P)·(P(v) − P(π(v)) + ΣP∈S(n)(wn(P) −  wn,π(P))·P(v),
since Σi(ai·bi −  ci·di) = Σiai·(bi −  di) + Σi(ai −  ci)·di,
 ≤  ε1 + (1−ε1)·ε + ε2,
since ΣP∈S(n)wn(P)·(P(v) − P(π(v))  ≤   ΣP∈S(n)wn(P)·|P(v) − P(π(v)|
 ≤  ΣP∈S(n)wn(P)·ε = (1−ε1)·ε,
and ΣP∈S(n)(wn(P) −  wn,π(P))·P(π(v))  ≤   ΣP∈S(n)|wn(P) −  wn,π(P)|·P(π(v))
 ≤  ΣP∈S(n)|wn(P) −  wn,π(P)|  =  ε2.  Q.E.D.
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