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Abstract
The “sloppy models” program originated in systems biology, but has seen 
applications across a range of fields. Sloppy models are dependent on a large number 
of parameters, but highly insensitive to the vast majority of parameter combinations. 
Sloppy models proponents claim that the program may explain the success of 
science. I argue that the sloppy models program can at best provide a very partial 
explanation. Drawing a parallel with renormalization group realism, I argue that it 
would only give us grounds for a minimal kind of scientific realism. Nonetheless, 
the program can offer certain epistemic virtues.

1  Introduction

The “sloppy models” research program originated in systems biology in the 2000 s, 
but has seen widespread applications across a range of fields, including the study 
of quantum systems, neural networks, particle accelerator design, insect flight, 
and critical phenomena in condensed matter (Gutenkunst et  al., 2007). Roughly 
speaking, a sloppy model is dependent on a large number of parameters, but 
exhibits an intriguing property: the predictions of the model are highly insensitive 
to the vast majority of combinations of these parameters (the “sloppy parameter 
combinations”), but are highly sensitive to a small number of parameters or 
combinations (the “stiff parameter combinations”). The proponents of the sloppy 
models program have suggested that it may provide an explanation for the success of 
science (Transtrum et al., 2015).

The reason is this. Many real world systems depend on vast numbers of parameters. 
We might think it would be almost impossible to form successful scientific theories 
about such systems, as they are too complex. There are far too many factors to take 
into consideration when forming an adequate model, one capable of making accurate 
predictions, useful explanations, and latching onto real regularities within the system. 
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Nonetheless, in practice, scientists have formed highly successful effective models 
of many such systems. The proponents of sloppy models argue that this is because 
many real world systems are sloppy: in practice, they are highly insensitive to the vast 
majority of combinations of these parameters. Therefore, scientists can form highly 
successful, simplified effective models of these systems, dependent on many fewer 
parameters, and effectively ignoring the sloppy parameter combinations.

Some the arguments put forwards by proponents of sloppy models are closely 
related to the ongoing philosophical debate around scientific realism. In particular, 
I will argue that the sloppy models program is closely related to a program in the 
philosophy of physics: the renormalization group realism approach. Renormalization 
group realists argue that renormalization techniques can provide us with grounds for a 
selective scientific realism about a range of effective quantum field theories.

In this paper, I will address two closely related questions. First, can sloppy models 
can explain the success of science? Second, if the sloppy realist explanation for the 
success of science is right, does it give any support for a selective scientific realism 
about some of our scientific models?

I argue that the sloppy models program can provide, at best, only a partial 
explanation of the success of science. However, it may help us to reframe the question, 
at least in some cases: why do so many real world systems seem to be sloppy? The 
proponents of the sloppy models program have not yet provided a convincing answer 
to this question, although there are some promising hints. Furthermore, I argue that 
even if the sloppy success argument were right, it would only give us grounds for a 
very minimal kind of scientific realism. Nonetheless, the sloppy models program 
brings many epistemic virtues. Sloppy models are likely to be robust against certain 
forms of uncertainty, about the sloppy parameters, but we cannot protect them from 
unconceived alternative theories. Furthermore, the sloppy models program provides 
a unifying account of many types of intertheoretic reduction, including some types 
of coarse-graining and renormalization group methods, relevant to a wide range of 
scientific disciplines.

In Sect. 2.1 I define epistemic scientific realism, and its pessimistic challenge: this 
will be relevant to some of the later arguments. In Sect. 3, I explain sloppy models 
in more detail, and reconstruct the “sloppy success argument”, that sloppy models 
can explain the success of science. In Sect. 4, I summarize the effective quantum field 
theories program, and the arguments put forward by renormalization group realists. In 
Sect. 5, I argue that, even if the sloppy success argument is right, it would only give us 
grounds for a very minimal kind of scientific realism. In Sect. 6, I consider whether 
effective models of sloppy systems might provide a partial insulation against certain 
types of theory change. However, in Sect. 7, I argue that the sloppy success argument 
can succeed only in part. I outline the epistemic virtues that I think sloppy models bring 
in Sect. 8.
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2 � Computational Models and Scientific Realism

2.1 � Epistemic Scientific Realism

Following Psillos (1999, xviii), I define epistemic scientific realism as the belief that 
our best (mature and predictively successful) scientific theories are well-confirmed 
and approximately true of the world. The realist thinks that we can systemically and 
reliably infer truth from the success of our scientific theories, whereas the antirealist 
does not. Loosely speaking, both have in mind the same notion of success, namely 
that the theory leads to (and ideally continues to lead to) novel predictions and 
explanations, experimentally confirmed or corroborated, and does not lead to too 
many falsified predictions.

The contemporary dialectic is centered on a debate about the history of science. 
Realists often argue that the best explanation for the success of our scientific theories 
is that these theories are (approximately, partially) true (Putnam, 1979). Against this, 
antirealists have pointed to the history of science, arguing that many of our our past 
best scientific theories have ultimately been shown to be false (Laudan, 1981). One 
variant of this is the challenge of unconceived alternatives: scientific theories are 
often replaced with new theories that had not even been considered before (Stanford, 
2003, 2010). If the scientific realist wishes to assert that our current best theories 
are approximately true, they must deny that we should expect such theories to be 
overturned, replaced by an unconceived alternative, as many of our past best theories 
were. A common realist strategy is to adopt a form of selective realism, identifying 
those parts of scientific theories that seem to survive theory change. Perhaps then, 
we have reason to believe in the truth of those parts of our best scientific theories 
that we can reliably anticipate will not get overturned (Kitcher, 1993; Psillos, 1999; 
Saatsi, 2017; Worrall, 1989).

The antirealist need not deny what Stanford (2021) terms the “Maddy/Wilson 
principle”.1 This is the claim that there is some systemic relationship between the 
description of the world offered by successful scientific theories and how things 
actually stand in the world. However, the antirealist must deny that we can infer 
the approximate truth of a theory (or specific parts of a theory) from this systemic 
connection. Stanford (2003) argues that selective realists must satisfy the “trust” 
requirement: they must account for which parts of our best scientific theories they 
expect to be preserved in a principled way before theory change in fact takes place 
(see also Stanford, 2000).

2.2 � Computational Models

Computational scientists in fields like systems biology use the term “model” in a 
more specific sense than its wider usage in philosophy of science.2 Suppose that 

1  This is named after Penelope Maddy and Mark Wilson—see Maddy (2007) and Wilson (2006).
2  Here we shall follow some of the notational conventions of Transtrum et al. 2011



	 D. Freeborn 

1 3

we want to learn about some target system; a model is a mathematical function 
that we use to generate predictions about this system. Suppose that we have 
experimentally extracted some finite number of measurements, which we represent 
by a set of real numbers y = {ym} , indexed by points {m} . A model is a function 
f ∶ RN

→ RM from a set of N real numbered parameters Θ = {�n} , to a set of M 
real numbered predictions about the system, f (Θ) (generally with M > N ). For the 
current purposes, we can regard RN as the parameter space (although in practice we 
might be interested in a more restricted parameter space, a subset of RN ). Both the 
predictions and measurements may have associated uncertainties. We write a cost 
function to measure the distance of the predictions to the empirical measurements, 
and try to tune the parameters (i.e. set values for each �n ) to minimize the cost. Then 
we can also use our model to extract estimations of the real parameter values. For 
an accurate model, whose parameter values we have successfully extracted, the m 
predictions f (Θ) should closely approximate the m measurements, y.3

What might our state of knowledge of the target system look like at any given 
time? A simplified picture might look like this. We have some preferred model, 
f, which best reflects our current knowledge of the target, system. However, 
alongside f, we likely have under consideration a wider family of (often related) 
models, F = {f , f �, f ��,…} . This is often referred to as the “model space” (however, 
note that the family may be quite arbitrary and restricted in certain cases). The 
parameter spaces of these models may sometimes, but will not always, coincide. 
Each model will have a corresponding set of best-estimates for that model’s 
parameters, Θ,Θ�,Θ��,… , with associated uncertainties. This picture is close to 
how some computational scientists describe their state of knowledge (for instance 
see Abramowitz & Gupta, 2008; Geris & Gomez-Cabrero, 2016; Quinn et  al., 
2019; Raju et al., 2018; Transtrum et al., 2015). However, there is great flexibility 
in precisely how we define the models and parameters, and specify our model 
and parameter spaces. For instance, we might choose to reduce the size of the 
model space under consideration by including additional parameters and suitably 
generalizing the models.

For example, let us consider, the widely used Brown and Sethna (2003) epidermal 
growth factor receptor (EGFR) model of biological signaling (see also Apgar et al., 
2010; Brown et al., 2004a; Oda et al., 2005; Transtrum & Qiu, 2014; White et al., 
2016). The model f describes the dynamics of several biochemical reactions, using 
a system of 15 independent differential equations, with a space of 48 parameters. 
For example, many of these parameters tune the various reaction rates. However, 
this is not the only model considered for this system. One alternative “mechanistic 
model”, f ′ , (see White et al., 2016) adds several additional reaction steps, involving 
new chemical species, with a larger space of 70 parameters. Observe that in this 
particular case, f and f ′ are closely related but use a different parameter space ( R48 
and R70 respectively).

3  These kinds of models are described as “computational” as they are usually sufficiently complicated 
that we must use computer simulations to extract numerical predictions. Whilst occasionally the models 
are simpler than this, the term is now widely applied to this general approach (Gutenkunst et al., 2007).
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2.3 � Realism About Computational Models

Let us try to explicate the realism-antirealism debate in the context of computational 
models. Realists believe that our best models probably represent the target system 
accurately, by latching onto genuine regularities within the target system, rather 
than merely matching the data (such models might nonetheless be approximations 
of the actual target system and need not be unique). I will call such models “latching 
models” of the target system. These regularities could be encoded in different ways in 
the model, through the functional form of the model, some of the parameter values, 
or both. Not only should some of the predictions of a latching model accurately 
match the measurements ym ∈ Rm ; the model should be able to continue generating 
at least some further correct predictions. In fact, the realist makes stronger demands: 
we should be able to anticipate some predictions that the model will continue to get 
right in advance. Against this, anti-realists argue that we cannot know that our best 
models are latching, (and we may have positive some reasons to doubt that they are), 
or at least cannot know which correct predictions it will continue to make.

Consider the sort of typical state of knowledge described in Sect. 2.2. We need 
to consider three ways our model might change if our knowledge of the target 
system improves: 

1.	 Change within parameter space we keep the same model, but our best estimates 
of the parameters take different values: Θ → Θnew . Here, Θ,Θnew ∈ RN ; the 
parameter space has not changed.

2.	 Change within a well-defined model space we replace our theory with a new 
one using a different model within the set of models that we are considering: 
f (Θ) → f �(Θ�) . Here, f , f � ∈ F , with Θ ∈ RN and Θ ∈ RN�

 . In general, the 
parameter spaces may have changed.

3.	 Change to an unconceived alternative we replace our model with a new one, not 
even represented in the previously considered model space: f (Θ) → g(Θ��) . Here, 
g ∉ F , and again the parameter spaces may differ.

Consider again the Brown and Sethna (2003) EGFR model, and imagine that we take 
new measurements of the target system. Suppose that, when we use the new meas-
urements to extract best estimates of the reaction rates, we find that the values have 
changed. This would be an example change within the parameter space. Alternatively, 
suppose that we find that the model f struggles to match our experimental results, no 
matter how much we tweak the parameters. However, the mechanistic model, f ′ seems 
to perform much better, overall. We decide to adopt the mechanistic model as our 
preferred model of the target system. This would be an example of a change within 
the model space. Finally, suppose that neither model, nor any of the other standard 
models, seem to match our experimental results. Eventually, we are force to shift to a 
radically different model that we had not even considered previously. This would be an 
example of a shift to an unconceived alternative.

Change within parameter space is not usually a major threat to the scientific 
realist: the model remains the same, although tuning parameters may involve 
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changes in the relative importance we give to various processes and their interac-
tions. In principle this could involve substantial change: a model parameter might 
be used to switch on or off terms that represent entirely new processes within the 
target system. However, in practice, particular models usually codify a more spe-
cific set of assumptions about the target system. The potential for change within 
a well-defined model space may or may not be a threat to the scientific realist, 
depending on the set of models under consideration. A selective realist is happy 
to accept our best models might be replaced with better models, as long as those 
preserve the correctly latching regularities of our current best models. However, 
in general, the set of theories under consideration may not preserve the same reg-
ularities, and we may not know which regularities correctly latch onto the same 
processes in the target system. Finally, change to an unconceived alternative is 
usually a threat: an unconceived alternative could in principle completely replace 
our current best model. As such, the recent debate around scientific realism has 
focused on this latter type of change.

Let us suppose that we seek to model some physical target system. In general, 
we will have some prior knowledge of the system in question. For example, we 
may have a list of possible features of the system that it may be necessary to repre-
sent in a model, even if we do not know the right way to do so. However, systems 
with many parameters will generally be harder to model than systems with fewer. 
Suppose that we can somehow highly restrict the features possible in a model of 
the target system (for example, suppose we have some reason to believe that the 
only possible models of the system must be polynomial equations up to some nth 
order). Then there may be more possible models for systems with many param-
eters than a system with fewer parameters (for example, there are vastly more pos-
sible polynomial equations of nth order with 1000 parameters than there are such 
equations with only 10 parameters).4

This leads to a puzzle with regards to the success of the computational sciences. 
The systems studied in systems biology, climate science, condensed matter phys-
ics and other largely computational fields are highly complex, relying on enormous 
numbers degrees of freedom, few of which are precisely measured or well-under-
stood. For example, the internal workings of a biological cell will in general rely 
on the interactions between many thousands of different proteins. A priori, one 
might expect that the task of successfully modeling such systems would be almost 
impossible: there are too many different factors affecting the system to adequately 
account for all of them and their interactions.5 Nonetheless, researchers frequently 
produce predictively successful effective models of complex systems such as these. 
The success of these effective models, in generating predictions for systems far more 

4  The problem of finding the right model of a system in this way can be thought of as special case of the 
familiar problem of induction, as applied to the task of statistical modeling (for example, see Zhao, 2018)

5  This general problem is particularly relevant in the computational sciences. In linearized statistics, the 
task of fitting a model to noisy data can become harder when we include more parameters in the model. 
Eventually, the parameters will contribute towards tuning the model to the noise, rather than the signal.
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complex than the simple model, demands an explanation. Sloppy models proponents 
claim that they can offer an explanation that solves this puzzle.

3 � Sloppy Models

There is no single, strict definition of a “sloppy model”. However one might 
differentiate two main approaches, which I will call the coordinate-dependent and 
the coordinate-independent definition (see Transtrum et al., 2015). We will need to 
discuss both.

3.1 � The Coordinate‑Dependent Definition

In the loosest sense, a model is “sloppy” if it depends on a large number of 
parameters, but is highly insensitive to the vast majority of combinations of these 
parameters (the “sloppy parameter combinations”). We can greatly change the 
values of these sloppy parameter combinations, perhaps by factors of thousands or 
tens of thousands, without significantly changing the predictions generated by the 
model. On the other hand, the model might be highly sensitive to a small number 
of parameters or combinations (the “stiff parameter combinations”). Another way to 
express this is that the N ×M dimensional model might have a much lower effective 
dimensionality. As a result, it is hard to extract good experimental estimates of the 
model’s parameters: all but a few parameter combinations are only very weakly 
constrained by the model fit to the data.

We can use Fisher Information Matrix (FIM) (see appendix A for details) to 
precisify the definition. The FIM provides a measure of the information that the 
observed data provides about each parameter in a model. More precisely, it tells 
us about the expected curvature of the log-likelihood function of the observed data 
with respect to the model parameters.

We call the eigenvectors of the FIM the local (or sometimes “renormalized”) 
eigenparameters. These directions correspond to linear combinations of the origi-
nal (“bare”) parameters. The eigenvectors give the directions of principal curvature, 
with the corresponding eigenvalues giving the corresponding magnitudes of the cur-
vature. The curvature tells us how quickly the log-likelihood function changes in 
each direction. Small eigenvalues correspond to bare parameter combinations whose 
values have only a small effect on the model predictions, whilst large eigenvalues 
correspond to combinations that have a large effect. Then, sloppy models are char-
acterized by an enormous range of eigenvalues, with an approximately exponential 
distribution, such that there are a small number of stiff eigenparameters and a large 
number of sloppy eigenparameters (see Fig. 1).

Early on, researchers suspected that sloppiness was an artifact of the choice of 
model parametrization (for example, see Waterfall et  al., 2006). For example, we 
can transform a model with many sloppy eigenparameters to a model without 
sloppy eigenparameters by means of a simple coordinate transformation. As a 
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result, researchers have searched for a way to define sloppiness independently of the 
parametrization.

Let us consider an illustrative example. Suppose that, for some system, we need 
to fit observed data ym ∈ [0, 1],∀m , and our model of the system is an N-th order 
polynomial, viewed as a sum of monomials, f (y, �) =

∑N

i=0
�iy

i . The model might 
well be sloppy, for the reason that the monomials all have a similar same shape, 
being flat and near zero, and then rising quickly towards one. As such, they can 
easily be exchanged for each other. But we could write a model that would generate 
identical predictions, for example f (y, ��) =

∑N

i=0
�iLi(y) , where each Li is the ith 

Legendre polynomial. The Legendre polynomials are orthnormal in the L2 norm on 
the interval [0, 1]: transforming the model to this basis can completely remove the 
sloppiness (Press et al., 1996; Waterfall et al., 2006).

3.2 � The Coordinate‑Independent Definition

However, we can use information geometry to define sloppiness independently of the 
choice of parametrization. In the information-geometry approach (Transtrum et al., 
2010, 2011), we interpret a model with N parameters and making M predictions 
(with the requirement M > N ), as an N-dimensional model-manifold, with � giving 
the co-ordinates, embedded in the data space RM . The parameters, � , then serve as 
manifold coordinates. The observed data is a single point within the data-space, 
possibly lying outside of the model manifold. The FIM is symmetric and positive 
semi-definite: we can interpret it as a Riemannian metric on the model manifold6. 
The FIM metric measures the distance in parameter space in units of the standard 
deviations of the parameters, given their probability distributions p(x|�) . Then, we 
can interpret distances between points as the distinguishability of the predictions 
from different parameter choices. Now the task of fitting the model to data can be 
interpreted geometrically, as the task of finding the point on the model manifold that 
is closest to the data-point.

The model manifolds have “boundaries”: we can often take parameters or param-
eter combinations to their extreme values without generating infinite predictions. We 
can understand this better by looking at the lengths of the geodesics of the mani-
fold, using dimensionless model parameters. This coordinate-independent approach 
is generally interpreted as evidence that sloppiness is an intrinsic property of the 
model (see Transtrum et al., 2015, 2011; White et al., 2016). Whilst we can change 
the eigenvalues by transforming the model parametrization, we cannot change the 
geodesic lengths (see appendix A).7 In a sloppy model, the lengths of the geodes-
ics generally have an approximately exponential distribution, closely related to the 

6  For consistency with the literature, I will continue to refer to this as the “Fisher Information Matrix”. 
However, strictly speaking, when we interpret the FIM as a metric, it is not a matrix at all, but a tensor of 
type (0,2).
7  Recall, however, that the geodesic lengths are measured in units of the standard deviation of the 
observed data. As such, there is a sense in which the sloppiness of a model is still a result of our degree 
of knowledge about the system.
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distribution of FIM eigenvalues. There are some parameter combinations that can 
be varied across their entire range of possible values without significantly changing 
the model predictions. The shape of the manifold-FIM metric pair is described geo-
metrically as a hyperribon, an N-dimensional generalization of a ribbon, with many 
short dimensions and only a few longer dimensions (see Fig. 2).

This approach endows the model manifold with enough structure to generate 
a family of reductions. We can generate simplified models, which depend on a 
smaller set of parameters, to describe the system in various limiting cases by taking 
particular parameters to extremal values.

More precisely, the manifold boundary approximation method (MBAM) works 
by iteratively applying the following procedure. First, we identify the sloppiest 
parameter combination (corresponding to the eigendirection with the smallest 
corresponding eigenvalue). Second, we construct a geodesic with the best estimates 
of the parameter values and this eigendirection as its initial conditions.8 We follow 
the geodesic path until a boundary is reached. Boundaries correspond to points 
on the manifold where the metric (the FIM) is singular. Typically this is when the 
parameters reach their extremal values (often specified to be 0 or ±∞ ; in general 
we will reparameterize the original model such that participating parameters are 
grouped together into a single combination that goes to zero at the boundary.), 
where the model becomes unresponsive to changes in the parameters (see Transtrum 
et al., 2011 for further details). By choosing a geodesic along sloppiest directions, 
we should find a nearby boundary point with nearly identical predictions for the 

Fig. 1   Left: eigenvalue spectra for 14 different systems biology models, collected by Gutenkunst et al. 
(2007). Right: eigenvalue spectra for models in a number of different fields (Brown et al., 2004a; Brown 
& Sethna, 2003; Machta et al., 2013; Transtrum et al., 2011; Waterfall et al., 2006), collected by Tran-
strum et al. (2015). In both cases, observe that the eigenvalues are approximately uniformly distributed 
across a log scale, and vary across many orders of magnitude

8  Note that the eigendirection actually defines two directions: see Transtrum and Qiu (2014, supplemen-
tal materials) for further discussion.
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model’s parameters. Third, we evaluate the limit associated with the boundary to 
produce a new model with one less parameter. The reduced model represented by 
the submanifold is identified as an approximation of the original model under some 
limiting conditions. Fourth, we recalibrate the new model by fitting it to the behavior 
of the original model. This procedure can be reapplied to successfully remove the 
sloppiest parameters.9

This reduced model is often described as an “effective” model.10 At least in 
some circumstances, the MBAM reduction method is a generalization of some 
well-known reduction techniques, such as taking singular limits, scale separation, 
equilibrium approximations, and renormalization group transformations (Machta 
et al., 2013; Quinn et al., 2021; Transtrum & Qiu, 2014).

In general, there might be many possible effective models, which we could 
arrive at under different MBAM dynamics. Anticipating Sect. 4, we might think of 
MBAM dynamics as a flow, taking points in the manifold towards one of the model 
boundaries. Then we can describe the set of points in the model manifold as forming 
a basin of attraction of each effective model, under MBAM dynamics.

Fig. 2   Schematic of a parameter space and data manifold (behavior space) for an imagined sloppy model 
with two parameters. Using the FIM-metric, the model has a longer (stiff) and shorter (sloppy) direction 
(figure from Sethna et al., 2017)

9  One might ask, can we not simply reduce the model to remove the sloppiest parameters, without first 
approaching a model boundary? In principle, this is sometimes possible. However, the sloppiest param-
eter combinations may be highly nontrivial combinations of nearly all the individual parameters. In gen-
eral, these parameter combinations can be difficult to remove from the model. However, at the manifold 
boundary, the smallest eigenvalue (corresponding to the sloppiest parameter combination) will approach 
zero. An alterative way to visualize this is that, although the geodesic’s initial direction may have 
involved a complicated combination of parameters, as it approaches a boundary it rotates into a simple, 
physically relevant combination. As such, the geodesic paths in parameter space tend to straighten out. 
Furthermore, the smallest eigenvalue of the Fisher Information matrix tends to approach zero. For further 
details, see Transtrum et al. (2011); Transtrum and Qiu (2014).
10  We might say that such effective models are adequate for particular purposes (see Parker, 2020). For 
example, the models are highly adequate for the purpose of constraining certain parameter combinations, 
but not others. Likewise, they generate good predictions for the target system under certain limiting con-
ditions, but not in others.
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3.3 � The Sloppy Success Argument

As I explained in Sect. 2.3, the success of science presents a puzzle, especially in com-
plex fields, where systems are likely to depend on very many parameters. Advocates of 
the sloppy models program suggest that sloppy models provide an explanation for this 
success (Transtrum et al., 2015). Let us call their argument the “Sloppy success argu-
ment”. The key is that sloppy systems seem to be ubiquitous across these scientific 
fields, and these models are highly sensitive to only a small number of stiff parameter 
combinations. Let us call a system a “sloppy system” if the laws, rules or regularities 
governing the system can be well-represented using a latching sloppy model. Then the 
sloppy system can also be well-represented by at least one effective model, depend-
ent on far fewer, stiff parameters. Such an effective model will generally be far easier 
to build than a more fine-grained model of a complex system that accounts for more 
parameters. Another way to say this is that a latching model of a sloppy system forms 
a basin of attraction of some effective model under a family of intertheoretic reduc-
tions, given by some MBAM dynamics.11

The sloppy success argument then takes the following form. Whilst it would 
be hard to form a predictively successful complete model of most systems, it is 
generally comparatively easy to form an effective model dependent on just a few 
parameter combinations. We assume that many such complex, real-world systems 
are sloppy, i.e. they have latching sloppy models. We can think of a sloppy model 
describing some system as forming an attractor basin of a simpler effective model 
under some particular MBAM dynamics. We can generate predictively success-
ful effective models to represent limiting cases of sloppy models. Therefore, under 
appropriate conditions, we can form predictively successful effective models for 
many real world systems.

Proponents of this argument present it in both a local and global form.12 The local 
argument is applied to specific systems, whereas the global argument is applied 
to science, or the computational sciences, in general. According to the global 
argument, we have good reason to believe that many real world systems are sloppy. 
Sloppy systems are the type of system about which we can form effective models. 
So we should expect to be able to form successful, effective scientific models of 
many real world target systems. According to the local argument, if we have a good 
reason to expect a particular system is sloppy, then we should expect to be able to 
form an effective model of this system. Therefore we should expect scientific efforts 
in modeling this system to be successful. However, the global and local forms are 
closely connected. In general, it is hard to know a priori that a real world system is 

11  Of course, some sloppy systems are quite simple, and do not require effective model in order to be 
well-understood. However, in principle at least, such systems are susceptible to the MBAM approach, so 
they can also be well-represented by an effective model, even when one is not needed (for some exam-
ples, see Transtrum & Qiu, 2014, supplementary materials). Furthermore, note that, by definition, a 
sloppy system can be represented by a latching sloppy model. But at least in principle, a sloppy model 
could still fail to be latching, for example if we are wrong about the stiff parameter combinations.
12  See Brown et al. (2004b), Frederiksen et al. (2004) for examples of the local form of the argument. 
See Gutenkunst et al. (2007), Transtrum et al. (2015) for presentations of the global form of the argu-
ment.
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sloppy. One reason to expect any particular system to be sloppy might be if we have 
good reason to expect that many such systems are sloppy.

The success of a sloppy model will be robust against certain kinds of change in 
our knowledge of the target system. If we learn that our previous understanding or 
measurements of the sloppy parameters was wrong, this is unlikely to strongly affect 
how reliable we should consider the effective model to be. As such, we can build 
predictively successful effective models of many systems about which we are highly 
ignorant, insofar as that ignorance pertains to the sloppy parameters.

4 � Renormalization Group Realism

At first glance, this closely parallels a common claim in physics and philosophy, 
that the “effective field theories” program can explain success of our best theories 
in high energy and condensed matter physics, in spite of our ignorance about the 
underlying physical theories (Weinberg, 1996). A number of philosophers (Fraser, 
2018, 2020a, b; Miller, 2017; Wallace, 2006; Williams, 2019) have recently 
marshaled the effective field theory program in the defense of a local form of 
scientific realism, variously labelled “effective realism” or “renormalization group 
realism”. This defense has been challenged by Ruetsche (2018) among others. 
The arguments around renormalization group realism mirror those of the general 
realism-antirealism dialectic, described in Sect.  2.1. I will now summarize the 
program in more detail.

4.1 � Effective Field Theories

Our most successful theories describing a wide range of physical phenomena are 
quantum field theories (QFTs); the Standard Model of particle physics is a quantum 
field theory, for example. However, the QFT program was beset by problems 
from the outset, in particular the appearance of troublesome infinities in certain 
equations for interacting theories. The efforts to tame these infinities eventually led 
to the renormalization group approach pioneered in the 1960 s and 1970 s (Wilson 
& Kogut, 1974). I summarize some features of this approach here, necessarily 
simplifying considerably and eliding over most technical details (for an overview of 
the approach written for physicists, see Binney et al. 1992 or Duncan 2012; for an 
introduction written for philosophers see Butterfield 2014 and Butterfield & Bouatta 
2014).

A quantum field theory is characterized by a Lagrangian, L , with free parameters 
representing masses and charges, so called “coupling constants”, whose values 
tell us the strength of different types of interaction. We can derive the equations of 
motion from the Lagrangian, along with other physically measurable properties such 
as cross-sections that tell us about the rates with which different physical processes 
take place. To take a toy exmaple, the so-called �4 theory Lagrangian may be written
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where � is a scalar field, and � is an appropriately defined derivative operator.
However, the value of the theory’s “bare” coupling constants cannot be directly 

measured; rather, we measure the value of physical quantities that depend on the 
interaction energy at which we probe the system. We will call these quantities the 
physical coupling constants, �p . In general they will be a function of the interaction 
energy, � , the bare coupling constant, �0 and a scale, Λ , that we will discuss 
imminently; thus we write �p(�, �0

i
,Λ).

Typically, attempting to obtain predicted values for physical observables results 
in a power series expansion, in which certain terms take the form ∫ ∞

0

ka

k2+m2
dk , where 

k represents the possible momenta of the interaction, and a a constant. For a > 2 , 
this integral will become infinite. In order to begin taming this infinity, we 
“regularize” the theory. One simple way to do this13 is by imposing a cutoff scale, Λ , 
at an energy much higher than the interactions we care about. In effect, we chop off 
our integral’s upper limit, yielding ∫ Λ

0

ka

k2+m2
dk , ignoring any contributions of higher 

energy and rendering our integral finite by brute force. Without any principled 
justification, this approach would seem to be worryingly ad hoc.

The process of rescuing our theory is called “renormalization”. We rewrite our 
theory in order to remove dependence on the arbitrary regularization scale, Λ . We 
imagine our theory as sitting in an N-dimensional parameter space, defined by the 
N physical coupling constants, �P

i
 , i ∈ ℕ . We shift our physical coupling constants 

as a function of the interaction energy scale, � , in order to absorb or cancel any 
dependency on the cutoff scale, Λ , generating “renormalized” coupling constants. In 
effect, we have a Lagrangian that describes the physics at every scale by shifting the 
value of the physical coupling constants in order to cancel out contributions from 
the cutoff. We call these the “running coupling constants”, and describe the process 
as “renormalization group flow”.14

The renormalization group flow may contain certain fixed points or fixed surfaces 
(the latter spanned by renormalizable couplings at low energies). At these fixed 
points or surfaces the value of the physical coupling constants remains unchanged as 
the energy scale, � , changes. This phenomenon is referred to as “scale invariance”. A 
large family of theories, those with the same fields and symmetries (but potentially 
differing in the number and strength of nonrenormalizable interaction terms) may 

(1)L =
1

2
��2 −

1

2
�0
0
�2 − �0

1

�4

4!
,

13  Typically, other regularization techniques are used in order to preserve the symmetries of the original 
theory. Regardless, the regularization procedure tames the infinities by some method, whilst introducing 
a regularization scale, Λ.
14  Unsurprisingly, sometimes this procedure will not be possible. A theory for which a bare coupling 
constant has dimensions of lengthD , for D ≤ 0 will not be renormalizable. Originally, renormalizability 
was simply taken as a requirement for any candidate physical theory. But the modern approach explains 
renormalizability as a widespread feature we should expect of many physical theories. More precisely, it 
explains that non-renormalizable terms will become negligible as we approach experimentally accessible 
energy and distance scales.
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flow towards the renormalizable subspace, forming its “basin of attraction”.15 This 
property is called “universality”, although this description is misleading: in general 
not all high-energy theories will flow to this fixed point.16 Physically, this means 
that the low energy physics described by this theory will be approximately invariant, 
regardless of the high energy behavior of the theory,17. In effect, the renormalizable 
part of the theory can be approximately decoupled from the physics energy scales.

With this in place, we can understand many low energy quantum field theories as 
“effective field theories”, defined only over certain energy scales, but breaking down 
at other scales. We can think of the method as a kind of coarse-graining, shielding 
the effective field theories from our ignorance of physics at unexplored scales. 
Regardless of the the high energy physical processes that take place, of which we 
are generally highly ignorant, we arrive back at the same effective theory to describe 
physics at more familiar scales.

The effective field theory program has achieved remarkable success in many 
area of physics. Examples of effective field theories include the theory of quantum 
hadrodynamics, which describes for the binding together of atomic nuclei, the Fermi 
theory of the weak interaction, and the BCS theory of superconductivity. There are 
good reasons to believe that the Standard Model of particle physics is an effective 
field theory of this type.

4.2 � Explaining the Success of Quantum Field Theories?

Physicists have constructed many predictively successful field theories to describe 
systems in particular regimes. However, in general, we are highly ignorant about 
fundamental physics. For example, the Standard Model of particle physics has 
been remarkably successful at generating qualitatively and quantitatively novel 
predictions about the electroweak and strong forces; however, physicists have good 
reasons to believe that the Standard Model is not a fundamental theory. A priori, one 
might expect that the task of generating successful models of such systems would 
be almost impossible without knowledge of the underlying physics. The success of 
these effective field theories demands an explanation.

Advocates of the renormalization group realism program suggest that effective 
field theories provide an explanation for this success (Fraser, 2018, 2020a, b; Miller, 
2017; Wallace, 2006; Williams, 2019). Let us call this argument the “renormalization 
group realism” argument. The key is that our best theories of physics, such as the 
Standard Model, should be understood as merely effective. These effective theories 
are a coarse-grained description of an underlying theory. Any new theory within the 
basin of attraction will flow close to the effective field theory. There is a sense in 
which the renormalization group flow can be thought of as a family of reductions, 

15  See Polchinski (1984) for a proof of this in the case of �4 theory.
16  More precisely, the theories in the universality class collapse to a finite dimensional surface of attrac-
tion at low energies (see Duncan, 2012, pp. 652–660).
17  The renormalization group method may also explain universality across certain theories that lie not in 
but close to, the basin of attraction—see Wu (2021).
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in which our effective theory can be understood as the low energy approximation of 
the higher energy theories within this basin of attraction (Butterfield, 2014). We can 
formulate this theory, even without a knowledge of the renormalized parameters. As 
such, we can build predictively successful effective field theories, in spite of being 
highly ignorant about the underlying physics.

Furthermore, the effective field theories will be robust against certain kinds of 
change in our knowledge of the underlying physics. Our measurements provide us 
the values of the physical “renormalized” coupling constants, but the values of the 
underlying “bare” coupling constants are insensitive to this. We are able to build 
predictively successful effective field theories describing many systems for which 
we do not have any experimental access to the bare coupling constants.18

The renormalization group realist argument then takes the following form. Whilst 
it would be almost impossible to generate a physical theory that accurately describes 
a field theoretic system at all energy scales, it is comparatively easy to form an 
effective field theory, accurate at some energy scale. We assume that a higher level 
field theory sits in (or perhaps close to) the basin of attraction of the effective field 
theory under renormalization group flow. Thus the effective field theory provides 
a good effective description of the underlying physics, when described at an 
appropriate scale.

In what sense is this a realist explanation? Renormalization group realists 
are selective: they hope to carve out those parts of a a theory worthy of a realist 
commitment from those that are not, before theory change takes place. The 
renormalization grop realist thereby hopes to respond to the challenge posed by 
Stanford’s trust argument (see Sect. 1). Insofar as we expect the true theory to be 
in the basin of attraction of the effective field theory, we expect theory change to 
be to other theories that flow to the effective field theory. Then, in principle, we can 
anticipate which parts of the theory will be invariant under theory change. These will 
be the features of the effective field theory that are invariant under renormalization 
group flow, and so insensitive to the details of physics at untested energy scales. 
Renormalization group realists suggest that these features of the theory are worthy 
of a realist commitment.

However, It is not immediately obvious what this could in fact commit us to. 
Beyond merely the observables predicted by the theory, Fraser (2020b) suggests 
correlation functions (expectation values of products of field operators associated 
with spacelike separated spacetime regions xi … xn , of the form ⟨�(xi)…�(xn)⟩ ) 
could be the locus for a realist commitment. The correlation functions are highly 
insensitive to the details of physics of high energy scales and are used to derive the 
measurable observables such as cross-sections. The renormalization group flow is 
defined so as to keep the correlation functions invariant. Nonetheless, it is unclear 
what precisely a realist commitment to correlation functions might entail (see 
Fraser, 2018; Koberinski & Fraser, 2023; Rivat, 2021; Rosaler & Harlander, 2019; 
Ruetsche, 2018, 2020 for an ongoing debate).

18  However, see Rosaler and Harlander (2019) for a different perspective on the significance of the bare 
parameters.
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4.3 � Renormalization and Sloppiness

Hopefully, the parallels between the sloppy models program and the renormalization 
group realism program are already obvious. Both try to explain the success of 
science in some domain, about which we believe we are highly ignorant about many 
of the parameters or parameter combinations. Nonetheless, scientists manage to 
produce predictively successful, highly coarse-grained effective theories, or models, 
about the system, dependent on smaller numbers of parameter combinations. 
However, we expect a wide range of theories, or models, to flow to the same effective 
theory under some family of reductions. If the true state of the target system can be 
represented by some theory, or model, within that space, then it can also be well-
described, in an appropriate regime, by the effective theory, or model. Therefore, we 
are able to construct an effective theory, or model, that is predictively successful in 
some appropriate domain, in spite of our ignorance of the target system.

As I already hinted, the similarity between these approaches may be more than 
a mere coincidence. At least some effective field theories, such as the Ising Model 
of ferromagnetism, are sloppy models, and there is good reason to suspect that this 
generalizes to other effective field theories (Machta et al., 2013; Raju et al., 2018). 
Furthermore, renormalization group flow can be thought of as a special case of the 
MBAM reduction process (Transtrum & Qiu, 2014). Therefore, it makes sense to 
consider the argument that sloppy models explain the success of science alongside 
the existing philosophical debate aroung RG realism.19

5 � Sloppy Realism About What?

We need to distinguish two issues. First, is the sloppy success argument right, i.e. do 
sloppy models explain the success of science? Second, to what extent does this give 
us reason to be realists about all or parts of successful effective models? Let us start 
with the second question. Assuming, for the moment, that we think the sloppy success 
argument gives us a good explanation of the success of certain effective models, does 
it also give us good reason to be realists about certain features of these models?

The advocates of the sloppy models program have not used the language of “sci-
entific realism”. However, this may reflect a difference in disciplinary boundaries: 
advocates of the sloppy models program are practicing scientists, not philosophers 
of science. Yet, given the close parallel between the sloppy success argument, and 
the renormalization group realism argument, it is worth considering whether the 
sloppy success argument should also give us grounds for being scientific realists.

19  Note, however, that in both fields, work can go in both directions. In quantum field theory, researchers 
have usually begin with a low energy effective field theory, before arriving at the higher energy theory. 
However, sometimes researchers have begun with the higher level theory and then inferred the lower-
energy effective theory. Likewise, in the sloppy models program, in some cases, researchers have begun 
with an effective model, and then moved to describe a less coarse-grained sloppy model. In other cases, 
they began by formulating a sloppy model, from which effective models were derived through MBAM 
dynamics. However, the details of this do not change the general structure of the argument.
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Suppose that we have some effective model about a target system, an 
approximation of a latching sloppy model of the system (see Sect. 3.3). This latching 
model forms a basin of attraction of our effective model, under MBAM dynamics. 
As with the case of the renormalization group methods, the MBAM approach 
could potentially be viewed as a family of Nagelian reductions,20. For instance, 
we can derive the effective theory from any of the more general sloppy theories in 
its basin of attraction using bridging laws in which we take the limiting parameter 
combinations to extremal values. Likewise, we can infer the renormalized parameter 
combinations using the parameters of the more general theory.

However, this does not yet preclude an anti-realist stance. As I explained in 
Sect.  2.1, many antirealists accept the Maddy-Wilson principle, that our scientific 
theories may latch onto real world regularities. Only if we can identify features of 
our effective model that will be invariant with respect to theory change (i.e. invariant 
under MBAM dynamics), can we know which features of our model might be 
appropriate for a realist commitment.

Can we determine those features of an effective model that are invariant under 
MBAM dynamics in advance? One obvious candidate could be the values of the 
stiff local parameter combinations. These do provide content about parameter 
combinations which we cannot be measured directly. More generally, relations 
between these parameter combinations may also be approximately invariant 
under MBAM dynamics. However, in general an interpretation of these parameter 
combinations will depend on their role within the model, including its non-invariant 
features. These non-invariant features may be replaced by theory change: only 
the invariant parameter combinations remain unchanged. The meaning of those 
invariant parameter combinations could change significantly depending on the rest 
of the underlying model. This would leave some, albeit fairly minimal, features of 
the effective model potentially suitable for a realist commitment.21

Let us return to the Brown and Sethna (2003) EGFR model, containing 15 inde-
pendent differential equations, with 48 parameters. Most of the parameter combina-
tions are sloppy. By applying MBAM, we can create an effective model, consist-
ing of just 6 independent differential equations, dependent on 12 parameters—this 
model is still adequate in its intended domain, whilst carrying the advantage 
of being substantially simpler, conceptually and computationally. These equa-
tions generally describe limits in which the biochemical reactions of the EGFR 
reactions equilibrate, turn off, saturate, or never saturate. To take one exam-
ple, the EGFR model describes a chain of 4 reactions involving several proteins, 

20  According to the Nagelian account of intertheoretic reduction (Nagel, 1961) a theory TP may be 
reduced to another theory TF if two requirements are satisfied. Connectabiltiy is the requirement that, for 
every theoretical term in TP , there is a corresponding term in TF . Derivability is the requirement that the 
laws of TP can be deduced from the laws of TF , alongside some auxiliary assumptions (usually taking the 
form of specific boundary conditions or further idealizations). If both of these conditions are satisfied, 
then TP , can be reduced to TF . The Generalised Nagel-Schaffner Model of Reduction (Dizadji-Bahmani 
et al., 2010; Schaffner, 1967) loosens these requirements, to allow for an approximate derivability rela-
tionship between theories.
21  Some scientific realists have argued for an extremely minimal scientific realism (Votsis, 2011).
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C3G → Rap1 → BRaf → Mek → Erk22 specified by eight parameters, whereas the 
effective model describes a direct interaction, C3G → Erk , specified by just a single 
parameter, � . However, � can be written as a limiting approximation of a nonlinear 
combination of these eight parameters. The effective model summarizes the chain of 
reactions and allows us to generate accurate predictions in an appropriate limit. As 
the authors note,

The simplified model, therefore, contains real biological insights and 
...serves as the basis for understanding and predicting the functional effects 
of microscopic perturbations, such as mutations or drug therapies, on the 
system’s macroscopic behavior. (Transtrum & Qiu, 2014, p. 3)

In this case, it seems the relation between C3G and EGFR latches onto a 
regularity in the more complex model. This relation might then be a suitable target 
for a realist commitment. However, remember that the local parameter combinations 
are generally not the same as those natural parameters that we measure. If the local 
parameter combinations are very unnatural, it may not be obvious what a realist 
interpretation of them should entail.

Of course, as with any formalism, the stiff parameter combinations, and relations 
between those parameters, i.e. those parts of the effective model that might be 
suitable for a realist commitment, only carry a meaningful interpretation within a 
specified model. The interpretation of the invariant parameter combinations may be 
model-dependent, even though the parameter values themselves remain unchanged. 
In the EGFR example, the parameter � appears to codify a single reaction rate in 
the effective model, whereas in the full model it codifies a more complex relation, 
involving several different reaction rates.

Nonetheless, if the sloppy success argument is right, it would seem to give us 
grounds for a minimal realism about some features of effective models. Overall, 
however, this is not a very surprising conclusion, given the strength of the 
assumptions we have made. In particular, this has all rested on a key supposition—
that we know that the target system can be represented by a latching model, within 
the attractor basin of an effective theory under MBAM dynamics.

6 � What Types of Success Can Sloppy Models Explain?

Proponents of the sloppy success program believe that sloppy models can solve the 
puzzle presented in Sect.  2.3, and in so doing explain the success of science. We 
now have the tools in place to analyze this claim a little more precisely. Let us first 
assess what sorts of success sloppy models might have the potential to explain.

22  More fully, these proteins are Crk SH3-domain-binding guanine nucleotide-releasing factor, Ras-
proximate-1, B-Rapidly Accelerated Fibrosarcoma, Mitogen-activated protein kinase kinase and Extra-
cellular signal-regulated kinase—see Brown et al. (2004a); Brown and Sethna (2003) for a more detailed 
overview and discussion of the proteins and their role in the EGFR model.
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If we have a sloppy target system, then we may be able to form an effective model 
of that system, one that is simpler and dependent on fewer parameters than a more 
complete model of the system. If the sloppy success argument can explain the suc-
cess of science, then these effective models need to be latching models of the tar-
get system. Then, we should expect that they will be insulated against certain types 
of theory change. If the effective model is a latching model, then we might expect 
theory change to take us only to other latching models within the basin of attraction 
of the effective model, under MBAM dynamics. In other words, the effective model 
will only be replaced by other models, of which it is a reduced version.

Unfortunately, in general we do not know whether any particular model that we 
devise really is a latching model of the system. A model that we think is latching 
could merely be predictively successful under the conditions and scales that we have 
currently tested. Perhaps the model would eventually be replaced by an altogether 
different theory. In the extreme case, the target system could be better described by 
an unconceived alternative—some model that we have not yet considered. Recall, 
the three types of theory change discussed in Sect. 2.3: change within a parameter 
space, change within a well-defined model space and change to an unconceived 
alternative. Effective models of sloppy systems may be insulated against certain 
kinds of theory change, but will not be insulated against others.

First, change in parameter space is unlikely to be a problem for an effective 
model. By the definition of a model in Sect. 2.2, a single model can accommodate a 
range of parameter values (and even the predictions of the model are generally robust 
against changes in the sloppy parameter values). The model is flexible enough to 
accommodate this sort of change in our knowledge of the target system. Second, an 
effective model may be robust against change within a well-defined space of models, 
if those models are in the basin of attraction of the effective model. Insofar as we 
only consider theory change within a family of models related by MBAM dynamics, 
then the effective model will only change to models of which it is a reduced version. 
However, an effective model does not provide any way to guard against change to 
a fundamentally different theory in model space, or to an unconceived alternative 
outside of model space. Unfortunately, as I explained above, it is precisely this sort 
of theory change that forms the crux of the contemporary philosophical debate.

The parallel with the renormalization group realist program is instructive here. 
Fraser (2018) cites the effective field theory methodology as an argument against 
unconceived alternatives—after all, it gives us a means to anticipate at what scales 
a theory might break down, and what theory might replace it (see Wells, 2012). For 
example, it was predicted long in advance that one effective theory, the Fermi theory 
of the weak interaction, would start to fail at around the 100 GeV scale, long before 
it was replaced by a generalized electroweak theory (see Mannel, 2004, p. 5).

However, the renormalization group program can only help us to anticipate theory 
change within the attractor space of the effective field theory. This merely pushes the 
threat from unconceived alternatives back a step. Whilst we can anticipate theory 
change within the attractor space, there could be an unconceived alternative outside 
of the attractor space of the effective field theory altogether. Ruetsche (2018) uses 
a historical example from Wells (2012) to demonstrate this point. Newton’s law of 
universal gravitation (LUG) came into conflict with astronomical data in the late 
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19th century. Hypothetically, scientists could have formed a (highly predictively 
successful) modified effective theory, modifying LUG and incorporating the 
astronomical data. This theory would have flowed to the original LUG under a 
process highly analogous to renormalization group flow. However, the actual theory 
that replaced LUG, general relativity, lies outside of any such attractor space. It is 
built on different assumptions, and satisfies a different set of symmetries to LUG 
and the effective theory. As Ruetsche (2018, p. 1187) puts it, “The concern is that 
even explicit RG results are only as reassuring as the space of theories on which the 
RG group acts is comprehensive”.

To put it another way, the sloppy models program seems to guard us against 
certain kinds of doubt, but not against others. Insofar as we are not certain of 
the values of the sloppy parameters, (or have small uncertainty about the stiff 
parameters) then we can have faith in our sloppy models. However, insofar as 
we have doubt about the general form, f, that a latching model should take, then 
the sloppy models program cannot help us. The program provides us with a local 
defense against some limited kinds of uncertainty—but not a global defense against 
skepticism such as that posed by the argument from unconceived alternatives.

7 � Sloppy Explanation?

Now we must address the first question: can the sloppy success argument explain 
the success of science? Recalling Sect. 3.3, we have seen, at least in certain limits, 
a sloppy system can be well-represented by an effective model, dependent on far 
fewer parameters. I have argued that it is often easier for us to create effective, 
latching models of the target system than a more complete model. An effective 
model, by definition, relies on fewer parameter combinations than a more complex 
model. For example, the effective model of the EGFR described in Sect. 5 makes 
several simplifying assumptions. It treats C3G as directly influencing the Erk 
concentration, avoiding a series of intermediate steps. Likewise, effective models of 
thermodynamic systems work by statistically summarizing the underlying physics, 
removing the need to include microscopic degrees of freedom within the model. 
Plausibly, we need less knowledge of the target system in order to successfully 
create an effective model.

However, the sloppy success argument requires that many real-world systems 
are sloppy, i.e. they are well-represented by latching sloppy models, models that sit 
in the attractor basin of a simpler effective model under some particular MBAM 
dynamics. All we have so far is a conditional—if we already know that a system 
is sloppy, then we have reason to believe our model in the face of certain kinds of 
uncertainty. Yet so far we have not seen any reason to expect that many real world 
systems would be sloppy.

The sloppy success argument has not yet given an explanation of the success of 
science. Rather, it has provided a useful reframing of the issue, in terms of system 
sloppiness. In effect, we have pushed the question of scientific success back a step. 
This has raised the question: can we explain why many real world systems are 
sloppy?
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Ultimately, a defence of the sloppy success argument will lean on some form of 
inference to the best explanation. The hope is that the success of the sloppy modeling 
program licenses us to believe either some specific system (in the case of the local 
form of the argument), or many systems in general (in the case of the global form of 
the argument) are well-described by sloppy models. Framed in this way, the sloppy 
model formalism offers a toolkit for detailing the type of commitments that realists 
should make regarding sloppy systems.

This argument parallels the broader dialectic that I charted in Sect.  2.1. Such 
arguments are unlikely to convince the skeptic. In particular, the skeptic would view 
such abductive arguments as explicitly vulnerable to the threat of an unconceived 
alternative explanation. Nonetheless, it is instructive to explore how this general 
argument form plays out in the specific arenas of effective field theory and sloppy 
models programs.

Quantum field theorists have provided certain heuristic arguments for why 
we should expect why many systems may look like quantum field theories. The 
most canonical of these is known as “Weinberg’s folk theorem” (see Weinberg, 
1995, chapters  1–5 for a technical exposition and Bain, 1998 for a philosophical 
reconstruction of the argument). As Weinberg (1996,  p. 8) puts it, “although you 
can not argue that relativity plus quantum mechanics plus cluster decomposition 
necessarily leads only to quantum field theory, it is very likely that any quantum 
theory that at sufficiently low energy and large distances looks Lorentz invariant 
and satisfies the cluster decomposition principle will also at sufficiently low energy 
look like a quantum field theory". The argument is that any quantum field theory 
meeting three very general conditions considered particularly secure by scientists 
(quantum mechanics, Lorentz invariance, and a locality condition called cluster 
decomposition) is expected to approximate some quantum field theory model at low 
energies.23

Note that Weinberg’s folk theorem does not fill in all the gaps here. It gives us 
some reason to believe that real physical systems can be approximated by quantum 
field theories, but even if we accept this, they need not necessarily fall into the 
attractor basin of our current best effective field theories. Nonetheless, the theorem 
provides some justification for the approach taken by physicists to pursue maximally 
general models within the quantum field theory framework. Even if we expect the 
“true” theory to not be a quantum field theory, we have some reason to expect it 

23  A little more precisely, Weinberg suggests that if these three conditions are satisfied: 

1.	 There is a quantum mechanical characterisation of the S-Matrix formalism (the state of a system is 
a vector from a hilbert space, etc);

2.	 The S-Matrix obeys approximate Lorentz invariance at sufficiently low energy scales/large dis-
tances;

3.	 Cluster decomposition (stating that the the vacuum expectation value of a product of operators in 
two separated regions, A and B, can be decomposed into the expectation value for the product of 
the operators in A, multipied by the expectation value for the product of the operators in B);

  then any such theory will look like an effective field theory at sufficiently low energy scales in this spe-
cific sense. The Lagrangian density will be a Lorentz scalar functional of local fields, linear in the crea-
tion and annihlation operators a(q) and a†(q) (with coefficients that are smooth functions of momenta). 
This in turn means that we can perform a Fock space decomposition of the free fields.
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to approximate our quantum field theories at the energy scales we can currently 
experimentally probe. However, the antirealist is unlikely to be convinced. The 
skeptic has two obvious responses: to retreat back a level and propose skepticism 
about Weinberg’s three conditions, or to suggest that the “true” theory may indeed 
be a counter-example. Notably Weinberg’s folk theorem is explicitly vulnerable to 
unconceived counter-examples. The theorem does not have a proof; rather the claim 
is that it is extremely hard to think of a theory that defies the theorem.24.

Does an analogous argument hold in the case of the sloppy models program? 
As I explained in Sect. 3.1, the eigenvalues of the FIM of sloppy models form an 
approximately expontial distribution. This suggests that the common features of 
sloppy models may indicate that they belong to a common universality class. In 
particular, a Vandermonde ensemble of multiparameter nonlinear models will 
exhibit the features of sloppy models in the limit that the system size approaches 
infinity25. Waterfall et al. (2006) suggest that perhaps many real world systems can 
be expressed in terms of such an ensemble. However, even if this is the case, this 
merely sets the question back one step further. Instead of asking why many real 
world systems are sloppy, we ask why such real world systems can be expressed in 
terms of a Vandermonde ensemble.

A deeper, but closely related reason why many systems may be sloppy comes 
from approximation theory (Quinn et  al., 2019). Assuming certain smoothness 
conditions on the model predictions, as inputs (experimental controls such as time, 
experimental conditions, and so forth) are varied, then constaints can be put on the 
geodesic lengths of the model manifold. More precisely, if a model y(m) is approxi-
mated by a Taylor series or Chebyshev series truncated to order N, for which each of 
the coefficients are bounded by an N-sphere of radius r, then it can be shown that the 
model manifold is constrained by a hyper-ellipsoid, for which the jth largest princi-
pal axis length is bounded by a power law �−j , for some � ∈ N  (see appendix B)26. 
In effect, this demonstrates a connection between model smoothness and sloppiness: 
we should expect any model obeying some fairly general smoothness conditions to 
be sloppy. Even so, this pushes back the question a step further: why should we 
expect many real-world systems to exhibit these smoothness requirements?

Compare this to Weinberg’s folk theorem. Weinberg’s folk theorem closes some 
of the gaps in the effective field theory program—using very widely accepted 
principles, it gives some reason to believe that many physical systems can be 

24  Indeed certain counterexamples do exist. String theory is sometimes cited as one such counterex-
ample, though its status with regards to Weinberg’s folk theorem is contentious (Bain, 1998; Weinberg, 
1996).
25  A Vandermonde matrix is an m × n matrix in which each row may be expressed as a geometric pro-
gression, Vij = x

j−1

i
 . Waterfall et al. (2006) show that, under certain assumptions, then if a model has a the 

Hessian matrix of the form, H = VTATAV  , where V is a Vandermonde matrix and A is a model-specific 
matrix, then the model will be sloppy, according to the coordinate-dependent definition.
26  Quinn et  al. (2019, supplemental materials) suggest that a model manifold exhibiting an algebraic 
decay of lengths should count as sloppy. Furthermore, note, that this does not explain all cases of slop-
piness. The argument gives a sufficient, but not necessary condition on sloppiness. The argument does 
not extend to probabilistic models such as the Ising model or the model for the cosmic microwave back-
ground radiation after the Big Bang, which also form hyperribbons.
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approximately described by quantum field theories. The sloppy models program 
has likewise produced a set of reasonably general conditions under which sloppi-
ness must arise. These results go some way: insofar as these conditions are met, we 
should expect real world systems to be sloppy. However, it is not completely clear 
how often we should expect such conditions to be satisfied by the real world systems 
that we study. The results explicate the sloppiness in terms of some more general 
principles, but the explanatory gap has not been closed.

So the sloppy models program provides a partial explanation, as it currently 
stands, for the general success of science. It has certainly achieved a (potentially 
very useful) reframing of the question. Instead of asking why science is successful, 
given the incredible complexity of many real world systems, we can instead ask why 
it is that many real world systems seem to be sloppy. Or, pushing back a further step, 
we might ask, why it is that many real world systems are representable in terms of a 
Vandermonde ensemble. Pushing back further still we might ask why it is that many 
real world systems can be well-represented by models that obey certain smooth-
ness constraints. This reframing might be very helpful: it gives us useful directions 
to pursue further research in answering the question about the success of science. 
However, it does not, yet, bring us all the way towards an answer.

8 � Conclusions: The Epistemic Virtues of the Sloppy Models Program

The sloppy models program is undeniably successful, generating many fruitful 
results. However, I have argued that it can, at best, give us only a partial explana-
tion for the success of science, or for the success of particular scientific theories. 
The sloppy models program does help us to reframe a question about the success 
of science. Instead of asking, why science is successful, we might ask: why might 
many real-world systems be sloppy? This is a narrower, and somewhat more clearly 
defined question. It encourages to seek explanations for why many real world sys-
tems might have a latching model in which the set of eigenparameters follows an 
approximately exponential distribution. We can even push this question back a step 
further: why might many real world systems be representable by a Vandermonde 
ensemble? Even expressing a question in more clearly defined terms might be the 
first step towards finding an answer.

Sloppy models proponents have even offered a partial answer here. We should 
expect certain systems to be sloppy if they can be described by equations obeying 
fairly general smoothness and analyticity properties. However, it is not clear how 
often we should expect real world systems to be characterised by such equations, or 
even how one might begin to find out. In this respect, it is in a comparable position 
to the effective field theories program: proponents of renormalization group realism 
can provide some heuristic arguments that we should expect many real world sys-
tems may be approximable by effective field theories.

How strong a support does this offer the realist? The realist might very reasonably 
contend that any explanation for the success of science from within science itself 
must stop at some point. The sloppy models program can help strengthen their case, 
even if it falls short of being an airtight defence against all forms of skepticism. 
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However, the antirealist is likely to be unmoved by such claims. Whilst sloppy 
models provide a defence against some kinds of theory change, the crux of the 
argument has been about theory change to an unconceived alternative. It is precisely 
here that the sloppy models program seems most vulnerable.

In this sense, the debates around the sloppy models and the effective field theory 
programs have served as proxy conflicts in the wider war between realists and 
antirealists. The form of the specific arguments in each case has closely paralleled 
the more general arguments. The realist arguments ultimately lean upon an inference 
to the best explanation. These arguments are vulnerable to precisely the same 
antirealist challenges in the specific cases as in the general case.

Regardless, the explanation offered by the sloppy models program might at best 
only justify a very minimal kind of scientific realism. Once again, there is a close 
parallel here with the renormalization group realism program. However, I have 
argued that the sloppy models approach does not allow us to guard our models 
from all kinds of uncertainty, in particular, sloppy models might be vulnerable 
to unconceived alternatives. It seems likely that it is impossible to protect any 
scientific theory from such a challenge. However, sloppy models do exhibit a kind 
of robustness against certain forms of theory-change. In particular, the theories are 
robust against changes in the values of the sloppy parameters.27 Researchers in the 
sloppy models program envisage their theories as lying within a wider space of 
theories and are well aware of the limitations of the their knowledge and the lessons 
from history. They consciously try to anticipate what types of theory change might 
take place, and to generate theories robust against this possibility, as far as they can. 
They are well aware that such theories are, in some sense, an interpolation, but one 
that can offer epistemic goods, both predictions and explanations. Such theories 
may or may not be literally true, but offer something valuable nonetheless: a kind of 
provisional robustness against certain kinds of theory change.

Indeed, this might also be a helpful way to view the effective field theories pro-
gram. Like the case of sloppy models, I have argued that effective field theories 
are vulnerable to theory change to an unconceived alternative. Rather than arguing 
that the program provides grounds for epistemic scientific realism, it may be more 
convincing to argue that it provides a kind of provisional robustness against certain 
kinds of theory change.

This raises the question, what epistemic benefits can the sloppy models program 
offer? The sloppy models program provides a unifying framework, through which 
we can understand a wide variety of different intertheoretic reductions. We can use 
the MBAM approach to understand both coarse-graining, for example in a general-
ized Ising model, at least some cases of the renormalization group method, and other 
systems such as in systems biology. Better understanding how this unified family of 
reductions could prove to be a highly fruitful direction for further research.

27  For a discussion of this sense of robustness, see Daniels et al. (2008)
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Appendix A The Fisher Information Matrix of a Sloppy Model

Let us suppose that we have experimentally extracted some finite number of 
measurements, which we represent by a set of real numbers ym , indexed by points 
m. Recall that a model is a function f ∶ RN

→ RM from a set of N real number 
parameters � = �n , to a set of M real number predictions about the system, f (�n) . 
Then the likelihood function, L(� ∣ ym) gives the joint probability distribution of 
observing the data ym given the model parameters � . Thus the likelihood func-
tion quantifies how likely it is to obtain the observed data under the given model 
and the given parameter values. In practice, it is often more convenient to use log 
likelihood function, logL(� ∣ ym).

The Fisher Information Matrix gives the expectation of the second-order 
partial derivatives of the log-likelihood function of the observed data with respect 
to the model parameters. Expressed as a tensor of type (0,2), this is given by,

where �, � = 1, 2,… ,N , and �[⋅] denotes the expectation with respect to the distri-
bution of the m observed measurements. Often, it is more convenient to write this in 
terms of a suitably chosen cost function, such that the FIM is the the negative of the 
least squares Hessian Matrix of the cost function.

These second derivatives capture the curvature of the log-likelihood function 
in parameter space. High curvature indicates that the log-likelihood function is 
sensitive to changes in the corresponding parameter combination, whereas low 
curvature suggests that the log-likelihood function is less sensitive. One way to 
understand the FIM is as quantifying the expected information that the observed 
data y carries about the model parameters �.

The eigenvectors represent the directions in which the curvature is maximal 
and minimal, and the corresponding eigenvalues represent the magnitudes of the 
curvature in these directions. In particular, the eigenvectors corresponding to the 
largest and smallest eigenvalues represent the principal directions of curvature, 
and the corresponding eigenvalues represent the principal curvatures.

Thus, geometrically, the eigenvectors of the FIM represent the principal direc-
tions in the parameter space along which the curvature of the log-likelihood func-
tion changes the most. These directions correspond to linear combinations of the 
original parameters. Larger eigenvalues indicate that the log-likelihood function 
has a high curvature along the corresponding eigenvector direction in the param-
eter space. This means that small changes in the parameters along this direction 
lead to relatively large changes in the log-likelihood, indicating higher sensitiv-
ity of the model to the changes in the corresponding parameter combination. On 
the other hand, smaller eigenvalues indicate that the log-likelihood function has 
a low curvature along the corresponding eigenvector direction in the parameter 
space. This means that small changes in the parameters along this direction lead 
to relatively small changes in the log-likelihood, indicating lower sensitivity of the 
model to the changes in the corresponding parameter combination.

(2)g��(�) = �m

[
��logL(� ∣ ym)�� logL(� ∣ ym)

]



	 D. Freeborn 

1 3

Interpreting g�� as a metric, we can define infinitesimal distances between � and 
� + d� over the data manifold by,

The Fisher proper length, integrated along some path �(�) , parametrized by � 
between 0 and 1, is given by

Appendix B Sloppiness and Approximation Theory

Following Quinn et al. (2019), let us summarize the relationship between sloppiness 
and bounding approximations. Consider a model, y�(t) , analytic in t, taking input 
parameters � = (�1,… , �K) , for some integer, K, and giving a finite-dimensional 
output. However, the arguments here can be extended to non-analytic functions, 
with higher dimension output (Quinn et al., 2019, supplemental materials). We can 
assume t ∈ (−1, 1) without loss of generality, if we allow the model to be appropri-
ately transformed. Let us label the model predictions Yk = y�(tk) at N points tk , for 
N ≥ K . Now, the model manifold, Y is defined as the K-dimensional surface, para-
metrized by Y(�) = (Y0,… , YN−1) embedded in the N-dimensional prediction space.

Now, let us consider some polynomial approximations to y� . Let {�j}
∞
j=0

 be a 
complete polynomial basis. Furthermore, let us suppose that our model has a 
convergent expansion in this polynomial basis, and can be written 
y�(T) =

∑∞

j=0
bj(�)�j(t) , for some coefficients {bj} . Now, let us consider the model 

approximation truncated to order N, and set b = (b0,… , bN−1)
T . Now suppose that 

the parameter space is bounded by an N-sphere of radius r, i.e. ‖b‖ < r . We can 
understand this as a smoothness condition on the model function.

Let P give the manifold of the truncated approximate model. The corresponding 
model manifold will be distorted into a hyperellipsoid, HP . Let us denote the linear 
map from parameter space to prediction space by X, X = �j−1(ti−1) . If lj(HP) is the 
diameter of the jth largest cross-section of HP then,

where �i give the singular values of X. When X has rapidly decreasing singular val-
ues, then HP will take a hyperribbon structure. Accounting for the error in the trun-
cated approximation, we can give hyperellipsoid bounds on the model manifold.

Quinn et al. (2019) considers two cases: a basis function of Chebyshev polynomi-
als and a monomial expansion (given a Taylor series approximation of y� ). In the 
Chebyshev expansion case, we can show that the model manifold is bounded by a 
hyper-ellipsoid, for which the jth largest principal axis length is bounded by a power 

(3)ds2 =

N∑

��=1

g��d�
�d�� .

(4)L = ∫
1

0

d�

√∑

��

g��(�(�))
���

��

���

��
.

(5)lj(HP) = r�j(X),
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law of the form �−j , for some � ∈ N  . In other words, the manifold of a model obey-
ing the smoothness condition for a bounded Chebyshev expansion must have rapidly 
decreasing bounds on its geodesic lengths: an indication of sloppiness according to 
the criterion in Sect. 3.2. In the monomial expansion case, we can likewise set con-
straints, in terms of the eigenvalues of the Vandermonde matrix.
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