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Abstract
The feature-matching approach pioneered by Amos Tversky remains a groundwork 
for psychological models of similarity and categorization but is rarely explicitly jus-
tified considering recent advances in thinking about cognition. While psychologists 
often view similarity as an unproblematic foundational concept that explains gener-
alization and conceptual thought, long-standing philosophical problems challenging 
this assumption suggest that similarity derives from processes of higher-level cogni-
tion, including inference and conceptual thought. This paper addresses three specific 
challenges to Tversky’s approach: (i) the feature-selection problem, (ii) the problem 
of cognitive implausibility, and (iii) the problem of unprincipled tweaking. It sub-
sequently supports key insights from Tversky’s account based on recent develop-
ments in Bayesian modeling of cognition. A novel computational view of similarity 
as inference is proposed that addresses each challenge by considering the contrast 
class as constitutive of similarity and selecting for highly informative features. In so 
doing, this view illustrates the ongoing promise of the feature-matching approach in 
explaining perception, generalization and conceptual thought by grounding them in 
principles of probabilistic inference.

1 Introduction

The feature-matching approach pioneered by Amos Tversky (1977) is a groundwork 
for models of similarity and categorization and is often appreciated for its abil-
ity to tackle directionality effects and the context-sensitivity associated with sim-
ilarity-judgements (to be elucidated below). The feature-matching approach in its 
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original form remains influential in a variety of domains, such as machine learn-
ing (Rahnama & Hüllermeier, 2020), AI (Krawczak & Szkatuła, 2018; Lake et al., 
2017), judgement and decision making (Galesic et  al., 2018) and computational 
psychology (Austerweil et al., 2019; Falkowski et al., 2018; Sanborn et al., 2021). 
Given its wide use in the cognitive sciences, it is desirable to assess the cognitive 
plausibility of this approach and to identify the relevant principles and mechanisms 
involved in feature-matching, especially in light of recent advances in thinking about 
the nature of cognition.

While it is often assumed in the psychological literature that similarity is an unprob-
lematic foundational concept that explains generalization and conceptual thought 
(Goldstone & Barsalou, 1998), long-standing philosophical problems, most famously 
raised by Nelson Goodman (1972), challenge this assumption based on triviality argu-
ments that render similarity uninformative in the sense that anything is similar to any-
thing else in some respect (e.g., my foot is similar to the table in front of me in that 
they are equally distant from the moon). How is one to choose the relevant respect? 
A promising answer is that similarity derives from processes of higher-level cogni-
tion, including inference and conceptual thought (Sloman & Rips, 1998). However, 
on pain of circularity, it remains unclear how similarity representations can simulta-
neously be basic to such processes (Decock & Douven, 2011). Existing responses to 
the conundrum focus on geometric models, pioneered by Shepard (1962), Nosofsky 
(1986, 1991), & Gärdenfors (2000). According to these accounts, dissimilarities take 
the form of distances between perceptual representations that are constituted by qual-
ity dimensions with a geometric structure. Perceptual representations of individual 
objects are modeled as points in geometric space, in which concepts take the form 
of regions, and a cognitive bias can be imposed on similarity in the form of a dimen-
sion weighting. These models attempt to solve the conundrum by taking the geometric 
structure of perceptual space as primitive to similarity representations. An unresolved 
challenge for these models is to deal with syntactically (e.g., compositionally) struc-
tured representations, which are ubiquitous in discussions of object recognition, imag-
istic cognition, language, knowledge, and more (Langkau & Nimtz, 2010). Although 
the feature-matching approach is widely regarded as an alternative to the geometric 
approach, it has received little attention in this debate. As a consequence, the relations 
between both approaches also remain insufficiently addressed (but see Decock & Dou-
ven, 2011 as well as Poth, 2022, for two illustrations).

This paper critically assesses and refines Tversky’s feature-matching to offer a 
new way of approaching these worries. Starting from geometric models of similar-
ity representations in perception, I show how one can incorporate insights from the 
feature-matching approach if one takes seriously recent developments in Bayesian 
modeling of cognition. In the critical part of the paper, I argue that the classical 
version of the feature-matching approach is profoundly flawed since it suffers from 
three shortcomings: (i) the feature-selection problem, (ii) the problem of cognitive 
implausibility, and (iii) the problem of unprincipled tweaking. The first problem 
is that the classical approach does not explain how features are initially selected to 
judge similarities, since it considers features as trivially given. The second problem 
is to deliver a plausible notion of feature representation. Tversky initially charac-
terized features as discrete elements, but this conception is highly inadequate for a 
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similarity-based account of perceptual categorization outside the domain of judge-
ment and voluntary decision-making. The third problem is that feature-matching in 
its classical form is too flexible; it lacks appropriate rationality constraints to provide 
a good psychological explanation of why similarity judgements take the form they 
do. Together, these shortcomings suggest that feature-matching lacks the advantages 
it initially suggested to have over alternative geometric approaches, which motivates 
substantial revision of the account.

In the constructive part, I argue that these shortcomings can be addressed with a 
novel computational account of feature-matching as a Bayesian inference task. The pro-
posed view identifies probabilistic norms governing how feature matching should work, 
as opposed to providing a causal explanation of how people match features when they 
judge similarities. Specifically, this account combines three ingredients. The first ingre-
dient is to consider the contrast class as constitutive of similarity. Furthermore, from a 
probabilistic perspective, an optimal response to a similarity-judgement task is to select 
for highly informative features. I suggest as a second and third ingredient that rational 
agents do this by combining a preference for rare features (the second ingredient) with a 
preference for high-variability features (the third ingredient). This novel understanding 
of feature-matching addresses the shortcomings of Tversky’s approach in the following 
way: (i) when selecting a feature, agents should consider both, how well its frequency 
predicts the evidence in a particular context, and how much the range of a feature varies 
across contexts; (ii) the probabilistic approach is compatible with a notion of similarity 
that captures the domain of perception and action while understanding features in terms 
of continuous representations; (iii) similarity effects arise as core phenomena of proba-
bilistic principles, as opposed to unprincipled accommodations of the data.

The implication for the larger debate on the notion of similarity in psychologi-
cal science and philosophy is two-fold. Firstly, the relationship between probabil-
istic inference (as a basis for feature-selection) and similarity representation (as a 
basis for the content of probabilistic inference) is not viciously circular. Secondly, 
my approach highlights an important insight that was only implicit in both classical 
feature-matching and geometric approaches to similarity: contextual factors are con-
stitutively relevant to compute similarities.

The structure of this paper is as follows. Section  2 outlines the main tenets of 
classical feature matching and highlights two major advantages: it accommodates 
the directionality and context sensitivity associated with similarity judgements. Sec-
tion 3 outlines three challenges for classical feature-matching. Section 4 responds to 
these with an alternative account of similarity as Bayesian inference to advance the 
positive development of feature matching. Section 5 discusses the implications of 
this proposal for the debate on grounding cognition in similarity representation. Sec-
tion 6 ends with a brief conclusion.

2  Basic Tenets of the Classical Feature‑Matching Approach

On Tversky’s (1977) classical approach, similarity is a linear function of set-the-
oretic overlap. Let Δ = {a, b, c,…} be the domain of objects. A,B,C,… are the 
sets of features, where each feature set is associated with an object from Δ (i.e., A 
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represents the features associated with the object a , B represents the features associ-
ated with the object b , etc.).

2.1  The Contrast Model

There are many ways to assess set-theoretic overlap with feature-matching. Tversky 
himself notes that his framework ``encompasses a wide variety of similarity models 
that differ in the form of the matching function F and in the weights assigned to its 
arguments’’ (Tversky, 1977, p. 333, see also Restle, 1961 and Sjöberg, 1972). He 
focuses on two variants, the ratio and contrast models. For reasons of space limita-
tions, I focus only on the contrast model, which represents the similarity between 
a and b , S(a, b) , as a linear absolute difference of their shared and distinct features1 
Formally,

where A ∩ B represents the intersection of shared features, A − B represents the 
complement of the features that are distinct to a without b , and B − A represents 
the complement of the features that are distinct to b without a . f  is a non-negative 
scale over a given set-theoretic space and measures the salience of a set of features. 
The weights, � , � and � are positive constants between 0 and 1. They determine how 
much each set of features contributes to the overall measure of similarity. If � = 1 , 
� = � = 0 , then similarity depends only on the set of common features. Conversely, 
if � = 0 , � = � = 1 , then similarity depends only on the sets of distinct features.

Figure 1 provides a toy example. Say the two pictures of the objects (take b for 
the pear, a for the apple) have one feature in common, which is the possession of a 
leaf, and they differ regarding their shapes, as one of them is round and the other 
oval. Thus, when holding fixed the weights and scale (i.e., determining each to be 
1 in Eq. 1), the two sets of distinct features each obtain a cardinality of 1, and the 

(1)S(a, b) = �f (A ∩ B) − �f (A − B) − �f (B − A) for some �, �, � ≥ 0,

Fig. 1  Representation of a pear 
and an apple with common and 
distinct features

1 The ratio model represents S(a, b) as a ratio of the number of common features to the total number of 
common and distinct features. See Tversky (1977), for further details.
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set of common features obtains a cardinality of 1, and so two distinct features are 
subtracted from one common feature, resulting in a negative similarity score of − 1. 
This example is highly simplified, as it ignores other features of apples and pears 
(e.g., sweetness of taste, growing on trees, etc.) and it does not consider differences 
in their salience. It illustrates the very basic idea of feature matching.

2.2  Accommodating Directionality Effects

A motivation to consider Tversky’s approach is that it easily deals with directionality 
effects. For example, people are more likely to judge Tel Aviv to be similar to New 
York and they are less likely to judge New York to be similar to Tel Aviv (Tversky, 
1977, p. 328). This effect is frequently described in the literature on similarity and 
categorization studies. Aside from studies confirming the effect by Krantz and Tver-
sky (1975) and Tversky and Gati (1978), Krumhansl (1978) identifies evidence for 
directionality on the similarities of focal colors. Rips (1975) shows that subjects are 
more likely to attribute a disease to an atypical species if the typical species carries 
the disease, as opposed to attributing the disease to a typical species if the infected 
species is atypical. More recently, Hahn et  al. (2009) provided evidence showing 
that similarity judgements are directional for animations morphing one object into 
another from the same basic-level category.

The contrast model accommodates directionality under three conditions. Firstly, 
the task must involve statements of the form ‘a is like b’ or ‘b is like a’ (non-direc-
tional similarity statements have the form ‘a and b are alike’). Assuming a structural 
correspondence to similarity judgements, Tversky (1977) explains that people judge 
the similarity between Tel Aviv and New York differently from New York and Tel 
Aviv because, depending on their order, the terms “Tel Aviv” and “New York” take 
on different semantic roles in the statements “Tel Aviv is like New York” (S1) and 
“New York is like Tel Aviv” (S2). Tel Aviv plays the role of the subject in S1 and 
the role of the object in S2, while New York takes on the role of the object in S1 and 
the role of the subject in S2. Secondly, one of the distinct sets of features may be 
more salient, i.e., f (A − B) ≠ f (B − A) , and salience weights can have an additional 
influence on directionality. This means that A has a greater or smaller cardinality 
than B, and therefore a greater or smaller impact on ‘how much’ dissimilarity is 
taken away from the overlap in Eq. 1. For example, the distinct features associated 
with New York might be more salient than those associated with Tel Aviv because 
New York is, intuitively, more popular and associated with more distinct features. 
The final condition is that the set of features distinct to the subject in the model 
are weighted more than the set of features distinct to the object, such that � ≥ � . 
Regarding the current example, Tversky (1977) stipulates that the distinct features 
associated with New York are more important when New York plays the role of the 
object, as opposed to the subject.
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When these three conditions hold, similarity judgements become directional in 
Eq. 12 However, it is important to note that changing the relative order of the objects 
in the comparison (corresponding to a change in the relative position of the sets of 
distinct features in the model) will not suffice to evoke directionality if the focusing 
hypothesis does not hold (i.e., when � = � ). To illustrate: when 𝛼 > 𝛽 , then in S1, 
the set of features distinct to Tel Aviv obtains more weight than the set of features 
distinct to New York. In S2, the set of features distinct to New York obtains more 
weight than the set of features distinct to Tel Aviv. Insofar as Tel Aviv is associated 
with fewer distinct features, its position in second place in the model (corresponding 
to S2) subtracts a smaller amount of dissimilarity from the common features, which 
accommodates directionality.

2.3  Accommodating Context‑Effects

Another key finding favoring the approach is that similarity is context sensitive. 
This is illustrated by Goodman’s example of an airport checking station, where 
the respects in which a spectator, pilot and passenger judge pieces of luggage vary, 
depending on what aspects they attend to—“The spectator may notice shape, size, 
color, material, and even make of luggage; the pilot is more concerned with weight, 
and the passenger with destination and ownership. […] Circumstances alter similari-
ties” (Goodman, 1972, p. 445). Examples of context-sensitivity are ubiquitous, but 
their nature is still not sufficiently explained.

Tversky (1977) explains context effects based on his diagnosticity principle, 
according to which objects are classified concerning the diagnostic value of their 
features. Similarity judgements vary with context because a change in context 
induces a change in diagnostic value, and hence weight, of a feature. Tversky (1977, 
pp. 28–29) exemplifies this with the feature ‘real’, which “has no diagnostic value 
in the set of actual animals since it is shared by all actual animals and hence can-
not be used to classify them [… but] acquires considerable diagnostic value if the 
object set is extended to include legendary animals, such as a centaur, a mermaid, 
or a phoenix.” The replacement of class members alters the diagnostic value of the 
feature `real’ and determines how the remaining objects will be categorized. Equa-
tion  1 accommodates this by adjusting feature weights. Features with a higher 
diagnostic value obtain more weight than features with a lower diagnostic value, 
thereby changing the output of the similarity function. In the example, ‘being real’ is 
weighted higher in the expanded context, which makes legendary animals more dis-
similar from other animals as compared to the narrow context.

The significance of these accommodations can be appreciated when comparing 
feature matching to geometric models of similarity in the tradition of multi-dimen-
sional scaling (Shepard, 1962), which formalize dissimilarity in terms of geometric 
distance, and therefore inherently rely on the axiom of symmetry. The metric dis-
tance between two points, a and b, is always the same as the metric distance between 
b and a, suggesting that similarity judgements are non-directional and independent 

2 It is not required that all three conditions are fulfilled simultaneously. Either the first and the second con-
dition, or the first and the third condition must hold to obtain directionality effects with the contrast model.
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of the order in which the objects are compared. Furthermore, geometric models are 
often associated with universal laws of generalization and perception that highlight 
aspects of similarity that remain invariant across many different contexts (Shepard, 
1987; Sims, 2018). An initial appeal of the classical approach is that its findings 
raise awareness of these issues.3

In what follows, I trade these advantages with diminishing returns. I discuss 
three challenges showing that directionality effects do not necessarily violate the 
assumptions made by geometric alternatives, and therefore offer insufficient evi-
dence to refute them. Furthermore, I argue that accommodating context effects is 
only achieved at a high explanatory cost that can be avoided by recently developed 
probabilistic models of cognition.

3  Three Challenges for Classical Feature‑Matching

3.1  The Feature‑Selection Problem

The first problem is that the feature-matching approach fails to offer a plausible story 
about the choice of features. In any situation, there seem to be innumerably many 
possible features that could be used to judge the similarity between two objects. On 
what grounds should agents select the relevant features? For example, ‘uncolored’ 
and ‘symmetrically shaped’ seem irrelevant to judge whether the pear and apple fall 
under the fruit category. The classical approach focuses on set-theoretic axioms to 
formalize similarity computations, but does not explain the principles to select fea-
tures from the objects that have them before the matching process. This problem 
generalizes to non-perceptible objects. To borrow an example from Shanon (1988, 
p. 309), which features should a person seeing a face choose to describe to another 
person not seeing it what face she is talking about? There is an innumerable number 
of features with which she could describe the face. Which are those relevant to both?4

Another way to understand this problem is in terms of an implicit circularity. It is 
often assumed that the problem of selecting properties relevant to an inductive infer-
ence task is solved by focusing on the notion of similarity as the primary relation-
ship between objects. Accordingly, the similarity among members of the extension or 
intension of a property is constitutive for determining its inductive relevance; so simi-
larity defines properties (Decock & Douven, 2011; Goodman, 1972). However, this 

3 Recent advancements in the psychological modeling literature offer some credit to geometric models’ 
context sensitivity, especially in the color domain. Modelers commonly use either the CIELAB or the 
CIELUV space, but which of these they use depends on the context (e.g., depending on whether the task 
is to judge the similarity of colors shown on paper or cloth, or shown on a screen). Fitting any particular 
type of space is very expensive, as it requires a lot of data as input to perform a dimension reduction. 
Due to these practical difficulties, it is therefore not surprising to not find different spaces for different 
contexts (e.g., one for olfaction and one for vision). For practical ease, it makes sense to rely on a single 
kind of space to model a variety of different kinds of data across various contexts. I am grateful to Corina 
Strößner for pointing me to this possibility.
4 The problem appears under various guises in the philosophical literature. Bloch-Mullins (2020) and 
Machery (2007) call it the “feature-specification problem’’.
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response is not available to proponents of classical feature-matching, who assume 
that the relevant properties are primary to the similarity relation. The domain of 
objects, Δ , is presupposed; each object is represented by a set of given features. Then, 
on pain of circularity, similarity cannot be used to define the properties associated 
with these objects if similarity itself is defined in terms of these properties.

3.2  The Problem of Cognitive Plausibility

The second problem is that the classical feature-matching approach lacks compat-
ibility with an adequate notion of feature representation in perception and concep-
tual thought. Features are discrete binary entities—an object is either red or not, 
but it is not more or less red. However, perceptual features have a gradual structure. 
The perception of color involves no sharp boundaries and varies with lighting condi-
tions, i.e., objects appear more or less red (Beck, 2019). Similar issues arise when 
identifying features with perceptual concepts, which encode statistical information 
that indicates how well instances fall under the concept. For example, the percep-
tual concept RED has focal and peripheral members that differ in their typicality 
(Douven et al., 2017; Rosch & Mervis, 1975),5 suggesting that perceptual concepts 
come in degrees as well. This line of argument expands even to abstract concepts. 
Consider TEENAGER, which has a range of values that make up this concept’s con-
stituting features, e.g., DOOR- SLAMMING and EYE-ROLLING. Bloch-Mullins 
(2020, p. 617) provokes: “…how forceful should the shutting of the door be, in 
order to be considered a slam? What is the required frequency of eye rolling one has 
to engage in, to be considered an eye roller?”6 Adequate accounts of concepts must 
consider the range spanned by features. Feature matching fails this condition since it 
ignores that features span a possible range in the first place.

One reason for this difficulty is that the approach oversimplifies the relations 
between features and the objects that hold them. Sets of common and distinct fea-
tures are modeled by countable whole numbers. This works in some cases, for 
instance, the seeds of an apple are countable and can be isolated from other fea-
tures; an apple cannot have 2.5 seeds. However, this does not work in other cases. 
For instance, the colors of an apple are uncountable; apples typically have varying 
shades of green to yellow or red that transition smoothly.

Coming back to the case of perception, the assumption that the object-base, ∆, 
can be neatly decomposed into discrete features is difficult to combine with psy-
chophysical models of perceptual-object representations, which commonly distin-
guish between ‘inseparable’ and ‘separable’ dimensions (Cheng & Pachella, 1984; 

5 Throughout this paper, I refer to concepts using small capitals.
6 The example of eye-rolling illustrates that feature inference is at least partly determined by pragmatic 
factors. How much eye-rolling is needed to count as an eye-roller might depend on both the agent’s expe-
rience with the frequency of the eye-rolling feature, and the agent’s background assumptions concerning 
the possible variety of different cases of eye-rolling. Bayesian inference as elucidated below can cap-
ture such pragmatic effects reasonably well (cf. Qing  et al., 2015), while the geometric and the feature-
matching approaches fail to draw explicit distinctions between background knowledge and frequency of 
experience.
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Gärdenfors, 2000; Melara, 1992). A set of dimensions is inseparable if an object that 
is assigned a value on one dimension must also be assigned a value along the other 
dimensions it is integrated with. For example, the dimensions hue, saturation and 
brightness are integral because it is impossible to represent a color shade along only 
the brightness dimension; it requires simultaneously assigning values along the hue 
and saturation dimensions. A set of dimensions is separable if it is possible to rep-
resent an object’s property by assignment of values on a single dimension without 
assigning values along the other dimensions. For instance, an apple’s shape can be 
represented independently of its color. This research suggests, contrary to the clas-
sical approach, that perceptual object representations are not always decomposable 
into discrete sets of features, making it difficult to explain the perception of similari-
ties with feature-matching.

This claim is supported by various studies. Young children below the age of five 
typically confuse the height of a liquid in a container with the liquid’s volume and 
just with time (typically after five) do they learn to distinguish between height and 
volume. However, at this stage, children can identify what color the liquid has.7 
This supports that decomposability of objects (e.g., liquids) into discrete features 
(e.g., height and volume) is not cognitively given and needs further explanation.8 
Furthermore, features associated with odors partly overlap with tastes and do not 
separate into discrete elements that form an exhaustive set (Jraissati & Deroy, 2021). 
In taking features as trivially decomposed, classical feature-matching ignores such 
evidence and suggestions that features themselves originate from similarities in 
perception.

A severe consequence of these issues is that classical feature-matching utilizes a 
too narrow notion of similarity that fails to generalize beyond the domain of judge-
ment and voluntary decision-making. A broader notion is needed insofar as simi-
larity representations exist in other domains, such as in perception and action. To 
see this limitation, recall that Tversky’s explanation of directionality (Sect. 2.2) sets 
similarity judgements into a structural equivalence to similarity statements, which 
are grammatically analyzable and pertain to symbolic thought. This equivalence 
suggests that the contents of similarity judgements are Russellian propositions or 
Fregean senses. Following Tversky’s analysis, when an agent judges how similar 
a is to b, the agent forms a representation with a content of the form “a is simi-
lar to b”. This is distinct from its converse, “b is similar to a” since the contents 
of the two statements may differ in their truth values. Although Tversky (1977) 
makes no explicit mention of Fodor’s (1975) work, his explanation of the relevant 
distinction comes close to ideas from the language of thought hypothesis. In this 

7 Initially, these studies were used to test Piaget’s (1976, p. 177) theory of conservation, which hypoth-
esizes that young children fail to understand conservation (e.g., conservation of volume when pouring a 
liquid from a wider into a narrower container).
8 One explanation has been proposed by Gärdenfors (2000, p. 28), who argues that children learn to rep-
resent the different qualities of liquids by mentally dissociating distinct dimensions. While the perception 
of the world is inherently continuous—it does not contain intrinsically separate categories— children 
learn concepts by carving up the perceptual space into meaningful—discriminating—discrete and to be 
labelled chunks.
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analogy, similarity comparisons take the form of linguistic propositions describing 
objects; features take the form of atomic symbols without internal structure. Can 
Tversky’s account of similarity judgement be carried to the domain of perception? 
The difference between perceiving a as similar to b or vice versa may be attrib-
uted to differences in the accuracy conditions associated with these perceptions (cf. 
Siegel, 2010). Another motivation for attributing propositional content to perceptual 
similarity judgement is that such a position could explain how perceiving a and b 
as similar may justify certain inferences from beliefs about a to beliefs about b. In 
the conventional philosophical debate, conceptualists such as McDowell (1994) and 
Brewer (1999) have argued that perceptions provide reasons for belief only in the 
way beliefs justify other beliefs, and to satisfy this inferential aspect, perceptions 
must carry propositional content. However, the claim that the contents of perceptual 
similarity representations are propositional encounters a variety of problems.

Firstly, it is unclear why perceptual objects should stand in a grammatical rela-
tionship akin to the subject-object relationship in similarity statements. It is unclear 
how to understand grasp of these relations, since, in such cases, it is not trivial that 
the relevant structures are propositionally analyzable. According to proponents of 
perceptual nonconceptualism, perception is fundamentally nonpropositional and 
does not always require possession of concepts. For example, Peacocke’s (1992) 
scenario content does not require the agent to possess the concept C to position the 
property c in a scenario. Heck (2000) argues that one can have a visual experience 
that represents that an object has a particular color shade without possessing the 
concept of that specific color shade. Following these views, perceptual similarity 
representations and similarity judgements remain distinct; possessing a concept is 
being in intentional states where contents are appropriately inferentially related, but 
the contents of perception are not so related and hence nonconceptual.9 Addition-
ally, philosophers of cognition argue that perceptual systems are informationally 
encapsulated and consist of ‘modules’ (Fodor, 1987), and thereby cannot compute 
over propositions in conceptual thought. Others appeal to a distinction in represen-
tational format between (nonpropositional) perception, analogue and continuous, 
and conceptual thought, which is propositional, digital, and discrete (Camp, 2007; 
Maley, 2011). These recent claims add severe doubts on the assumption that percep-
tual similarity is best analyzed in terms of propositional structure. Thus, insofar as 
classical feature-matching is limited by Tversky to the domain of judgement, it does 
not seem well suited as an account of perceptual similarity from the perspective of 
nonconceptualism.

Secondly, the focus on similarity statements raises the question whether children 
and animals who cannot identify grammatical or linguistic relationships (Glock, 
2000) are capable to judge similarities and categorize the world. Within the psy-
chology of animal learning and adaptive behavior, perceived similarity to a training 
stimulus often provides reasons for an animal to generalize a learned behavior to 

9 A popular argument for this position alludes to perceptual illusions, such as the Müller-Lyer illusion: 
even though I might strongly believe that the two lines have the same lengths, I continue to see them as 
having distinct lengths (see also Crane 1992, p. 150).
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novel objects (Staddon, 2016). For instance, depending on how similar an apple and 
a pear look, an animal might be inclined to eat one upon eating the other. However, 
it is not trivial that these reasons must be bound to abilities of judgement and deci-
sion-making. Hurley (2003) argues convincingly that animal action builds on practi-
cal reason, outside the scope of “conceptualized inference or theorizing” (ibid., p. 
231), suggesting that non-human animals and children may use similarity represen-
tations as a base for categorization, even if an appropriate explanation of why they 
categorize as they do may resist analysis in terms of similarity statements. Further-
more, Deroy (2019) discusses evidence in humans supporting the claim that at least 
perceptual categorization relies on involuntary mechanisms, not necessarily on abili-
ties of conceptual thought and voluntary judgement.

Doubts on the exclusive focus on similarity judgements are further supported by 
recent perspectives of embodied approaches to cognition, which are rising in popu-
larity and acceptance. These views challenge the traditional ‘sandwich’ model of 
information-processing systems (Hurley, 2002), where cognition forms the content, 
perception the input and action the output of the system. In contrast, proponents of 
embodied cognition argue that perception, cognition, and action are inherently inter-
twined. If the embodied-cognition view is correct, then most similarity representa-
tions (even the amodal ones) and the categorizations that build on them should be 
grounded in perception and sensorimotor activity (Barsalou, 2008; Harnad, 1990). 
From this perspective, the analysis in terms of similarity judgement is too narrow to 
capture the importance of similarity in perception, action, and cognition. It lacks an 
inclusive notion of similarity representation according to which perceptual categori-
zation is embodied and action oriented. On the classical approach, features are dis-
crete, but perception is continuous; features are extracted from a database of abstract 
objects, but they should be grounded in modal qualities.

As this debate illustrates, it cannot simply be assumed that perceptual similarity 
representations resemble conceptual thoughts in many ways, and so Tversky’s exclu-
sive focus on propositional, discrete, and abstract similarity judgement is by default 
too limited to develop a general account of similarity in cognition.

3.3  The Problem of Unprincipled Tweaking

The third problem with classical feature-matching is that it is too flexible. Tversky’s 
contrast model accommodates various effects associated with similarity judgement 
(Sects. 2.2 and 2.3) but lacks an explanation for why these effects occur. The rea-
soning is that these cases arise from the unequal weighting and salience of distinct 
features.

The first problem with this line is that it likely results in a regress of additional 
terminologies (e.g., diagnosticity, salience, etc.) that call for further explanation. 
Take attribute salience as an example. Although salience is central to the feature-
matching model, we still lack a detailed account of how it should be understood. 
Tversky explains directionality effects by arguing that more prominent objects (e.g., 
New York) are more salient, and therefore obtain higher weight in the contrast 
model than less prominent ones (e.g., Tel Aviv). This raises further questions: why 
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are more prominent objects more salient than less prominent ones? In what way are 
they more salient? How is salience measured?

In an initial attempt to explain the notion, Tversky explains that “[t]he factors that 
contribute to the salience of a stimulus include intensity, frequency, familiarity, good 
form, and informational content” (Tversky, 1977, p. 332), where intensity refers to 
an increase in the “signal-to-noise ratio, such as the brightness of a light, the loud-
ness of a tone, the saturation of a color, the size of a letter, the frequency of an item, 
the clarity of a picture, or the vividness of an image”. Diagnosticity, as illustrated 
earlier, refers to “the classificatory significance of features, that is, the importance or 
prevalence of the classifications that are based on these features” (Tversky, 1977, p. 
342). Each of these answers invites further questions on the origin of attribute sali-
ence that remain unaddressed. In how far does salience relate to perceptual or atten-
tional mechanisms or abstract reasoning skills? Is it (still) a core aspect of similarity 
judgement, or object recognition instead? If attribute salience is an aspect of percep-
tion and attention in a sense independent of prior categorizations and conceptual 
knowledge concerning the available objects, this is unsatisfying, since some account 
must be given of what determines changes in perceptual salience. Although feature 
matching is ubiquitous in computational psychology, detailing an account of attrib-
ute salience remains a problem to be solved.

The worry illustrated by attribute salience is that the approach lacks explanatory 
power. By continuing to add parameters to the model, proponents of feature-match-
ing make their model unnecessarily complex. The model can be used to flexibly 
accommodate various specific findings associated with similarity and categoriza-
tion, but this is only achieved by adding parameters (e.g., via the addition of feature 
weights and a salience scale) that can subsequently be tweaked in rather unprinci-
pled ways. However, these additions are ad hoc. The associated flexibility does not 
show that the desired effects so accommodated come out as a core aspect of the 
feature-matching process, as opposed to other cognitive processes. Consequently, 
the model does not justify saying that directionality is a necessary feature associated 
with similarity judgement and might have to do with other aspects of attention or 
perception. The mere adjustment of the model parameters does not by itself explain 
what determines the parameters in the first place; it does not predict when and why 
the desired effects occur as a consequence of core aspects of the model.

3.4  Contrast to Geometric Models

A consequence of these three challenges is that Tversky’s initial charges against 
approaches equivocating similarity with geometric distance (Gärdenfors, 2000; 
Shepard, 1962) appear to be unjustified, suggesting that the approach lacks some 
of the important advantages it initially suggested to have (most famously its abil-
ity to account for directionality and context-sensitivity effects). By definition, the 
geometric distance between two points, a and b, is the same as vice versa, suggest-
ing that similarity is non-directional and independent of the order in which the two 
objects are compared. However, it is compatible with geometric models to explain 
directionality as an effect of additional cognitive processes that are sensitive to the 
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pragmatics associated with similarity statements, while not pertaining to aspects of 
similarity representations themselves.

This possibility is supported by Nosofsky (1986), who ascribes directionality 
effects to the influence of bias on perception, showing that the geometric model can 
accommodate directionality by adding a weight on dimensions that is formally simi-
lar to the weighting of features in Tversky’s approach. However, Nosofsky (1986, 
pp. 54–55) explicitly dissociates “similarity representations”, which remain sub-
ject to metric constraints, from additional “rather complex attention and decision 
processes” that operate on them. Similarity remains a metric relation between two 
objects while bias is “a characteristic pertaining to an individual object” (Nosofsky, 
1991, p. 94). Thus, as an additional process, directionality is no case in point against 
using geometric models to explain judgements of similarity.

Furthermore, geometric models of similarity and categorization fare significantly 
better in accommodating the structure of perceptual similarity representations. 
Geometric distances can have a continuous structure and efforts have been made to 
accommodate the modality-specific nature of perceptual representations within this 
framework (Balkenius & Gärdenfors, 2016; Gärdenfors, 2007). Geometric models 
also have made progress on the problem of feature selection. For instance, Douven 
and Gärdenfors (2020) develop a set of design-principles and show how these can be 
instantiated under the assumption of a geometric-spaces model of similarity.

Taken together, these problems raise doubts that classical feature-matching 
advances discoveries of the mechanisms underlying similarity and categorization. In 
what remains, I elaborate three constraints to address these challenges and positively 
develop the approach given recent developments in computational cognitive science. 
I subsequently discuss novel insights that can be gained from this perspective for 
grounding cognition in similarity as inference.

4  Similarity as Bayesian inference

My response to these challenges is that feature matching should be seen as a kind of 
Bayesian inference. Bayesian models of cognition have been proposed to character-
ize mechanisms of perception (Knill & Richards, 1996) and motor learning (Körd-
ing & Wolpert, 2004), conceptual thought (Rescorla, 2009; Tenenbaum, 1999), 
and many more diverse cognitive capacities. The various applications of Bayesian 
modeling in the literature illustrate that this framework is suited to model a vari-
ety of inference tasks, including perception and categorization. I propose that this 
framework is therefore well suited to improve upon Tversky’s approach; it offers a 
general computational account of feature-matching10 that is not limited to Tversky’s 

10 The account of similarity as Bayesian inference classifies as computational since it remains neutral 
on how exactly feature representations must be individuated in the agent’s mind; no causal mechanisms 
are cited in explaining how features are inferred by the brain or body. Although the initial definition of 
a computational account as it appears in Marr’s (1982) celebrated framework is by now outdated (there 
seem to be many more kinds of levels than initially proposed between the computational, algorithmic, 
and implementational levels, see McClamrock 1991, Danks 2008, and Hardcastle & Hardcastle 2015), 
computational analyses remain important scientific tools for the discovery and selection of mechanistic 
models (Colombo & Hartmann, 2017; Zednik & Jäkel, 2016).
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preferred narrow class of similarity judgements. Indeed, viewing similarity as 
Bayesian inference provides the relevant foundation of Tversky’s approach by appeal 
to probabilistic principles that obtain regardless of how one glosses over feature rep-
resentations (e.g., as geometric distances or cardinalities of sets). This novel view 
thus promises to be general enough to capture similarity judgements in a variety of 
domains, such as monetary or aesthetic value, but also colors or odors. On this view, 
three inductive biases act as constraints on the inference of a feature or dimension.

4.1  The Contrast Class as an Internal Constraint on Similarity

The first constraint is the consideration of the contrast class as a background of a 
similarity comparison. Following Rosch (1978), a contrast class is the set of items 
that occur at the same level of organization in a classificatory taxonomy. For exam-
ple, HORSE and PIG are contrast classes for DEER; they occur at the same level of 
inclusiveness of the category of ungulates. The contrast class constrains the range 
of a class by defining its borders to other classes. Adopting this idea, Bloch-Mullins 
(2021) argues that the range spanned by the items in a contrast class is essential to 
understand the nature of similarity. The key to her account is the addition of a ‘foil’ 
as a constitutive constraint on the distribution of values associated with a feature. 
The foil is the collection of the items in the background against which targets are 
compared, it is not limited to the particulars one is currently exposed to but forms 
part of one’s background knowledge.

To borrow an example from Bloch-Mullins (ibid., p. 39), the statement “the cost 
of living in Seattle is similar to the cost of living in New York City” is true with 
regards to all cities in the world, but false with regards to only US cities. The choice 
of the relevant contrast class determines the difference, which occurs because Seat-
tle and NYC are aligned more closely than most other cities in the world along the 
dimension ‘cost of living’, but where they are not closer than most cities in the US. 
Generally, similarity is structured such that one initially forms a range of acceptable 
values along a given dimension and subsequently infers to what extent the properties 
of the target objects fall within that range. The range of attributes shared by the con-
trast class (i.e., its dispersion) defines the range of a feature along a dimension; this 
forms an integral part of similarity, as opposed to external processes of inference 
and decision. Thus, an important aspect of the foil account is that it turns similarity 
into a three-place predicate. Not only is it relevant to similarity what value a feature 
obtains, but also how the values of features correlate.

Although Bloch-Mullins (2021) does not explicitly draw this connection, her 
account sits well within core ideas of Bayesian principles of reasoning (Kemp, 
Bernstein, & Tenenbaum, 2005; Navarro & Perfors, 2010; Tenenbaum & Griffiths, 
2001). In the following, I explore this connection to advance classical feature match-
ing. The hallmark of these models is that they explain why similarity takes the form 
that it does, as opposed to focusing only on questions concerning how similarity is 
computed, as is typical in classical feature-matching. This makes them ideally suited 
to address the problems discussed earlier.
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4.2  Similarity as an Inductive Inference Task

Bayesian models of cognition view similarity as an inductive inference task. That 
is, as a task of inferring why a certain set of features that are given as inputs should 
be inferred as relevant for a similarity-judgement or categorization task. Often, the 
logic of its solution is identified in terms of intuitive principles of rationality (e.g., 
information-gain or survival, cognitive economy).

4.2.1  The Size Principle for Feature‑Discovery

A promising proposal along these lines is the size principle for feature discovery 
(Navarro & Perfors, 2010; Tenenbaum & Griffiths, 2001). It states that the likeli-
hood of a feature, F, corresponds to the ratio of the number of instances that possess 
F (e.g., the number of things that eat peanuts for F: ‘eats peanuts’). The size princi-
ple predicts preferences for rare (i.e., smaller) features—when two objects match on 
a rare feature, they are relatively more similar than when they match on a ubiquitous 
feature.

The size principle responds to the feature-selection problem insofar as F is 
selected based on its size, which depends on its frequency. The rationality associated 
with the size principle is to select highly informative features. For example, when 
two objects (e.g., a tiger and a bird) mismatch on a rare feature (e.g., feathered), they 
are relatively more dissimilar than when they mismatch on a ubiquitous feature (e.g., 
two-legged).

However, although Navarro and Perfors advertise their approach as broadly 
Bayesian, they do not specify constraints on prior probabilities. Bayes’ theorem 
combines priors and likelihoods according to the following scheme:

where the likelihood, Pr(E|H) , indicates the probability of observing E if the 
hypothesis H was true. This is multiplied with the prior, Pr(H) , which indicates the 
probability of H regardless of E , to provide the posterior probability of H given 
E . Pr(E) is a normalization term. The size principle specifies the likelihood term 
indicating how probable it is to observe E if it had F and it does not specify the pri-
ors. However, considering the size principle alone is often insufficient and counter-
intuitive. When we have the candidate concepts EDIBLE and EDIBLE OR POI-
SONOUS, it is more adaptively successful for an agent who does not know the true 
concept to assume that a given instance falls under the larger, disjunctive, concept. 
In this case it is reasonable to choose the larger concept, even though the evidence is 
logically compatible with both concepts. Such cases seem to be influenced by prior 
beliefs about how features are distributed, regardless of the available evidence.

Pr (H|E) =
Pr (E|H)Pr(H)

Pr(E)
,
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4.2.2  Variability‑Based Priors

To fill this gap, I suggest furnishing the probabilistic approach with a third ingre-
dient: the variability-based diagnosticity principle proposed by Goldstone et  al. 
(1997), according to which high-variability features attain higher probability or 
weight. Variability is defined in terms of the range of different values a feature takes. 
The key is that the range spanned by a feature matters in determining its diagnostic 
relevance to a categorization task—a feature is more diagnostically relevant if it has 
a high variability or spans a broad range of possible values. High-variability features 
carry more information than low-variability features in the sense that “dimensions 
that have many different values will also have a greater degree of difference between 
dimension values than will dimensions that have fewer different values” (Goldstone 
et  al., 1997, p. 243). This may allow agents to better distinguish objects that fall 
somewhere along these dimensions.

Consider the feature TIME OF DAY, which is diagnostically relevant for the 
comparison between sunrise and sunset because they are opposites along this 
dimension, that is, it is a high-variability feature (Medin et al., 1993). Conversely, 
low-variability features are irrelevant, i.e., dimensions along which a set of alterna-
tives do not differ greatly (e.g., WARM COLOUR) will be ignored. In this sense, 
the variability criterion for feature selection offers a first step to narrowing down the 
items in the background of a similarity-judgement task (e.g., the varying times of 
the day, as opposed to the range of warm colors). Goldstone and colleagues found 
evidence for the variability-based diagnosticity principle in an experiment that asked 
participants to choose one of two alternative objects that best matched a standard 
object. They compared a ‘shared match’ condition, in which two objects shared a 
feature that matches the prototype, with a ‘shared mismatch’ condition, in which 
the objects shared features that mismatched the prototype. They predicted that the 
shared-mismatch condition contains a greater variability on the relevant feature, and 
so subjects should judge the similarity of one of the objects to the standard to be 
greater. The results of their study confirmed this; subjects preferred choosing the 
object that matched along high-variability dimensions.

Unfortunately, Goldstone et  al.’s principle has received little attention in the 
Bayesian literature, where feature variability can be understood in terms of the mean 
and variance of a probability distribution that encodes the subjects’ prior predictions 
about the possible range of a feature. The prior preference for high-variability fea-
tures can be combined with a preference for less frequent features, following the size 
principle. For instance, the prior probability of the feature `crimson’ may initially be 
lower than for `red’ because, intuitively, its instances vary less along the hue dimen-
sion. However, although the prior probability is, intuitively, higher for `red’, `crim-
son’ better predicts evidence that is compatible with both features, and so it obtains 
a higher likelihood. If features should be selected according to their posterior prob-
ability, which optimally combines these two constraints under Bayes’ theorem, then 
feature specification underlies a compromise between both the size and range of a 
feature.

There are interesting parallels of this Bayesian account to Carnap’s (1980) post-
humously published work on inductive logic and its recent expansion in cognitive 
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science by Decock et  al. (2016) and Poth (2019). These approaches derive the 
agent’s prior degrees of belief (e.g., about what feature is relevant in an inductive 
inference task) from the geometric structure of concepts. Specifically, Decock et al. 
(2016) propose a geometric principle of indifference according to which the a priori 
probability for an object, o, to fall under a concept C is proportional to the size of the 
region that stands for the concept in a conceptual space. Following Carnap, the prior 
probability of the concept corresponds to the area of its region relative to conceptual 
space. This result coincides with the preference for variability-based priors in Gold-
stone et al.’s work, where areas covering a broader range of values along a dimen-
sion obtain higher prior probability. Despite lack of empirical knowledge, the agent 
still has reason to treat regions with different sizes as differently plausible candidates 
in inferences of properties (for discussion, see Poth, 2019).

Readers might object that Bayesian models miss out on directionality. How-
ever, the Bayesian approach fails directionality only in the sense in which Tver-
sky’s contrast model is directional. Indeed, it is directional in another sense since 
the conditional probability functions (1) pr(A|B) = pr(A ∩ B)∕pr(B) and (2) 
pr(B|A) = pr(A ∩ B)∕pr(A) likely obtain different results. Assume A represents the 
hypothesis that an object is crimson red, and B is the hypothesis that the object is 
edible. The outcome in (1) is likely to be different from (2) because (1) depends only 
on whether the object is edible, and (2) depends only on whether the object is red. 
But the probability of a random object being red seems to be very much independ-
ent, and hence likely to be unequal to the probability of it being edible. This sort of 
directionality might deliver a better explanation of similarity, since it comes out as 
a core aspect of the Bayesian model (i.e., the definition of conditional probability), 
while the contrast model only manually accommodates it with parameters that were 
introduced solely for this purpose (Poth 2022).

4.3  Responding to the Challenges

This novel understanding of feature-matching at least partially responds to the three 
problems discussed in Sect. 3. Firstly, it addresses the feature-selection problem as 
one of inductive inference of the feature with the highest posterior probability. It 
is assumed that likelihoods are constrained by the size principle or the frequency 
at which features occur, and priors are constrained by the expected variability of a 
feature. By optimally combining these constraints in the manner of Bayes’ theorem, 
agents infer maximally informative features. That is, features (defined conditional on 
a contrast class) should be selected according to their posterior probability, which 
trades high-variability priors (favoring broad features) with the size principle (favor-
ing narrow features) under Bayes’ theorem.

Secondly, the probabilistic approach offers a more plausible view of feature 
representations, which are not binary and discrete but constituted by a range of 
values as determined by the distributions of items in the foil. This brings feature-
matching closer to the inherently continuous nature of perception and conceptual 
thought. Insofar as relations between features are gradual (e.g., the cost of living 
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in New York is more or less like the cost of living in Seattle given US cities), fea-
ture representations vary gradually according to the strength of inference. Bayes-
ian perceptual psychology sees no structural difference between perception and 
belief, as both have probabilistic structures. It highlights their gradual nature by 
replacing the conventional notion of outright belief with the notion of degree of 
belief. Proponents posit that all aspects of cognition, including perception, take 
the form of probabilistic guesses or expectations about how the world unfolds 
(Clark, 2013; Hohwy, 2013). But they do not take this to mean that perception 
requires concepts or that it has propositional content as classically construed. Per-
ceptual states represent, not that there is a green shade, but a probability distribu-
tion over multiple green shades (cf. Sprevak, 2020), and a perceptual system in 
such a state may then `decide’ on a single shade based on the highest posterior 
distribution by maximizing expected utility. In perception, probabilistic beliefs 
operate subpersonally; they are implicit representational states and unavail-
able to explicit judgement. They are hence perfectly suited to provide a notion 
of implicit, perceptual, similarity judgement. In this sense, Bayesian modeling 
allows for a broader conception of similarity than classical feature-matching and 
captures at least some of the important aspects associated with perception and 
action. Whereas Tversky initially explains that the context determines the feature 
weights, probabilistic approaches add to this, more specifically, that the weights 
are determined by the subjective probability distribution over observed features. 
The magnitude of a feature might depend on how often it is activated, and per-
ceptual systems might have subpersonal-level expectations about how frequent a 
feature is and update this expectation based on novel experiences in the manner 
of Bayesian inference. Generally, modeling cognition as a form of Bayesian infer-
ence has proven fruitful to model aspects of perception and action in this sense 
(e.g., Körding & Wolpert, 2004). Aside from advances in computational neu-
roscience, recent work in philosophy suggests that Bayesian learners may infer 
similarities without the ability for linguistically-analyzable thought. For instance, 
Rescorla (2009) shows that Bayesian reasoning can be performed with probabil-
ity distributions structured by geometric relations, which lack predicate-argument 
structure and compositionality. He illustrates this with the case of a robot, which 
updates its beliefs about its position relative to several landmarks based on its 
previous motor commands and sensory inputs. Generally, the approach remains 
neutral on whether the size of a feature should be defined in terms of geometric 
distances, consequential subsets in an abstract stimulus space, or in a language of 
thought structure (Tenenbaum & Griffiths, 2001; Tenenbaum et al., 2011). Thus, 
rather than dividing similarity in perception from similarity judgement, Bayes-
ian modeling establishes similarity as a unified property of inference in percep-
tion, action, as well as conceptual thought. These considerations provide a partial 
response to the initial problem of cognitive plausibility, as viewing similarity as a 
form of Bayesian inference seems to capture more aspects associated with cogni-
tive systems than classical feature-matching.

Nevertheless, this response is only partial—the cognitive plausibility of Bayesian 
computation has been questioned on various grounds, including its computational 
intractability (van Rooij et al. 2018; Kwisthout & van Rooij, 2020). Realism about 
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Bayesian cognition is not mainstream (but see Rescorla, 2019) and there are seri-
ous challenges to taking Bayesian computation literally, given that the empirical evi-
dence is often unequivocal and considering available alternatives (Colombo et al., 
2020). A full discussion of the appropriateness of Bayesian-inference explanations 
of cognition is outside the scope of this paper, but this ongoing debate motivates 
further investigation of the overall cognitive plausibility and instrumental value of 
viewing similarity as Bayesian inference, which remains an open challenge.

Thirdly, the novel approach bears explanatory advantages in drawing out similar-
ity as a core consequence of probabilistic reasoning principles at the computational 
level. While classical feature-matching focuses on questions concerning how simi-
larity is computed, little time is spent on asking why people judge similarity in the 
way they do, or why they should. The Bayesian approach furnishes the diagnosticity 
principle (Sect.  2.2) with a theoretically refined understanding of similarity as an 
inference, under which certain ways of computing similarity can be discarded given 
the available rationality constraints (Zednik & Jäkel, 2016). This is illustrated with 
the size principle, where rarity provides a rational reason to select a feature as rele-
vant in a similarity-judgment task, hence combatting unprincipled tweaking. In other 
words, the effects of similarity judgement come out directly from principles of prob-
abilistic inference.Finally, these Bayesian principles give a computational explana-
tion of feature-matching that aligns with recent developments in computational cog-
nitive science. Following van Rooij and Baggio (2021), developing good theories in 
psychology requires iterative progressing through a theoretical cycle, whereby an 
initial theory is iteratively revised and refined. Along these lines stands my analysis 
of similarity as an inductive inference task. The intuitive theory is that people judge 
similarities, which Tversky explicates formally with the contrast model. In analyz-
ing the theory, I have checked for conceptual errors in Tversky’s approach in Sect. 3, 
and subsequently refined it in the context of Bayesian models in Sect.  4, where I 
have introduced a set of theoretical constraints. Following van Rooij and Baggio, 
this step can help to “narrow down the space of possible functions to those describ-
ing real-world capacities” (van Rooij & Baggio, 2021, p. 690). The size principle 
and variability-based priors are steps in this direction. They narrow down the set of 
all possible features that could be inferred (e.g., based on their logical compatibil-
ity with a hypothesis) to a subset of informative features. What is also highlighted 
by van Rooij and Baggio is the need for a computational-level theory (Marr, 1982) 
when analyzing psychological capacities. The Bayesian approach improves classical 
feature-matching on this front in that it unifies similarity and categorization under a 
single computational-level description of inductive inference. In the end, a theoreti-
cal cycle involves iterations, of which I have only presented the first step. Further 
constraints may improve this description of similarity. For instance, an outstanding 
area of advancement is to show how this analysis can be integrated with an embod-
ied cognition perspective.
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5  Implications for Similarity‑Based Accounts of Cognition

A central consequence of this novel view of similarity is that feature representation 
is cognitively derivative of probabilistic inference over geometric information. Con-
trary to the common lore in psychology, similarity is not theoretically fundamental 
in explaining generalization and inference. The two major kinds of similarity con-
sidered in this debate are integrated with a Bayesian approach that outsources geo-
metric properties associated with perceptual space to infer the most relevant feature 
based on a (non-exhaustive) set of rationality constraints. This approach not only 
explains (a) feature-selection, (b) cognitive plausibility and (c) the core principles 
based on which similarity is modulated in context. It also highlights the underap-
preciated insights from Tversky, that similarity representations are context sensi-
tive, e.g., they depend on how the range of values along one dimension (e.g., `loca-
tion’) influences the distribution of values along another (e.g., `cost of living’). The 
probabilistic framework is optimally suited to accommodate this aspect in terms of 
mutual-informational relevance relations among perceptual dimensions. Knowing 
that my friend lives in New York makes them more likely to pay high living costs, 
while knowing that the temperature in New York is high is irrelevant—temperature 
changes bear no significant effect on changes in living costs. What integrates the 
two models of similarity, contrary to their classical opposition, is that probabilistic 
inference explains similarity either way as an outcome of core principles of Bayes-
ian inference.

Contrary to common lore in philosophy, Tversky’s conceptual similarity does not 
necessarily originate in higher-level cognitive processes but in basic probabilistic 
computations over sets of features in perceptual space. Similarity as Bayesian infer-
ence provides a broader framework that remains neutral on whether the capacity 
to perceive similarity requires the capacity for conceptual thought. It also offers an 
opportunity to connect the feature-matching and geometric approaches by ground-
ing them both in principles of statistical inference. One possibility is that those 
geometric properties associated with perceptual dimensions justify the inference 
of feature overlap. Brössel (2017) has recently applied a similar idea using the the-
ory of conceptual spaces (Gärdenfors, 2000) to structurally relate color perception 
and perceptual beliefs about color. He assumes that perceptual color experiences 
with non-conceptual content are points, and color concepts are regions in percep-
tual similarity space. He establishes the rational relationship between the content 
of color experiences and the conceptual content of beliefs about color by introduc-
ing a credence function that is defined over both, relations among color experience 
and color concepts, in this space. While color concepts are ``understood as binary 
random variables that take on the value 1 if the relevant object’s shade of color falls 
under the given color concept and 0 otherwise’’ (ibid., p. 735), color experiences are 
understood as continuous random variables associated with the dimensions of color 
perception. Brössel’s probabilistic inference account thus illustrates how judgements 
about color can be probabilistically related to color perception,11 and so judging the 

11 Although an application to the case of odor remains to be established in future work, a recent analysis 
offered by Jraissati & Deroy (2021) is a promising first step. According to the authors, what seems to 
be crucial to odor concepts is that they are local; they do not occupy the space of possible odor percep-
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similarity between color shades fits very well within a probabilistic account of simi-
larity as an inference.

Note that there is nothing special about context and directionality effects in prob-
abilistic reasoning about similarity. These effects may likewise influence probabil-
istic computation at the subpersonal level of perceptual thought. For instance, my 
implicit beliefs may influence how similar I perceive two paintings, but this need 
not be an influence of higher-level cognition. In the classroom, the original Mona 
Lisa and a copy of it might be represented as more similar to each other than each 
of them to a Magritte, based on their (inferred) perceptual features. In the context of 
an art auction, an expert’s implicit knowledge of the price of the original Mona Lisa 
and the original Magritte might make them more mutually similar than the original 
Mona Lisa and its copy. From the probabilistic point of view, such implicit back-
ground beliefs modulate feature selection and similarity computation across multi-
ple distinctions of cognition (e.g., across the divide between perception and concep-
tual thought, and the divide between implicit and explicit belief).

6  Conclusion

In this paper, I have discussed three key problems for the feature-matching approach 
to similarity and categorization, which is widely used in cognitive science but rarely 
explicitly justified considering recent discussions on the nature of cognition. In 
revisiting the approach, I have suggested combining three new ingredients: consid-
eration of the contrast class as a constitutive constraint on similarity, the size prin-
ciple, which selects for rare features, and variability-based priors, which impose 
a preference for high-variability features. I have embedded these ingredients in a 
Bayesian approach to cognition that offers promising, albeit incomplete, ways of 
meeting the given challenges in terms of a computational analysis of similarity as 
an inductive-inference task. An advantage of this novel perspective is that it avoids a 
view on perceptual similarity as pertaining to conceptual thought while maintaining 
rational relations to similarity judgement. With these adjustments, feature-matching 
might be further developed as a viable option to explain how psychological similar-
ity serves as a viable ground for cognition across the divide between perception and 
conceptual thought.
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tions in a mutually exhaustive and finite way. Although Bayesian inferences are classically defined over 
Boolean algebras, it is not a sign of irrationality if perceptual odor concepts fail to exhaust the space of 
possibilities, since such incompleteness is not incoherent with the axioms of probability. It remains a 
possibility that probabilistic inferences could be defined over incomplete spaces of perceptual odor con-
cepts.

Footnote 11 (continued)



 N. Poth 

1 3

Funding Open Access funding enabled and organized by Projekt DEAL. This research was funded by a 
research fellowship from Ruhr-Universität Bochum.

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International License, 
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as 
you give appropriate credit to the original author(s) and the source, provide a link to the Creative Com-
mons licence, and indicate if changes were made. The images or other third party material in this article 
are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons licence and your intended use is 
not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission 
directly from the copyright holder. To view a copy of this licence, visit http:// creat iveco mmons. org/ licen 
ses/ by/4. 0/.

References

Austerweil, J. L., Sanborn, S., & Griffiths, T. L. (2019). Learning how to generalize. Cognitive Science, 
43(8), e12777.

Balkenius, C., & Gärdenfors, P. (2016). Spaces in the brain: From neurons to meanings. Frontiers in Psy-
chology, 7, 1820.

Barsalou, L. W. (2008). Grounded cognition. Annual Review of Psychology, 59, 617–645.
Beck, J. (2019). Perception is analog: The argument from Weber’s law. The Journal of Philosophy, 

116(6), 319–349.
Bloch-Mullins, C. L. (2020). Bridging the gap between similarity and causality: An integrated approach 

to concepts. The British Journal for the Philosophy of Science, 69(3).
Bloch-Mullins, C. L. (2021). Similarity reimagined (with implications for a theory of concepts). Theoria, 

87(1), 31–68.
Brewer, B. (1999). Perception and Reason. Oxford University Press.
Brössel, P. (2017). Rational relations between perception and belief: The case of color. Review of Phi-

losophy and Psychology, 8(4), 721–741.
Camp, E. (2007). Thinking with maps. Philosophical Perspectives, 21, 145–182.
Carnap, R. (1980). A basic system of inductive logic part ii. Studies in Inductive Logic and Probability, 

2, 7.
Cheng, P. W., & Pachella, R. G. (1984). A psychophysical approach to dimensional separability. Cogni-

tive Psychology, 16(3), 279–304.
Clark, A. (2013). Whatever next? Predictive brains, situated agents, and the future of cognitive science. 

Behavioral and Brain Sciences, 36(3), 181–204.
Colombo, M., Elkin, L., & Hartmann, S. (2020). Being realist about Bayes, and the predictive processing 

theory of mind. The British Journal for the Philosophy of Science, 72(1).
Colombo, M., & Hartmann, S. (2017). Bayesian cognitive science, unification, and explanation. The Brit-

ish Journal for the Philosophy of Science, 68, 451–484.
Crane, T. (1992). The nonconceptual content of experience. In T. Crane (Ed.), The contents of experi-

ence: Essays on perception (pp. 1–22). Cambridge University Press.
Danks, D. (2008). Rational analyses, instrumentalism, and implementations. In N. Chater & M. Oaksford 

(Eds.), The probabilistic mind: Prospects for rational models of cognition (pp. 59–75).
Decock, L., & Douven, I. (2011). Similarity after Goodman. Review of Philosophy and Psychology, 2(1), 

61–75.
Decock, L., Douven, I., & Sznajder, M. (2016). A geometric principle of indifference. Journal of Applied 

Logic, 19, 54–70.
Deroy, O. (2019). Categorising without concepts. Review of Philosophy and Psychology, 10(3), 465–478.
Douven, I., & Gärdenfors, P. (2020). What are natural concepts? A Design Perspective. Mind & Lan-

guage, 35(3), 313–334.
Douven, I., Wenmackers, S., Jraissati, Y., & Decock, L. (2017). Measuring graded membership: The case 

of color. Cognitive Science, 41(3), 686–722.

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


1 3

Same but Different: Providing a Probabilistic Foundation…

Falkowski, A., Sidoruk-Błach, M., Bartosiewicz, Z., & Olszewska, J. M. (2018). Asymmetry in similarity 
formation: Extension of similarity theory to open sets of features. The American Journal of Psychol-
ogy, 131(2), 151–159.

Fodor, J. A. (1975). The Language of Thought (Vol. 5). Harvard university press.
Fodor, J. A. (1987). Psychosemantics: The problem of meaning in the philosophy of mind. Cambridge: 

MIT Press.
Galesic, M., Goode, A. W., Wallsten, T. S., & Norman, K. L. (2018). Using Tversky’s contrast model to 

investigate how features of similarity affect judgments of likelihood. Judgment & Decision Making, 
13(2), 163–169.

Gärdenfors, P. (2007). Cognitive semantics and image schemas with embodied forces, In Krois, J.M., 
Westerkamp, D., Steidele, A., Rosengren, M. Embodiment in Cognition and Culture, John Benja-
mins Publishing Company, pp 57–76.

Gärdenfors, P. (2000). Conceptual Spaces: The Geometry of Thought. MIT Press.
Glock, H.-J. (2000). Animals, thoughts and concepts. Synthese, 123(1), 35–64.
Goldstone, R. L., & Barsalou, L. W. (1998). Reuniting perception and conception. Cognition, 65(2–3), 

231–262.
Goldstone, R. L., Medin, D. L., & Halberstadt, J. (1997). Similarity in context. Memory & Cognition, 25(2), 

237–255.
Goodman, N. (1972). Seven strictures on similarity. In Problems and projects (1st (print). Bobbs-Merrill.
Hahn, U., Close, J., & Graf, M. (2009). Transformation direction influences shape- similarity judgments. 

Psychological Science, 20(4), 447–454.
Hardcastle, V. G., & Hardcastle, K. (2015). Marr’s levels revisited: Understanding how brains break. Topics 

in Cognitive Science, 7(2), 259–273.
Harnad, S. (1990). The symbol grounding problem. Physica d: Nonlinear Phenomena, 42(1–3), 335–346.
Heck, R. G. (2000). Nonconceptual content and the “space of reasons.” Philosophical Review, 109(4), 

483–523.
Hohwy, J. (2013). The predictive mind. Oxford University Press. Hurley, S. (2002). Consciousness in action. 

Cambridge: Harvard University Press.
Hurley, S. (2002). Consciousness in action. Harvard University Press.
Hurley, S. (2003). Animal action in the space of reasons. Mind & Language, 18(3), 231–257.
Jraissati, Y., & Deroy, O. (2021). Categorizing smells: A localist approach. Cognitive Science, 45(1), e12930.
Kemp, C., Bernstein, A., & Tenenbaum, J. B. (2005). A generative theory of similarity. In Proceedings of the 

27th annual conference of the cognitive science society (pp. 1132–1137).
Knill, D. C., & Richards, W. (1996). Perception as Bayesian inference. Cambridge University Press.
Körding, K. P., & Wolpert, D. M. (2004). Bayesian integration in sensorimotor learning. Nature, 427(6971), 

244–247.
Krantz, D. H., & Tversky, A. (1975). Similarity of rectangles: An analysis of subjective dimensions. Journal 

of Mathematical Psychology, 12(1), 4–34.
Krawczak, M., & Szkatuła, G., et al. (2018). On asymmetric problems of objects’ comparison. In L. Rut-

kowski (Ed.), Artificial intelligence and soft computing (pp. 398–407). Springer International 
Publishing.

Krumhansl, C. L. (1978). Concerning the applicability of geometric models to similarity data: The interrela-
tionship between similarity and spatial density. Psychological Review, 85(5), 445–463.

Kwisthout, J., & Van Rooij, I. (2020). Computational resource demands of a predictive Bayesian brain. Com-
putational Brain & Behavior, 3(2), 174–188.

Lake, B. M., Ullman, T. D., Tenenbaum, J. B., & Gershman, S. J. (2017). Building machines that learn and 
think like people. Behavioral and Brain Sciences. https:// doi. org/ 10. 1017/ S0140 525X1 60018 37

Langkau, J., & Nimtz, C. (2010). New perspectives on concepts (Vol. 81). Rodopi.
Machery, E. (2007). Concept empiricism: A methodological critique. Cognition, 104(1), 19–46.
Maley, C. J. (2011). Analog and digital, continuous and discrete. Philosophical Studies, 155(1), 117–131.
Marr, D. (1982). Vision: A Computational Investigation into the Human Representation and Processing of 

Visual Information. Freeman.
McClamrock,. (1991). R. Marr’s three levels: A re-evaluation. Minds and Machines, 1, 185–196. https:// doi. 

org/ 10. 1007/ BF003 61036
McDowell, J. (1994). Mind and World. Harvard University Press.
Medin, D. L., Goldstone, R. L., & Gentner, D. (1993). Respects for similarity. Psychological Review, 100(2), 

254.

https://doi.org/10.1017/S0140525X16001837
https://doi.org/10.1007/BF00361036
https://doi.org/10.1007/BF00361036


 N. Poth 

1 3

Melara, R. D. (1992). The concept of perceptual similarity: From psychophysics to cognitive psychology. In 
Advances in psychology, pp 303–388.

Navarro, D. J., & Perfors, A. F. (2010). Similarity, feature discovery, and the size principle. Acta Psycho-
logica, 133(3), 256–268.

Nosofsky, R. M. (1986). Attention, similarity, and the identification–categorization relationship. Journal of 
Experimental Psychology: General, 115(1), 39.

Nosofsky, R. M. (1991). Stimulus bias, asymmetric similarity, and classification. Cognitive Psychology, 
23(1), 94–140.

Peacocke, C. (1992). A study of concepts. The MIT Press.
Piaget, J. (1976). Identity and conservation. In B. Inhelder, H. H. Chipman, & C. Zwingmann (Eds.), Piaget 

and his school: A reader in developmental psychology (pp. 89–99). Berlin Heidelberg: Berlin, Heidel-
berg Springer. https:// doi. org/ 10. 1007/ 978-3- 642- 46323-5_8

Poth, N. L. (2019). Generalisation probabilities and perceptual categorisation. In M. Kaipainen, F. 
Zenker, A. Hautamäki, & P. Gärdenfors (Eds.), Conceptual spaces: Elaborations and applications 
conceptual spaces (pp. 7–28).  Cham: Springer.

Poth, N. (2022). Refining the Bayesian approach to unifying generalisation. Review of Philosophy and 
Psychology. https:// doi. org/ 10. 1007/ s13164- 022- 00613-5

Qing, C., & Franke, M. (2015). Variations on a Bayesian theme: Comparing Bayesian models of refer-
ential reasoning. In H. Zeevat & H.-C. Schmitz (Eds.), Bayesian natural language semantics and 
pragmatics (pp. 201–220). Cham: Springer.

Rahnama, J., & Hüllermeier, E., et al. (2020). Learning Tversky similarity. In M.-J. Lesot (Ed.), Information 
processing and management of uncertainty in knowledge-based systems (pp. 269–280). Springer Inter-
national Publishing.

Rescorla, M. (2019). A realist perspective on Bayesian cognitive science, In Inference and consciousness, 
Anders Nes & Timothy Chan eds Routledge, pp 40–73.

Rescorla, M. (2009). Cognitive maps and the language of thought. The British Journal for the Philosophy of 
Science, 60(2), 377–407. https:// doi. org/ 10. 1093/ bjps/ axp012

Restle, F. (1961). Psychology of judgment and choice: A theoretical essay. Springer: Wiley.
Rips, L. J. (1975). Inductive judgments about natural categories. Journal of Verbal Learning and Verbal 

Behavior, 14(6), 665–681.
Rosch, E. (1978). Principles of categorization. In E. Rosch & B. B. Lloyd (Eds.), Cognition and categoriza-

tion. New Jersey: Lawrence Erlbaum Associates.
Rosch, E., & Mervis, C. B. (1975). Family resemblances: Studies in the internal structure of categories. Cog-

nitive Psychology, 7(4), 573–605.
Sanborn, A. N., Heller, K., Austerweil, J. L., & Chater, N. (2021). Refresh: A new approach to modeling 

dimensional biases in perceptual similarity and categorization. Psychological Review, 128(6), 1145.
Shanon, B. (1988). On the similarity of features. New Ideas in Psychology, 6(3), 307–321.
Shepard, R. N. (1962). The analysis of proximities: multidimensional scaling with an unknown distance 

function i. Psychometrika, 27(2), 125–140.
Shepard, R. N. (1987). Toward a universal law of generalization for psychological science. Science, 

237(4820), 1317–1323.
Siegel, S. (2010). Do experiences have contents? In Bence -Nanay (ed.), Perceiving the World, Oxford Uni-

versity Press
Sims, C. R. (2018). Efficient coding explains the universal law of generalization in human perception. Sci-

ence, 360(6389), 652–656.
Sjöberg, L. (1972). A cognitive theory of similarity. Goteborg Psychological Reports, 2(10).
Sloman, S. A., & Rips, L. J. (1998). Similarity as an explanatory construct. Cognition, 65(2–3), 87–101.
Sprevak, M. (2020). Two kinds of information processing in cognition. Review of Philosophy and Psychol-

ogy, 11(3), 591–611.
Staddon, J. E. R. (2016). Adaptive behavior and learning. Cambridge University Press.
Tenenbaum, J. B. (1999). A Bayesian Framework for Concept Learning (Doctoral dissertation, Massachu-

setts Institute of Technology).
Tenenbaum, J. B., & Griffiths, T. L. (2001). Generalization, similarity, and Bayesian inference. Behavioral 

and Brain Sciences, 24(4), 629–640.
Tenenbaum, J. B., Kemp, C., Griffiths, T. L., & Goodman, N. D. (2011). How to grow a mind: Statistics, 

structure, and abstraction. Science, 331(6022), 1279–1285.
Tversky, A. (1977). Features of similarity. Psychological Review, 84(4), 327.
Tversky, A., & Gati, I. (1978). Studies of similarity. Cognition and Categorization, 1, 79–98.

https://doi.org/10.1007/978-3-642-46323-5_8
https://doi.org/10.1007/s13164-022-00613-5
https://doi.org/10.1093/bjps/axp012


1 3

Same but Different: Providing a Probabilistic Foundation…

van Rooij, I., & Baggio, G. (2021). Theory before the test: How to build high- verisimilitude explanatory 
theories in psychological science. Perspectives on Psychological Science, 16(4), 682–697.

van Rooij, I., Wright, C. D., Kwisthout, J., & Wareham, T. (2018). Rational analysis, intractability, and the 
prospects of ‘as if’-explanations. Synthese, 195(2), 491–510.

Zednik, C., & Jäkel, F. (2016). Bayesian reverse-engineering considered as a research strategy for cognitive 
science. Synthese, 193(12), 3951–3985.

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.


	Same but Different: Providing a Probabilistic Foundation for the Feature-Matching Approach to Similarity and Categorization
	Abstract
	1 Introduction
	2 Basic Tenets of the Classical Feature-Matching Approach
	2.1 The Contrast Model
	2.2 Accommodating Directionality Effects
	2.3 Accommodating Context-Effects

	3 Three Challenges for Classical Feature-Matching
	3.1 The Feature-Selection Problem
	3.2 The Problem of Cognitive Plausibility
	3.3 The Problem of Unprincipled Tweaking
	3.4 Contrast to Geometric Models

	4 Similarity as Bayesian inference
	4.1 The Contrast Class as an Internal Constraint on Similarity
	4.2 Similarity as an Inductive Inference Task
	4.2.1 The Size Principle for Feature-Discovery
	4.2.2 Variability-Based Priors

	4.3 Responding to the Challenges

	5 Implications for Similarity-Based Accounts of Cognition
	6 Conclusion
	Acknowledgements 
	References


