
Vol.:(0123456789)

Erkenntnis
https://doi.org/10.1007/s10670-023-00687-2

1 3

ORIGINAL RESEARCH

Information and Explanatory Goodness

David H. Glass1 

Received: 20 July 2021 / Accepted: 25 March 2023 
© The Author(s) 2023

Abstract
I propose a qualitative Bayesian account of explanatory goodness that is analogous 
to the Bayesian account of incremental confirmation. This is achieved by means of 
a complexity criterion according to which an explanation h is good if the reduc-
tion in the complexity of the explanandum e brought about by h (the explanatory 
gain) is greater than the additional complexity introduced by h in the context of e 
(the explanatory cost). To illustrate the account, I apply it in the context of ad hoc 
hypotheses.

1  Introduction

Given an explanatory hypothesis h and an explanandum e, a number of probabilistic 
measures of explanatory power (Popper, 1959; Good, 1960; Schupbach & Sprenger, 
2011; Crupi & Tentori, 2012), denoted E(e, h) , satisfy the following condition:

where P represents a probability function.1 This provides a qualitative account of 
explanatory power that directly corresponds to the standard Bayesian account of 
incremental confirmation so that the explanatory power of hypothesis h with respect 
to explanandum e is positive if and only if e confirms h, or equivalently, h confirms 
e.

Good (1968) drew attention to an important distinction between explanatory 
power in the weak sense (weak explanatory power) and the strong sense (strong 
explanatory power) and noted that ‘the double meaning of “explanatory power” 
has previously been overlooked’ (Good, 1968,  p.  124). By weak explanatory 
power, he meant that the explanatory power of a hypothesis h is ‘unaffected by 

(1)E(e, h) ⋛ 0 if and only if P(e|h) ⋛ P(e),
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cluttering up [h] with irrelevancies’, while strong explanatory power ‘is affected by 
the cluttering’ (Good, 1968, p. 123). Suppose h2 is probabilistically independent of 
e, h1 and their conjunction, then the degree of weak explanatory power of h1 with 
respect to e is unaffected by the addition of the irrelevant hypothesis, h2 , so that 
E(e, h1 ∧ h2) = E(e, h1) . By contrast, strong explanatory power, denoted ES(e, h) , is 
negatively affected by this cluttering so that in general ES(e, h1 ∧ h2) < ES(e, h1) . In 
light of this distinction, all the measures of explanatory power cited at the start of 
the paper and satisfying condition (1) can be classified as weak measures.2

More generally, we can say that weak explanatory power is concerned with how 
well a hypothesis would explain the explanandum if the hypothesis were true. In this 
context, the connection with confirmation is relevant because the measures of weak 
explanatory power are also measures of the degree to which h confirms e. Strong 
explanatory power, however, is affected by how likely the hypothesis is to be true in 
the first place. The general idea is that strong explanatory power takes into account 
both the weak explanatory power and the prior probability of the hypothesis and so, 
for example, if two hypotheses had the same weak explanatory power with respect to 
an explanandum, the hypothesis with the higher prior probability would have greater 
strong explanatory power.

The idea in this paper is then to approach explanatory goodness along similar 
lines to strong explanatory power. Weak explanatory power, while an important con-
cept, is not appropriate for this task because, for example, an ad hoc hypothesis or 
conspiracy theory with very low prior probability could nevertheless have a positive 
degree of weak explanatory power (in fact, ad hoc hypotheses are typically designed 
to do exactly that). In order to make a better assessment of explanatory goodness, 
the prior probability/complexity of the hypothesis needs to be taken into account 
along with its weak explanatory power. As discussed above, this is the idea behind 
strong explanatory power and following Good, I will assume that probability and 
complexity are inversely related.3 While the notions of explanatory goodness and 
strong explanatory power are very closely related, they are not quite the same since 
a key issue for the account of explanatory goodness proposed here concerns the 
conditions under which a hypothesis would provide a good explanation to at least 
some extent. The goal is to address this point by providing a qualitative account 
that identifies when a measure of explanatory goodness for an explanation of e by 
h is positive/zero/negative. As such, explanatory goodness involves a more specific 
requirement than strong explanatory power. I will return to the relationship between 
explanatory goodness and strong explanatory power in Sect. 4.

There are several reasons for seeking a qualitative account of explanatory 
goodness. Consider Bayesian measures of incremental confirmation by way of 

2  These measures satisfy the principle of positive relevance which states that E(e, h1) ⋛ E(e, h2) if and 
only if P(e|h1) ⋛ P(e|h2) (Cohen, 2016) From this it follows, that E(e, h1 ∧ h2) = E(e, h1) in the case of 
an irrelevant hypothesis h2.
3  Intuitively, this makes sense for the more ‘cluttered’ hypothesis h1 ∧ h2 since its probability is less than 
or equal to the probability of h1 . More generally it is based on a standard approach to semantic informa-
tion (see Sect. 2).
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comparison. While there are many different measures of confirmation, all of them 
satisfy the same qualitative account. Hence, those who disagree about how to quan-
tify confirmation, nevertheless agree on the more fundamental principle of what 
constitutes a measure of confirmation. Similarly, while different measures of explan-
atory goodness could be proposed, it is arguably more important to obtain clarity on 
the fundamental idea underlying a probabilistic account of explanatory goodness. 
Such an account could help to clarify the logic of explanatory reasoning similar to 
the way in which the Bayesian account of confirmation helps to clarify the logic of 
inductive reasoning. This could be relevant in the context of inference to the best 
explanation (IBE), which seems to require an account of explanatory goodness. As 
Lipton points out, an inference should only be made to the best explanation if it is 
sufficiently good (Lipton, 2004, p. 154). A qualitative account might help to specify 
when this is the case or, alternatively, when none of the explanations available is suf-
ficiently good. Another motivation for a qualitative account is that it could provide 
a first step to obtaining a quantitative account. In fact, I will argue in Sect. 4 that 
the proposed account helps to define a plausible quantitative account by identifying 
a particular instance of a measure proposed by Good (1968). As such, the current 
work plays a key role as part of a wider project to propose a measure of explana-
tory goodness. Such a project involves defending Good’s general approach which 
results in a class of strong measures, but does not resolve the qualitative question. 
By addressing the qualitative question, however, a specific measure of explanatory 
goodness can then be identified.

2 � Explanatory Gain and Explanatory Cost

Following Good (1960; 1966; 1968), I will make use of a standard approach to 
semantic information according to which the information of a proposition h, which 
Good also equates with its complexity, is given by (Bar-Hillel & Carnap, 1953):

and this also applies to the information of h conditional on e:

Good also defines the information concerning h provided by e to be:

which is Good’s preferred measure of weak explanatory power (see also McGrew, 
2003) and again this can also be applied conditional on another proposition, g say, 
to give Inf (h, e|g) = log

[
P(e|h, g)∕P(e|g)] . Hence, Good identifies the degree 

to which h weakly explains e with the information concerning h provided by e 
or equivalently the information concerning e provided by h. Inf (h, e) can also be 
expressed as:

(2)Inf (h) = − log P(h)

(3)Inf (h|e) = − log P(h|e).

(4)Inf (h, e) = log

[
P(e|h)
P(e)

]
,
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and so if Inf (e) is greater than Inf (e|h) it represents the difference between the com-
plexity of e given only background knowledge and its complexity conditioned on h 
and in this sense we can also think of it as the reduction in complexity of e brought 
about h. More informally, we could think of it in terms of the reduction of surprise 
in e brought about by h. Note from Eq. (1) that the requirement for weak measures 
of explanatory power to be positive is equivalent to the requirement that the hypoth-
esis in question reduce the complexity of the explanandum.

Let us now consider the conditions under which a measure of explanatory goodness 
should be positive (or negative or zero). Central to the approach here is the identifica-
tion of two factors, which I shall call the explanatory gain and the explanatory cost. 
The key proposal in the paper is then to say that for the degree of explanatory good-
ness to be positive (zero/negative), the explanatory gain should be greater (equal/less) 
than the explanatory cost. From the discussion in the introduction, it makes sense that 
explanatory gain should be related to weak explanatory power in some way since it is 
a positive factor in explanatory goodness. Similarly, explanatory cost should be related 
to the improbability/complexity of the hypothesis since it is a negative factor. The chal-
lenge is how to quantify these factors more precisely.

2.1 � Information and Explanatory Gain

Good’s measure of weak explanatory power, Inf(h, e) , seems ideal for explanatory 
gain since by introducing a hypothesis h to explain e, the hope is that h will reduce the 
complexity (or equivalently the surprise) of e, and this is exactly what Good’s measure 
quantifies. As noted already, this quantity can be expressed as the information concern-
ing e provided by h. In other words, it is how informative h is about e. Adopting this 
measure of explanatory gain means that the resulting qualitative account of explanatory 
goodness will then have the qualitative account of weak explanatory power presented 
in Eq. (1) as a special case. To see this, note that the condition in Eq. (1) can equiva-
lently be stated as:

provided P(e) > 0 . And this is precisely the condition we get if we a) use Inf(h, e) for 
explanatory gain, b) specify the degree of explanatory goodness to be positive (zero/
negative) when the explanatory gain is greater (equal/less) than the explanatory cost, 
and c) apply this approach in the special case where the explanatory cost is zero.

As noted earlier, various measures of explanatory power can be classified as weak 
measures, so why use Good’s preferred measure for explanatory gain? Consider the 
measures proposed by Schupbach and Sprenger (2011):

(5)Inf (h, e) = log

[
P(e|h)
P(e)

]
= Inf (e) − Inf (e|h),

(6)E(e, h) ⋛ 0 if and only if Inf(h, e) ⋛ 0,

(7)ESS(e, h) =
P(h|e) − P(h|¬e)
P(h|e) + P(h|¬e)
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and Crupi and Tentori (2012):

A common feature of these measures is that they take on their maximum value of 
one when h entails e, assuming that P(e) < 1 . As such, they can be thought of as 
quantifying the degree to which h entails e.4 While this may be appropriate for a 
certain conception of weak explanatory power, arguably it presents a problem as an 
account of explanatory gain. Suppose h entails e and that this gives rise to a certain 
degree of explanatory gain. However, let us further suppose that there is also sig-
nificant explanatory cost associated with h due to its complexity (though we have 
yet to consider how the cost should be quantified) and that the gain is insufficient 
to outweigh this cost. It would be reasonable to suppose that h could enhance its 
explanatory gain (and potentially outweigh the cost) by explaining additional evi-
dence, e† . Suppose then that we consider the explanatory gain of h with respect to 
e ∧ e† . The difficulty is that the gain in this case cannot be greater than it is for e 
if the gain is quantified by ESS or ECT , and this is so even if h also entails e†.5 By 
contrast, Good’s weak measure is additive so that E(e ∧ e†, h) = E(e, h) + E(e†, h|e) , 
where E(e†, h|e) is just the degree to which h weakly explains e† conditional on e, 
and hence if Good’s measure is used, then the explanatory gain of h can be greater 
for e ∧ e† than it is for e.

A further point is that the explanatory gain and cost need to be quantified in a way 
that enables an appropriate comparison between them. As already noted, Good’s 
weak measure can be expressed in straightforward information theoretic terms as the 
information h provides about e and, as we shall see in Sect. 3, this can be compared 
with explanatory cost.6 An alternative strategy would be to use the main rival meas-
ure of semantic information which for h is given by (Bar-Hillel & Carnap, 1953)

Analogous to Eq. (5), we could then define an alternative measure of weak explana-
tory power as follows:

(8)ECT (e, h) =

⎧
⎪⎨⎪⎩

P(e�h) − P(e)

1 − P(e)
if P(e�h) ≥ P(e)

P(e�h) − P(e)

P(e)
if P(e�h) < P(e).

(9)Inf2 (h) = 1 − P(h).

(10)EW (e, h) = Inf2(e) − Inf2(e|h) = P(e|h) − P(e),

4  For discussion of the E
CT

 as a measure of partial entailment, see Crupi and Tentori (2013, 2014)
5  As we shall see, in the proposed account the additional evidence could also reduce the cost, but it 
seems reasonable that it should also enhance the gain.
6  Of course, this is not to deny that the other measures can be expressed in information theoretic terms. 
Crupi and Tentori (2014) provide a very helpful discussion of the relationship between information and 
confirmation. As they show, their preferred measure of confirmation given in Eq. (8) has a straightfor-
ward interpretation in terms of the alternative account of information in Eq. (9). In the terminology used 
here, the measure E

CT
 could be expressed as the information h provides about e divided by the informa-

tion content of e in the case where P(e|h) > P(e).
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which like Good’s measure could be interpreted as the information h provides about 
e. However, it is easy to show that EW is not additive and hence faces a similar dif-
ficulty to ESS and ECT as an account of explanatory gain.7

While these considerations do not preclude the possibility of exploring the use of 
some of these measures as part of an overall account of explanatory goodness, they 
nevertheless provide some reason for adopting Good’s weak measure for explan-
atory gain in the current context. For further discussion of reasons for preferring 
Good’s weak measure as part of an account of explanatory goodness, see Glass 
(2023).

2.2 � Information and Explanatory Cost

How should we quantify explanatory cost? As discussed earlier, it should be related 
in some way to the complexity of the hypothesis introduced, but exactly how the 
cost should be quantified is less clear. Two possibilities spring to mind: Inf(h) , the 
complexity of h given only background knowledge, and Inf(h|e) , the complexity 
of h given e. There is a very straightforward problem with using Inf(h) to quan-
tify explanatory cost. It is that the explanatory gain could never be greater than 
the explanatory cost and hence no hypothesis could ever have a positive degree of 
explanatory goodness. This is because it is always the case that Inf(h, e) ≤ Inf(h) . To 
see this note that:

and since Inf(h|e) ≥ 0 it follows that Inf(h, e) ≤ Inf(h) . However, if the explanatory 
cost is represented by Inf(h|e) , then the gain can be greater than the cost.

This suggests that Inf(h|e) is a more suitable candidate for explanatory cost in the 
current context, but this pragmatic justification is rather unsatisfying. For example, 
there might be a concern with the general approach of comparing explanatory gain 
and cost in this way or that there might be some other way to quantify cost instead 
of either Inf(h|e) or Inf(h) . The following discussion is intended to provide further 
justification for Inf(h|e).

2.2.1 � No Cost and Low Cost Explanations

Consider the circumstances in which there would be no explanatory cost. Given that 
the cost should be related to the complexity of the hypothesis, it seems plausible 
that for an explanandum e, there should be no explanatory cost associated with a 
hypothesis h if Inf(h) = 0 , which would occur when P(h) = 1 . However, in this case 
Inf(h|e) would also be zero since P(h|e) = 1 . Nevertheless, Inf(h|e) could be zero 
even if Inf(h) > 0 . In such a case, should we consider the explanatory cost to be 

(11)Inf(h, e) = log

[
P(e|h)
P(e)

]
= log

[
P(h|e)
P(h)

]
= Inf(h) − Inf(h|e),

7  E
W

 differs from E
SS

 and E
CT

 in that in some cases where h entails e, E
W
(e ∧ e†, h) is greater than 

E
W
(e, h) . For example, this would be the case if h also entails e† provided P(e†|e) < 1.
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zero? Suppose two mutually exclusive and exhaustive hypotheses are being consid-
ered for a coin: one that it is a fair coin ( h1 ), the other that it is double headed ( h2 ). 
Suppose further that both of these hypotheses are assigned equal prior probabilities 
based on background knowledge. The coin is then tossed and lands tails (e). Clearly, 
P(h1|e) = 1 and so Inf(h1|e) = 0 , while P(h1) = 0.5 and so Inf(h1) = log 2 . Since the 
explanandum e entails h1 this seems like a clear case where there is no explanatory 
cost involved with h1 ; given e, we get h1 for free. Hence, Inf(h|e) provides a suitable 
measure of explanatory cost in this case. It is also worth noting that the explanatory 
gain for h1 is positive ( Inf(h1, e) = log 2 ), so the explanatory goodness should be 
positive in this case.8

A similar point applies to cases where there is a low explanatory cost. Inf(h|e) 
could be low even if Inf(h) is high. Should we consider the cost to be low in this 
case? Suppose the prior probability of Smith’s guilt (h) is low in a murder investiga-
tion so that Inf(h) is high. However, on the basis of DNA evidence (e), the posterior 
probability of Smith’s guilt is high, so that Inf(h|e) is low. In the limiting case where 
Inf(h|e) = 0 , we have seen that there is no cost associated with h. In the current case, 
h does not follow from e with probability one, but it still follows with high prob-
ability, so it seems reasonable to conclude that the cost associated with h is low.9 If 
this is right, then as in the no cost case, Inf(h|e) provides a plausible way to quantify 
explanatory cost.

2.2.2 � Additional Complexity Introduced by h

Another reason why Inf(h|e) is appropriate as a way to quantify the explanatory cost 
is because it represents the complexity that goes beyond that already provided by e. 
To see this, recall from Eq. (11) that Inf(h|e) can be expressed as Inf(h) − Inf(h, e) , 
so it is the complexity of h minus the information or complexity about h provided 
by e. Hence, Inf(h|e) represents the additional complexity introduced by h in the 
context of e. It is very plausible to think that it is the additional complexity that is 
relevant to the explanatory cost since if we were to use Inf(h) it would, in effect, 
double count the complexity of h already provided by e. In fact, thinking of it in this 
way helps to diagnose what would be wrong with using Inf(h) in the no and low cost 
cases. Consider the no cost case where Inf(h|e) = 0 , but Inf(h) > 0 . Using Inf(h|e) to 
quantify explanatory cost takes into account the fact that h introduces no additional 
complexity beyond that provided by e.

Having identified the relevant quantities for both explanatory gain and explana-
tory cost, we are now in a position to consider the complexity criterion for explana-
tory goodness.

8  Note also that if Inf(h) = 0 , then the explanatory gain must also be zero.
9  In such scenarios, the low cost will be accompanied by a high explanatory gain since from Bayes’ 
theorem a high value of P(e|h)/P(e) (and so a high explanatory gain) is needed to convert a low prior for 
h to a high posterior, but in other cases a high gain can be accompanied by a high cost.
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3 � The Complexity Criterion

In light of the foregoing discussion, I propose the following criterion for explanatory 
goodness:

Complexity criterion for explanatory goodness: If EG(e, h) is a measure 
of explanatory goodness of an explanatory hypothesis h for explanandum e 
then:10

In terms of information, the complexity criterion for explanatory goodness is that an 
explanation is good to at least some extent if the information concerning e provided 
by h is greater than the information content of h given e. Or in terms of complex-
ity, an explanation is good if the reduction in complexity of e brought about by h is 
greater than the complexity of h given e, which is the additional complexity intro-
duced by h in the context of e. Informally, we could say that for an explanation to be 
good to some degree, it must pay its way in terms of complexity.11

Note that since Inf(h|e) ≥ 0 , a necessary, but not sufficient, requirement for 
explanatory goodness to be positive is that Inf(h, e) > 0 . Hence, its degree of explan-
atory gain must also be positive. It may be that in some cases, all of the explanations 
available have a negative degree of explanatory goodness. In such cases, it could be 
that the best explanation actually has a negative degree of explanatory gain as well 
and so is negatively related to the explanandum. This could occur, for example, if 
it had a much higher posterior probability than any of the other explanations. Nev-
ertheless, having a negative degree of explanatory gain, there would be something 
deficient about this explanation according to the complexity criterion.

Related to this, just because an explanation has a negative degree of explanatory 
goodness in the sense defined above, this does not necessarily mean that it has no 
merit to it. As just indicated, it could be the best explanation available, or it could 
have a high degree of explanatory gain. However, the point is that the reduction of 
complexity of e brought about h is not sufficient to outweigh the additional com-
plexity introduced by h. Nevertheless, there is the possibility that if further evidence 
became available that h could also explain, then its explanatory goodness for all the 
evidence could become positive. Hence, if an explanatory hypothesis has at least 
some redeeming features, it might be worthy of consideration and further evidence 
could be sought.

EG(e, h) ⋛ 0 if and only if Inf(h, e) ⋛ Inf(h|e).

10  Note that a measure of explanatory goodness is not intended as an account of what constitutes an 
explanation, but rather presupposes such an account and is only intended to quantify the strength of the 
relationship. Hence, it only applies when h is an explanatory hypothesis for e and not to purely probabil-
istic correlations, for example. Also note that P(e) and P(h|e) are assumed to be non-zero. The require-
ment that Inf(h, e) ⋛ Inf(h|e) is equivalent to P(e|h)∕P(e) ⋛ 1∕P(h|e).
11  It is important to emphasize that the criterion does not require that the introduction of h in addition 
to e reduce the overall complexity compared to that of e on its own. Clearly, that would be impossible 
since Inf(e ∧ h) = Inf(e) + Inf(h|e) ≥ Inf(e) . Rather, the criterion only requires that the explanatory gain 
be greater than the explanatory cost.
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An alternative strategy would be to use the rival account of semantic informa-
tion in Eq. (9) and hence the measure of explanatory gain in Eq. (10). Adopting 
this approach, explanatory cost would be 1 − P(h|e) and hence the relevant condition 
for the complexity criterion would become P(e|h) − P(e) ⋛ 1 − P(h|e) . While this 
approach also has some plausibility, it encounters a potential problem due to the fact 
that it is not additive as discussed in Sect. 2.1. If it is used as an account of explana-
tory goodness, this can result in cases where a hypothesis has a positive degree of 
explanatory goodness for e, say, provides explanatory gain for additional evidence 
e† , which in turn further confirms h and hence reduces the explanatory cost of h, and 
yet h has a negative degree of explanatory goodness for e ∧ e†.

With the complexity criterion in place, let us revisit the earlier discussion about 
Inf(h|e) and Inf(h) . Although reasons were given for preferring the former to quan-
tify explanatory cost, it is clear that the latter expression, which represents the com-
plexity of h on background knowledge, is still relevant. The requirement for explana-
tory goodness to be positive, Inf(h, e) > Inf(h|e) , is equivalent to 2 Inf(h, e) > Inf(h) . 
So in general, hypotheses with high values of Inf(h) need to have greater explanatory 
gain if they are to provide good explanations. Nonetheless, Inf(h) does not provide 
a suitable explication of explanatory cost, which is necessary for the justification of 
the complexity criterion.

It is worth noting the resemblance between the complexity criterion and the 
standard Bayesian account of incremental confirmation (see also expression (1)), 
according to which a measure of the degree to which e confirms h is positive (zero, 
negative) if and only if P(e|h) ⋛ P(e) or, equivalently if and only if Inf(h, e) ⋛ 0 . 
Thus, the complexity criterion can be seen as providing a qualitative Bayesian char-
acterization of explanatory goodness that is analogous to the qualitative charac-
terization of confirmation. Related to this point, it would be possible to construct 
various measures of explanatory goodness that are not ordinally equivalent as is the 
case with measures of confirmation. However, provided they satisfy the complex-
ity criterion, such measures will agree about when explanatory goodness should be 
positive, just as measures of confirmation agree about whether evidence confirms a 
given hypothesis.

A possible objection to this approach is that any account of explanatory goodness 
should include a detailed analysis of explanatory virtues. Advocates of measures 
of (weak) explanatory power have sought to do this and, insofar as they have been 
successful, their results also apply to the current approach since a good explana-
tion requires a positive degree of weak explanatory power because otherwise the 
explanatory gain would not be positive.12 However, weak explanatory power fails to 
accommodate the simplicity/complexity of explanations and so condition (1) would 
not provide a satisfactory account of explanatory goodness in a general sense. By 
contrast, since the simplicity/complexity is accommodated within the complexity 
criterion in terms of the explanatory cost, arguably it offers a more plausible account 
of explanatory goodness. Of course, whether it fully captures explanatory goodness 

12  See, for example, Myrvold’s (2003) account of unification and McGrew’s (2016) account of diverse 
evidence.
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is a question that would merit further investigation. Can explanatory gain and 
explanatory cost do justice to all the explanatory virtues? It must be acknowledged 
that there could be limitations arising from the fact that the account does not capture 
the nature of the explanatory relation itself and, related to this, it would be worth 
exploring how causality could be incorporated within the account. Nevertheless, 
while an in-depth treatment of the explanatory virtues is beyond the scope of this 
paper, by incorporating the advantages of weak explanatory power along with sim-
plicity/complexity, the current approach can be proposed as capturing key aspects of 
explanatory goodness (for further discussion, see Glass, 2023).

I will now illustrate how the approach can be applied to ad hoc hypotheses. Con-
sider the case of Dianetics discussed by Howson and Urbach (1993). L. Ron Hub-
bard, the inventor of Dianetics, claimed that a young woman who had undergone 
therapy represented a triumphant success. In 1950,

[Hubbard] exhibited this person to a large audience, claiming that she had a 
‘full and perfect recall of every moment of her life’. But questions from the 
floor (‘What did you have for breakfast on October 3, 1942?’; ‘What color is 
Mr. Hubbard’s tie?’, and the like) soon demonstrated that the hapless young 
woman had a most imperfect memory. Hubbard accounted for this ... by saying 
that when the woman first appeared on the stage and was asked to come for-
ward ‘now’, the word ‘now’ had frozen her in ‘present time’ and paralysed her 
ability to recall the past. (Howson and Urbach 1993, p. 148)

Let h represent the conjunction of the defining propositional tenets of Dianetics, a 
the claim that the word ‘now’ had frozen the woman in ‘present time’, and e her fail-
ure to answer the questions correctly. This seems like a clear case where h ∧ a is ad 
hoc (in a negative sense)13 and, if so, we would expect it to be a bad explanation to 
some degree, i.e. have a negative degree of explanatory goodness. We can grant that 
it has some positive explanatory gain since a ensures that h ∧ a entails e. This means 
that weak measures would assign a positive degree of explanatory power to h ∧ a . 
However, the gain is not that great since e is not very surprising at all. An important 
factor here is that P(e|¬h ) is not too low since the woman’s failure to answer the 
question is not surprising at all if Dianetics is false. On the other hand, a itself is 
highly improbable and hence h ∧ a is highly improbable too. More pertinently, h ∧ a 
is highly improbable given e and so the hypothesis introduces a lot of additional 
complexity in the context of e. Hence, the explanatory cost is very high. Along with 
low explanatory gain, this ensures that h ∧ a is a bad explanation.

Now consider the discovery of the planet Neptune. It is well-known that a new 
planet was proposed (a) to account for the observations of the orbit of Uranus (e), 
which were found to be in conflict with Newtonian theory (h) assuming the planets 

13  Sometimes it is just the auxiliary hypothesis a that is referred to as ad hoc and sometimes it is the 
conjunction h ∧ a . For our purposes, it is the explanatory goodness of h ∧ a that needs to be considered. 
Also, ‘ad hoc’ can be used in a neutral sense to refer to cases such as the two considered where there is 
no independent evidence to support a, but if used in this way, we need to be able to distinguish negative 
cases like the Dianetics example from positive cases like the Uranus example.
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known at that time. The success of this strategy led to the discovery of Neptune soon 
afterwards. This seems like a clear case where h ∧ a is not ad hoc (in a negative 
sense). As in the previous case, there is positive explanatory gain since a ensures 
that h ∧ a entails e. However, in this case the explanatory gain is very high since 
e was very surprising. In contrast to the Dianetics case, P(e|¬h) would also have 
been low since there was no reason to expect e on the assumption that Newtonian 
theory was false.14 While a, and hence h ∧ a , was very improbable, crucially h ∧ a 
was much less improbable given e and so arguably P(h ∧ a|e) would not have been 
too low. Too see why, note that P(h ∧ a|e) = P(a|h ∧ e) × P(h|e) . While there were 
some alternative proposals consistent with h, plausibly P(a|h ∧ e) was quite high. 
And given the high prior for h (based on earlier evidence) and the fact that P(e|¬h) 
was low, there is no reason to think that P(h|e) was very low even though e may 
well have disconfirmed h to some extent.15 Hence, the additional complexity in the 
context of e is not so high since it is just log[1∕P(h ∧ a|e)] . Along with a very high 
explanatory gain, this ensures that h ∧ a is a good explanation.

There is much more that could be said about ad hoc hypotheses and a detailed 
treatment would require exploring how the current approach relates to the accounts 
provided by Strevens (2001) and McGrew (2014). Nevertheless, this brief discus-
sion suggests that the proposed approach is able to distinguish between good and 
bad explanations appropriately.

4 � Towards a Quantitative Account

Good (1968) defined and presented a detailed defence of the following measure of 
strong explanatory power:

where 0 < 𝛾 < 1 is a constant. Note that it can be expressed in terms of explanatory 
gain and explanatory cost. Returning to our earlier discussion about how to quan-
tify cost, it is instructive to consider Good’s discussion of what would constitute 
a ‘full explanation’. He claims that ‘ideally we want [P(e|h)] = 1 and [P(h)] = 1 ’ 
(1968, p. 131). However, when P(h) = 1 , not only does Inf(h) = 0 , but Inf(h, e) = 0 
and so the strong explanatory power according to EGood is in fact zero. So requiring 

(12)
EGood(e, h) = log

[
P(e|h) ⋅ P(h)�

P(e)

]

= Inf(h, e) − �Inf(h)

= (1 − �)Inf(h, e) − �Inf(h|e).

14  This is not to deny the possibility – either in this or other cases – that there could be a hypothesis h′ 
that is incompatible with h and which makes e probable. However, unless such a hypothesis were itself 
probable given the falsity of h, this would provide no reason to think that P(e|¬h) is high. Nevertheless, 
as a referee has pointed out, such a hypothesis could be just as probable given e as h ∧ a without making 
h ∧ a ad hoc.
15  Using Bayes’ theorem, P(h ∧ a|e) = P(e|h∧a)

P(e)
P(h ∧ a) and so the low prior for h ∧ a would be boosted 

by the high value of P(e|h ∧ a)∕P(e) corresponding to the explanatory gain.
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that P(h) = 1 and hence Inf(h) = 0 is not an appropriate requirement for a ‘full 
explanation’. According to Good’s measure, a more appropriate requirement is that 
Inf(h|e) = 0 as can be seen from the last line of Eq. (12). This in turn requires that 
P(h|e) = 1 . A further requirement would be that P(e|h) = 1 (to ensure Inf(h, e) is 
as large as possible) for h to be the best possible explanation for a given e. So for a 
‘full explanation’, the requirement is that P(e|h) = 1 and P(h|e) = 1 , but P(h) < 1 . 
Or equivalently, it is that the explanatory gain is as large as possible for e and that 
explanatory cost is zero. Hence, the conditions for a full explanation provide a 
further reason for thinking that the proposed explications of explanatory gain and 
explanatory cost are appropriate.

From Eq. (12), we can see that EGood(e, h) > 0 if and only if 
(1 − 𝛾)Inf(h, e) > 𝛾Inf(h|e) and hence if EGood is to satisfy the complexity criterion, � 
must be 1∕2 . Interestingly, with this value, Good’s measure is essentially just explana-
tory gain minus explanatory cost, which provides a straightforward quantitative meas-
ure of explanatory goodness. Other values of � would result in measures of strong 
explanatory power that penalize hypotheses for their complexity, but would not con-
stitute measures of explanatory goodness. Good thought that setting � = 1∕2 provides 
the simplest explicatum since it gives equal weighting to (weak) explanatory power and 
what he calls ‘the avoidance of “clutter”’ [p. 130], but arguably the reasons given here 
provide further justification for this claim.

An alternative to Good’s measure could be obtained by dividing the relevant factors 
to give Inf(h, e)∕Inf(h|e) . This measure, which we can call the ratio measure, satisfies a 
slightly modified version of the complexity criterion since it is greater than one (rather 
than zero) when Inf(h, e) > Inf(h|e) . Nevertheless, there are reasons for preferring 
Good’s measure with ( � = 1∕2 ) based on limiting cases. For example, consider the 
case where h provides no explanatory gain for e, i.e. P(e|h) = P(e) . The ratio measure 
is zero in this limit, whereas Good’s measure is −Inf(h|e) which represents the explana-
tory cost and so it preserves important information that can discriminate between dif-
ferent explanations. Similarly, consider the limiting case where there is no explana-
tory cost, i.e. where P(h|e) = 1 . In this case, the ratio measure is undefined, whereas 
Good’s measure is just the explanatory gain, and so once again it is able to discriminate 
between different explanations.

In this section, I have not attempted to provide a detailed justification of Good’s 
strong measure as a measure of explanatory goodness, but just that if one adopts his 
approach, the complexity criterion provides a reason for setting � to 1/2. A more gen-
eral justification of this measure would require exploring a range of properties that 
should be satisfied and would take us beyond the scope of this paper. For a detailed 
defence of Good’s measure as a quantitative measure of explanatory goodness along 
with a detailed comparison of relevant properties of weak and strong measures, see 
Glass (2023).
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5 � Conclusion

While a number of measures of explanatory power have their merits, an account 
of explanatory goodness needs to take into account the improbability/complexity 
of explanatory hypotheses. To address this, I have proposed a qualitative Bayes-
ian account based on a comparison of explanatory gain and explanatory cost. It 
would be interesting to explore what implications this might have for debates about 
inference to the best explanation and its relationship to Bayesianism, as well as for 
explanatory reasoning more generally.

Acknowledgements  I would like to thank participants at the Conference on Scientific Explanations, 
Competing and Conjunctive at the University of Utah in June, 2019 for helpful discussions and Jonah 
Schupbach and Tomoji Shogenji for detailed feedback on earlier drafts. I would also like to thank anony-
mous reviewers for very helpful comments. This publication was made possible through the support of a 
grant from the John Templeton Foundation (Grant no. 61115). The opinions expressed in this publication 
are those of the authors and do not necessarily reflect the views of the John Templeton Foundation.

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International License, 
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as 
you give appropriate credit to the original author(s) and the source, provide a link to the Creative Com-
mons licence, and indicate if changes were made. The images or other third party material in this article 
are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons licence and your intended use is 
not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission 
directly from the copyright holder. To view a copy of this licence, visit http://​creat​iveco​mmons.​org/​licen​
ses/​by/4.​0/.

References

Bar-Hillel, Y., & Carnap, R. (1953). Semantic information. The British Journal for the Philosophy of Sci-
ence, IV(14), 147–157.

Cohen, M. P. (2016). On three measures of explanatory power with axiomatic representations. British 
Journal for the Philosophy of Science, 67(4), 1077–1089.

Crupi, V., & Tentori, K. (2012). A second look at the logic of explanatory power (with two novel repre-
sentation theorems). Philosophy of Science, 79(3), 365–385.

Crupi, V., & Tentori, K. (2013). Confirmation as partial entailment: A representation theorem in induc-
tive logic. Journal of Applied Logic, 11(4), 364–372.

Crupi, V., & Tentori, K. (2014). State of the field: Measuring information and confirmation. Studies in 
History and Philosophy of Science Part A, 47, 81–90.

Glass, D. H. (2023). How good is an explanation? Synthese, 201, 53.
Good, I. J. (1960). Weight of evidence, corroboration, explanatory power, information, and the utility of 

experiments. Journal of the Royal Statistical Society: Series B, 22, 319–331.
Good, I. J. (1966). A derivation of the probabilistic explication of information. Journal of the Royal Sta-

tistical Society: Series B (Methodological), 28, 578–581.
Good, I. J. (1968). Corroboration, explanation, evolving probability, simplicity and a sharpened razor. 

The British Journal for the Philosophy of Science, 19(2), 123–143.
Howson, C. & Urbach, P. (1993). Scientific Reasoning: The Bayesian Approach. Open Court, La Salle, 

IL, 2nd edition.
Lipton, P. (2004). Inference to the best explanation (2nd ed.). London: Routledge.
McGrew, L. (2014). On not counting the cost: Ad hocness and disconfirmation. Acta Analytica, 29, 

491–505.
McGrew, L. (2016). Evidential diversity and the negation of h: A probabilistic account of the value of 

varied evidence. Ergo, 3(10).

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


	 D. H. Glass 

1 3

McGrew, T. (2003). Confirmation, heuristics and explanatory reasoning. British Journal for the Philoso-
phy of Science, 54, 553–567.

Myrvold, W. C. (2003). A Bayesian account of the virtue of unification. Philosophy of Science, 70(2), 
399–423.

Popper, K. (2002/1959). The Logic of Scientific Discovery. Routledge, London and New York.
Schupbach, J. N., & Sprenger, J. (2011). The logic of explanatory power. Philosophy of Science, 78(1), 

105–127.
Strevens, M. (2001). The Bayesian Treatment of Auxiliary Hypotheses. The British Journal for the Phi-

losophy of Science, 52(3), 515–537.

Publisher’s Note  Springer Nature remains neutral with regard to jurisdictional claims in published maps 
and institutional affiliations.


	Information and Explanatory Goodness
	Abstract
	1 Introduction
	2 Explanatory Gain and Explanatory Cost
	2.1 Information and Explanatory Gain
	2.2 Information and Explanatory Cost
	2.2.1 No Cost and Low Cost Explanations
	2.2.2 Additional Complexity Introduced by h


	3 The Complexity Criterion
	4 Towards a Quantitative Account
	5 Conclusion
	Acknowledgements 
	References


