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Abstract
Causal Bayes nets (CBNs) provide one of the most powerful tools for modelling 
coarse-grained type-level causal structure. As in other fields (e.g., thermodynam-
ics) the question arises how such coarse-grained characterizations are related to the 
characterization of their underlying structure (in this case: token-level causal rela-
tions). Answering this question meets what is called a “coherence-requirement” in 
the reduction debate. It provides details about it provides details about how different 
accounts of one and the same system (or kind of system) are related to each other. 
We argue that CBNs as tools for type-level causal inference are abstract enough to 
roughly fit any current token-level theory of causation as long as certain modelling 
assumptions are satisfied, but accounts of actual causation, i.e. accounts that attempt 
to infer token-causation based on CBNs, for the very same reason, face certain 
limitations.

1 Introduction

Causal Bayes nets (CBNs) provide one of the most powerful tools for causal infer-
ence on the market. They are useful for modelling coarse-grained type-level causal 
structure. As in other cases of coarse-grained characterizations (e.g., in thermody-
namics) the question arises how the coarse-grained characterization is related to the 
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characterization of the underlying structure (in this case: token-level causal rela-
tions). Answering this question meets what has been called a “coherence-require-
ment” in the reduction debate: How are different accounts of one and the same sys-
tem (or kind of system) related to each other.1 In this paper, we take these issues 
as a starting point and tackle the question of how type-level and token-level causal 
structure are related. In particular, we look at how different accounts of token-causa-
tion may provide a suitable basis for CBNs. We argue that the type-level structures 
captured by CBNs can be generated by abstracting from token-level details. As a 
result, the type-level structure is robust vis-à-vis the details of the token-level as 
well as relative to the token-level account of causation. This stability licenses, on the 
one hand, CBNs as a powerful tool for type-level causal reasoning. Finally, the diffi-
culties of accounts of actual causation (which we take to be accounts that attempt to 
infer token-level structure starting from CBNs) can be explained as well: Type-level 
structures generated by abstraction leave out many details that are relevant for which 
token-level causal relations obtain.

The paper is structured as follows. In Sect. 2 we briefly remind the reader how 
token-level accounts of causation differ with respect to their verdicts on two paradig-
matic cases: late preemption and double-prevention. In Sect. 3 we outline the main 
features of CBNs. Section 4 is devoted to elaborating how token-level causal facts 
give rise to type-level representations in terms of CBNs. In Sect. 5 we argue that 
type-level structure is fairly robust with respect to the underlying details of token-
level accounts. Once we have understood the relation between token-causation and 
CBNs, we are able to diagnose why accounts of actual causation face serious dif-
ficulties in Sect. 6.

2  Token‑Causation

The purpose of this section is to briefly indicate how what is classified as a token-
level causal relation differs depending on the underlying theory of token-causation. 
We will look at three token-level theories and two paradigmatic scenarios that are 
often discussed in the literature. The three accounts of token-causation shall serve as 
proxies for illustration, but we believe that the points we make roughly hold for all 
token-level theories currently on the market.

2.1  Throwing Stones

Suzy and Billy both throw stones at a vase; Suzy’s stone hits first and shatters the 
vase. Since Billy’s stone arrives too late, it does not destroy the vase. This is a clas-
sic case of late pre-emption.

1 Work on this paper started as a discussion of a worry raised by Cartwright (2007): Any methodological 
framework for causation needs to be legitimized by its underlying metaphysics. However, the resulting 
paper is largely independent of Cartwright’s particular framing. What we are interested in is how type-
level causal accounts are related to token-level accounts.
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According to the simple counterfactual account, causation is the ancestral of 
counterfactual dependence between distinct (i.e., non-overlapping) events. e coun-
terfactually depends on c if and only if (iff for short) had c not occurred, e would 
not have occurred either. c is then defined as a cause of e iff there is a (possibly 
empty) set of events d1, ..., dn such that e counterfactually depends on dn , each di 
(with 1 < i ≤ n ) counterfactually depends on di−1 , and d1 counterfactually depends 
on c (Lewis, 1973). Consequently, on this account, neither Suzy’s throw nor Billy’s 
throw will be classified as a cause. Had Suzy not thrown, Billy’s stone would have 
shattered the vase (and vice versa).

On the conserved quantity account causation holds in virtue of the fact that cause 
and effect are related by causal processes. Causal processes are characterized as 
world lines of an object that possess a conserved quantity such as energy or momen-
tum (Dowe, 2000, 2009). The conserved quantity theory will identify Suzy’s throw 
as a cause, but not Billy’s. There was a causal process between Suzy’s throw and the 
shattering, but not between Billy’s and the shattering.

Finally, we will look at a third account, which captures aspects of both, produc-
tion and dependence views and yields yet a different set of verdicts on our paradig-
matic scenarios: the disruption account (Hüttemann, 2020). This account allows for 
several concepts of causation which, however, need to be linked, for example by the 
concept of a quasi-inertial process.

The first concept we are interested in is disruption causation:

(DC) A cause is something that accounts for an effect, where the effect consists 
of a system being in a state Z′ at a certain time t that is different from or deviant 
relative to the quasi-inertial behavior of the system at that time, i.e., relative to the 
state Z (where Z ≠ Z

′ ) that the system would have developed into in the absence 
of interferences. A cause is something that brought about this deviation.

(DC) gives us a contrastive notion of causation because the cause is a cause for e 
being in state Z′ rather than in state Z.

While (DC) is the concept of causation that tracks most of our causal intuitions, 
another concept, closed system causation, evolved in nineteenth century physics 
(Hüttemann, 2020):

(CS) In a closed system, i.e., in a quasi-inertial system that is not interfered with, 
an earlier state of the system is the cause of any later state of the system.

The disruption account can be understood as the conjunction of (CS) and (DC). 
Much needs to be said about the terms involved in (CS) and (DC). For reasons of 
space, a few remarks must suffice. The notion of a quasi-inertial process refers to the 
temporally extended behavior of a system that is not interfered with. The notion of 
an interference needs to be spelt out in terms of the sciences that are pertinent for 
the processes in question. Newton’s first law, for example, describes the (quasi-)iner-
tial behavior of a massive particle and Galileo’s law of free fall defines a quasi-iner-
tial process: A free falling object in a vacuum displays a certain behavior (as long as 
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no interfering factors intervene). Newton’s second law specifies possible interfering 
factors (“impressed forces”).

The identification of quasi-inertial processes is relative to a prior identification 
or specification of the systems. When we are interested in causal explanation, it is 
often the contrast to the effect to be explained that determines the relevant quasi-
inertial process. (This also holds in the case of preventions: When we are looking for 
a cause of why a dam did not break, for example, the relevant quasi-internal process 
to which we compare candidate causes is a process that results in the breaking of the 
dam.) This is captured by (DC). If in the absence of interferences, we ask for a cause 
of a state of a system, on the other side, we rely on (CS) instead.

Let us finally come back to our example: According to the disruption account, 
Suzy’s throw causes the shattering. Here is why: The effect to be explained is the 
shattering of the vase. The quasi-inertial behavior (no interfering factors) of the 
vase would have led to the vase being intact. But an event (Suzy throwing the stone) 
obtained which led to an interference with the quasi-inertial process such that the 
vase is shattered instead of remaining intact. By contrast, Billy’s stone does not 
interfere with the vase. (For details, see Hüttemann, 2020, 2021).

2.2  Bombing Mission

We take this example directly from Hall (2004):

“Suzy is piloting a bomber on a mission to blow up an enemy target, and Billy 
is piloting a fighter as her lone escort. Along comes an enemy fighter plane, 
piloted by Enemy. Sharp-eyed Billy spots Enemy, zooms in, pulls the trigger, 
and Enemy’s plane goes down in flames. Suzy’s mission is undisturbed, and 
the bombing takes place as planned.” (ibid., p. 241)

This is a classic case of double-prevention. The counterfactual account classifies 
Billy’s pulling the trigger as a cause. Had he not been on his mission, Suzy would 
not have succeeded in destroying the target. The conserved quantity theory cannot 
classify it as a cause because of the lack of a physical connection (Hall, 2007). The 
disruption account, on the other hand, will classify Billy’s pulling the trigger as a 
cause because it disrupts the process of Enemy bringing down Suzy’s plane (Hüt-
temann, 2020).

The verdicts listed are not meant to register the shortcomings of any of the accounts, 
but rather to point to the fact that they differ. They are clearly different accounts of 
token-causation—not only with respect to their claims what causation consists in, but 
also extensionally, i.e., with respect to the classification of the above cases.

3  Causal Bayes Nets

Causal Bayes nets (CBNs) as tools for causal inference can, for example, be used to 
uncover causal structure based on observational and experimental data. They can 
also generate causal predictions based on observation and predict the outcomes of 
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hypothetical interventions even in cases where no experimental data is available. 
Formally, a CBN is a triple ⟨�,�,Pr⟩ , where � is a set of random variables X1, ...,Xn 
representing the properties or events whose causal connections one wants to model, 
� is a set of edges connecting pairs of variables in � interpreted as direct causal 
dependence w.r.t. � , and Pr is a probability distribution over � . A CBN’s graph 
� = ⟨�,�⟩ is assumed to be directed and acyclic, meaning that all the edges in � are 
directed edges ( → ) and the graph does not feature a path of the form Xi → ... → Xi . 
CBNs are assumed to satisfy the causal Markov condition (Spirtes et al., 2000, p. 
29):

Causal Markov Condition: ⟨�,�,Pr⟩ satisfies the causal Markov condition iff 
every Xi ∈ � is probabilistically independent of its non-descendants conditional 
on its parents.

A variable Xi ’s parents (their set is denoted as ���(Xi) ) are its direct causes 
w.r.t. � , i.e., all the variables Xj ∈ � such that Xj → Xi . A variable Xi ’s descend-
ants are Xi itself and all the variables Xj ∈ � such that Xi → ... → Xj . Finally, a vari-
able Xi ’s non-descendants are all the variables Xj ∈ � that are not descendants of 
Xi . For directed acyclic graphs, the causal Markov condition is equivalent to the 
factorization

where ���(Xi) stands for the instantiation of the variables in ���(Xi) to their values 
on the left-hand side of the equation.

Another relevant condition is the causal minimality condition. It can be seen as a 
kind of difference-making requirement for causal relations, saying that each directed 
edge connecting two variables produces a probabilistic dependence between these 
variables in some circumstances (Gebharter, 2017; Schurz & Gebharter, 2016). For-
mally, it can be stated as follows (Spirtes et al., 2000, p. 31):

Causal Minimality Condition: ⟨�,�,Pr⟩ satisfies the causal minimality condi-
tion iff it satisfies the causal Markov condition and there is no subgraph �′ of 
� = ⟨�,�⟩ that satisfies the causal Markov condition.

Every graph �′ one gets from � by deleting one or more edges is a subgraph of �.

CBNs can be used to model the effects of interventions. An intervention sets a 
variable Xi ∈ � to a specific value xi independently of Xi ’s other causes in � . The 
effects of an intervention that sets Xi to xi can be computed by deleting all the arrows 
in the graph pointing at Xi and setting the probability of Xi = xi to 1 . Next, one 
applies the Markov factorisation to the truncated graph to compute post intervention 
probabilities.

If the model’s probability distribution is nice enough (see Spirtes et al., 2000, sec. 
2.3.5 for details), the conditional probabilities Pr(Xi|���(Xi)) can be represented 
by structural equations of the form Xi=cfi(�

�

,Ui) (where �′

⊆ � ). Variables Ui are 

Pr
(
x1, ..., xn

)
=

n∏

i=1

Pr(xi|���
(
Xi

)
)
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sometimes called error terms. They are introduced to model probabilistic causal 
systems. Interventions can be represented in structural equation models as in ordi-
nary CBNs: The effects of an intervention that sets Xi to xi can be computed by 
first replacing the original equation Xi=cfi(�

�

,Ui) by Xi = xi , and then using Xi = xi 
together with the original structural equations for all the other variables different 
from Xi in order to compute the value of any variable one is interested in.

Finally, CBNs and structural equations as introduced are first and foremost tools 
for modelling type-level causation. An arrow Xi → Xj stands for the type-level causal 
claim that the variable Xi (or the property it represents) is directly causally relevant 
for the variable Xj (or the property it represents) w.r.t. the set of variables � under 
consideration. Xi could, for example, stand for smoking behavior and Xj for lung 
cancer. Though the model can be used to make predictions about particular values, 
it does not tell us which particular Xi-value is a token-level cause of which particu-
lar Xj-value. It does also not tell us anything about whether a particular individual 
will get lung cancer because of her specific smoking behaviour. The model only 
makes predictions at the population level, for example, that in any subpopulation 
whose individuals all share this and that smoking behavior the relative frequency 
of individuals developing lung cancer will be such and such high, or that chang-
ing the smoking behavior in this and that way in a population (this would amount 
to an intervention) would lead to such and such changes in the lung cancer rate. To 
infer whether a token-level causal relation holds for specific individuals, additional 
assumptions are required. Depending on which specific assumptions one makes, 
one gets different accounts of actual causation. By an account of actual causation 
we always mean an account that relies on such additional assumptions in order to 
squeeze out token-level causal information based on type-level causal structure as 
represented by a CBN or structural equation model. Thus, we do not treat CBN-
based accounts of actual causation as yet another theory of token-causation, but as 
an inference tool aiming at identifying token-level causal relations.

4  Closing the Gap Between Type‑Level and Token‑Level

In this section we make a proposal how the gap between CBNs as tools for modelling 
causal structure at the type-level and token-causation as characterized by theories like 
the ones sketched in Sect. 2 can be closed.2 In particular, we will ask how facts about 
token-level causation give rise to type-level causal structures in terms of CBNs.

First of all, note that we can formulate any token-level causal theory in terms of 
random variables. We assume that the different states systems s or their subsystems 
can be in are represented by the different values of random variables. Let X1, ...,Xn 
be the variables describing all the possible states of those systems in whose causal 

2 Recall that we pursue the project of investigating of how token-level accounts of causation and type-
level accounts are related. We are not interested in uncovering causal structure from empirical data. 
While our project is about connecting the token with the type level, the latter project only concerns type-
level to type-level inference. What one typically does is to use empirical data about how features are 
distributed among the individuals of a representative sample to infer the causal structure underlying the 
overall population.
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connections we are interested in and � be the set of these variables. For illustration, 
let us take a brief look at a specific system s . Assume that this system is a game 
of billiard. Now let c, e be subsystems of s . Let c be the white and e be the black 
ball, both lying somewhere on the billiard table. Let Xi(c) describe the behaviour of 
the white ball and Xj(e) the behaviour of the black ball. Now assume that Xi(c) = xi 
describes a specific way how the white ball moves across the billiard table towards 
the black ball and let Xj(e) = xj describe the black ball falling into a specific pocket.3 
We now assume that this specific movement of the white ball causes the black ball 
to fall into this pocket, i.e., that Xi(c) = xi causes Xj(e) = xj . It can easily be checked 
that all three token-level theories introduced in Sect. 2 support this result.

Now the question is how we can get a type-level claim Xi → Xj in terms of CBNs 
out of token-level facts such as Xi(c) = xi causing Xj(e) = xj . Before we present our 
answer to this question, let us introduce one more concept as well as a restriction in 
scope. Let B1, ...,Bm be variables describing relevant background factors or initial 
conditions and � be the set of these variables. In the following, we will assume that 
these background factors are fixed for all systems s under consideration,4 while the 
variables X1, ...,Xn are allowed to have different values in different systems s . In par-
ticular, we want to end up with a CBN for the variables X1, ...,Xn to the background 
of the fixed conditions � = �.

Finally, to get type-level causal structure out from token-level causal relations, 
we will quantify over all nomologically possible causal system. We will restrict the 
scope to those nomologically possible systems (i) whose token-level causal struc-
tures are acyclic and have tokens of the same types and (ii) whose causal relations 
can be disrupted. (i) implies that if Xi = xi is a token-level cause of Xj = xj in some 
system, then there is no system in which Xj = xj is a token-level cause of Xi = xi . 
(ii) means that if Xi = xi is a token-level cause of Xj = xj in one system, then there is 
some other system in which Xi = xi is not a token-level cause of Xj = xj.

Here is our proposal for grounding type-level structure in token-level causal facts. 
It consists of two steps.

Step 1: Identification. We take it to be a major constraint for an account of the 
relation between token-level and type-level causal structure to satisfy the following 
condition: If there is a value of a variable Xi which happens to be causally relevant 
for the value of a variable Xj at the token-level in some system under some circum-
stances, then this is already enough for Xi to be causally relevant for Xj at the type-
level, and vice versa: We only want Xi to end up as a direct type-level cause of Xj if 
at least some Xi-value is a token-level cause of some Xj-value in some system.5 This 
is the weakest possible connection between type- and token-causation we can think 

3 We will ignore individual variables like c,e in expressions such as Xi(c) = xi  and Xj(e) = xj when it is 
clear from the context to which individuals these expressions apply.
4 We will keep this assumption in mind, but most of the time do not mention the background factors 
explicitly.
5 Note the restriction to “direct” type-level causation in the vice versa part. It stems from the fact that 
since there can be causal chains in CBNs such that the effect does not depend on the cause (such chains 
constitute a failure of causal faithfulness, cf. Spirtes et al., 2000, p. 31), we cannot assume that for each 
such type-level chain there must be a token-level causal connection. Thus, only direct type-level causal 
connections need to be backed up by corresponding token-level causal relations.
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of. But as we will see shortly, it is already enough to do the job. Here we are clearly 
transcending the empirical approach a social scientist would pursue. While the latter 
will focus on actual occurrences and frequencies, we are interested in how—in gen-
eral—type-level structure is related to token-level structure. Thus, when quantifying 
over systems, we always have the set of all nomologically possible systems satisfy-
ing conditions (i) and (ii) in mind.

The goal of step 1 is to identify all the type-level causal relations among the vari-
ables of interest. In a bit more detail, what we have to do is to look at all nomo-
logically possible systems s featuring subsystems c, e sharing the same background 
conditions � = � . We will find that the values of the variables X1, ...,Xn are differ-
ently distributed in different such systems. For each variable Xj ∈ � we now check 
whether Xj has a value xj for which at least one value xi of one of the other variables 
Xi ∈ � is a token-level cause of xj in at least one of the systems s . If the answer to 
this question is yes, then Xi is an element of �(Xj) . After applying this test to all 
variables Xi ∈ � different from Xj , we have determined the set �(Xj) of Xj ’s type-
level causes.

Let us briefly illustrate the first step of the procedure by a toy example. Assume 
we are interested in scenarios s involving a general, a hitman, a backup for the hit-
man, and the task of destroying a facility by detonating a bomb. Let us describe 
these possible events with the variables X1, ...,X5 . In most of these systems s , the 
general does not order anyone to destroy the facility ( X1 = 0 ). But in some systems, 
she orders the hitman to destroy the facility and the backup to blow up the bomb 
should the hitman fail ( X1 = 1 ). In most of these systems, the hitman presses the 
button ( X2 = 1 ), but in some she fails to do so ( X2 = 0).6 In most of the scenarios in 
which the hitman presses the button, the backup does nothing ( X3 = 0 ), and in most 
of the scenarios where the hitman fails to press the button, the backup presses the 
button instead ( X3 = 1 ). In most of the systems where at least one of the two presses 
the button, the bomb detonates ( X4 = 1 ), and in most systems in which the bomb 
detonates, the facility gets destroyed ( X5 = 1).

We have characterized the events that take place but have not yet provided any 
information about what causes what. Accounts of token-causation allow us to add 
this type of information. Let us have a look at these dependencies through the lens 
of the simple counterfactual account, which we will use as a proxy for illustrating 
the abstraction procedure described in this section.7 What we need to figure out is 
whether among the systems mentioned above, there is one such that, say, X2 = 1 
counterfactually depends on X1 = 1 , etc. If thought through, we arrive at the conclu-
sion that, according to the counterfactual account, in some systems X1 = 1 is a cause 
of at least one of the events X2 = 1 , X3 = 1 , X4 = 1 , X5 = 1 , that in some X2 = 1 is a 
cause of at least one of the events X4 = 1 , X5 = 1 while in some X2 = 0 is a cause of 

6 We assume that every token-level cause’s effect can, in principle, be prevented if another causal factor 
would have interfered in an appropriate way. Thus, the hitman fails to press the button in some of the 
systems s.
7 In Sect. 5 we will argue that the abstraction procedure introduced above is rather robust in generating 
type-level causal models, meaning that different token-level accounts typically result in largely the same 
type-level representation.
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at least one of the events X3 = 1 , X4 = 1 , X5 = 1 , that in some X3 = 1 is a cause of at 
least one of the events X4 = 1 , X5 = 1 , and that in some X4 = 1 is a cause of X5 = 1.

Using the method outlined above, we can now form the set �(Xj) for each of the 
variables X1, ...,X5 . A variable Xi will be an element of this set if one of its values is 
a token-cause of one of Xj ’s values in at least one system s . Thus, we end up with the 
following sets:

From this we get the structure depicted in Fig.  1. Note that the arrows do not 
stand for direct type-level causal dependence (as is usually the case in such figures), 
but for direct or indirect type-level causal dependence.

Step 2: Ordering. We do know each variable Xj ’s type-level causes now, but we 
do not yet know their order. In other words, we do not yet know which of these 
type-level causes are the direct causes of Xj w.r.t. � . We solve this problem in the 
second step. To this end, we first need to identify the conditional probabilities 
Pr(Xj = xj|�(Xj) = �(Xj)) . To do so, we need to have a look at all those systems 
s instantiating �(Xj) = �(Xj) and determine the relative frequency of these sys-
tems in which Xj = xj is instantiated too. We identify the conditional probability 
Pr(Xj = xj|�(Xj) = �(Xj)) with this frequency. Next, we can identify Xj ’s direct type-
level causes by looking for the narrowest subset of �(Xj) that screens Xj off from 
all the variables in �(Xj) . The relevant probabilities are determined as before. The 
elements of the narrowest screening off set will be the set of Xj ’s direct type-level 

�(X1) = ∅

�(X2) = {X1}

�(X3) = {X1,X2}

�(X4) = {X1,X2,X3}

�(X5) = {X1,X2,X3,X4}

Fig. 1  Pattern of type-level 
causal dependences
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causes or causal parents ���(Xj).8 If we repeat the procedure outlined for every vari-
able Xj ∈ � , we can identify a directed acyclic graph � = ⟨�,�⟩.

Let us illustrate how this second step works. We can look at all the systems s and 
determine the probabilities Pr(Xj = xj|� = �) (where � ⊆ �(Xj) ) as the ratio of the 
systems s in which Xj = xj , � = � relative to the systems s in which � = � . Based on 
these probabilities, we can now identify the causal parents of every variable Xj with 
the narrowest � ⊆ �(Xj) that will screen Xj off from �(Xj) . For X1 this is trivially the 
empty set and for X2 it is trivially {X1} . For X3 , it is {X1,X2} . Neither X1 nor X2 alone 
can do the job. If X2 = 1 , it might still happen that the backup believes the hitman 
did not press the button and, because of that, presses the button herself X3 = 1 . This 
becomes more likely, however, if the general gave the order ( X1 = 1 ). Otherwise, 
there would be no reason to press the button at all. So X2 does not screen X3 off from 
X1 . But also X1 does not screen X3 off from X2 . Granted, the probability that the 
backup presses the button is higher if the general gives the order. However, it still 
makes a huge difference whether the hitman presses the button or not.

For X4 , the causal parents are X2 and X3 , but not X1 . {X2,X3} will screen X4 off 
from X1 because once it is decided what the hitman and the backup do (pressing vs. 
not pressing the button), whether the general gave the order becomes irrelevant for 
whether the bomb detonates. Again, neither X2 nor X3 can screen off X4 from all the 
other members of �(X4) . If we know, for example, that the hitman pressed the but-
ton, then additional information about whether the backup did so still has an influ-
ence on the probability of the detonation. No cause is perfect; the effect might not 
occur due to other interfering factors. So the backup also pressing the button will 
further increase the probability of the bomb detonating. The same goes the other 
way round. Similar considerations can be made regarding X5 . If thought through, we 
arrive at the following sets of type-level causal parents:

���(X1) = ∅

���(X2) = {X1}

���(X3) = {X1,X2}

Fig. 2  Pattern of type-level 
direct causal dependencies

8 Note that in some cases there might not be a unique screening off set. We will come back to this issue 
in due course.
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Based on this information, we can finally identify the type-level causal structure 
as the one depicted in Fig. 2.

4.1  Constraints

Let us briefly take a step back and have a look at the broader picture. Our aim is to 
understand how type-level structure as captured by CBNs depends on token-level 
causal structure. We proceeded by building graphs that can be used for type-level 
causal inference on the basis of facts about token-level causation so as to end up 
with a graph such that for each directed edge Xi → Xj there are systems s such that 
a value xi of Xi and a value xj of Xj are instantiated such that Xi = xi is a token-level 
cause of Xj = xj . This is important to answer our initial question: How are CBNs 
related to the underlying token-level structure? We propose the following answer: 
If certain additional constraints are satisfied, then this will guarantee the intended 
fit. These constraints cannot be justified by facts about token-level causation, but 
rather tell us under which specific conditions a type-level structure that fits to the 
token-level causal structure according to the two-step procedure can be guaranteed 
to represent correctly. It is thus not the case that token-level structures on their own 
uniquely determine CBNs. Let us briefly walk through these constraints.

4.1.1  Ordering Uniqueness

Step 2 of the method to get type-level structure out of token-level causation required 
us to identify the smallest subset of each variable’s type-level causes that screens that 
variable off from all its type-level causes. Next, we identified this set with the vari-
able’s type-level causal parents. For the procedure to work it is required that there is 
only one such screening off set. Sometimes, however, there is no unique screening 
off set. This, for example, can happen if dependence patterns feature too many deter-
ministic dependencies. Assume, for example, we are interested in the binary varia-
bles X1,X2,X3 and that in all nomologically possible systems X1 = 1 is a direct cause 
of X2 = 1 and X3 = 1 , X1 = 0 of X2 = 0 and X3 = 0 , X2 = 1 of X3 = 1 , and X2 = 0 of 
X3 = 0 . Now step 1 of our procedure would tell us that both X1 and X2 are type-level 
causes of X3 , but since both {X1} as well as {X2} screen X3 off from all its type-level 
causes, step 2 does not give us a unique answer to the question of whether X1 or 
X2 or both are direct causes of X3.9 For these reasons, we need to assume ordering 
uniqueness: The values of the variables of our model need to be distributed among 
all nomologically possible systems s in such a way that the screening off part of step 
2 leads to a unique result. Otherwise, the type-level structure is underdetermined.

���(X4) = {X2,X3}

���(X5) = {X4}

9 X and Y are screened off by Z iff Pr(y|x, z) = Pr(y|z) or Pr(x, z) = 0 holds for all combinations of val-
ues x, y, and z.
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4.1.2  Markov Distribution

Another requirement for step 2 is that a type-level effect’s direct type-level causes 
screen it off from its indirect type-level causes. This on its own does not give us the 
causal Markov condition—which causally interpreted CBNs are assumed to satisfy 
by definition—introduced in Sect. 3. It is rather a logically weaker consequence of 
the causal Markov condition. For this reason it cannot yet be guaranteed that the 
structure resulting from our procedure is in fact a CBN suitable for type-level rea-
soning. For example, nothing in our procedure guarantees that type-level common 
causes will screen off their effects, which is another logically weaker consequence of 
the Markov condition. Another such consequence is that causally unconnected vari-
ables are independent. Consequences like these, however, are essential in type-level 
reasoning with CBNs. Hence, we furthermore need to assume that the values of the 
variables to be modelled are distributed among systems s in a Markovian way, i.e., 
in such a way that the type-level structure resulting from step 2 satisfies the causal 
Markov condition.10

4.1.3  Difference‑Making

Another problem can occur if causal differences at the token level do not show up 
anymore at the type level. Here is an example. Assume we are interested in the two 
variables X1,X2 . Assume further that in some nomologically possible systems s , 
some X1-values are token-level causes of some X2-values. Finally, assume that the 
two variables’ values are distributed among all systems s in such a way that, when 
determining the conditional probabilities in step 2, we end up with the two vari-
ables being independent of each other. In this case, the narrowest screening off set 
would be ∅ and our procedure would tell us to not draw any arrows between X1,X2 . 
The resulting type-level causal structure would misrepresent token-level causal 
facts. Because of this, we need to assume difference making: If Xi is a direct token-
level cause of Xj in some system s , then all involved variables’ values are distributed 
among systems s in such a way that Xi and Xj come out as probabilistically depend-
ent to the background of some instantiation of the type-level causes of Xj in step 2. 
This requirement will guarantee that the resulting type-level structure satisfies the 
causal minimality condition.

5  The Robustness of CBNs

In Sect.  4 we have presented an account telling us under which conditions CBNs 
are generated by token-level causal patterns at the type level. Most of the time, 
however, we simply spoke about token-level causation (in general) and not about 

10 Whether all common causes satisfy the causal Markov condition has been contested (e.g., Cartwright, 
1999). Such objections can be countered in many ways (e.g., Gebharter & Retzlaff, 2020; Glymour, 
1999; Retzlaff, 2017; Schurz, 2017).
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token-level causation according to a specific account. But as we saw in Sect. 2, the 
different token-level theories give rise to different causal claims in different causal 
scenarios. So naturally the question arises whether there is one token-level theory 
that is better than its competitors at licensing CBNs. After having developed the 
two-step account, the answer to that question becomes clearer: Given the assump-
tions outlined in the previous section, CBNs are relatively robust with respect to 
the specific token-level theory. Even in those cases in which token-level accounts 
disagree with respect to causal connections the type-level structures resulting from 
the two-step approach will almost always fit all token-level theories. We believe that 
this is a huge advantage of CBN methods. They allow us to make many causal type-
level inferences without us having to know which is the right token-level account of 
causation. Let us illustrate this by walking through the exemplary cases from Sect. 2 
again. This time, we will take a closer look at how the different token-level theories 
from Sect. 2 give rise to type-level models.

5.1  Throwing Stones

As we have discussed in the previous section, to arrive at a type-level structure, we 
need not only to consider the one specific case where Suzy and Billy throw stones 
from Sect.  2, but all nomologically possible systems s like this specific one, i.e., 
all nomologically possible cases where two individuals independently throw (or not 
throw) stones at vases. For easier reference, let us refer to the first one of the indi-
viduals in all such systems by Suzy, to the second one by Billy, and to the respective 
vase by Vase (likewise for the bombing mission case discussed later). Now in some 
of these systems, Suzy will throw earlier, in others, Billy will. In some, Suzy will be 
closer to Vase, in others, Billy will be closer. In some, Suzy will throw with more 
force and, thus, her stone will fly faster, in others Billy will use more force. And in 
some systems, Suzy’s and Billy’s throws will be similar in all these respects. In some 

Fig. 3  Suzy throws ( X1 ), Billy throws ( X2 ), Vase breaks ( X3)
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one of the two does not throw and in some neither will throw. In yet other systems, 
other events occur that influence the trajectory of one or both of the stones in such a 
way that they do not hit Vase, etc. If we now apply the three proxy token-level theo-
ries introduced in Sect. 2, we sometimes arrive at the same results, and sometimes 
at different ones when going through all of these systems. Let us walk through two 
examples. Figure 3 summarizes the results.11

Suzy’s stone hits first: This is the classical late pre-emption case discussed in 
Sect. 2. As we saw in Sect. 2, the process and the disruption account both tells us 
that Suzy’s throw is a cause, but Billy’s is not, while according to the counterfactual 
account both throws come out as causally irrelevant.

Billy throws, Suzy does not: In this scenario, all three accounts of token-causation 
tell us that Billy’s throw is a cause of the breaking of Vase. There is a suitable pro-
cess connecting the two events, Billy’s throw interferes and changes Vase’s quasi-
inertial behavior, and the right counterfactual holds: Had Billy not thrown his stone, 
Vase would not have shattered. In the case where Suzy and Billy swap places, every-
thing is inverted.

Fig. 4  Suzy is on her mission ( X1 ), Enemy is on their mission ( X2 ), Billy is on his mission ( X3 ), Enemy 
pulls the trigger ( X4 ), Suzy pulls the trigger ( X5 ), Target gets destroyed ( X6)

11 To make the difference between type-level and token-level causal relations clearer, we will represent 
the former by continuous arrows and the latter by dashed arrows in graphs.
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5.2  Bombing Mission

Again, we need to have a look at all nomologically possible systems s similar to the 
one described in Sect. 2. In some of these systems, double-prevention occurs as in 
Sect. 2. But in others Billy will fail in his attempt to bring down Enemy in time. In 
others, Suzy will miss Target. In others, Enemy will not succeed in bringing down 
Suzy in time even if not intercepted by Billy. In still other systems, some of the per-
sons involved might not even have started their mission, etc. Let us have a brief look 
at two specific cases. Figure 4 summarizes the results.

Double-prevention: This is the case from Sect. 2. Suzy, Billy, and Enemy are all 
on their mission. Billy intercepts Enemy and Enemy cannot bring down Suzy in time. 
Hence, Suzy pulls the trigger and Target gets destroyed. The following are the causal 
relations on which all three token-level accounts agree: Suzy being on her mis-
sion is causally relevant for her pulling the trigger and for Target getting destroyed. 
Also, Suzy pulling the trigger causes the destruction of Target. Finally, Billy being 
on his mission causes Enemy not pulling the trigger. Had one of the cited causes 
not occurred, then the cited effects would not have occurred either. Furthermore, 
the causes mentioned are closed system causes or disrupt the effects’ quasi-inertial 
behavior. Finally, there is a chain of causal processes and interactions connecting the 
effects to the causes. The token-level accounts disagree, however, on the following 
causal relations: While Enemy being on their mission is not a cause of Enemy not 
pulling the trigger on the counterfactual and disruption account, it is on the process 
account. By contrast, Enemy not pulling the trigger counts as a cause of Suzy pull-
ing the trigger and also of Target getting destroyed on the counterfactual and the 
disruption account, but not on the process account. Finally, Billy being on his mis-
sion comes out as causally relevant for Suzy pulling the trigger on the counterfac-
tual account and for Target getting destroyed on the counterfactual and the disrup-
tion account, but not on the process account (since any causal process or chain of 
interactions initiated by Billy being on his mission ends with Enemy not pulling the 
trigger).12

Billy is not on his mission: This time Billy does not take part in the mission. As 
a consequence, Enemy is not intercepted and manages to shoot Suzy’s plane before 
she can pull the trigger, because of which Target does not get destroyed. The three 
token-level accounts agree on the following causal relations: Enemy being on their 
mission is causally relevant for Enemy pulling the trigger. Also, Enemy pulling the 
trigger comes out as a cause of Suzy not pulling the trigger. The accounts disagree 
on those causal relations: The counterfactual and the disruption account tell us 
that Enemy being on their mission, Enemy pulling the trigger, Suzy not pulling the 

12 When applying the process account to the double-prevention scenario we drew arrows from x2 and x3 
to x̄4 . That requires a brief explanation: A causal process takes place from Billy being on his mission 
( x3 ) to Enemy being shot down (which is not represented as a variable). Enemy being shot down implies 
that Enemy does not pull the trigger ( ̄x4 ). Likewise, for x̄4 ’s other cause x2 and x̄5 and its process causes 
in the scenario where Billy is not on his mission. We think that cases like these (with negative events as 
effects) can sometimes be integrated into a process account without being committed to endorsing quasi-
causation (Dowe, 2000, ch. 6).
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trigger, and Billy not being on his mission are all causally relevant for Target not 
getting destroyed. While the counterfactual account results in Billy not being on his 
mission as a cause of Suzy not pulling the trigger, the disruption account does not. 
The process account denies all of these causal relations, but postulates an additional 
one between Suzy being on her mission and Suzy not pulling the trigger. The only 
processes and causal interactions involved in this scenario originate from Enemy 
being on their mission and end with Suzy’s plane getting intercepted.

When going through all these examples, we find that the different token-level 
accounts of causation often disagree on what causes what. However, since the move 
from the token to the type level abstracts away from the specific causal dependen-
cies among values of variables, these differences become largely irrelevant and we 
will end up with the same type-level structure regardless of the specific token-level 
causal differences. All that is needed is that when we are considering two variables 
and the question of whether one is a direct cause of the other, among the nomo-
logically possible scenarios there is at least one scenario such that the event of the 
first variable having a certain value is a token-cause of the event of the second vari-
able having a certain value. In particular, the type-level structures we will get are 
depicted in Fig.  5. This confirms our earlier claim that one’s specific token-level 
account does not matter that much for whether CBNs will be suitable tools for 
causal inference at the type level.

Note that to show that type-level causation is robust (i.e., independent of the spe-
cific token-level causal account), we do not have to assume that the three constraints 
introduced are satisfied for particular cases. It suffices to show that the constraints 
are independent of the token-level theories. Ordering uniqueness and Markov dis-
tribution do not require any explicit details about token-causation. They only make 
assumptions about the distribution of the values of the variables among the nomo-
logically possible systems s . This distribution is independent of which causal rela-
tions the different token-level theories postulate in these systems. The third assump-
tion, difference-making, requires reference to token-causation. In particular, it makes 
assumptions about the distribution of variable values if there is at least one system 
s featuring a direct token-causal relation. As we saw above: If there is a system in 

Fig. 5  Type-level structures resulting from the two-step procedure applied to Throwing Stones (a) and 
Bombing Mission (b). Black arrows result from all token-level accounts, while grey arrows do not
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which some Xi-values cause some Xj-values according to one token-level account, it 
can be expected that there will also be some (possibly different) Xi-values that cause 
some (possibly different) Xj-value according to the other token-level accounts. This 
makes it highly probable that also difference-making will be independent of the spe-
cific token-level theory.

6  Actual Causation

By accounts of actual causation we understand accounts that try to squeeze token-
level causation out of type-level causal structure. As Woodward (2003) puts it, the 
“question is what these type-level causal relationships and other background infor-
mation imply about token-causation” (p. 75). Our claim is that type-level causal 
relations on their own do not imply very much about token-level relations—and 
that should not come as a surprise. As we saw in Sects. 4 and 5, certain features of 
token-level causation are washed out in the abstraction process that is constitutive 
for type-level causal structure, meaning that we potentially lose information when 
moving from the token to the type level. We thus cannot expect to get the correct 
token-level predictions from our type-level account on its own.

The question of what CBNs imply about token-level causation can be understood 
in at least two ways:

 (i) Is there a specific account of token-causation that is implied by the type-level 
structure?

 (ii) Does the type-level structure (together with the actual values of the variables 
featuring in this structure) imply whether a particular event Xi = xi causes 
another event Xj = xj?

The answer to the first question follows from the robustness of CBNs. The fact 
that type-level structures as captured by CBNs are (largely) robust vis-à-vis the 
underlying accounts of token-causation means that accounts of token-causation are 
not implied by the type-level structure. In other words: Type-level structures are 
compatible with token-level causation consisting in counterfactual dependence, the 
transfer of conserved quantities, etc.

This can be substantiated if we look at how accounts of actual causation are justi-
fied. In Woodward’s (2003) well-known account of actual causation (AC*) all the 
work is done by condition (AC*2):

(AC*2) For each directed path P from Xi to Xj , fix by interventions all direct 
causes Z of Xj that do not lie along P at some combination of values within their 
redundancy range. Then determine whether, for each path from Xi to Xj and for 
each possible combination of values for the direct causes Z of Xj that are not on 
this route and that are in the redundancy range of Z , whether there is an interven-
tion on Xi that will change the value of Xj . (AC*2) is satisfied if the answer to this 
question is “yes” for at least one route and possible combination of values within 
the redundancy range of the Z.
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The details of this condition need not bother at the moment. What is important is 
that it is not justified by deriving it from Woodward’s (2003) account of type-level 
causation, but rather by appeal to causal intuitions. For example, (AC*2) generates 
the right verdict in cases of causal overdetermination. (The same holds for other 
accounts of actual causation, e.g., Halpern, 2016; Halpern & Pearl, 2005.) In other 
words: The account of actual causation is vindicated by evidence independent of 
the type level account — by the kind of evidence that traditional accounts of token-
causation appeal to.

Let us now turn to the second issue: We are now not asking whether a specific 
account of actual causation designed to capture one specific type of token-level 
causal relation in mind is implied by the type-level structure. Instead, we are inter-
ested in the question of whether any account of actual causation can squeeze out the 
correct token-level causal relationships from a given type-level structure. As we will 
see, the fact that type-level causal relations presuppose abstraction leads to problems 
here as well. Our analysis so far helps us to understand why this is a difficult project 
and why such accounts only work if a lot of additional piecemeal information is 
added.

Let us once more walk through one of our test cases.13 In both cases we will 
use (AC*)14 as a proxy actual causation account, but the general points we illustrate 
hold regardless of the specific account of actual causation. To keep things simple, 
we ignore error terms Ui.

6.1  Throwing Stones

The type-level causal structure for this kind of causal scenario—i.e., where two 
agent’s independently throw stones at vases—is the one depicted in Fig. 5(a). Vari-
ables are defined as before. We assume that one hit suffices for the vase to break15

The variables’ actual values are:

(1)X3=cX1 + X2 − X1X2

(2)X1 = X2 = X3 = 1

Fig. 6  Suzy and Billy throw at 
the same time and both cause 
the shattering (a), Suzy throws 
first and causes the shattering 
(b), Billy throws first and causes 
the shattering

13 We only consider throwing stones because it is simpler than bombing mission and suffices to make 
our point.
14 For the full account (AC*), see the appendix.
15 To keep things simple we assume that for both examples discussed in this section the background con-
text � = � is chosen in such a way that no error terms Ui are required in our structural equations.
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The token-level structures of a system s featuring Suzy, Billy, and Vase in which 
at least one of the two agents throws a stone and that could realize the type-level 
structure in Fig.  5(a) are depicted in Fig.  6. We assume that both Suzy and Billy 
stand equally far away from Vase, that the stones travel at the same speed, and that 
both have perfect aim. Figure 6(a) depicts a system where both Suzy and Billy throw 
at the same time, (b) the case where Suzy throws earlier, and (c) the situation where 
Billy does.

Now (AC*) applied to the type-level structure in Fig. 5(a) tells us that Suzy’s as 
well as Billy’s throws were actual causes of Vase’s breaking. In other words, it out-
puts the token-level structure in Fig. 6(a), regardless of the specific time at which 
Suzy and Billy throw their stones. A similar result can be obtained, for example, 
when we assume that Suzy and Billy both throw at the same time, but their stones 
travel with different speeds, or when we assume that the distance to the target varies. 
The point here is that all the details that make a crucial difference for what causes 
what at the token-level are not captured by the type-level structure and the simple 
functional dependencies above. Each one of the situations in Fig. 6(a)–(c) could in 
principle be the actual one, but only if it is (a) does (AC*) get things right.16 The 
point is, of course, that which one of the three situations is the actual one depends 
on the specific details of the situation. These details are not implied by the account 
but need to be added.

Now one might object that we used the wrong functional dependence for this spe-
cific case. But it seems hard to come up with something better than the dependence 
in Eq. 1. After all, it remains true that Vase shatters exactly if at least one of the 
two agents throws. This goes for all the systems s correctly represented by the type-
level structure in Fig. 5(a), regardless of the additional details about time, distance 
between the target and the agents, the speeds of the stones, etc. We can also think 
about the situation in terms of subsets of systems s in which two agents indepen-
dently throw (or not throw) stones at a target as follows: Let S be the set of all sys-
tems s in which two agents independently throw (or not throw) stones at Vase. Now 
we introduce �1, �2, �3 ⊆ � . Let �1 be the set of all s in which the two agents throw 
(if they throw both) at the same time (like in Fig. 6(a)), �2 the set of all s in which 
the first agent throws earlier (like in Fig. 6(b)) than the second (if both throw), and 
�3 the set of all s in which the second agent throws earlier (like in Fig. 6(c)) than the 
first (if both throw). If we now apply the abstraction method outlined in Sect. 4 to 
each of these subsets �i , we will in each case end up with the type-level structure 
in Fig. 6(a) and the functional dependence in Eq. (1). After all, in all of these cases 
Vase shatters if at least one of the agents throws. This means that different token-
level causal structures (e.g., Fig. 6(a)–(c)) that give rise to one and the same type-
level model (e.g., Fig. 5(a) together with Eq. (1)) will not be discriminable in terms 

16 Halpern & Pearl (2005) would also say that (a) is correct. If they are allowed to add two variables (for 
whether Billy’s/Suzy’s stone actually hits Vase), they get a more nuanced picture than Woodward (2003). 
But this seems a bit ad hoc: If we already know which result we want to get, then it becomes clear which 
additional variables and other structural elements need to be added. The problem is that if just starting 
from the type-level without any particular token-theory in mind we do not have this information.
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of any account of actual causation. Vice versa, we can diagnose that an account of 
type-level causation has a chance to be adequate only if all the specific systems s 
covered by a type-level causal model share the same token-level causal structure.17

Here is another possible objection: One might worry that the system is not rep-
resented correctly by the variables X1,X2,X3 . If one would introduce more variable 
values or additional variables covering all the missing details about the distance of 
each agent to Vase, the time at which each agent throws (or does not throw), etc., 
then one might be able to replace Eq.  1 by one or more structural equations that 
would do a better job. We agree that this might work. However, what is required 
is additional information about the situation at hand, additional information that is 
typically captured in terms of token-level accounts of causation. Because type-level 
causation is coarse-grained and robust, an account of actual causation, in order to 
get from Eq. 1 to one of the figures in (6), has to look at exactly those details that are 
irrelevant for the type-level causal relations but significant for token-level accounts.

Furthermore, note that any type-level structure satisfying the assumptions intro-
duced in Sect. 4 will be suitable for type-level causal inference, regardless of how 
exactly one specifies their variables. For the throwing stones case, for example, there 
are many such successful type-level representations. The problem is that it seems 
that most of them, for example the one featuring the variables X1,X2,X3 as speci-
fied earlier, is—as we saw above—not informative about the token-causal relations 
involved. But this emphasises the point we want to make in this section: The robust-
ness and abstractness of the type-level explains why it is so difficult for an account 
of actual causation to reliably squeeze out token-level causation from type-level 
structure. Different accounts such as (AC*) (or Halpern & Pearl, 2005) will be lucky 
in some cases (given some token-level interpretation of causation) and perform hor-
ribly in others. We also note that one’s variables can be fine-grained in multiple 
ways and that not every fine-graining of X1,X2,X3 would give us the right result (to 
the background of a specific token-level account).

7  Conclusion

In this paper we explored how CBN methods for type-level and token-level causal 
reasoning are related. In particular, we chose the simple counterfactual account, the 
conserved quantity theory, and the disruption account as proxies for the whole pleth-
ora of token-causation accounts. We presented two results.

(i) It can be explained that the success of CBN’s as a type-level account of causa-
tion is not tied to a particular conception of token-level causation. CBNs turn out to 
be relatively robust w.r.t. one’s specific token-level causal theory. In Sect. 4, we sug-
gested an abstraction procedure that constructs type-level causal structures based on 
token-level causal facts. The procedure works whenever three additional modelling 
assumptions, ordering uniqueness, Markov distribution, and difference-making, are 

17 Note that splitting � into subsets �1,�2,�3  leads to the same result as packing who throws first into 
the background conditions � = � .
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satisfied. In Sect. 5 we then found that though different token-level accounts might 
drastically disagree on what causes what in specific situations, mostly CBNs are 
abstract enough so that they can represent token-level causal patterns regardless of 
these disagreements as long as the three conditions mentioned are satisfied. As we 
also saw, it is highly likely that once one causal scenario satisfies these conditions to 
the background of one token-level account, then it also does so to the background of 
all the other token-level accounts. The upshot of all this is that the success of CBNs 
for type-level reasoning can be explained without having to know which token-level 
theory provides the correct account, which we believe is a huge advantage.

(ii) A similar result does, alas, not follow for CBN-based accounts of actual 
causation. CBNs obtain their robustness when it comes to type-level inference by 
ignoring many token-level details. The downside of this is that type-level structure 
alone cannot tell us much about token-level causation. In particular, type-level struc-
ture alone cannot tell us which token-causation account gets things right in the end. 
Depending on which specific intuitions (e.g., counterfactual intuitions) and which 
specific cases (e.g., double-prevention) one wants to capture, one needs to make 
additional assumptions leading to different accounts of actual causation. Since these 
assumptions are tailor-made for specific intuitions and causal scenarios, one cannot 
hope that they will excel in different scenarios. Another problem is that so many 
token-level details are ignored by the type-level structure represented by a CBN 
that it seems impossible to get the correct results for all nomologically possible sys-
tems. What this means in the end is that not only tracking one specific token-causal 
account seems hopeless, but also that a more principled (or axiomatic) treatment of 
actual causation such as, for example, suggested by Glymour et al. (2010) does not 
seem too promising.

Appendix

In this appendix we provide details about Woodward’s (2003) account of actual cau-
sation (AC*). For a more detailed explanation, see (ibid., sec. 2.7).

(AC*1) The actual value of Xi is xi and the actual value of Xj is xj.

(AC*2) For each directed path P from Xi to Xj , fix by interventions all direct 
causes Z of Xj that do not lie along P at some combination of values within their 
redundancy range. Then determine whether, for each path from Xi to Xj and for 
each possible combination of values for the direct causes Z of Xj that are not on 
this route and that are in the redundancy range of Z , whether there is an interven-
tion on Xi that will change the value of Xj . (AC*2) is satisfied if the answer to this 
question is “yes” for at least one route and possible combination of values within 
the redundancy range of the Z.
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(AC*) Xi = xi is an actual cause of Xj = xj if and only if (AC*1) and (AC*2) are 
satisfied.

The notion of a redundancy range is borrowed from Hitchcock (2001) and is 
defined as follows:

From this definition it follows that the actual values of the direct causes Z of Xi 
are always in the redundancy range of P.

Redundancy Range  Let P be a directed path from Xi to Xj and Z be the direct 
causes of Xj not lying on P . Then the values z1, ..., zn are in the redundancy range 
w.r.t. P if and only if, given the actual value of Xi , there is no intervention setting 
the values of Z to z1, ..., zn that will change the actual value of Xj.
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