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Hill (2020, §1)1 argues that the proportional view of luck2 is “nonsensical” because 
“it does not make mathematical sense to say” that “there are more nearby worlds, a 
wide enough set of nearby worlds, or a higher proportion of nearby worlds” where 
a proposition is true than where it is false, because there are infinitely many such 
worlds. (More precisely: both sets of worlds are infinite and of the same cardinality. 
That is, the two sets can be put in one-to-one correspondence, and therefore are of 
the same size, for a certain meaning of “same size”.) In this note, I point out a math-
ematically well-defined way of non-trivially comparing the sizes of uncountable sets 
of equal cardinality.3

Here’s a counterexample. The set of real numbers between 0 and 1 and the set of 
real numbers between 0 and 2 are of the same cardinality. Therefore, there is a math-
ematically well-defined sense in which they are the same size. Nevertheless, there 
is also a mathematically well-defined sense in which the former is half the size of 
the latter. If there were not, analytic geometry (geometry using the real numbers for 
coordinates) would be in trouble.

How could this be? Since the two sets are of the same cardinality, we could break 
the line from 0 to 1 down to its constituent parts and move them around to consti-
tute the line from 0 to 2. This is the sense in which the two sets have the same size. 
As Tao (2011, §1.1) puts it, this is the problem of measure; measure theory is the 
branch of mathematics responsible for saving analytic geometry from Cantor.

In brief, a measure on a set is a function from subsets to nonnegative real num-
bers; the values of this function are the sizes of the subsets. The size of a disjoint 
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union of countably many sets is the sum of the sizes of each set. More formally: Let 
X be a set (e.g., of possible worlds) and let Σ be a �-algebra on X.4 Then a measure 
(on X ) is a function � ∶ Σ → [0,+∞] such that (i) �(�) = 0 , (ii) � is countably addi-
tive.5 If � is a measure, then we call the triple (X,Σ,�) a measure space.

Nor is measure theory an arcane area of mathematics unlikely to be of use to 
philosophers: it is foundational for the mathematical theory of probability. A prob-
ability space is a special case of a measure space, one where the measure of the uni-
verse is 1. More formally: if, in addition to (i) and (ii) above, (iii) �(X) = 1 then � is 
a probability measure and (X,Σ,�) is a probability space.

The connection between measure spaces and probability spaces gives us another 
way to see that Hill’s argument must be mistaken. To see why, let’s work through the 
example Hill gives.6 We have two independent variables: the outcome of a lottery 
draw and the position of Smith’s car in his driveway. The former has finitely many 
possible values7 (say, between 1 and n ); the latter could reasonably be modelled with 
an interval on the real number line—say, [0, 1].8 Then we are interested in compar-
ing the sizes (measures) of two sets: the set of worlds where Smith’s lottery ticket 
wins and the set of worlds where it loses. Both sets are uncountably large, since both 
include all possible positions of Smith’s car in his driveway—but we want to deter-
mine their measures, not their cardinalities.

Suppose for reductio that it does not make mathematical sense to say the set W of 
worlds where Smith’s ticket wins is smaller than the set L of worlds where Smith’s 
ticket loses. Then it must not be possible to define a measure � such that �(W) is 
much smaller than �(L) . Therefore, since a probability measure is a measure, it must 
not make mathematical sense to say that the probability of Smith’s ticket winning is 
much lower than the probability of its losing. But, clearly, it is much more probable 
that Smith’s ticket loses than that it wins.

So we must be able to make mathematical sense of W being much smaller than 
L ; let’s spell it out in detail. Our universe of possible worlds can be represented 
as the product of two sets: X = {1,… , n} × [0, 1] . That is, we can represent each 
possible world w ∈ X as an ordered pair (x, y) , where x represents the lottery out-
come and y represents the car’s position. Suppose Smith holds ticket number 1. 
Then the two subsets of this universe we are interested in are W = {1} × [0, 1] and 
L = {2,… , n} × [0, 1].

6 Note that in the following, I will appeal to both probabilities and modal claims, but this is not because 
I mean to defend a hybrid probabili-modal account of luck. Rather, I mean to show that if one thinks 
these probability claims make sense, then one must not also think the modal claims about proportions are 
nonsensical.
7 But there are infinitely many possible worlds where the variable takes each of these finitely many val-
ues.
8 I assume for simplicity that Smith’s driveway is linear. Nothing important changes if Smith’s driveway 
has multiple dimensions.

4 A �-algebra on X is a set of subsets of X which (i) includes X , (ii) is closed under complementation, 
and (iii) is closed under countable unions.
5 � is countably additive iff the measure of the union of countably many disjoint sets s

n
∈ Σ is the sum 

of the measures of each s
n
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There are standard measures for each sort of space: the counting measure �c on 
a finite set and the Lebesgue measure �L on the real numbers. For our purposes, it 
suffices to note that (a) �c(S) = |S| , i.e., the counting measure of a set is the number 
of elements it contains, and (b) �L([a, b]) = b − a , i.e., the Lebesgue measure of an 
interval is the length of the interval. A standard way to define a measure on a prod-
uct set like our universe is by using the product measure �Π , according to which 
�Π(A × B) = �c(A) ⋅ �L(B) . That is, our product measure says that multiplying the 
counting measure of A ⊆ {1,… , n} and the Lebesgue measure of B ⊆ [0, 1] gives 
the measure of the product set A × B.

In our case, then, �Π(W) = 1 ⋅ 1 = 1 and �Π(L) = (n − 1) ⋅ 1 = n − 1 . To turn 
this into a probability measure, we normalize by setting �N(X) = 1 ; thus, we set 
�N(S) = �Π(S)∕�Π(X) = �Π(S)∕n for all S ∈ Σ . Then we get the probabilities we’d 
want: the probability Smith wins is 1∕n and the probability he loses is n−1

n
 . Thus, it 

does make mathematical sense to say that there are many more worlds where Smith 
loses than where Smith wins.9

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, 
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as 
you give appropriate credit to the original author(s) and the source, provide a link to the Creative Com-
mons licence, and indicate if changes were made. The images or other third party material in this article 
are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons licence and your intended use is 
not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission 
directly from the copyright holder. To view a copy of this licence, visit http:// creat iveco mmons. org/ licen 
ses/ by/4. 0/.

References

Carter, J. A., & Peterson, M. (2017). The modal account of luck revisited. Synthese, 194, 2175–84.
Coffman, E. J. (2015). Luck: Its nature and significance for human knowledge and agency. Palgrave 

Macmillan.
Hill, J. (2020). On luck and modality. Erkenntnis. https:// doi. org/ 10. 1007/ s10670- 020- 00279-4.
Levy, N. (2011). Hard luck: How luck undermines free will and moral responsibility. Oxford.
Mancosu, P. (2009). Measuring the size of infinite collections of natural numbers: Was Cantor’s theory of 

infinite number inevitable? Review of Symbolic Logic, 2(4), 612–46.
Pritchard, D. (2004). Epistemic luck. Journal of Philosophical Research, 29, 191–220.
Pritchard, D. (2005). Epistemic luck. Oxford.
Tao, T. (2011). An introduction to measure theory. American Mathematical Society.

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps 
and institutional affiliations.

9 Thanks to Amy Flowerree, Gregory Gaboardi, Av Hiller, and Lindsey Shorser.

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1007/s10670-020-00279-4

	Luck and Proportions of Infinite Sets
	References




