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Abstract
In On Empirically Equivalent Systems of the World from 1975, Quine formulated a 
thesis of underdetermination roughly to the effect that every scientific theory has an 
empirically equivalent but logically incompatible rival, one that cannot be discarded 
merely as a terminological variant of the former. For Quine, the truth of this thesis 
was an open question. If true, some would argue that it undermines any belief in sci-
entific theories that is based purely on their empirical success. But despite its poten-
tial significance, surprisingly little has been done by way of establishing or refuting 
it. My aim is to establish the thesis for as large a class of theories as possible. Under 
various precisifications of the concepts involved, I show that it holds for all consist-
ent and recursively axiomatizable theories that postulate infinitely many theoretical 
entities.

1 Introduction

Quine (1975) formulated a thesis of underdetermination, roughly saying that 

 (UT) Every scientific theory has an empirically equivalent but logically incompatible 
rival, one that cannot be discarded merely as a terminological variant of the 
former.

For Quine, the truth of this thesis was an open question. If true, some would argue 
that it undermines any belief in scientific theories that is based purely on their 
empirical success.1 But despite its potential significance, surprisingly little has been 
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done by way of establishing or refuting it. My aim is to establish the thesis for as 
large a class of theories as possible.

I will make the idealizing assumption that a theory is a set of sentences of a first-
order single-sorted language without function symbols whose predicates can be par-
titioned into an empirical and a theoretical part.2 Relative to such a partition, various 
notions of empirical equivalence can be defined, corresponding to proposals in the 
literature. In Sect.  2, these notions are presented and ordered by logical strength. 
In Sect. 3, I briefly investigate some necessary and sufficient conditions for finding 
empirically equivalent but logically incompatible rivals to a given theory, and then 
introduce the problem of saying when such a rival is to be regarded as a terminolog-
ical variant of the former, also known as the problem of theoretical equivalence. In 
Sect. 4, I present various solutions to this problem from the literature and order them 
by logical strength. In Sect. 5, I show that, under any combination of said notions 
of empirical and theoretical equivalence, Quine’s thesis applies to all consistent and 
recursively axiomatizable theories that postulate infinitely many theoretical entities.

2  Empirical Equivalence

According to what Laudan and Leplin (1991) and Worrall (2011) refer to as the tra-
ditional notion of empirical equivalence, two theories are empirically equivalent just 
in case they entail the same empirical sentences, where an empirical sentence is a 
sentence containing only empirical predicates. Although I have never been able to 
find any explicit endorsement of this notion in the literature, I believe it is implicit 
in the writings of Carnap and Quine. This syntactic notion of empirical equivalence 
was criticized by Van Fraassen (1980), on the grounds that it does not apply to theo-
ries that, intuitively speaking, make the same claims about the observable part of the 
world. Indeed, granted that ‘observable’ may be considered an empirical predicate, 
the traditional notion classifies ‘some things are not observable’ as an empirical 
claim which, intuitively, it is not. Instead, Van Fraassen suggested a semantic notion 
on which two theories are empirically equivalent just in case, for every model of one 
of them, there is a model of the other whose observable substructure is isomorphic 
to the observable substructure of the former. In and of itself, however, Van Fraas-
sen’s objection does not target syntactic notions of empirical equivalence as such. 
In response, Turney (1990) proposed another syntactic notion of empirical equiva-
lence, immune to said objection, on which two theories are empirically equivalent 
just in case they entail the same qualified empirical sentences, where a qualified 
empirical sentence is an empirical sentence whose quantifiers are restricted by an 
observability predicate. This is also how empirical sentences are defined in Schurz 
(2013, pp. 107–108).

With L being the set of empirical predicates, and �(x) being an observability 
predicate, these three notions correspond to what I will call syntactic L-equivalence, 

2 For an excellent defense of the distinction between empirical and theoretical concepts, see Schurz 
(2013, pp. 63–75).
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semantic L-equivalence over � , and syntactic L-equivalence over � , respectively. A 
fourth notion, semantic L-equivalence, will also be defined, although it does not cor-
respond to anything suggested in the literature (as far as I know).

Two theories are said to be syntactically equivalent just in case they prove the 
same sentences, and semantically equivalent just in case they are satisfied by the 
same models. By soundness and completeness, these notions coincide in the case of 
classical first-order logic. In either of those senses, non-equivalent theories may still 
be equivalent with respect to a limited range of objects and their properties. Such 
theories may agree about the distribution of certain properties and relations among 
objects, or about the distribution of properties and relations among certain objects, 
or about the distribution of certain properties and relations among certain objects. 
As we shall see, when equivalence is limited to certain objects and properties, the 
syntactic and semantic notions come apart.

In order to make this claim precise, we need to introduce some standard defini-
tions, namely those of relativization, reduct, and part:

Definition 2.1 (Relativization) Let �(x) be a formula.3 For any formula � , its �-rela-
tivization (written [�]� ) is defined recursively: 

 (i) [Px̄]𝛿 = Px̄.
 (ii) [¬�]� = ¬[�]�.
 (iii) [� → �]� = [�]� → [�]�.
 (iv) [∀x�]� = ∀x(�(x) → [�]�).

Remark 2.1 We may regard the other standard operators as defined in terms 
of ¬ , → , and ∀ . In particular, with ∃x� defined as ¬∀x¬� , it follows that 
[∃x�]� = [¬∀x¬�]� = ¬[∀x¬�]� = ¬∀x(�(x) → [¬�]�) = ¬∀x(�(x) → ¬[�]�)  , 
which is equivalent to ∃x(�(x) ∧ [�]�).

Remark 2.2 When there is no risk of ambiguity, we shall write �� instead of [�]�.

Intuitively speaking, �-relativized sentences only talk about objects satisfying � . 
This claim is made precise by Lemma 2.2 below.

Definition 2.2 (Reducts and parts) Let L ⊆ L′ be vocabularies, let �(x) be an L′-for-
mula, and let M be an L′-model. 

 (i) The L-reduct of M (written M|L ) is the L-model with the same domain as M 
such that, for any predicate P ∈ L , PM|L = PM.

 (ii) Provided that M ⊨ ∃x𝛿 , the �-part of M (written M� ) is the L′-model whose 
domain D consist of all objects satisfying � in M and such that, for any n-place 
predicate P ∈ L� , PM� = PM ∩ Dn.

3 As is customary, when we say ‘let �(x) be a formula’, we mean ‘let � be a formula with at most one free 
variable x’. To avoid cluttering, we will thenceforth usually refer to the formula simply as ‘ �’.
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It is easy to establish that the L-reduct of a model satisfies an L-sentence just in 
case the model satisfies it, and that the �-part of a model satisfies a sentence just 
in case the model satisfies its �-relativization:

Lemma 2.1 Let L ⊆ L′ be vocabularies, let �(x) be an L′-formula, let M be an L′
-model such that M ⊨ ∃x𝛿 , and let � be an L-sentence. Then we have M𝛿|L ⊨ 𝜑 iff 
M ⊨ 𝜑𝛿.

Proof Let X be the set of variables, let D be the set of objects satisfying � in M , 
and let � be an L-formula. It is straightforward to show, by induction on the com-
plexity of � , that for any variable assignment v ∶ X → D , we have M𝛿|L, v ⊨ 𝜑 
iff M, v ⊨ 𝜑𝛿 . The atomic cases are obvious, since relativization do not affect 
them, and the cases of boolean operators are straightforward. In the case of uni-
versal quantification, we have M𝛿|L, v ⊨ ∀x𝜑 iff, for all a ∈ D , M𝛿|L, v(a∕x) ⊨ 𝜑 
iff (by induction hypothesis), for all a ∈ D , M, v(a∕x) ⊨ 𝜑𝛿 iff, for all a ∈ |M| , 
M, v(a∕x) ⊨ 𝛿 → 𝜑𝛿 iff M, v ⊨ ∀x(𝛿 → 𝜑𝛿) iff M, v ⊨ [∀x𝜑]𝛿 . It now follows that, 
for any L-sentence � , we have M𝛿|L ⊨ 𝜑 iff M ⊨ 𝜑𝛿 .   ◻

It follows that models with identical L-reducts satisfy the same L-sentences, 
and that models with identical �-parts satisfy the same �-relativized sentences:

Lemma 2.2 Let L ⊆ L′ be vocabularies, let �(x) be an L′-formula, and let M and M′ 
be L′-models such that M,M

� ⊨ ∃x𝛿 and M�|L = M
�
�
|L . Then, for any L-sentence 

� , M ⊨ 𝜑𝛿 iff M′ ⊨ 𝜑𝛿.

Proof We have M ⊨ 𝜑𝛿 iff (by Lemma 2.1) M𝛿|L ⊨ 𝜑 iff (by assumption) 
M

′
𝛿
|L ⊨ 𝜑 iff (by Lemma 2.1) M′ ⊨ 𝜑𝛿 .   ◻

We shall say that two theories are syntactically L-equivalent (over � ) just in 
case they entail the same ( �-relativized) L-sentences, and semantically L-equiva-
lent (over � ) just in case the models satisfying them have the same ( �-restricted) 
L-reducts. More precisely:

Definition 2.3 (Syntactic and semantic equivalence) Let T1 and T2 be theories in L1 
and L2 , respectively, and let L ⊆ L1 ∩ L2 . We say that 

1. T1 and T2 are syntactically L-equivalent just in case, for any L-sentence � , T1 ⊢ 𝜑 
iff T2 ⊢ 𝜑.

2. T1 a n d  T2  a r e  s e m a n t i c a l l y  L - e q u i va l e n t  j u s t  i n  c a s e 
{M|L ∶ M ⊨ T1} = {M|L ∶ M ⊨ T2}.

Moreover, provided that �(x) is an L-formula such that T1 ⊢ ∃x𝛿 and T2 ⊢ ∃x𝛿 , we 
say that 
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1. T1 and T2 are syntactically L-equivalent over � just in case, for any L-sentence � , 
T1 ⊢ 𝜑𝛿 iff T2 ⊢ 𝜑𝛿.

2. T1 and T2 are semantically L-equivalent over �  just  in case 
{M𝛿|L ∶ M ⊨ T1} = {M𝛿|L ∶ M ⊨ T2}.

The relation of entailment between these four notions is given by the following 
facts, summarized in Fig. 1:

Fact 2.1 Syntactic/semantic L-equivalence entails syntactic/semantic L-equivalence 
over �.

Proof In the syntactic case, the result follows immediately by �(x) being an L-for-
mula. In the semantic case, assume that semantic L-equivalence obtains between 
T1 and T2 . Let M be an L-model, and suppose that there is an L1-model M′ of T1 
with M�

�
|L = M . Since M′|L is an L-model, and M′ is a model of T1 , it follows by 

assumption that there is an L2-model M∗ of T2 with M∗|L = M
�|L . Furthermore, 

M
∗
�
|L = M

�
�
|L = M . The other direction is symmetrical.   ◻

Fact 2.2 Semantic L-equivalence (over � ) entails syntactic L-equivalence (over �).

Proof Assume semantic L-equivalence over � between T1 and T2 . Let � be an L-sen-
tence such that T1 ⊢ 𝜑𝛿 . Let M be a model of T2 . Since M�|L is an L-model, it 
follows by assumption that there is a model M′ of T1 with M�

�
|L = M�|L . Since 

M
′ ⊨ 𝜑𝛿 , it follows by Lemma 2.2 that M ⊨ 𝜑𝛿 . Hence, T2 ⊢ 𝜑𝛿 . The other direc-

tion is symmetrical.   ◻

Fact 2.3 Semantic L-equivalence over � does not entail syntactic L-equivalence, and 
vice versa.

Semantic L-equivalence

Syntactic L-equivalence Semantic L-equivalence over δ

Syntactic L-equivalence over δ

Fig. 1  The relation of entailment between the four notions of empirical equivalence, where L is the set of 
empirical predicates, and �(x) is a formula applying to all and only empirical entities
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Proof For left to right, let T1 = {∀xPx} and T2 = {∃xPx} . Clearly, T1 and T2 are 
semantically L-equivalent over Px, but not syntactically L-equivalent. For the other 
direction, let P and Q be unary predicates and R binary, let L = L1 = {P,Q} and 
L2 = {P,Q,R} , and let �(x) be x = x . Let T2 be a theory saying that R is a bijective 
relation between the P:s and the Q:s, namely

and let T1 be the set of all L-consequences of T2 . Clearly, T1 and T2 are syntacti-
cally L-equivalent. Let M be an L-model where PM is countably infinite and QM is 
uncountable, and let T be the set of L-sentences true in M . By Löwenheim-Skolem, 
T has a countable model M′ , one in which both PM

′ and QM
′ are countably infinite. 

Since M′ can be expanded to a model of T2 , M
′ is a model of T1 . And since T1 ⊆ T  , 

so is M . But M cannot be expanded to a model of T2 . Hence, T1 and T2 are not 
semantically L-equivalent over � .   ◻

Other examples highlighting the distinction between syntactic and semantic 
equivalence have been offered by van Benthem (1978,  p. 324), Melia (2000,  pp. 
459–461), Ketland (2004, p. 297), and Johannesson (2020, pp. 492–493).

3  Constructing Empirically Equivalent Rivals

Without committing to any particular notion of empirical equivalence, let us stipu-
late that a theory T has the underdetermination property just in case there is a the-
ory T ′ such that (i) T and T ′ are empirically equivalent, and (ii) T and T ′ are jointly 
inconsistent. In that case, we shall say that T and T ′ are empirically equivalent rivals.

By Craig’s interpolation theorem, in order for T and T ′ to be jointly inconsist-
ent, there has to be a sentence � in their common vocabulary such that T ⊢ 𝜑 and 
T � ⊢ ¬𝜑 . If, moreover, T and T ′ are syntactically L-equivalent (over � ) and consistent 
on their own, it follows that � cannot be derived from the set of ( �-relativized) L-sen-
tence that are theorems of T. In this sense, we may say that � is a proper non-empir-
ical consequence of T.4 Thus, for a consistent theory to have the underdetermina-
tion property, it has to have some proper non-empirical consequences. Having such 
consequences, however, is not sufficient for having the underdetermination property. 
To construct a counterexample, let Γ be a consistent but incomplete set of ( �-relativ-
ized) L-sentences, with Γ ⊬ 𝜎 and Γ ⊬ ¬𝜎 for some ( �-relativized) L-sentence � . 
Let P ∉ L be a theoretical predicate, and consider the theory T = Γ ∪ {𝜎 → ∃x̄Px̄} . 
It follows that 𝜎 → ∃x̄Px̄ is a proper non-empirical consequence of T.5 Since, by 
assumption, Γ has a model where � is false and therefore 𝜎 → ∃x̄Px̄ is true, it also 

T2 = {∀x(Px → ∃!y(Qy ∧ Rxy)),∀y(Qy → ∃!x(Px ∧ Rxy))}

4 Since, for any theoretical predicate P, we have ⊢ ∃x̄Px̄ ∨ ¬∃x̄Px̄ , every theory has non-empirical con-
sequences that are not proper.
5 To see why, let Δ be the set of all empirical consequences of T. Since Γ has a model where both � and 
∃x̄Px̄ are true, it follows that T ⊬ ¬𝜎 , and thus Δ ⊬ ¬𝜎 . Since P does not occur in Δ ∪ {�} , there is a 
model of it where ∃x̄Px̄ is false. Hence, Δ ⊬ 𝜎 → ∃x̄Px̄.
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follows that T ⊬ 𝜎 . Assume, towards contradiction, that T has an empirically equiv-
alent rival T ′ . Since, by assumption, T � ∪ Γ ∪ {𝜎 → ∃x̄Px̄} is inconsistent, and T ′ is 
equivalent to T � ∪ Γ , it follows that T � ⊢ ¬(𝜎 → ∃x̄Px̄) and thus T ′ ⊢ 𝜎 , contrary to 
our assumption. Hence, T does not have the underdetermination property.6 It is still 
possible, of course, to find theories T1 and T2 that are both are empirically equivalent 
to T but jointly inconsistent with each other. To achieve this, just introduce a new 
theoretical predicate P and define T1 = T ∪ {∃xPx} and T2 = T ∪ {¬∃xPx} . Quine 
(1975, p. 323) regards this “gratuitous branching of theories” as insignificant, since 
the new theories are compatible with the old one. Although I am not quite convinced 
by this line of argument, I will go along with it.

For a theory to have the underdetermination property, it is sufficient that it entails 
∃x̄Px̄ for some theoretical predicate P.7 We can then construct a rival by replacing 
every occurrence of P in the original theory with a new predicate P∗ of the same 
arity, and adding the sentence ¬∃x̄Px̄ . The two theories will be jointly consistent but 
semantically equivalent with respect to their empirical vocabulary. A fortiori, the 
same holds for any weaker notion of empirical equivalence.

Quine (1975, p. 319) has a similar construction:

Take some theory formulation and select two of its terms, say ‘electron’ and 
‘molecule’. I am supposing that these do not figure essentially in any observa-
tion sentences; they are purely theoretical. Now let us transform our theory 
formulation merely by switching these two terms throughout. The new theory 
formulation will be logically incompatible with the old: it will affirm things 
about so-called electrons that the other denies.

Quine contends, however, that the example is not a genuine case of underdetermina-
tion. The quote continues:

Yet their only difference, the man in the street would say, is terminological; 
the one theory formulation uses the technical terms ‘molecule’ and ‘electron’ 
to name what the other formulation calls ‘electron’ and ‘molecule’. The two 
formulations express, he would say, the same theory.

The intuitive notion of expressing the same theory can be explicated in differ-
ent ways. In the philosophical literature, it is called theoretical equivalence. We 
shall consider various proposals for making this notion precise in the next section. 
According to Quine’s own proposal, two formulations may be taken to express the 
same theory if they are “reconcilable by reconstrual of predicates”, meaning roughly 
that there is a way of substituting the predicates of one by formulas of the other to 

6 Incidentally, this also works as a counterexample to a claim made by Kukla (1996, p. 138) and Psil-
los (1999, p. 158) to the effect that, for any theory T (having at least some proper non-empirical con-
sequences, presumably), one can construct an empirically equivalent rival consisting of the empirical 
consequences of T plus the assertion that T is false. Clearly, this construction does not work in the case 
at hand.
7 Here, x̄ is a sequence of variables whose length is the same as the arity of P.
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obtain a formulation logically equivalent to the latter. Ultimately, Quine (1975, p. 
327) settles for the following version of the underdetermination thesis:

The thesis of under-determination, even in my latest tempered version, asserts 
that our system of the world is bound to have empirically equivalent alterna-
tives that are not reconcilable by reconstrual of predicates however devious. 
This, for me, is an open question.

Again without committing to any particular explication of the notions involved, we 
shall say that a theory T has the genuine underdetermination property just in case 
there is a theory T ′ such that (i) T and T ′ are empirically equivalent, (ii) T and T ′ are 
jointly inconsistent, and (iii) T and T ′ are not theoretically equivalent. Observe that, 
when it comes to establishing this property for a given theory, it is sufficient to do so 
under the strongest notion of empirical equivalence in combination with the weakest 
notion of theoretical equivalence.

4  Theoretical Equivalence

In many cases, it is reasonable to regard logically non-equivalent theories as essen-
tially one and the same. For instance, Peano arithmetic formulated in a relational 
vocabulary (with (n + 1)-place predicates instead of the standard n-place function 
symbols) is still essentially Peano arithmetic. In the terminology of Tarski et  al. 
(1953), the two theories are mutually interpretable: by adding a set of definitions to 
one of them, one can prove every theorem of the other, and vice versa. As it stands, 
this definition is only intended to apply to theories in disjoint vocabularies. In the 
general case, Tarski et. al. define two theories as mutually interpretable just in case 
the original definition applies to any of their copies, where a copy is the result of 
replacing each predicate in one with a new predicate not occurring in the other. This 
is equivalent to what we will call mutual translatability8, which is defined in terms 
of the following notions:

Definition 4.1 (Translation) A translation is a function � from L1-formulas to L2-for-
mulas such that �(x = y) is x = y and, for any n-place L1-predicate P, there is an L2
-formula �(x1, ..., xn) such that 𝜏(Px̄) = 𝜑(x̄) , and for any L1-formulas � and � , 

 (i) �(¬�) = ¬�(�)

 (ii) �(� → �) = �(�) → �(�)

 (iii) �(∀x�) = ∀x�(�)

Definition 4.2 (Translatability) An L1-theory T1 is translatable into an L2-theory T2 
just in case there is a translation � from L1-formulas to L2-formulas such that, for any 
L1-sentence � , if T1 ⊢ 𝜑 then T2 ⊢ 𝜏(𝜑).

8 Following modern usage, the term interpretation will instead be reserved for what Tarski et al. (1953) 
call relative interpretation, and is defined below.
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Two theories are said to be mutually translatable just in case each is translatable 
into the other.

A stronger notion of theoretical equivalence for theories in disjoint vocabularies 
was suggested by Glymour (1970), called definitional equivalence9:

Definition 4.3 (Definitional equivalence) Let T1 and T2 be theories in disjoint vocab-
ularies L1 and L2 , respectively. We say that T1 and T2 are definitionally equivalent 
just in case there is a set D21 of definitions of L2-predicates in terms of L1-formu-
las and a set D12 of definitions of L1-predicates in terms of L2-formulas such that 
T1 ∪ D21 ≡ T2 ∪ D12.10

Obviously, this definition can also be generalized to theories in overlapping 
vocabularies by considering their copies, thus yielding a proper equivalence rela-
tion. The generalized notion is shown by Barrett and Halvorson (2016a) to be equiv-
alent to what they call intertranslatability:

Definition 4.4 (Intertranslatability) Two theories T1 and T2 in L1 and L2 respectively 
are intertranslatable just in case there are translations �1 and �2 such that, 

 (i) For any L1-formula � , if T1 ⊢ 𝜑 then T2 ⊢ 𝜏1(𝜑).
 (ii) For any L2-formula � , if T2 ⊢ 𝜑 then T1 ⊢ 𝜏2(𝜑).
 (iii) For any L1-formula � , T1 ⊢ ∀x̄(𝜑 ↔ 𝜏2(𝜏1(𝜑))).
 (iv) For any L2-formula � , T2 ⊢ ∀x̄(𝜑 ↔ 𝜏1(𝜏2(𝜑))).

A third notion of theoretical equivalence is provided by Quine (1975):

Definition 4.5 (Reconcilability) An L1-theory T1 is reconcilable with an L2-theory 
T2 just in case there is a translation � form L1-formulas to L2-formulas such that 
�(T1) ≡ T2.11

This is what Barrett and Halvorson (2016a) call Quine equivalence, which is 
something of a misnomer, since (as they themselves point out) it is not an equiva-
lence relation:

Fact 4.1 Reconcilability is not symmetric.

Proof Let L1 = {P} , L2 = � , T1 = {∀xPx} and T2 = � . Then there is a translation �1 
such that �1(T1) ≡ T2 , namely the one defined by letting �1(Px) be x = x , but there is 
obviously no translation �2 such that �2(T2) ≡ T1 .   ◻

9 Thus defined, this is actually not an equivalence relation, since it is not reflexive. An essentially identi-
cal (but reflexive) notion can be found already in De Bouvère (1965), and a slightly different one based 
on the same idea in Kanger (1968).
10 ≡ denotes logical equivalence.
11 Here, and elsewhere, we shall write �(T) for {�(�) ∶ � ∈ T}.
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To get a proper notion of theoretical equivalence in terms of reconcilability, the 
most natural solution is perhaps to define it as mutual reconcilability. However, as 
noted by Barrett and Halvorson (2016a):

Fact 4.2 Mutual reconcilability does not preserve completeness.

Proof Let L = L1 = L2 = {P,Q} , T1 = {∀x∀y(x = y),∀xPx} and 
T2 = {∀x∀y(x = y),∀x(Px ∧ Qx)} . Clearly, T2 but not T1 is complete with respect to 
L. But T1 and T2 are mutually reconcilable, as witnessed by the translations �1 and �2 
defined by �1(Px) = Px ∧ Qx , �1(Qx) = Qx , �2(Px) = Px , and �2(Qx) = Px .   ◻

This is their chief complaint against Quine’s proposal (and its modification). By 
contrast, they show that their own proposal does not suffer from such drawbacks:

Fact 4.3 Intertranslatability preserves completeness and decidability.

Proof Assume that T1 and T2 are intertranslatable with �1 and �2 , and that T1 is com-
plete. Let � be an L2-sentence. By completeness of T1 , we get two cases: 

 (i) T1 ⊢ 𝜏2(𝜑) , in which case T2 ⊢ 𝜏1(𝜏2(𝜑)) and therefore T2 ⊢ 𝜑.
 (ii) T1 ⊢ ¬𝜏2(𝜑) , in which case T2 ⊢ 𝜏1(𝜏2(¬𝜑)) and therefore T2 ⊢ ¬𝜑.

Hence, T2 is complete. Next, assume that T1 is decidable. Let � be an L2-sentence. 
T2 ⊢ 𝜑 implies T1 ⊢ 𝜏2(𝜑) , which implies T2 ⊢ 𝜏1(𝜏2(𝜑)) , which implies T2 ⊢ 𝜑 . 
Hence, for any L2-sentence � , T2 ⊢ 𝜑 iff T1 ⊢ 𝜏2(𝜑) , which means that T2 is decid-
able.   ◻

As a consequence, Barrett and Halvorson (2016a) are able to conclude that the 
two proposals are logically independent:

Fact 4.4 Intertranslatability does not entail mutual reconcilability, and vice versa.

Proof For left to right, let L1 = {P} , L2 = � , T1 = {∀xPx} and T2 = � . Let �1 be the 
translation defined by letting �1(Px) be x = x , and let �2 be the identity function. It 
is easy to verify that T1 and T2 are intertranslatable with �1 and �2 . But there is obvi-
ously no translation � such that �(T2) ≡ T1 . The other direction follows from the fact 
that intertranslatability preserves completeness (Fact 4.3) while mutual reconcilabil-
ity does not (Fact 4.2).   ◻

Our fourth and final notion of theoretical equivalence is called mutual interpret-
ability. An interpretation is very much like a translation, except that it is allowed 
to restrict the quantifiers. In a nutshell, interpretation is translation followed by 
relativization:

Definition 4.6 (Interpretation) An interpretation is a function I from L1-formulas to 
L2-formulas such that I(x = y) is x = y and, for any n-place L1-predicate P, there is 
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an L2-formula �(x1, ..., xn) such that I(Px̄) = 𝜑(x̄) , and there is an L2-formula �(x) (a 
so-called domain formula) such that, for any L1-formulas � and � , 

 (i) I(¬�) = ¬I(�)

 (ii) I(� → �) = I(�) → I(�)

 (iii) I(∀x�) = ∀x(�(x) → I(�))

Definition 4.7 (Interpretability) An L1-theory T1 is interpretable by an L2-theory T2 
just in case there is an interpretation I from L1-formulas to L2-formulas such that, for 
any L1-sentence � , if T1 ⊢ 𝜑 then T2 ⊢ I(𝜑) . Relative to I, we then say that T2 inter-
prets T1.

As in the case of translatability, mutual interpretability is defined as interpretabil-
ity in both directions. For instance, Zermelo-Fraenkel set theory can interpret Peano 
arithmetic (e.g by representing the natural numbers as finite von Neumann ordinals), 
but the latter cannot interpret the former. Hence, these two theories are not mutually 
interpretable.

Let us compare the four notions in terms of strength (the results are summa-
rized in Fig.2). We have already established the independence between intertrans-
latability and mutual reconcilbability (Fact 4.4). By definition, intertranslatability 
entails mutual translatability. By taking x = x as the domain formula, it is obvi-
ous that translatability entails interpretability. To see the failure of the converse, 
it is enough to consider the theories T1 = {∃!xPx} and T2 = {∃!xPx,∀xPx} . Since 
T2 ⊢ ∃!x(x = x) but T1 ⊬ ∃!x(x = x) , it follows that T2 is not translatable into T1 . But 
it should be sufficiently obvious that we can interpret T2 in T1 with Px as our domain 
formula. Finally, to see that reconcilability entails translatability, we may use the 
following lemma:

Lemma 4.1 Let T be an L-theory, and let I be an interpretation on L-formulas with 
domain formula �(x) . Then, for any L-formula � , if T ⊢ 𝜑 then I(T) ∪ {∃x𝛿} ⊢ I(𝜑).

Intertranslatability Mutual reconcilability

Mutual translatability

Mutual interpretability

Fig. 2  The relation of entailment between the four notions of theoretical equivalence
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Proof An interpretation I with domain formula �(x) provides a recipe for trans-
forming any model M of I(T) ∪ {∃x�} into a model M′ of T. The domain 
of M′ is defined as the extension of � in M , and each predicate P in L is inter-
preted by M′ as the extension of I(Px̄) in M intersected with the domain of M′ . 
Let X be the set of variables. It is easy to verify, by induction on the complexity 
of the formula � , that for any assignment v ∶ X → |M�| , we have M′

, v ⊨ 𝜑 iff 
M, v ⊨ I(𝜑) . The base case is immediate from the construction, and the cases of 
boolean operators are straightforward. In the case of universal quantification, we 
get M�

, v ⊨ ∀x𝜑 iff, for all a ∈ |M�| , M�
, v(a∕x) ⊨ 𝜑 iff (by induction hypothesis), 

for all a ∈ |M�| , M, v(a∕x) ⊨ I(𝜑) iff, for all a ∈ |M| , M, v(a∕x) ⊨ 𝛿 → I(𝜑) iff 
M, v ⊨ ∀x(𝛿 → I(𝜑)) iff M, v ⊨ I(∀x𝜑) . Having established as much, it now follows 
by soundness that I(T) ∪ {∃x𝛿} ⊬ I(𝜑) implies T ⊬ 𝜑 , yielding the desired result by 
contraposition.   ◻

Fact 4.5 Reconcilability (witnessed by a certain translation) entails translatability 
(witnessed by the same translation).

Proof Assume that � is a translation such that �(T1) ≡ T2 . Define an interpretation 
I with domain formula x = x that is identical to � with respect to all atomic for-
mulas. Clearly, for any formula � , we have �(�) ≡ I(�) . Assume that T1 ⊢ 𝜑 . By 
Lemma 4.1, we have I(T1) ⊢ I(𝜑) . By assumption of reconcilability, it follows that 
T2 ⊢ I(𝜑) , and thus T2 ⊢ 𝜏(𝜑) . Hence, � is a translation of T1 into T2 .   ◻

Hence, of these four notions, mutual interpretability is the weakest one. It is 
widely considered too weak to capture the intuitive concept of expressing the same 
theory. But in the context of establishing the genuine underdetermination prop-
erty, the question is rather whether it is weak enough. In recent years, several other 
notions of theoretical equivalence have been proposed using concepts from category 
theory.12 The weakest of them (as far as I know) is categorical equivalence. There 
is also a stronger notion called Morita equivalence. Both of these naturally apply 
to theories in many-sorted languages. With mutual interpretability suitably general-
ized to the many-sorted case, McEldowney (2020,  p. 16) provides an example of 
Morita equivalent theories that are not mutually interpretable. Hence, in the many-
sorted case, categorical equivalence does not entail mutual interpretability. Whether 
it does so in the singe-sorted case seems to be an open question.13 But McEldowney 
(2020, p. 19, Proposition 5.11) also shows that, for theories implying that there at 
least two things, Morita equivalence entails something called bi-interpretability, 
which in turn entails mutual interpretability. In addition, Barrett and Halvorson 
(2016b, p. 575) conjecture that, for theories in finite vocabularies, categorical equiv-
alence entails Morita equivalence. Thus, if their conjecture is correct, categorical 
equivalence entails mutual interpretability for all single-sorted theories in finite 

13 It was posted on MathOverflow some years ago: https:// matho verfl ow. net/ quest ions/ 146343/ the- inter 
play- betwe en- certa in- aspec ts- of- inter preta bility- model- theory- and- cate/ 152695

12 See, for instance, Barrett and Halvorson (2016b), Weatherall (2016), and Hudetz (2019).

https://mathoverflow.net/questions/146343/the-interplay-between-certain-aspects-of-interpretability-model-theory-and-cate/152695
https://mathoverflow.net/questions/146343/the-interplay-between-certain-aspects-of-interpretability-model-theory-and-cate/152695
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vocabularies implying that there are at least two things. For present purposes, that 
would be quite sufficient. In any case, it seems reasonable to regard mutual inter-
pretability as a necessary condition for theoretical equivalence.

5  Answering Quine’s Question

As we saw earlier, given a theory T such that T ⊢ ∃x̄Px̄ for some theoretical predi-
cate P, constructing an empirically equivalent rival T∗ is a trivial matter: just replace 
P everywhere with a new predicate P∗ , and add the sentence ¬∃x̄Px̄ . But the two 
theories are mutually translatable: we can translate every theorem of T to a theorem 
of T∗ by replacing P with P∗ , and we can translate every theorem of T∗ to a theorem 
of T by replacing P∗ with P and Px̄ with ¬∀x(x = x) . It is easy to check that these 
translations also satisfy the requirements for intertranslatability, making T and T∗ 
theoretically equivalent in a rather strong sense.

If T is consistent, recursively axiomatizable, and does not have any finite models, 
then T∗ will inherit these properties. In that case, as a consequence of Theorem 5.1 
below, one can extend T∗ with a single sentence (saying, essentially, that T∗ is con-
sistent), thereby producing a theory with the same empirical content as T∗ , but one 
that T cannot interpret. In particular, partially answering Quine’s question, it fol-
lows that any consistent and recursively axiomatizable theory that postulates infi-
nitely many theoretical entities (numbers, for instance) is bound to have empirically 
equivalent alternatives that are not reconcilable by reconstrual of predicates however 
devious.

We proceed as follows. Let PA be Peano arithmetic formulated in vocabulary LPA . 
Recall that an LPA formula �(x1, ..., xk) is said to represent a relation R ⊆ ℕ

k in PA 
just in case, for any n1, ..., nk ∈ ℕ , we have PA ⊢ 𝜑(n1, ..., nk) if n1, ..., nk ∈ R , and 
PA ⊢ ¬𝜑(n1, ..., nk) if n1, ..., nk ∉ R , where n is the numeral associated with each nat-
ural number n. A fundamental result in mathematical logic says that a relation on 
the natural numbers is recursive just in case there is a Σ1-formula representing it in 
PA, where a Σ1-formula is an LPA-formula of the form ∃x̄𝜑 , with � only containing 
restricted quantifiers.14

In a derivative sense, and relative to a given Gödel-numbering # of finite 
sequences of symbols of some first-order language, a theory T in this language is 
said to be recursive (or represented by a formula in PA) just in case {#(�) ∶ � ∈ T} 
is.15 Thus, if T is recursive, there is a Σ1-formula �(x) representing it in PA. Moreo-
ver, we can then construct an LPA-formula Prf�(x, y) representing the fact that x is the 
Gödel-number of a proof whose premises belong to T and whose last sentence has 

14 The property of only containing restricted quantifiers can be defined inductively as follows. All 
atomic formulas have the property, and the property is preserved under boolean operators. Furthermore, 
if � has the property, and t is a term not containing the variable x, then ∃x(x < t ∧ 𝜑) and ∀x(x < t → 𝜑) 
also have the property.
15 A theory is said to be recursively axiomatizable just in case it is logically equivalent to a recursive 
theory.
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Gödel-number y. Finally, given an LPA-formula Neg(x, y) representing the fact that 
x is the Gödel-number of the negation of a formula with Gödel-number y, we can 
define the LPA-sentence Con� as

essentially saying that T is consistent. Gödel’s second incompleteness theorem then 
states that, if T is a consistent recursive extension of PA, then T ⊬ Con𝛼 . To establish 
the genuine underdetermination property, we use a corollary of Gödel’s theorem, 
due to Feferman (1966, p. 90, Theorem 8.8):

Lemma 5.1 (Feferman) Let T be a consistent theory, let I be an interpretation such 
that I(PA) ⊆ T  , and assume that �(x) is a Σ1-formula representing T in PA. Then T 
cannot interpret T ∪ {I(Con�)}.

Remark 5.1 Clearly, the requirement that I(PA) ⊆ T  can be replaced by the weaker 
requirement that I is an interpretation of PA in T.

To strengthen our result, we shall also use a well-known result by Craig and 
Vaught (1958, p. 292, Theorem 2.1):

Lemma 5.2 (Craig and Vaught) Let T be a recursive theory in a finite vocabulary L, 
and assume that T does not have any finite models. Then there is a finite theory T ′ in 
a vocabulary L′ ⊇ L semantically L-equivalent to T.

Here is our main result:

Theorem 5.1 Let T be a theory in vocabulary LT , and let L ⊆ LT . Assume that (i) T 
is consistent, (ii) T does not have any finite models, and that (iii) there is a recursive 
theory T∗ semantically L-equivalent to T such that T and T∗ are jointly inconsistent. 
If T∗ can interpret T, there is a finite extension16 T ′ of T∗ such that (iv) T and T ′ are 
semantically L-equivalent, and (v) T cannot interpret T ′.

Proof Let T be a theory in vocabulary LT , with empirical part L ⊆ LT . Assume that 
(i) T is consistent, (ii) T does not have any finite models, and that (iii) there is a 
recursive theory T∗ in a vocabulary LT∗ ⊇ L semantically L-equivalent to T such that 
T and T∗ are jointly inconsistent. By Lemma 5.2, there is a finite theory PA′ in a 
vocabulary L′

PA
⊇ LPA semantically LPA-equivalent to PA. Let L∗

PA
 be a copy of L′

PA
 

disjoint from LT ∪ LT∗ that also contains a new unary predicate N. For any L′
PA

-for-
mula � , let �∗

N
 be the L∗

PA
-formula you get by first replacing every L′

PA
-symbol in � 

with the corresponding L∗
PA

-symbol, and then relativizing the whole thing to N. Let 

¬∃y(∃xPrf�(x, y) ∧ ∃x∃z(Prf�(x, z) ∧ Neg(z, y)))

16 To be clear, a set A is a finite extension of a set B just in case there is a finite set C such that A = B ∪ C.
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N
′ ⊨ PA′ be an expansion of the standard model of arithmetic, and let N∗ be the 

corresponding L∗
PA

-model with N∗ ⊨ ∀xNx.
Let PA∗

N
= {�∗

N
∶ � ∈ PA�} and T+ = T∗ ∪ PA∗

N
∪ {∃xNx} . Observe that, since 

PA ⊢ 𝜑 implies PA′ ⊢ 𝜑 , which by Lemma 4.1 implies PA∗
N
∪ {∃xNx} ⊢ 𝜑∗

N
 , it fol-

lows that

(1) The map � ↦ �∗
N

 is an interpretation of PA in T+.

We first show that 

(2) The L-reduct of every model of T can be expanded to a model of T+.

Suppose that M ⊨ T  . By assumption (iii), M|L can be expanded to a model of 
T∗ . Since, by assumption (ii), M|L is infinite, we can further expand it by inter-
preting L∗

PA
 on a countably infinite subset of its domain, yielding a model M′ such 

that M�
N
|L∗

PA
≅ N

∗ . Hence, M� ⊨ T+.
Since T is consistent, it follows that T+ is too. It follows by assumption (iii) that 

there is a Σ1-formula �(x) representing T+ in PA. Let us write Con(T+) for the cor-
responding LPA-sentence Con� , and let T � = T+ ∪ {Con(T+)∗

N
} . It now follows by (1) 

and Lemma 5.1 that

(3) T+ cannot interpret T ′.

Consistency of T+ also implies that N� ⊨ Con(T+) , and thus N∗ ⊨ Con(T+)∗
N

 . By 
the same line of reasoning as before, it follows that 

(4) The L-reduct of every model of T can be expanded to a model of T ′.

Since T ′ is an extension of T∗ , it already follows form assumption (iii) that 

(5) The L-reduct of every model of T ′ can be expanded to a model of T.

Hence, T and T ′ are semantically L-equivalent. Finally, we show that 

(6) If T∗ can interpret T, then T cannot interpret T ′.

Let I be an interpretation of T in T∗ . Assume, towards contradiction, that J is 
an interpretation of T ′ in T. Since T ⊢ J(𝜑) implies T∗ ⊢ I(J(𝜑)) , which implies 
T+ ⊢ I(J(𝜑)) , the map � ↦ I(J(�)) is an interpretation of T ′ in T+ , contrary to (3).  
 ◻

Remark 5.2 Obviously, the construction can be iterated, generating an infinite 
sequence of empirically equivalent but theoretically non-equivalent rivals.
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Suppose, for instance, that T is a theory postulating infinitely many so-called 
‘numbers’. First, let T∗ be just like T, except that it says about ‘numbers*’ what T 
says about ‘numbers’, and that ‘numbers’ do not exist. Secondly, extend T∗ to a the-
ory T+ by adding a version of Peano arithmetic formulated in a vocabulary disjoint 
from that of T and T∗ , talking about ‘numbers**’. Provided that T (and thereby T+ ) 
is recursive, we can express the claim that no so-called ‘number**’ codes a proof of 
a contradiction in T+ . Finally, adding this claim to T+ yields a theory T ′ which T can-
not interpret (provided that T is consistent).

Thus constructed, there is an obvious sense in which the theory about the so-
called ‘numbers**’ included in T ′ is superfluous: it can be removed without loss of 
empirical content. However, it is easy to construct a theory logically equivalent to T ′ 
to which this does not apply: just transform all the other claims of T ′ to claims con-
ditional on the number**-claims. Relative this new theory, there is no obvious sense 
in which the number**-claims are superfluous, lest all non-empirical consequences 
of the theory are rendered superfluous.17

6  Concluding Remarks

We have established Quine’s underdetermination thesis for all consistent and recur-
sively axiomatizable theories postulating infinitely many theoretical entities. It is 
clear that any straightforward first-order axiomatization of, say, General relativity 
theory will satisfy this requirement, namely by postulating infinitely many real num-
bers.18 Quine (1975,  p. 324) thought that postulating theoretical entities might be 
necessary for a theory to be finite:

Here, evidently, is the nature of under-determination. There is some infinite 
lot of observation conditionals that we want to capture in a finite formulation. 
Because of the complexity of the assortment, we cannot produce a finite for-
mulation that would be equivalent merely to their infinite conjunction. Any 
finite formulation that will imply them is going to have to imply also some 
trumped-up matter, or stuffing, whose only service is to round out the formula-
tion. There is some freedom of choice of stuffing, and such is the under-deter-
mination.

It can indeed be shown that, in order for a finite theory to imply certain sets of 
empirical claims, it has to postulate an infinite number of theoretical entities.19

Realists may respond to the challenge of underdetermination in a number of ways. 
In my view, the most promising response is perhaps to weaken their claim, by insisting 
only on the approximate truth of our best scientific theories. This is what most real-
ists seem to do anyway. Intuitively, two logically incompatible theories may both be 

17 I am not saying that no such sense exists. For instance, Schurz (2009) has a notion of a theoretical 
expression yielding the empirical success of a theory to which it belongs, which may be applicable in this 
context.
18 See, for instance, Andréka et al. (2007).
19 See Johannesson (2022, pp. 22–23).
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approximately true. Insofar as the notion of approximate truth can be made precise, a 
corresponding underdetermination thesis may be formulated and evaluated (with ‘logi-
cally incompatible’ replaced by ‘not both approximately true’).

Funding Open access funding provided by Stockholm University.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, 
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as 
you give appropriate credit to the original author(s) and the source, provide a link to the Creative Com-
mons licence, and indicate if changes were made. The images or other third party material in this article 
are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons licence and your intended use is 
not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission 
directly from the copyright holder. To view a copy of this licence, visit http:// creat iveco mmons. org/ licen 
ses/ by/4. 0/.

References

Andréka, H., Madarász, J. X., & Németi, I. (2007). Logic of Space-Time and Relativity Theory. Netherlands: 
Springer.

Barrett, T. W., & Halvorson, H. (2016). Glymour and Quine on theoretical equivalence. Journal of Philo-
sophical Logic, 45(5), 467–483.

Barrett, T. W., & Halvorson, H. (2016). Morita equivalence. The Review of Symbolic Logic, 9(3), 556–582.
Craig, W., & Vaught, R. L. (1958). Finite axiomatizability using additional predicates. The Journal of Sym-

bolic Logic, 23(3), 289–308.
De Bouvère, K. (1965). Logical synonymity. Indagationes Mathematicae (Proceedings), 68, 622–629.
Feferman, S. (1966). Arithmetization of metamathematics in a general setting. Journal of Symbolic Logic, 

31(2), 269–270.
Glymour, C. (1970). Theoretical realism and theoretical equivalence. PSA: Proceedings of the Biennial Meet-

ing of the Philosophy of Science Association, 1970:275–288.
Hudetz, L. (2019). Definable categorical equivalence. Philosophy of Science, 86(1), 47–75.
Johannesson, E. (2020). Realism and empirical equivalence. Journal of Philosophical Logic, 49(3), 475–495.
Johannesson, E. (2022). On the indispensability of theoretical terms and entities. Synthese, 200(136), 1–25.
Kanger, S. (1968). Equivalent theories. Theoria, 34(1), 1–6.
Ketland, J. (2004). Empirical adequacy and ramsification. British Journal for the Philosophy of Science, 

55(2), 287–300.
Kukla, A. (1996). Does every theory have empirically equivalent rivals? Erkenntnis, 44(2), 137–166.
Laudan, L., & Leplin, J. (1991). Empirical equivalence and underdetermination. Journal of Philosophy, 

88(9), 449–472.
McEldowney, P. A. (2020). On morita equivalence and interpretability. The Review of Symbolic Logic, 13(2), 

388–415.
Melia, J. (2000). Weaseling away the indispensability argument. Mind, 109(435), 455–479.
Okasha, S. (2002). Philosophy of science : a very short introduction. Oxford: Oxford University Press.
Psillos, S. (1999). Scientific realism : How science tracks truth. New York: Routledge.
Quine, W. V. (1975). On empirically equivalent systems of the world. Erkenntnis, 9(3), 313–328.
Schurz, G. (2009). When empirical success implies theoretical reference: A structural correspondence theo-

rem. The British Journal for the Philosophy of Science, 60(1), 101–133.
Schurz, G. (2013). Philosophy of Science. Hoboken: Routledge.
Tarski, A., Mostowski, A., & Robinson, R. M. (1953). Undecidable theories. Amsterdam: North-Holland.
Turney, P. (1990). Embeddability, syntax, and semantics in accounts of scientific theories. Journal of Philo-

sophical Logic, 19(4), 429–451.
van Benthem, J. F. A. K. (1978). Ramsey eliminability. Studia Logica, 37(4), 321–336.
Van Fraassen, B. C. (1980). The scientific image. Oxford: Clarendon P.

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


 E. Johannesson 

1 3

Weatherall, J. O. (2016). Are newtonian gravitation and geometrized newtonian gravitation theoretically 
equivalent? Erkenntnis, 81(5), 1073–1091.

Worrall, J. (2011). Underdetermination, realism and empirical equivalence. Synthese, 180(2), 157–172.

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.


	Quine’s Underdetermination Thesis
	Abstract
	1 Introduction
	2 Empirical Equivalence
	3 Constructing Empirically Equivalent Rivals
	4 Theoretical Equivalence
	5 Answering Quine’s Question
	6 Concluding Remarks
	References




