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Abstract
The present paper shows how one might model Everettian quantum mechanics using 
hyperfinitely many worlds. A hyperfinite model allows one to consider idealized 
measurements of observables with continuous-valued spectra where different out-
comes are associated with possibly infinitesimal probabilities. One can also prove 
hyperfinite formulations of Everett’s limiting relative-frequency and randomness 
properties, theorems he considered central to his formulation of quantum mechan-
ics. Finally, this model provides an intuitive framework in which to consider no-
collapse formulations of quantum mechanics more generally.

1  Everettian quantum mechanics and many worlds

Hugh Everett III (1956, 1957) presented pure wave mechanics as a solution to the 
quantum measurement problem encountered by the standard collapse theory.1 He 
characterized pure wave mechanics as the standard von Neumann–Dirac formulation 
of quantum mechanics but without any collapse of the quantum-mechanical state on 
measurement or any other time. All physical systems always evolve in a determinis-
tic, linear way described by the standard quantum dynamics.
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On Everett’s interpretation of the quantum-mechanical state, the linear dynamics 
describes the universe as constantly splitting into branches or worlds correspond-
ing to different measurement outcomes. How many worlds there are and the state 
of each world depends on how one understands the global state. Everett’s descrip-
tion of the principle of the relativity of states allows for arbitrary decompositions 
of the state, and he explicitly allowed for decompositions in terms of eigenstates of 
observables with continuous-valued spectra. His discussion of relative states in the 
context of von Neumann’s account of a position measurement, for example, involves 
a superposition of a continuous number of branches, in each of which the object 
system has a different determinate position (1957, 180–182). For this reason, he was 
careful to allow for information measures and probability distributions over sets of 
unrestricted cardinality in his theory (1956, 86, 89–92). In brief, on Everett’s own 
presentation there is a potentially uncountably infinite number of worlds depending 
on which decomposition of the state one considers.

While Everett almost always referred to branches rather than worlds (and the term 
“world” never appears in his written work), he explicitly endorsed there being an 
uncountable number of worlds in a recorded discussion with colleagues in 1962. It 
happened as follows. Everett was invited to describe his formulation of quantum 
mechanics at a conference at Xavier University that had been convened to discuss 
the quantum measurement problem. After he had briefly described how the theory 
worked, the physicist Boris Podolsky said, “It looks like we would have a non-denu-
merable infinity of worlds.” To which Everett responded, “Yes.”2

In contrast, Bryce Dewitt, perhaps Everett’s most energetic and effective propo-
nent, held that since the correlations produced by measurement-like interactions are 
always only approximate for observables with continuous spectra, there must be at 
most a denumerable number of worlds.3 Indeed, DeWitt repeatedly suggested that 
the cardinally was large but finite, famously reporting that there were 10100+ con-
stantly splitting worlds.4

In the context of deocoherence formulations of Everettian quantum mechanics, 
the question of the number of worlds is more subtle. As a particularly salient exam-
ple, David Wallace has argued that since decoherence, the physical phenomena that 
tends to prevent interference between branches, comes in degrees, there is no simple 
matter of fact about how many worlds there are at a time. Rather, how one individu-
ates worlds on a decohering-worlds account depends on one’s level of description 
and practical interests.5 In order to prove the representation theorems that he wants 

2 Wendell Furry, one of the participants at the conference, replied that “I can think of various alterna-
tive Furrys doing things, but I cannot think of a non-denumerable [infinity] of alternative Furrys.” For a 
transcript of Everett’s description of his theory and the discussion that followed see (Barrett and Byrne, 
2012, 270–279). See Barrett (2011b) for a discussion of Everett’s understanding of branches and worlds.
3 See (DeWitt, 1971, 210–211) in DeWitt (1973) for his account of the measurement of observables with 
continuous spectra.
4 See DeWitt (1970, 33) and (DeWitt, 1971, 179) for such claims and (Becker, 2018, 257–258) for a 
description of the sort of intuitions (like being able to talk of the proportion of worlds with a particular 
property) that might lead one to favor finitely many worlds over infinitely many worlds.
5 See (Wallace, 2012, 99–102) for a brief introduction to the idea.
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for his decohering-worlds formulation of quantum mechanics, Wallace explicitly 
rules out the possibility of positive infinitesimal probabilities of the sort one would 
invariably encounter if one allowed for an infinite number of worlds.6 But on the 
pragmatic view of emergent worlds that he has in mind, one arguably need never 
consider more than a finite number of worlds in any case.

It is often convenient to suppose that there is a well-defined finite number of 
worlds. This allows one to do things like consider the proportion of worlds with a 
particular property or to consider unbiased probabilities over worlds, something that 
cannot be done on the standard approach for even countably infinite many worlds.7 
The hyperfinite model we develop here allows one to recover the intuitive features of 
finitely many worlds even in the context of non-denumerably many worlds.

Our aim here is not to provide a once-and-for-all account of worlds for Everettian 
quantum mechanics. Rather, it is to suggest a way of reconstructing Everett’s origi-
nal picture of how branches work and a way of thinking of non-denumerably many 
worlds and probability distributions over such worlds when it is convenient to do so. 
Specifically, a hyperfinite model allows one to consider idealized measurements of 
observables with continuous-valued spectra and it provides an intuitive set of tools 
for studying non-denumerable collections of worlds. One can consider the propor-
tion of worlds with a particular property or consider unbiased probabilities over 
worlds in a perfectly natural way. It also allows one to provide elegant nonstandard 
reformulations of the two limiting properties that Everett took to be central to his 
formulation of quantum mechanics. And it provides an intuitive context that works 
very much like a finite-dimensional Hilbert space for representing no-collapse for-
mulations of quantum mechanics more generally.

2  Worlds and probabilities

It will be helpful to start with a simple example of how pure wave mechanics 
describes an ideal measurement interaction where there are finitely many (here, two) 
possible measurement outcomes. Suppose that an observer F measures the x-spin of 
a spin-1/2 system S that begins in the state

Let the state �“ready”⟩F represent the state where F is ready to observe the x-spin of 
S and record the result in her notebook. The initial state of the composite system of 
F and S then is

(1)��↑x⟩S + ��↓x⟩S.

(2)�“ready”⟩F(��↑x⟩S + ��↓x⟩S).

6 See (Wallace, 2012, 227) and his discussion of decision theory in Appendix B.
7 The discussion in Sebens and Carroll (2015) illustrates the intuitive appeal of considering finitely 
many worlds. Many of the same intuitions are satisfied in the hyperfinite model we discuss here.
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Since �“ready”⟩F�↑x⟩S would evolve to �“↑
x
”⟩

F
�↑

x
⟩
S
 and �“ready”⟩F�↓x⟩S would 

evolve to �“↓
x
”⟩

F
�↓

x
⟩
S
 on ideal measurements, the initial state above would evolve to 

the final post-measurement state

by the linearity of the standard quantum dynamics.
Note that there is no collapse of the quantum mechanical state here. Hence one 

avoids the problem of having to say how and when such a random event might occur. 
But while dropping the collapse dynamics from the standard collapse theory allows 
one to provide a manifestly consistent account of an idealized measurement interac-
tion, it also immediately leads to two new problems. One involves how one explains 
determinate records, the other how one understands probabilities.

Since the final post-measurement state is not one where F has any determinate 
measurement record at all on the standard eigenvalue-eigenstate rule for interpret-
ing quantum-mechanical states, we need a new way to interpret states.8 On the 
many-worlds interpretation of pure wave mechanics, easily the most popular way of 
understanding Everett’s theory, one understands each term of the final state above 
as corresponding to a physical world, one for each possible result. Inasmuch as the 
post-measurement state describes one observer with the result “ ↑x ” and another 
observer with the result “ ↓x ”, this interpretation of the final state immediately solves 
the determinate-record problem.

While the standard collapse formulation of quantum mechanics encounters the 
quantum measurement problem and is hence ultimately unsatisfactory, it predicts 
precisely the right forward-looking probabilities for simple experiments like this 
one. Here it predicts that F should expect to get the result “ ↑x ” with probability |�|2 
and the result “ ↓x ” with probability |�|2 . That it predicts the right forward-looking 
probabilities for such experiments is what makes the standard collapse theory one of 
the most successful physical theories ever. These are the empirical predictions that 
one would like to recapture in any satisfactory formulation of quantum mechanics. 
To address the probability problem, then, one needs to provide some way of under-
standing the standard quantum probabilities in pure wave mechanics, a deterministic 
theory where every physically possible measurement outcome is in fact fully real-
ized as a world characterized by a branch of the quantum mechanical state.

Self-location probabilities, probabilities that represent one’s epistemic uncer-
tainty of finding oneself with a particular measurement result, arguably provide the 
most promising way to understand probabilities in a many-worlds theory.9 But how 
one understands such probabilities depends on how one understands worlds and how 
one understands self-location uncertainty in those worlds.

(3)��“↑
x
”⟩

F
�↑

x
⟩
S
+ ��“↓

x
”⟩

F
�↓

x
⟩
S

9 See Vaidman (2012, 2014) for introductions to this approach. And Sebens and Carroll (2015) for an 
example of a recent application of self-location probabilities.

8 See Barrett (2020, 42–46) for a description of the standard interpretation of states.
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We will briefly consider two approaches to self-location probabilities then con-
sider how Everett himself thought of quantum probabilities. The hyperfinite frame-
work works for each approach and is particularly well-suited to Everett’s picture.10

Suppose that F’s premeasurement world splits into one copy for each possible 
measurement result when F makes her measurement. On the face of it, she should 
expect (with probability 1) to find one future copy of herself in a world where she 
gets the result “ ↑x ”, and she should expect (also with probability 1) to find another 
future copy of herself in a world where she gets the result “ ↓x ”. But these are entirely 
the wrong quantum probabilities.

Inasmuch as each of the future copies of F have equal claim to being F on a 
splitting-worlds view, a single premeasurement observer cannot make straightfor-
ward sense of standard forward-looking quantum probabilities as subjective degrees 
of belief regarding which world she will inhabit after she makes her measurement. 
That said, after she performs her measurement and subsequently inhabits a world 
where there is now a single determinate record, she can make sense of quantum 
probabilities as synchronic self-location probabilities.

Suppose F makes her measurement and suppose that her initial world has split 
into one with a copy of F and her measuring device that records the result “ ↑x ” 
and another with a copy of F and her measuring device records the result “ ↓x ”. 
Consider one of the copies of F. Suppose that she has not yet looked at the result 
that the measuring device in her world has recorded. F can now ask herself the per-
fectly coherent synchronic question of what her degree of belief should be that the 
recorded result in the world she inhabits right now is “ ↑x ” and what her degree of 
belief should be that the recorded result in her world is “ ↓x”.

We will suppose that one has a formulation of the theory that stipulates that one 
should assign a subjective degree of belief equal to the norm-squared of the ampli-
tude associated with one’s post-measurement world conditional on what one knows 
of one’s premeasurement world. In the present case, since we are supposing that 
F begins ready to perform the described measurement, one wants one’s full theory 
to stipulate |�|2 as the probability of getting “ ↑x ” and |�|2 the probability of get-
ting “ ↓x ”. Here one is getting the standard quantum probabilities as synchronic self-
location probabilities rather than forward-looking probabilities regarding her out-
come. What F can say before performing her measurement is that each of her future 
selves will have post-measurement synchronic self-location probabilities given by 
the norm squared of the amplitude associated with each world. But the theory needs 
to tell one to assign these probabilities. This is why there must be auxiliary theo-
retical assumptions concerning self-location probabilities that go beyond the unitary 
dynamics.11

10 See Greaves (2006), Wallace (2012), Barrett (1999, 2020) for further discussion of some of the prob-
lems one faces making sense of probability in Everett and options for addressing them.
11 See (Barrett, 2020, 162–174) for a discussion of what such auxiliary assumptions might look like. As 
a concrete example, Wallace (2010) provides a set of ten auxiliary assumptions that together arguably 
entail the standard quantum probabilities.
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One can get something that is closer to standard forward-looking quantum prob-
abilities by adopting a many-worlds theory where the worlds do not split.12 Suppose 
that there is one world for every possible history or thread through the branching 
structure generated by a series of subsequent measurements. On this picture, there 
are two copies of F both before and after the measurement interaction on the simple 
example above. One copy will get the result “ ↑x ” and the other will get the result 
“ ↓x ”. Here one can take quantum probabilities to be degrees of belief concerning 
which history or thread one inhabits. Even before performing her measurement, F 
can coherently assign the standard forward-looking quantum probabilities to the 
outcome as they are just the synchronic self-location probabilities for her current 
inhabiting each of the two worlds.13 But again, one’s theory would need auxiliary 
theoretical assumptions that entail that one assign these probabilities.

While there is more to say about how one might individuate worlds and under-
stand self-location probabilities in even the simple case with two possible measure-
ment results, this is enough to see how one might apply the framework that follows. 
But as we are especially interested in capturing Everett’s approach, it will also be 
helpful to have a sense of how he thought of quantum probabilities.14

Everett believed that he could deduce the standard quantum predictions from pure 
wave mechanics. His strategy was not to deduce the standard quantum probabili-
ties as a measure over alternative branches. Rather, he wanted to derive the standard 
quantum statistics for sequences of measurement records within a typical branch in 
the norm-squared amplitude sense of typical. His idea was that it will thus appear 
that the measurement outcomes were determined by the standard quantum probabili-
ties to an observer in a typical world. And that was sufficient for the theory to be 
empirically adequate.15 The two limiting properties that we discuss later are refor-
mations of Everett’s typicality deductions in the nonstandard framework.

The hyperfinite model that we develop here, then, provides a framework for 
understanding worlds, probabilities, and typicalities in the context of observables 
with a continuous spectra. There are other approaches one might consider. One 
is to allow a continuum of worlds and to consider a probability distribution over 
these worlds analogous to how probability distributions over a continuum of pos-
sible positions a single particle might occupy are treated in collapse theories of 

12 A related approach is one where observers do not split. On this view, there are multiple, but physically 
identical, observers before the measurement who are uncertain about which post-measurement observer 
represents their future self. See Albert and Loewer (1988), Albert (1992), Saunders and Wallace (2008), 
Saunders et al. (2010), and Wallace (2012) for discussions of some of the interpretational options avail-
able.
13 See the discussions of many-threads theories in Barrett (1999, 2020, 184–187).
14 One connection between Everett’s approach and self-location probabilities is as follows. Everett 
showed that the records of a typical relative observer will exhibit the standard quantum statistics in the 
limit. Given the standard way of assigning self-location probabilities, then, a relative observer should 
expect with probability 1 to find herself to be typical in Everett’s sense.
15 More specifically, Everett took a theory to be empirically faithful, and hence to adequately explain 
experience, if and only if there was a homomorphism between its model and the world as experienced. 
His relative-state formulation of pure wave mechanics is empirically faithful because an observer’s actual 
experience can be found as a relative sequence of records associated with a typical relative observer in 
the norm-squared sense of typical. See Barrett (2011a, b, 2015, 2020, 143–174) for critical discussions 
of Everett’s approach.
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quantum mechanics. Another alternative would be to fix some level of approxima-
tion and to consider finitely or countably many worlds corresponding to the different 
possibilities of measuring the observable up to that fixed level of approximation. 
Our approach is along the lines of the latter method except that our approximations 
yield infinitesimal error and hence do not rely on an arbitrary, nonphysical choice of 
precision in characterizing the worlds. The model involves a hyperfinite number of 
worlds, each associated with a possibly infinitesimal probability. We do not take this 
model to provide a canonical way to address the representational problem, but we do 
take it to be a significant virtue that it shares many of the intuitive features of finitely 
many worlds. And it meshes especially well with Everett’s approach.

3  A brief introduction to nonstandard methods

The task at hand requires a few basic tools. The following prerequisites concern the 
nonstandard methods we will use to characterize hyperfinitely many worlds.16

The basic tenet of nonstandard analysis is to extend every set X under considera-
tion to a nonstandard extension ∗X which satisfies the following two properties: 
(1) ∗X has the same (first-order) logical properties as X (this fact is often called the 
transfer principle), and (2) ∗X contains new “ideal” elements not present in the 
original set X.17 For example, the field of hyperreals ∗ℝ is a field extending the 
field ℝ that shares the same logical properties as the reals ℝ (such as, for example, 
being an ordered field) while containing new infinitesimal and infinite elements. 
Every finite (that is, noninfinitesimal) element r of ∗ℝ is infinitely close to a unique 
standard real number, called the standard part of r, denoted st(r) . In the sequel, we 
let fin(∗ℝ) denote the set of finite elements of ∗ℝ . In general, for r, s ∈ ∗

ℝ , we write 
r ≈ s if r and s are infinitely close to each other.

Since functions are certain kinds of sets, they also have nonstandard extensions. 
Specifically, a function f ∶ X → Y  , identified with its graph, will be extended to a 
subset of ∗X × ∗Y  . It is easy to check that this nonstandard extension is itself the 
graph of a function, which we abusively denote f ∶ ∗X → ∗Y  (as it is readily verified 
that it extends the original function f).

An important distinction between subsets of a nonstandard extension ∗X is the 
internal versus external distinction. Given any set X, we are entitled to consider the 
nonstandard extension ∗P(X) of the powerset P(X) of X. Under a natural identifica-
tion, we may view elements of ∗P(X) as actual subsets of ∗X ; the sets thus obtained 
are referred to as the internal subsets of ∗X . By the transfer principle, internal sub-
sets of ∗X have the same logical properties as ordinary subsets of X. For example, 
internal subsets of ∗ℝ that are bounded above have a supremum. This fact need not 
hold for external (that is, non-internal) subsets of ∗ℝ , such as the set of infinitesimal 
elements. Subsets of ∗X of the form ∗Y  , where Y is a subset of X, are internal subsets 

16 See Goldblatt (1998) for a standard introductory text and Goldbring and Walsh (2019) for a descrip-
tion of potential applications. For a text on nonstandard methods written for physicists see Albeverio 
et al. (1986).
17 The “number” of these new ideal elements is controlled by the saturation level of the nonstandard 
extension.
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of ∗X , but not every internal subset of ∗X is of this form. The internal definition 
principle states that a set defined using internal parameters in a first-order way is 
once again internal. Consequently, finite sets are always internal.

A function f ∶ A → B is called internal if its graph Γ(f ) ⊆ A × B is an internal 
set; in this case, both the domain and range of f are internal sets by the internal defi-
nition principle.

Using the internal definition principle, given N ∈ ∗
ℕ , the set of elements of 

∗
ℕ between 1 and N is an internal subset of ∗ℕ , suggestively denoted {1,… ,N} 

(although it is not in fact finite if N is infinite). If a (necessarily internal) set E is in 
internal bijection with the internal set {1,… ,N} for some N ∈ ∗

ℕ , then E is called 
hyperfinite. Such an N is automatically unique and is called the internal cardinal-
ity of E, suggestively denoted |E|. Finite sets are hyperfinite and their internal car-
dinality agrees with the usual notion of cardinality. Hyperfinite sets share many of 
the intuitive properties of finite sets. That said, if E is hyperfinite but infinite, then its 
actual cardinality is at least the continuum and can be even larger depending on the 
saturation properties of the nonstandard model. Such will be the set of hyperfinitely 
many worlds corresponding to an observable with a continuous spectrum. By the 
transfer princple, an internal subset of a hyperfinite set is itself hyperfinite. By con-
sidering the nonstandard extension of the summation function, one can make sense 
of hyperfinite sums 

∑
x∈E f (x) , where E is a hyperfinite set and f is some internal 

function defined on E.
The Loeb measure construction will be used extensively throughout this paper. 

Suppose that E is an internal set and � is an internal finitely additive probability 
measure defined on some internal algebra of internal subsets of E. Note that � takes 
values in ∗[0, 1] . It can be shown that the associated (genuine) finitely additive meas-
ure F ↦ st(�(F)) (defined on the same algebra as � ) can be extended to a genuine 
(that is, �-additive) probability measure �L on the �-algebra generated by the origi-
nal internal algebra. This measure is called the Loeb measure associated to � . An 
example of such an internal finitely additive probability measure � is the hyperfinite 
counting measure associated to a hyperfinite set: if E is hyperfinite and F is an inter-
nal subset of E, then �(F) ∶= |F|

|E|.
Internal Hilbert spaces play a central role in the present hyperfinite model. An 

internal Hilbert space consists of an internal set � equipped with an internal addition 
+ ∶ � ×� → � , an internal scalar multiplication ⋅ ∶ ∗

ℂ ×� → � , and an inter-
nal inner product ⟨⋅�⋅⟩ ∶ � ×� → ∗

ℂ satisfying the usual Hilbert space axioms.18 
For ��⟩, ��⟩ ∈ � , we write ��⟩ ≈ ��⟩ if ‖��⟩ − ��⟩‖ ≈ 0 . By the transfer princi-
ple, every internal Hilbert space � possesses an internal orthonormal basis. If this 
internal orthonormal basis is actually hyperfinite, then we say that the internal Hil-
bert space � is hyperfinite-dimensional. In this case, if (��i⟩)i∈I is a (hyperfinite) 
orthonormal basis for � , then every element ��⟩ ∈ � can be uniquely expressed as a 
hyperfinite sum ��⟩ = ∑

i∈I �i��i⟩ , where each �i ∈ ∗
ℂ.

18 Except that completeness gets replaced by internal completeness.
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4  Continuous‑valued observables and the hyperfinite model

4.1  Hyperfinite‑dimensional state spaces

Everettian quantum mechanics for finite-dimensional state spaces as in the spin 
example above extends naturally to the hyperfinite-dimensional setting. Fix a 
hyperfinite-dimensional Hilbert space � and fix an observable B on � , which is an 
internally self-adjoint operator on � . The observable B is what determines what 
worlds there are at a time. Depending on one’s formulation of the theory, it might 
be a determinate-pointer observable or determinate-record observable, or it might be 
selected by decoherence interactions or other dynamical considerations. Once speci-
fied, there is an internal orthonormal basis (��i⟩)i∈I of eigenvectors of B with corre-
sponding eigenvalues (�i)i∈I , where each �i ∈ ∗

ℝ . These eigenvalues correspond to 
the determine measurement outcomes when measuring the observable B. The set W 
of worlds thus coincides with the set {��i⟩ ∶ i ∈ I} of eigenstates of B. An arbitrary 
state is simply a unit vector ��⟩ ∈ � and can be decomposed as a hyperfinite sum 
��⟩ = ∑

i∈I �i��i⟩ with each �i ∈ ∗
ℂ . In this state, the probability of finding oneself 

in the world corresponding to ��i⟩ is the hyperreal number |�i|2 ∈ ∗
ℝ , which may be 

infinitesimal.19

The linear dynamics for the hyperfinite setting is analogous to the finite setting. 
Specifically, if one fixes an internally self-adjoint operator T on � , the Hamiltonian 
for the system, then one can consider the unitary time evolution Vt of the system, 
which is an internal one-parameter family of internal unitary operators on � given 
by Vt��⟩ = e−itT ��⟩.20 Note that these operators are defined for all t ∈ ∗

ℝ.

4.2  Hyperfinite‑dimensional models for standard state spaces

We now consider how one might model the standard situation of an observable with 
continuous spectrum using a hyperfinite-dimensional state space as described in the 
previous subsection.21 Before doing so, we need some preliminaries.

Definition 1 Fix a Hilbert space H with dense subspace M . We say that a hyperfi-
nite-dimensional subspace � of ∗H is adapted to M if M ⊆ � ⊆ ∗M.

19 Such probabilities merely satisfy “hypercountable” additivity instead of the usual countable additivity.
20 There are a number of equivalent ways of interpreting the exponentiated operator here. For example, 
one can view matrix exponentiation as a function 

⋃
n∈ℕ M

n
(ℂ) →

⋃
n∈ℕ M

n
(ℂ) and then the above expo-

nentiated operator is given by the nonstandard extension of this function.
21 See Raab (2004) for a preliminary description of this example in the context of the standard collapse 
theory.



1376 J. Barrett, I. Goldbring 

1 3

The following is a routine application of saturation:

Lemma 2 For any dense subspace M of a Hilbert space H , there is a hyperfinite-
dimensional subspace of ∗H adapted to M.22

Suppose now that � is adapted to M . Set E
�
∶ ∗H → � to be the internal orthog-

onal projection map. A routine “overflow” argument yields the following:

Lemma 3 For all ��⟩ ∈ H , E
�
��⟩ ≈ ��⟩.23

Suppose further that T is an unbounded operator on H whose domain D(T) con-
tains M . Note that T extends to a map T ∶ ∗D(T) → ∗H . Since � ⊆ ∗M ⊆ ∗D(T) , 
we can consider the restriction of T to � , namely T ↾ � ∶ � → ∗H . In order to 
obtain an operator on � , we must compose this latter map with the projection E

�
 . 

Summarizing, we define the natural extension T
�

 to be the internal operator on � 
given by T

�
��⟩ ∶= (E

�
◦T)��⟩ . By the previous lemma, we have that T

�
��⟩ ≈ T��⟩ 

for all ��⟩ ∈ M . The next lemma is easy to prove:

Lemma 4 If T as above is symmetric, then so is T
�

 (whence it is internally 
self-adjoint).

Crucial for us is the following (see Proposition 2 in Raab, 2004):

Proposition 5 For each � ∈ �(T) , there is �� ∈ �(T
�
) (that is, an internal eigenvalue 

of T
�

 ) such that � ≈ ��.

We now apply these preliminaries to the task at hand. Fix a Hilbert space H (not 
necessarily separable), which is to represent the state space of our physical system. 
Moreover, we fix an observable A, which is an unbounded self-adjoint operator 
on H with domain D(A), and the Hamiltonian H of our system, which is also an 
unbounded self-adjoint operator on H with domain D(H). Suppose further that M is 
a dense subspace of H that is contained in D(A) ∩ D(H).24 Fix a hyperfinite-dimen-
sional subspace � of ∗H adapted to M and consider the natural extensions A

�
 and 

H
�

 of A and H respectively.
One can connect the Everettian interpretation of the hyperfinite-dimensional sys-

tem (�,A
�
,H

�
) to an Everettian interpretation of the standard system (H,A,H) in 

22 The uninitated reader may view this result as a more elaborate version of the statement that there exist 
positive infinitesimal real numbers. The latter statement follows from an appropriate saturation assump-
tion together with the fact that given any finite collection of positive real numbers, there is a positive real 
number smaller than all of them. Here, given any finite subset of M , there is a finite-dimensional sub-
space of M containing all of them.
23 The basic idea here is that the internal set of all n ∈ ∗

ℕ for which there exists ��⟩ ∈ � such that 
‖�𝜙⟩ − �𝜓⟩‖ <

1

n
 contains the external set ℕ (as � contains the dense subspace M of H ). Consequently, 

there must exist an infinite N in this set, whence the lemma follows.
24 This already presupposes that D(A) ∩ D(H) is a dense subspace of H ; we will add a further restriction 
in a moment.
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a natural way. Proposition 5 already suggests that how this might work. Indeed, for 
each � ∈ �(A) , a potential measurement result for the observable A, there is an eigen-
value (that is, a determinate measurement) for the internal observable A

�
 that is infi-

nitely close to � , which we may interpret as an approximation to measuring � with 
infinite precision. But there are further conditions we would like to hold, namely: 

(1) For standard states, the standard and internal unitary time evolutions should be 
infinitely close to one another.

(2) The probabilistic interpretations afforded by the hyperfinite model should agree 
(up to an infinitesimal difference) with the usual quantum mechanical probabili-
ties associated to the standard system.

Before formulating a precise definition from these two conditions, we will say a bit 
more about each.

Regarding (1), for each t ∈ ℝ , set Ut to be the unitary operator on H given by 
Ut ∶= e−itH.25 Also, for t ∈ ∗

ℝ , we can consider the internal unitary operator Vt on � 
given by Vt ∶= e−itH�.26 A precise formulation of condition (1) above would be that 
Ut��⟩ ≈ Vt��⟩ for all ��⟩ ∈ D(H) and all t ∈ ℝ , that is, for a state in the domain of 
the Hamiltonian H (for which Ut does really solve the time-dependent Schrödinger 
equation with initial state ��⟩ ), the standard and internal unitary evolutions of the 
state remain infinitely close for all (standard) time.

In connection with the previous paragraph, we say that an element ��⟩ ∈ ∗H is 
nearstandard, and write ��⟩ ∈ ns(∗H) , if there is ��⟩ ∈ H such that ��⟩ ≈ ��⟩ . In 
this case, we set st��⟩ to denote this (necessarily unique) element of H.

We now consider item (2). For each ��⟩ ∈ H and each Borel subset E ⊆ ℝ , set 
�A,��⟩(E) to be the probability that a measurement of the observable A in the state 
��⟩ yields a result in the set E. Formally, �A,��⟩(E) = ⟨��PE��⟩ , where PE is the 
projection-valued measure associated with the observable A applied to the Borel 
set E. On the other hand, for ��⟩ ∈ � and internal F ⊆ ∗

ℝ , set �A
�
,��⟩(F) to be the 

internal probability that a measurement of the observable A
�

 in the state ��⟩ yields 
a result in the internal set F. By transfer, this is calculated by the hyperfinite sum 
�A

�
,��⟩(F) =

∑
{��i�2 ∶ �i ∈ F} , where ��⟩ = ∑

i �i��i⟩ is the expansion of ��⟩ in 
terms of the eigenbasis {��i⟩ ∶ i ∈ I} fixed for A

�
 . Note that �A

�
,��⟩ is indeed an 

internal finitely additive probability measure defined on the internal subsets of ∗ℝ.
Given our discussion of item (1) above and the fact that a measurement of A

�
 

that belongs to st−1(E) should be viewed as approximating (with infinite precision) a 
measurement of A landing in E, a first guess as to what (2) might require is that, for 
each ��⟩ ∈ ns(∗H) and Borel subset E ⊆ ℝ , we have �A,st��⟩(E) ≈ �A

�
,��⟩(st−1(E)) . 

The issue with this is that st−1(E) is not generally an internal subset of ∗ℝ . How-
ever, writing En for the set of elements of ∗ℝ within distance 1

n
 of ∗E and noting that 

each En is internal, we see that st−1(E) =
⋂

n∈ℕ>0 En is Loeb measurable. Thus, a 

25 Of course now the exponentiated operator is defined using the spectral theorem.
26 One might be tempted to simply consider the natural extension (U

t
)
�

 of U
t
 , but in general this need 

not be unitary.
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correct formalization of (2) above would ask that �A,st��⟩(E) = �
A
�
,��⟩

L
(st−1(E)) for all 

��⟩ ∈ ns(∗H) and all Borel subsets E ⊆ ℝ.
We summarize this discussion with a definition:

Definition 6 The hyperfinite-dimensional system (�,A
�
,H

�
) is a faithful model of 

the standard system (H,A,H) if the following two conditions hold: 

(1) For each ��⟩ ∈ D(H) and each t ∈ ℝ , we have Ut��⟩ ≈ Vt��⟩.
(2) For each ��⟩ ∈ ns(∗H) and each Borel subset E ⊆ ℝ , we have 

Note that in a faithful model, by setting E ∶= �(A) , we have that, for any state 
��⟩ ∈ ns(∗H) , with �A

�
,��⟩

L
-probability 1, a measurement result of A

�
 in the state ��⟩ 

will yield a definite measurement that is infinitely close to an element of �(A).
In order to obtain a faithful model, a further technical assumption on M must be 

made. This technical assumption does indeed hold in many cases of interest, as we 
will discuss below.

We set

For ��⟩ ∈ fin(�) , we note that ��⟩ ↦ st‖��⟩‖ is a semi-norm on fin(�) . We also 
set mon(�) ∶= {��⟩ ∈ fin(�) ∶ ‖��⟩‖ ≈ 0} and ◦� ∶= fin(�)∕mon(�) , which is 
then a normed space under the norm induced by the above seminorm on fin(�) . 
If ��⟩ ∈ fin(�) , we denote its class in ◦� by ◦��⟩ . For ��⟩, ��⟩ ∈ fin(�) , note that 
⟨���⟩ ∈ fin(∗ℂ) and thus the internal inner product on � descends to an inner prod-
uct on ◦� defined by ⟨◦��◦�⟩ ∶= st⟨���⟩ . It follows from saturation that ◦� is actu-
ally a Hilbert space, called the nonstandard hull of � . Moreover, since M is dense 
in H and E

�
��⟩ ≈ ��⟩ for all ��⟩ ∈ H , it follows that the map ��⟩ ↦ ◦��⟩ ∶ H → ◦

� 
is an embedding of Hilbert spaces; in what follows, one identifies H as a subspace of 
◦
� via this embedding.

Suppose now that B is an internally self-adjoint operator on � . In Raab (2004), 
the nonstandard hull of B is defined to be a certain self-adjoint operator ◦B on 
◦
� whose precise definition is given in terms of spectral theory. In the easy case 

that B is finitely bounded, that is, when the internal operator norm ‖B‖ of B is a 
finite element of ∗ℝ (which rarely happens in quantum mechanics), we have that 
B(fin(�)) ⊆ fin(�) , whence one can define ◦B◦��⟩ ∶= ◦(B��⟩) . (This definition does 
not even require B to be self-adjoint.)

Given a self-adjoint operator A on H and an internally self-adjoint operator B 
on � , we say that B is a hull extension of A if D(A) ⊆ D(◦B) and A��⟩ = ◦B��⟩ for 
all ��⟩ ∈ D(A).27 The reason for being interested in hull extensions is given by the 

�A,st��⟩(E) = �
A
�
,��⟩

L
(st−1(E)).

fin(�) ∶= {��⟩ ∈ � ∶ ‖��⟩‖ ∈ fin(∗ℝ)}.

27 Raab calls such a B a nonstandard extension of A, but we find this nomenclature confusing.
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following result, which follows from results in Raab (2004) and with further details 
presented in Goldbring (2021):

Theorem 7 Suppose that A
�

 and H
�

 are hull extensions of A and H respectively. 
Then the hyperfinite-dimensional system (�,A

�
,H

�
) is a faithful model of the stand-

ard system (H,A,H).

Raab (2004) also provides a condition for when the natural extension is a hull 
extension. Recall that a core of an unbounded self-adjoint operator A is a dense sub-
space M of its domain on which A ↾ M is essentially self-adjoint.

Theorem 8 Suppose that A is a self-adjoint operator on H and that M is a core of 
A. Then for any hyperfinite-dimensional subspace � of ∗H that is adapted to M , the 
natural extension A

�
 is a hull extension of A.

Summarizing the relationship between the standard and nonstandard models, we 
have:

Theorem  9 Suppose that (H,A,H) is a standard system for which the observa-
ble A and the Hamiltonian H share a common core M . Then for any hyperfinite-
dimensional subspace � of ∗H adapted to M , the hyperfinite-dimensional system 
(�,A

�
,H

�
) is a faithful model of (H,A,H).

There are many instances in which the common core assumption is satisfied. For 
example, whenever the Hamiltonian H is a “small perturbation” of the observable 
A, then the common core assumption holds. Relevant theorems along these lines are 
Wüst’s theorem and the Kato-Rellich theorem.28 We will study particular instances 
of these results when we study the motion of a particle in ℝn in Sect. 6.

The hyperfinite model arguably comes with surplus expressive power. In addi-
tion to the sort of states that one would want to be able to represent, the representa-
tion allows for nonstandard states with curious properties. There are, for example, 
states ��⟩ ∈ � such that 𝜇A

�
,�𝜙⟩

L
(st−1(𝜎(A)) < 1 . These are states for which there is a 

positive probability of getting a measurement result � ∈ �(A
�
) that may not belong 

to st−1(�(A)) . Such a � may be a finite hyperreal, in which case one would have a 
nonzero probability of measuring a value that is infinitely close to a real value which 
itself could never have been a result of measuring A.29 On the other hand, such a � 
may be infinite. In this case the corresponding eigenstate ��⟩ would correspond to an 
infinite expectation value for the observable. There is nothing inherently wrong with 
allowing for such a possibility when it makes good physical sense. But sometimes it 
doesn’t.30

28 See Chapter X of Reed and Simon (1975) for more details.
29 If �(A) = ℝ , as in the case of position or momentum, this possibility cannot arise.
30 Such phenomena have been discussed in other nonstandard treatments of quantum mechanics. See, for 
example, Benic et al. (2019).
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That said, there is little reason to worry about excessive expressive power of the 
hyperfinite model in the context of a no-collapse formulation like Everettian quan-
tum mechanics. Here the nearstandard vector representing a nearstandard global 
state always evolves infinitely close to the usual deterministic unitary evolution 
and hence stays nearstandard. Consequently, states that make good physical sense 
continue to make good physical sense under the dynamics. Further, what worlds 
there are and what their states are at each time is fully determined by the linear 
decomposition of nearstandard state in terms of the eigenstates of one’s specified 
observable.31

5  Nonstandard formulations of Everett’s limiting properties

Everett considered the statistical limiting properties of pure wave mechanics to be 
centrally important to his interpretation of the theory. He discussed this point at the 
conference on the foundations of quantum mechanics at Xavier University. While 
the participants were most interested in talking about branching worlds, Everett 
wanted to talk about his relative frequency and randomness results. He began an 
extended monologue on the topic:

I’d like to make one final remark here. Imagine a very large series of experi-
ments made by an observer. With each observation, the state of the observer 
splits into a number of states, one for each possible outcome, and correlated to 
the outcome. Thus the state of the observer is a constantly branching tree, each 
element of which describes a particular history of observations. Now, I would 
like to assert that, for a “typical” branch, the frequency of results will be pre-
cisely what is predicted by ordinary quantum mechanics. (Barrett and Byrne, 
2012, 274–275)

To make this claim, Everett explained, one needs a measure over branches. He chose 
the norm-squared coefficient measure on the grounds that it had a number of salient 
formal properties. He took his most significant achievement to be in showing that, 
in this measure, measure one of the branches in the determinate-record basis will 
exhibit the standard quantum statistics in the limit as an infinite number of measure-
ments are made.

Everett had briefly sketched his argument for his relative frequency property in 
the long version of his Ph.D. thesis (1956, 126–127) and in the much shorter ver-
sion of his thesis that he defended and was subsequently published as a standalone 
research paper (1957, 190–194). He had also, yet more briefly, sketched an argu-
ment for a randomness property (1956, 127–128). These two properties together say 
that measure one of the branches will exhibit random sequences of results exhibit-
ing the usual quantum statistics in the limit as an infinite number of measurements 

31 Compare this with Raab’s (2004) formulation of the standard collapse theory using nonstandard meth-
ods where the dynamics may require collapses to nonstandard eigenstates where there is no clear physi-
cal interpretation.
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are made.32 Hence, Everett concluded, “all predictions of the usual theory will 
appear to be valid to the observer in almost all observer states” (1957, 194). This is 
what it meant to him for his formulation of pure wave mechanics to be empirically 
adequate.33

To see how this works in the context of the hyperfinite model, fix an infinite ele-
ment K of ∗ℕ and let � ∶=

⨂K

i=1
∗
ℂ

2 denote the hyperfinite-dimensional space that 
is the internal tensor product of K copies of ∗ℂ2 . This space allows one to represent 
the composite system of the measuring device and the first K object systems after K 
sequential measurements of x-spin. Suppose that each particle is prepared in state 
(1) above. We consider the element ��⟩ ∶= ∑

x∈2K �
ix�K−ix �x⟩ of � ; here, ix denotes 

the internal cardinality of the set of those j = 1,… ,K such that x(j) = 1 (which 
represents x-spin up). Set �x ∶=

ix

K
 for the relative frequency of achieving x-spin up 

according to the branch x. We let B ∶ � → � denote the internal self-adjoint opera-
tor defined by B�x⟩ ∶= �x�x⟩ . Note that B is internally bounded.

Let ���⟩ denote the internal scalar-valued spectral measure corresponding to ��⟩ , 
that is, for any internally Borel subset E ⊆ ∗

ℝ , ���⟩(E) ∶=
∑

�x∈E
��ix�K−ix �2 . We let 

�
��⟩
L

 denote the corresponding Loeb measure. We also let ◦B ∶ ◦
� → ◦

� denote the 
corresponding nonstandard hull map (as defined in the previous section) with scalar-
valued spectral measure �◦��⟩.

The following theorem is the nonstandard reformulation of Everett’s relative fre-
quency theorem:34

Theorem  10 Using the above notation, we have ���⟩
L

({x ∈ 2K ∶ �x ≈ �2}) = 1 , 
whence �◦��⟩({�2}) = 1 . Consequently, ◦��⟩ is an eigenvector of ◦B with eigenvalue 
�2.

The argument for the nonstandard interpretation of Everett’s randomness theo-
rem is relatively straightforward. Fix infinite K ∈ ∗

ℕ and consider the “restriction 
map” f ∶ 2K → 2ℕ which restricts a hyperfinite sequence of 0’s and 1’s to its initial 
segment indexed by standard natural numbers. Consider 2K equipped with the Loeb 
measure �L associated with the internal product measure on 2K while we consider 
2ℕ with its usual Lebesgue measure (that is, infinite product measure) m. It is not 
hard to verify that the pushforward of �L along f is precisely m. Consequently, if we 
repeat our measurement K times as above, then the total measure, as determined by 
�L , that our sequence x belongs to f −1(E) for any Lebesgue null subset E of 2ℕ is 0. 
In particular, if E is the set of nonrandom sequences, with respect to any standard 
criterion for what it means for such a sequence to be nonrandom, then E will be 

32 See Hartle (1968) for an early discussion of the relative frequency property, and and Farhi et  al. 
(1989) for a proof. See Barrett (1999) for a discussion of the experimental setup and both the relative-
frequency and randomness properties and a discussion of why such arguments are insufficient alone to 
entail standard quantum probabilities.
33 See Barrett (2011a, 2015) for discussions of how Everett thought of empirical adequacy.
34 This theorem follows the same line of argument as the theorem for the standard case. See (Barrett, 
1999, 100–104).
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countable and thus be Lebesgue null. Hence almost all sequences in measure �L will 
satisfy any standard criterion for being random.35

As a simple concrete example of the relative frequency and randomness proper-
ties, consider an observer who repeats an x-spin measurement on an � sequence of 
particles each prepared in state (1) above. The two basic limiting properties in the 
context of the hyperfinite model entail that measure one of the branches, in meas-
ure �L , will exhibit the standard quantum relative frequencies with |�|2 proportion 
of the results being “ ↑x ” and |�|2 proportion of the results being “ ↓x ” and with no 
computationally specifiable pattern. Since measure one of the worlds will exhibit the 
standard quantum statistics with randomly distributed results, the standard quantum 
predictions will hold in a typical world (in the sense of typical given by measure �L).

We now prove a continuous spectrum version of Everett’s relative frequency 
theorem.

Suppose that the hyperfinite-dimensional system (�,A
�
,H

�
) is a faithful model 

of (H,A,H) . We adopt the same notation as in the previous section. Fix ��⟩ ∈ ns(∗H) 
and infinite K ∈ ∗

ℕ . Let �K,��⟩ denote the internal measure on IK obtained by tak-
ing the internal product measure of the measure �A

�
,��⟩ . (This is the internal notion 

of typicality here.) Also, let �K
L

 denote the Loeb measure on [1,  K] coming from 
counting measure as described in Sect. 3. For each y ∈ IK and Borel set F ⊆ ℝ , let 
XF,y ∶= {j ∈ [1,K] ∶ �y(j) ∈ st−1(F)} . Note that each XF,y is a Loeb measurable sub-
set of [1, K].

Theorem 11 Fix ��⟩ ∈ ns(∗H) . Then for sufficiently large infinite K ∈ ∗
ℕ , we have 

the following: for every Borel set F ⊆ ℝ , we have that �K
L
(XF,K,y) = �A,st��⟩(F) for 

�
K,��⟩
L

-almost all y ∈ IK.

Proof Fix infinitesimal 𝜖 > 0 . For K ∈ ∗
ℕ , y ∈ IK , and internally Borel E ⊆ ∗

ℝ , set

Note that each XE,K,y is internal. Furthermore, let ZK consist of those y ∈ IK such that 
� �XE,K,y�

K
− 𝜇A

�
,�𝜙⟩(E)� < 𝜖 for all internally Borel sets E ⊆ ∗

ℝ . Then by transferring 
the classical Everett limiting theorem, there is K0 ∈

∗
ℕ such that, for all K ≥ K0 , 

we have that 𝜁K,�𝜙⟩(ZK) > 1 − 𝜖 . For each Borel set F ⊆ ℝ and each m ∈ ∗
ℕ (finite 

or infinite), let Fm ∶= {𝜆 ∈ ∗
ℝ ∶ dist(𝜆, ∗F) <

1

m
} . Since XF,K,y =

⋂∞

m=1
XFm,K,y

 , 
we have that �K

L
(XF,K,y) ≈ �K(XFM ,K,y

) for any infinite M ∈ ∗
ℕ . If y ∈ ZK , then 

�K(XFM ,K,y
) ≈

�XFM ,K,Y �
K

≈ �A
�
,��⟩(FM) . Since st−1(F) =

⋂∞

m=1
Fm , we have that 

�A,st��⟩(F) = �
A
�
,��⟩

L
(st−1(F)) ≈ �A

�
,��⟩(FM).

Putting this all together, we have that �K
L
(XF,K,y) = �A,st��⟩(F) for all y ∈ ZK . Since 

�
K,��⟩
L

(ZK) = 1 , we may conclude.   ◻

XE,K,y ∶= {j ∈ [1,K] ∶ �y(j) ∈ E}.

35 See (Barrett, 1999, 104–105) for this theorem in the standard context and Barrett and Huttegger 
(2019) for an extended discussion of quantum randomness.
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In the statement of the theorem, how large K needs to be chosen may depend on 
the state ��⟩ ∈ ns(∗H) , that is, using the notation from the proof, the value of K0 
may depend on ��⟩ . Setting K��⟩ for this value of K0 dependent on ��⟩ , it is readily 
verified that K��⟩ = Kst��⟩ . Consequently, if the nonstandard extension is sufficiently 
saturated, then by choosing K0 ∈

∗
ℕ greater than K��⟩ for all ��⟩ ∈ H , we see that 

the conclusion of the theorem holds for any K ≥ K0 , independent of the choice of 
��⟩ ∈ ns(∗H).

In the next section, we will see an illustration of the limiting property just proven 
in the case of an observable with continuous spectrum.

6  An example: motion of a particle in ℝn

In this section, we show how the hyperfinite representation works for a particular 
concrete example, namely for the motion of a single particle in ℝn . In this case, 
H ∶= L2(ℝn) and our observable A under consideration will be Xj , the operator 
which multiplies a function by the variable xj , for some j = 1,… , n . This operator 
corresponds to observing the jth-coordinate of the position of the particle. The Ham-
iltonian for our system is given by H ∶= −

ℏ

2m
Δ + V(�) , where Δ is the n-dimen-

sional Laplacian, � = (X1,… ,Xn) is the vector consisting of the various position 
operators, and V ∶ ℝ

n → ℝ is some function (whence V(�) represents the potential 
energy).

We briefly discuss some natural conditions on which A and H satisfy the common 
core assumption. A theorem of Kato (which follows from the aforementioned Kato-
Rellich Theorem) states that if n ≤ 3 and V ∶ ℝ

n → ℝ belongs to L2(ℝn) + L∞(ℝn) , 
then any core for Δ is a core for the Hamiltonian H. A more general version of 
Kato’s theorem holds for dimension n ≥ 4 if the assumption V ∈ L2(ℝn) + L∞(ℝn) 
is replaced with V ∈ Lp(ℝn) + L∞(ℝn) for some p >

n

2
 . Since C∞

c
(ℝn) , the space of 

smooth functions on ℝn with compact support, is a core for Δ as well as any Xj , we 
thus have many natural potential functions for which our common core assumption 
holds.36

From now on, we fix a potential function V for which A and H share a com-
mon core M . We fix a hyperfinite-dimensional subspace � of ∗H that is adapted 
to M . Suppose that (��i⟩)i∈I is an internal orthonormal eigenbasis for A

�
 with cor-

responding eigenvalues (�i)i∈I . Consequently, these �i ∈ ∗
ℝ represent the possible 

measurement outcomes when measuring A
�

 . According to Proposition 5 above, for 
each � ∈ �(A) = ℝ , there is some i ∈ I such that � ≈ �i . That is, the measurement 
outcome �i for A

�
 should be thought of as an approximate measurement (with infi-

nite precision) corresponding to a measurement of the jth coordinate of the particle 
being � . Each ��i⟩ , being an actual eigenvector of A

�
 , is such that A

�
��i⟩ − �i��i⟩ is 

orthogonal to every vector in � . In particular, since � contains M , which is a dense 

36 See Chapter X of Reed and Simon (1975) for more examples of when the common core assumption 
holds.
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subspace of L2(ℝ) , we see that ��i⟩ must behave like a Dirac function with jth coor-
dinate function positioned at �i.

Fix some initial (standard) state ��⟩ ∈ H = L2(ℝ) of the particle and write 
��⟩ = ∑

i∈I �i��i⟩ , where each �i ∈ ∗
ℂ (whence 

∑
i∈I ��2

i
� = 1 ). Suppose we then let 

the particle evolve according to the internal unitary evolution Vt ∶= e−itH� . Given 
some t ∈ ∗

ℝ , we may then consider the internal state of the system at time t, namely

In the last step, we have rewritten the evolved state in terms of the eigenbasis for A
�

 . 
Recall also that for standard time t ∈ ℝ , the above �(t)⟩ will be infinitely close to the 
standard evolution Ut��⟩ of our original state ��⟩.

Suppose an observer now makes a measurement. The relative observer whose 
system state is ��i⟩ would get the determinate result �i . For a �A

�
,��(t)⟩

L
-measure 1 set 

of worlds, such �i belongs to fin(ℝ) and represents an approximate measurement of 
the jth position of the particle being st(�i) , where this approximate measurement has 
infinite precision. Moreover, by Theorem 11 above, if one repeats this measurement 
a sufficiently large hyperfinite number of times, the relative frequency of landing 
infinitely close to any particular Borel set agrees with the standard quantum statisti-
cal measure �A,�st�(t)⟩ of that Borel set. Further, the particular sequence of results will 
pass any standard test for randomness for almost all relative sequences in the norm-
squared measure. Finally, the global state ��(t)⟩ evolves according to the internal 
dynamics V at all times with the local states of the worlds determined by the non-
standard decomposition of the state.

7  Discussion

The present hyperfinite model has a number of features that Everett would have 
found compelling. It allows one to understand the global state as a set of branches 
corresponding to the eigenvalues of a continuous-valued observable. The measure 
associated with the set of branches behaves in a natural way akin to what one might 
expect from a probability measure over a finite set. Indeed, the hyperfinite-dimen-
sional state space behaves very much like a finite-dimensional state space. This 
makes operations like forming linear combinations of states and calculating prob-
abilities particularly intuitive. The model gives values infinitesimally close to the 
standard quantum probabilities when the probabilities are finite. It is also possible 
for a branch to be associated with an infinitesimal probability. Conveniently, these 
sum just like finite probabilities. And the hyperfinite model allows for a straightfor-
ward formulation of the standard unitary quantum dynamics.

There is a close connection between the standard and the hyperfinite models. 
Specifically, as we have proven here, the latter provides a faithful representation 
of the former. The standard model, then, guides one in understanding the physical 
content of the nonstandard model. While the hyperfinite model arguably has more 

��(t)⟩ ∶= Vt��⟩ = Vt

�
�
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�i��i⟩
�

=
�

i∈I
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expressive power than one needs, nearstandard states remain nearstandard under the 
dynamics and hence continue to make good physical sense.

In addition to providing an intuitive picture of hyperfinitely many worlds, we 
have shown how one might prove versions of Everett’s statistical limiting properties 
in the hyperfinite model. The result is that the norm-squared measure of the result-
ing branches that will exhibit the standard random quantum statistics in the limit as 
one performs an unbounded sequence of measurements is one. Hence, the statistical 
predictions of the standard collapse formulation of quantum mechanics will appear 
to be valid in almost all of the hyperfinite many worlds in this measure.

In brief, the hyperfinite model provides a way to think of a set of worlds that 
represent a continuous spectrum of measurement outcomes and for which one can 
prove versions of his limiting results. In this regard, it satisfies the conditions that 
Everett stipulated at the Xavier conference. Finally, it provides an intuitive frame-
work in which to consider no-collapse formulations of quantum mechanics more 
generally.
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