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Abstract
This paper offers a logico-algebraic investigation of AGM belief revision based on 
the logic of paradox ( LP ). First, we define a concrete belief revision operator for 
LP , proving that it satisfies a generalised version of the traditional AGM postulates. 
Moreover, we investigate to what extent the Levi and Harper identities, in their clas-
sical formulation, can be applied to a paraconsistent account of revision. We show 
that a generalised Levi-type identity still yields paraconsistent-based revisions that 
are fully compatible with the AGM postulates. The main outcome is that, once the 
classical AGM framework is lifted up to an appropriate level of generality, it still 
appears as a regulative ideal for treating of paraconsistent-based epistemic operators.

Keywords AGM belief revision · Algebraic logic · Paraconsistent logic · Epistemic 
operators · Kleene lattices · Levi identity · Harper identity

1 Introduction

Belief revision theory thrives during the 80s and 90s, reflecting the growing 
concern in the same years of database updates in computer science and artificial 
intelligence. Among all the belief revision theories, AGM theory is widely recog-
nised as a milestone. AGM belief revision theory was initialised by Alchourrón 
and Makinson (1982) and Alchourrón et  al. (1985) and developed by Gärden-
fors (1992). Briefly, the AGM belief revision theory primarily answers how to get 
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rid of the inconsistency and minimise the information loss to accommodate new 
information, sometimes contradictory information to an agent’s own beliefs.

To achieve this, a formal epistemology of belief revision theory is required. 
Basically, such a theory should possess the following essential components: 
a classification of the epistemic attitudes; a formal representation of epistemic 
states; an account of the epistemic inputs and a classification of epistemic 
changes; and, finally, a general criterion of rationality. Such a criterion should be 
a principle of information economy, which requires that an agent could accommo-
date new information and concurrently minimise the loss of the original beliefs. 
This criterion is induced because data are valuable, and it is better to preserve 
them as much as possible.

Following the above requirements, the main framework of AGM theory 
includes an agent’s belief state, which is closed under a consequence operation 
Cn. Since AGM theory adopts a classical propositional logic, the consequence 
operation is ⊢�� in this regard.

In this paper, we develop a logico-algebraic analysis of an AGM-based para-
consistent belief operator. We deeply rely on the framework introduced in Fazio 
and Baldi (2021), where it is shown that the machinery of (abstract) algebraic 
logic can be fruitfully applied to study the semantic aspects of a general con-
traction operator. The fundamental technical tool is the theory of generalised 
matrices, which allows for a language-independent formulation on the AGM 
contraction postulates, therefore generalizing the usual axiomatisation which 
strongly relies on the classical vocabulary. In such a way, a contraction can be 
performed not only over theories belonging to the syntactical level, but also over 
the intended semantics of a logic. The main advantage of this perspective is that 
it provides a unique framework for studying the properties of contraction in non-
classical logics. The necessary notions of this perspective are recalled in Sects. 2 
and 3. However, in the AGM framework, contraction is just one side of the coin, 
the other comprising the fundamental epistemic action, i.e., the revision operator.

The debate on AGM belief revision and paraconsistency originates in Priest 
(2001), where several issues concerning the AGM treatment of inconsistencies 
within an epistemic process are addressed. A different investigation on the topic 
is contained in Bueno and da Costa (1998). There, the authors provide a detailed 
construction, based on the hierarchy of the so-called Cn paraconsistent logics, 
where the AGM framework is capable of dealing with specific inconsistent epis-
temic states, without leading to triviality. A further proposal, closely connected 
with the previous one, consists in Mares (2002). Here, the key idea is to replace 
the AGM constraint of consistency as well as non-triviality with the requirement 
of coherency between what an agent accepts and what she does reject. In this 
case, the investigation is based on the relevant logic � and it relies on a modifi-
cation of the primitive notion of belief set. More recently, the authors of Testa 
et al. (2017) tackle the problem of a paraconsistent AGM account of revision at a 
greater level of generality, showing how to develop a meaningful notion of belief 
change for a family of super-classical paraconsistent logics, as well as for log-
ics of formal inconsistency. Each of the above mentioned proposals is forced to 
embrace at least one of the following limitations: 
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 (i) rejecting many of the AGM postulates;
 (ii) rejecting the primitive AGM notion of belief set;
 (iii) dealing with logics that have classical logic as fragment.

Here, we show that, once the AGM framework is appropriately generalised by 
using the techniques of Fazio and Baldi (2021), it allows for a satisfactory treat-
ment of a paraconsistent revision operator without relying on (i)-(iii). As proved 
in Sect.  4, it is possible to formulate a concrete paraconsistent belief revision 
operator for the Logic of Paradox ( LP ) that satisfies all the traditional AGM pos-
tulates (Definition 31 and Theorem 33). Even if we do not claim that the men-
tioned operator is ideal regarding every possible situation, its treatment reveals 
that there is nothing intrinsic to the AGM framework preventing us to model con-
tradictory, and non-trivial epistemic situations. The explicit motivation for this 
is highlighted by the construction of Lemma 27. Similarly, we further extend the 
investigation to other two milestones of the AGM tradition: namely the Levi and 
the Harper identity (Sect. 5). We determine sufficient and necessary conditions to 
recapture the classical interdefinability between contraction and revision modulo 
these identities (Theorems 45, 48). As for the AGM potulates for a revision oper-
ator, it becomes clear that an appropriate reformulation of the Levi identity can 
fully represent revisions (for our operator) in terms of contractions and expan-
sions (Proposition 40, (i)). This is not true, in general, for the Harper identity 
(Proposition 40, (ii)). There is a radical difference between these two identities. 
While Levi’s identity encodes a logic-independent process to dene revisions, 
Harper’s identity is intrinsically connected to precise properties of classical logic. 
This is because in a Boolean algebra, the identity x ∧ ¬x ≈ 0 holds. The overall 
outcome is that, once we replace the classical interpretation of negation with the 
concept of trivialiser (Definition 17), a considerable portion of the AGM frame-
work perfectly fits with a paraconsistent account of revision.

The emerging picture suggests that it is possible to deviate from the route 
specified by the above mentioned proposals (Priest, 2001; Mares, 2002; Bueno & 
da Costa, 1998), where, for different reasons, the standard AGM account appears 
unsatisfactory when it comes to model paraconsistency.

2  Preliminaries

Let �� be the absolutely free algebra (the term algebra) of a fixed type built up 
over a countably infinite set Var of variables.

A consequence relation on Fm is a relation ⊢ ⊆ P(Fm) × Fm s.t. for all 
Γ,Δ ∈ P(Fm) and � ∈ Fm , 

R. If � ∈ Γ , then Γ ⊢ 𝜑

M. If Γ ⊢ 𝜑 and Γ ⊆ Δ , then Δ ⊢ 𝜑

C. If Γ ⊢ 𝜑 and Δ ⊢ 𝜓 for all � ∈ Γ , then Δ ⊢ 𝜑.
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A logic is a consequence relation ⊢ ⊆ P(Fm) × Fm , which is substitution-invariant 
in the sense that for every substitution (i.e. endomorphism) � ∶ �� → ��,

A generalised matrix (g-matrix for short), is a pair ⟨�,C⟩ , where � is an algebra, 
and C ⊆ P(A) is a closure system on A (see Font, 2016, Definition 1.24). Given a 
g-matrix ⟨�,C⟩ , we denote by C�

g

C
(⋅) the closure operator (Font, 2016, Definition 

1.19) on A associated with C  (cf. Font, 2016,  Theorem  1.26). We often omit the 
superscript C  when the context is clear. A g-matrix M = ⟨�,C⟩ induces a logic ⊢M 
as follows:

A class of g-matrices � induces a logic ⊢� upon setting:

 A g-matrix M is a model of ⊢ when ⊢ ≤ ⊢M i.e. when ⊢M is an extension of ⊢ (see 
Font, 2016, p. 27; see also Burris and Sankappanavar 1981). A logic ⊢ is complete 
with respect to a class of g-matrices � when ⊢ = ⊢� . Given a logic ⊢ and an algebra 
� of the same type, Fi�

⊢
 denotes the closure system on � whose members are the 

⊢-filters over � (see Font, 2016, Def. 2.18). We will denote by Fg�
⊢
(⋅) the closure 

operator associated to Fi�
⊢
 . A logic ⊢ has a conjunction (is conjunctive) provided 

that there exists a term-definable binary operation ∧ such that, for any algebra � of 
the same type, and a, b ∈ A:

namely if it satisfies the classical introduction and elimination inference rules for 
conjunction with respect to ∧ (cf. Font, 2016, Definition 5.16).

A distinctive class of g-models of a logic ⊢ is the so-called class of basic full 
g-models, namely the g-matrices of the form ⟨�,Fi�

⊢
⟩ for an algebra � . We denote 

this class by ������(⊢) . A congruence � on � is compatible with a closure system 
C  on A when for all a, b ∈ A , a�b entails C�

g
(a) = C�

g
(b) . The set of congruences on 

� that are compatible with a closure system C  is a complete lattice and has a maxi-
mum, called the Tarski congruence of the g-matrix, which we denote by Ω̃C  . Given 
a logic ⊢ , we set

When the Tarski congruence of a g-matrix is the identity relation, we say that the 
g-matrix is reduced. The class of reduced full g-models of a logic is defined as

A logic ⊢ is said to be filter-distributive if Fi�
⊢
 is a distributive lattice, for every alge-

bra � of the same type (see Czelakowski, 1984, Definition II.1).

if Γ ⊢ 𝜑, then 𝜎Γ ⊢ 𝜎𝜑.

Γ ⊢M 𝜑 ⟺ for every homomorphism h ∶ �� → �, h(𝜑) ∈ C�

g
(h[Γ]).

Γ ⊢� 𝜑 ⟺ (Γ,𝜑) ∈
⋂

M∈�

⊢M .

Fg�
⊢
(a, b) = Fg�

⊢
(a ∧ b),

���(⊢) = {� ∶ there exists a g-model⟨�,C⟩ s.t. Ω̃C = Δ}.

�����⋆(⊢) = {⟨�,C⟩ ∶ � ∈ ���(⊢),C = Fi�
⊢
}.
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The logic of paradox ( LP for short) is the logic defined by the the g-matrix 
⟨��, {{1, n}, {0, n, 1}}⟩ , where �� is the algebra corresponding to the (Cayley) 
Strong Kleene tables depicted below:

The intended algebraic semantics associated with LP , namely ���(LP) , is the variety 
of Kleene lattices ( KL ), whose definition is the following:

Definition 1 A Kleene lattice is a bounded distributive lattice with an additional 
unary operation ¬ satisfying the following conditions:1

 (i) x ∨ y ≈ ¬(¬x ∧ ¬y)

 (ii) x ∧ y ≈ ¬(¬x ∨ ¬y)

 (iii) ¬¬x ≈ x

 (iv) x ∧ ¬x ≤ y ∨ ¬y.

In this paper, we will work within the signature of Kleene lattices and, if not 
stated otherwise, we always assume algebras to be non-trivial.

It is well known (see e.g. Albuquerque et  al., 2017; Font, 2016) that given 
� ∈ KL , the LP-filters on � are nothing but lattice filters containing all elements 
of the form a ∨ ¬a , for every a ∈ A . In fact, since LP has a conjunction (Font, 
2016, Definition 5.16), this fact follows by Albuquerque et al. (2017, Theorem 2.13.
(ii), Theorem 3.4.(ii)) and Font (2016, Definition 2.18).

Remark 2 As a consequence, one has that, for any � ∈ KL and X ⊆ A , 
Fg�

LP
(X) = {a ∨ ¬a ∶ a ∈ A} ∪ {b ∈ A ∶ a1 ∧⋯ ∧ an ≤ b, for some a1,… , an ∈ X}.

The set of all LP-filters on � will be denoted by Fi�
LP

.
The reason why we assume Kleene lattices as our semantic ground relies on the 

perspective introduced in Fazio and Baldi (2021). The idea is that, when checking 
the validity of the AGM postulates in LP , the appropriate semantic framework to 
consider is the class �����∗(LP) . Now, as already noticed, the intended algebraic 
counterpart of �� is ���(��) = KL

2. Therefore, since the algebraic reducts of the 
models belonging to �����∗(LP) are nothing but the algebras � ∈ KL = ���(��) , 
we can safely assume that Kleene lattices are precisely the semantics to work with 
for modeling belief revision in �� . Moreover, the closure system Fi�

⊢
 perfectly 

∧ 0 n 1

0 0 0 0

n 0 n n

1 0 n 1

∨ 0 n 1

0 0 n 1

n n n 1

1 1 1 1

¬

1 0

n n

0 1

1 In this paper, we assume that the LP language contains constants symbols 0,  1, which when inter-
preted in a Kleene lattice, play the role of maximum and minimum elements, respectively. This is not 
an uncommon choice (see Albuquerque et al., 2017), though not necessary for the LP presentation (see 
Pynko, 2000).
2 see Font (2016, Sec 5.4)
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translates into a semantic perspective the original AGM purpose of working with the 
set of logical theories over Fm.

It is easy to see that LP is a finitary, disjunctive logic in the sense of Czelakowski 
(2001, §2.5.1), so, by Czelakowski (2001, Thm. 2.5.8), the following holds:

Theorem 3 LP is a filter-distributive logic.

3  Abstract Algebraic Expansion and Contraction Operators

In this section, we will summarize basic definitions and facts concerning abstract 
algebraic (logic) AGM expansion and contraction operators from Fazio and 
Baldi (2021). As remarked above, this approach is fully semantic. AGM expan-
sion is meant to be an operation ⊕ taking as input a logical filter F and an ele-
ment a of a basic full g-model ⟨�,Fi�

⊢
⟩ of a given finitary logic ⊢ and returning 

as output an F� ∈ Fi�
⊢
 extending F, while AGM contraction associates to any pair 

(F, a) ∈ Fi�
⊢
× A a non-empty family C  of sub-filters of F.

The following definition provides a set of postulates for abstract algebraic AGM 
expansion.

Definition 4 Consider ⟨�,Fi�
⊢
⟩ ∈ ������(⊢) . Then ⊕ ∶ Fi�

⊢
× A → Fi�

⊢
 is an 

expansion operator over ⟨�,Fi�
⊢
⟩ if it satisfies the following postulates, for any 

a ∈ A and F ∈ Fi�
⊢
 : 

(⊕1).  F ⊕ a ∈ Fi�
⊢
;

(⊕2).  a ∈ F ⊕ a;
(⊕3).  F ⊆ F ⊕ a;
(⊕4).  If a ∈ F , then F = F ⊕ a;
(⊕5).  For any F� ∈ Fi�

⊢
 , if F′ ⊆ F , then F′ ⊕ a ⊆ F ⊕ a;

(⊕6).  F ⊕ a is the smallest set satisfying ⊕1 −⊕5.

It can be seen that, given ⟨�,Fi�
⊢
⟩ ∈ ������(⊢) , an expansion opera-

tor ⊕ over ⟨�,Fi�
⊢
⟩ satisfies the postulates of Definition 4 if and only if 

F ⊕ a = Fg�
⊢
(F, a) = F ∨Fi�

⊢ Fg�
⊢
(a) , for any F ∈ Fi�

⊢
 , a ∈ A . Moreover, note that if 

⊢=⊢LP , then by Theorem 3 and (Fazio & Baldi, 2021, Proposition 7), we have the 
following:

Proposition 5 Consider ⟨�,Fi�
⊢LP

⟩ ∈ ������(⊢LP) and let ⊕ be the expansion 
operator over ⟨�,Fi�

⊢LP
⟩ . Then the following holds, for any F,G ∈ Fi�

⊢LP
 and a ∈ A:

We now consider contraction operators by first recalling a semantic, multiple-out-
put generalisation of AGM postulates in classical logic.

(dist)(F ∩ G)⊕ a = (F ⊕ a) ∩ (G⊕ a).
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In the abstract algebraic framework we consider in this paper, classical AGM con-
tractions are meant to be operators defined over basic full g-models of ⊢CL . Apart 
from its intrinsic semantic nature, the notion of contraction we consider differs from 
the original one (see e.g. Gärdenfors, 1992) since it is non-deterministic. Given 
⟨�,Fi�

CL
⟩ ∈ ������(⊢CL) , a contraction operator ⊖ takes a pair (F, a) ∈ Fi�

CL
× A , 

and returns a (possibly infinite!) family C  of sub-filters of F. The next definition is 
(Fazio & Baldi, 2021, Definition 4).

Definition 6 Let ⟨�,Fi�
CL
⟩ ∈ ������(⊢CL) . Then ⊖ ∶ Fi�

CL
× A → P(Fi�

CL
) is a 

multiple-conclusion classical AGM contraction operator over ⟨�,Fi�
CL
⟩ if it satisfies 

the following postulates for every a, b ∈ A and F ∈ Fi�
CL

 : 

(⊖1).  F ⊖ a ⊆ Fi�
CL

(⊖2).  For any K ∈ F ⊖ a , K ⊆ F;
(⊖3).  If a ∉ F then F ⊖ a = {F};
(⊖4).  If a ∉ Fg�

CL
(�) then a ∉ K , for any K ∈ F ⊖ a;

(⊖5).  If a ∈ F then, for any K ∈ F ⊖ a , K ⊕ a = F;
(⊖6).  If Fg�

CL
(a) = Fg�

CL
(b) then F ⊖ a = F ⊖ b;

(⊖7).  For any K1 ∈ F ⊖ a and K2 ∈ F ⊖ b there exists H ∈ F ⊖ a ∧ b such that 
K1 ∩ K2 ⊆ H;

(⊖8).  If a ∉ K ∈ F ⊖ a ∧ b then K ⊆ H , for some H ∈ F ⊖ a.

We now introduce some general notions concerning AGM theory. For the pur-
pose of this paper, it is sufficient for the reader to internalize a restricted version of 
Definitions 7 and 9, which is summarized in Definition 13.

In passing from the classical setting to the fully general framework of abstract 
algebraic AGM contraction, a further step of generalisation is needed. Abstract alge-
braic contraction is not only semantic and non-deterministic but also non-prioritised 
(see, e.g. Fermé & Hansson, 2018, p. 68; Rott, 1992). Alternatively, in contracting 
a given belief set F by a proposition a, we consider the possibility for an epistemic 
agent A  to express a preference concerning beliefs in F, which must be considered 
undeniable truths knowing that a must be rejected. The next definition simplifies 
(Fazio & Baldi, 2021, Definition 8).

Definition 7 Consider ⟨�,Fi�
⊢
⟩ ∈ ������(⊢) . A preference function over Fi�

⊢
 is a 

mapping 𝜏 ∶ Fi�
⊢
× A → Fi�

⊢
 such that �(F, a) = F , if a ∈ Fg�

⊢
(�) , and �(F, a) = K , 

where K is an arbitrary sub-filter of F, otherwise.

If � is such that 𝜏(F, a) = Fg�
⊢
(�) , for any a ∉ Fg�

⊢
(�) , then � is said to be the 

absolutely skeptical preference function, and it is denoted by �0.

Remark 8 It is easily seen that

a ∈ 𝜏0(F, a) if and only if a ∈ Fg�
⊢
(�) and 𝜏0(F, a) = F,
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for any F ∈ Fi�
⊢
 and a ∈ A.

The meaning of absolutely skeptic preference functions is clear. They reflect 
the behaviour of an epistemic agent willing to reject any belief which is not a 
tautology. In other words, to say that b ∉ �(F, a) means that b is rejectable when 
revising F with a new evidence a.

We are now ready to introduce postulates for contraction in the setting of 
abstract algebraic AGM theory.

Definition 9 Consider a logic ⊢ , ⟨�,Fi�
⊢
⟩ ∈ ������(⊢) , and a preference func-

tion 𝜏 ∶ Fi�
⊢
× A → Fi�

⊢
 over Fi�

⊢
 . Then an operator ⊖𝜏 ∶ Fi�

⊢
× A → P(Fi�

⊢
) is a �

-contraction operator over ⟨�,Fi�
⊢
⟩ if it satisfies the following postulates for every 

a1,… , an, a, b ∈ A , F ∈ Fi�
⊢
 , and � ,� ∈ Fm : 

(⊖𝜏1).  F ⊖𝜏 a ⊆ Fi�
⊢

(⊖𝜏2).  For any K ∈ F ⊖𝜏 a , 𝜏(F, a) ⊆ K ⊆ F;
(⊖𝜏3).  If a ∉ F , then F ⊖𝜏 a = {F};
(⊖𝜏4).  If a ∉ �(F, a) , then a ∉ K , for any K ∈ F ⊖𝜏 a;
(⊖𝜏5).  If a ∈ F and a ∉ �(F, a) , then for any K ∈ F ⊖𝜏 a , F = K ⊕ a;
(⊖𝜏6).  If Fg�

⊢
(a) = Fg�

⊢
(b) then F ⊖𝜏 a = F ⊖𝜏 b;

(⊖𝜏7).  If Fg�
⊢
(a1,… , an) = Fg�

⊢
(b) then, for every family Ki ∈ F ⊖𝜏 ai (for 

1 ≤ i ≤ n ) there exists H ∈ F ⊖𝜏 b such that 

(⊖𝜏8).  If 𝛾 ⊢ 𝜑 , then for any homomorphism h ∶ �� → � , and for any 
K ∈ F ⊖𝜏 h(𝛾) , if h(�) ∉ K , there exists H ∈ F ⊖𝜏 h(𝜑) such that K ⊆ H.

In what follows, to have an easier and smoother description of contractions 
outputs, we will consider �0-contraction operators. Indeed, for such types of con-
tractions, if a logic ⊢ has a conjunction ∧ , then ⊖𝜏1 −⊖𝜏8 from Definition 9 are 
equivalent to ⊖1 −⊖8 from Definition 6.

Theorem  10 Let ⊢ be a logic with conjunction ∧ and consider 
⟨�,Fi�

⊢
⟩ ∈ ������(⊢) . Consider an operator ⊖ ∶ Fi�

⊢
× A → P(Fi�

⊢
) . The fol-

lowing are equivalent: 

 (i) ⊖ is a �0-contraction operator over ⟨�,Fi�
⊢
⟩;

 (ii) ⊖ satisfies postulates ⊖1 −⊖8 of Definition 6, for any a, b ∈ A and F ∈ Fi�
⊢
.

Proof See (Fazio & Baldi, 2021, Theorem 17).   ◻

⋂

i∈I

Ki ⊆ H;
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We now consider the abstract algebraic AGM version of one of the most impor-
tant and debated contraction operators, namely maxichoice contraction. Before giv-
ing an explicit definition thereof regarding absolutely skeptic preference functions, 
let us recall its building blocks.

The next definition is an easy adaptation of (Fazio & Baldi, 2021, Definition 18) 
to the case � = �0.

Definition 11 Let ⟨�,Fi�
⊢
⟩ ∈ ������(⊢) . For every F ∈ Fi�

⊢
 and a ∈ A , we define 

S𝜏0(F,a) ∶= {X ⊆ F ∶ a ∉ Fg�
⊢
(X, 𝜏0(F, a))}.

Note that, by Remark 8 and Definition 11, for any ⟨�,Fi�
⊢
⟩ ∈ ������(⊢) , 

F ∈ Fi�
⊢
 and a ∈ A , one has that

In order to simplify notation, since we will deal with absolutely skeptic preference 
functions only, we will frequently omit the subscript “ �0 ”. This convention will not 
be adopted in Sect. 5 , where we will deal with other contraction operators. Further-
more, due to the definition of �0 and since ⊢ is finitary, we have (see Fazio & Baldi, 
2021, Remark 19):

Remark 12 For any ⟨�,Fi�
⊢
⟩ ∈ ������(⊢) , 

 (i) S(F,a) ≠ � if and only if it has maximal elements, for every F ∈ Fi�
⊢
 and a ∈ A

;
 (ii) For any H ∈ S(F,a) , there exists a maximal K ∈ S(F,a) such that H ⊆ K;

Let us denote by Max(S(F,a)) the set of maximal elements in S(F,a) . Since Fg�
⊢
 is a 

closure operator and by Definition 11, if Max(S(F,a)) ≠ � , then any K ∈ Max(S(F,a)) 
is a sub-filter of F, which is maximal for not containing a.

Definition 13 Let ⟨�,Fi�
⊢
⟩ ∈ ������(⊢) . The �0−maxichoice contraction operator 

over ⟨�,Fi�
⊢
⟩ is the operator ⊖m

𝜏0
∶ Fi�

⊢
× A → P(Fi�

⊢
) such that, for any a ∈ A and 

F ∈ Fi�
⊢

Until Sect. 5, we will exclusively deal with the maxichoice contraction based on 
the absolutely skeptic preference function. Therefore, we will unambiguously denote 
⊖m

𝜏0
 with the symbol ⊖.
In light of the above considerations, it is easy to see that, for any 

⟨�,Fi�
⊢
⟩ ∈ ������(⊢) , F ∈ Fi�

⊢
 and a ∈ A , F ⊖ a returns {F} , if a ∉ F or 

a ∈ Fg�
⊢
(�) , and F ⊖ a yields the set of sub-filters of F, which are maximal for not 

containing a, otherwise.

(1)S𝜏0(F,a) =

{
� if a ∈ Fg�

⊢
(�)

{X ⊆ F ∶ a ∉ Fg�
⊢
(X), } otherwise

F ⊖m
𝜏0
a ∶=

{
{𝜏0(F, a)}, if a ∈ 𝜏0(F, a)

{Fg�
⊢
(H, 𝜏0(F, a)) ∶ H ∈ Max(S(F,a))}, otherwise
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Remark 14 Since LP has a conjunction, by (Fazio & Baldi, 2021, Example 15, The-
orem 41) and Theorem 10, it happens that the �0-maxichoice contraction operator 
over an arbitrary ⟨�,Fi�

LP
⟩ ∈ ������(⊢LP) satisfies postulates ⊖1 −⊖4,⊖6 −⊖8.

However, the next remark shows that ⊖5 , i.e. the recovery postulate might fail.

Remark 15 Consider the 25-element Kleene lattice � depicted 
below, with n standing for the fixed point for negation. One has 
that ⟨�,Fi�

LP
⟩ ∈ �����∗(⊢LP) ⊆ ������(⊢LP) . Fix the LP-filter 

F =↑ b ∧ ¬a . We have that F ⊖ a ∧ n = {↑ ¬a ∧ n, ↑ a ∧ b} and, moreover, 
↑ ¬a ∧ n⊕ a ∧ n =↑ a ∧ ¬a ≠ F , as suggested.

4  The Maxichoice‑Based Revision Operator for LP

In this section, we introduce a revision operator for LP and we prove that it satis-
fies all the AGM postulates.

Let us begin by defining a multiple conclusion revision over models of classi-
cal logic.
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Definition 16 Set ⟨�,Fi�
CL
⟩ ∈ �����∗(⊢CL) . Then ⊗ ∶ Fi�

CL
× A → P(Fi�

CL
) is a 

multiple-conclusion classical AGM revision operator over ⟨�,Fi�
CL
⟩ if it satisfies the 

following postulates for every a, b ∈ A and F ∈ Fi�
CL

 : 

(⊗1).  F ⊗ a ⊆ Fi�
CL

;
(⊗2).  For any K ∈ F ⊗ a , a ∈ K;
(⊗3).  For any K ∈ F ⊗ a , K ⊆ F ⊕ a;
(⊗4).  If ¬a ∉ F , then F ⊗ a = {F ⊕ a};
(⊗5).  If A ∈ F ⊗ a , then a = 0;
(⊗6).  If Fg�

CL
(a) = Fg�

CL
(b) , then F ⊗ a = F ⊗ b.

(⊗7).  For any K ∈ F ⊗ a ∧ b , there exists H ∈ F ⊗ a such that K ⊆ H ⊕ b;
(⊗8).  For any K ∈ F ⊗ a , if ¬b ∉ K , then there exists H ∈ F ⊗ a ∧ b such that 

K ⊕ b ⊆ H.

The previous definition has a double goal: first, it lifts the usual notion of classical 
AGM revision operator up to the semantics of basic reduced full g-models of classi-
cal logic; second, it provides a multiple-conclusion version of the AGM postulates.

In the next definition and the subsequent lemma we introduce the notion of trivi-
aliser. The intuitive role of trivialisers can be explained as follows: suppose we con-
sider a certain belief set F on A and to reach a specific epistemic stage where we 
are forced to revise F with an element a (ideally not already contained in F), then 
the set of trivialisers identifies the elements of F whose logical closure with a coin-
cides with the whole set A. A much more precise characterization of trivializers can 
be provided as follows. Let � ∈ KL and let F ∈ Fi�

LP
 . Note that, for any X ⊆ A , 

Fg�
LP
(X) = A if and only if 0 ∈ Fg�

LP
(X) , and 0 = a ∨ ¬a only in case � is trivial. 

Therefore, by Remark 2, for any x ∈ F , one has that 0 ∈ Fg�
LP
(x, a) if and only if 

x ∧ a = 0 . The above reasoning motivates the next

Definition 17 Let � be a Kleene lattice and F ∈ Fi�
LP

 . Given a ∈ A , we define:

The elements of F⊥
a
 are called the trivialisers of a with respect to F.

Remark 18 Note that, for any Kleene lattice � , F ∈ Fi�
LP

 , and a ∈ A , Fg�
LP
(F, a) ≠ A 

if and only if F does not contain trivializers. In fact one has that

since F is closed under ∧.

Let us provide a concrete example in order to illustrate the role of trivializers.

F⊥
a
∶= {x ∈ F ∶ x ∧ a = 0}.

Fg�
LP
(F, a) = A ⟺ 0 ∈ Fg�

LP
(F, a)

⟺ for some a1,… , an ∈ F, a1 ∧⋯ ∧ an ∧ a = 0

⟺ F⊥
a
≠ �,
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Example 19 In the following picture, let us denote by F the elements in the bigger 
rectangular shape. The trivializers of F with respect to b, in symbols F⊥

b
 , are the ele-

ments within circles. 

Let � be a Kleene lattice and X ⊆ A . We will denote by I�(X) the lattice-ideal 
in � generated by X. The following facts provide a deeper insight into the alge-
braic properties of trivialisers.

Lemma 20 Let � be a Kleene lattice and F ∈ Fi�
LP

 . 

 (i) if F⊥
a
≠ ∅ , then it is a sublattice of �;

 (ii) if b ∈ F⊥
a
 , then b ≤ ¬a;

 (iii) if a ∧ ¬a = 0 , then F⊥
a
= I�(¬a) ∩ F.

Proof 

 (i). If x, y ∈ F⊥
a
 , then x ∧ a = 0 and y ∧ a = 0 entail (x ∧ y) ∧ a = 0 . By distributiv-

ity, we also have (x ∨ y) ∧ a = (x ∧ a) ∨ (y ∧ a) = 0 , as desired.
 (ii). Clearly we have a ∨ ¬a ∈ Fg�

LP
(b) and (a ∨ ¬a) ∧ b = ¬a ∧ b , by distributiv-

ity. By the notion of LP-filter generation, this entails that b ∧ ¬a = c ∨ ¬c for 
some c ∈ A or that b ≤ b ∧ ¬a . The first case cannot occur, for otherwise, 
c ∨ ¬c ∈ F⊥

a
 , so b ≤ ¬a.

 (iii). Note that, by (ii), one has F⊥
a
⊆ I�(¬a) ∩ F . Moreover, if ¬a ∧ a = 0 , then 

¬a ∈ F⊥
a
 . So, I�(¬a) ∩ F ⊆ F⊥

a
.
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  ◻

As an easy consequence of the above lemma, we have

Lemma 21 Let � be a Kleene lattice and F ∈ Fi�
LP

 . Given a ∈ A , if F⊥
a
≠ ∅ , then 

¬a ∈ F.

Thanks to the acquired knowledge concerning trivialisers, we are now ready to 
provide a notion of revision operator for LP , where inconsistency and triviality are 
no longer identical.

Definition 22 Consider ⟨�,Fi�
LP
⟩ ∈ �����∗(⊢LP) . A map ⊗ ∶ FiA

LP
× A → P(Fi�

LP
) 

is an AGM LP-revision operator over ⟨�,Fi�
LP
⟩ if it satisfies the following postu-

lates, for any a, b ∈ A and F ∈ Fi�
LP

 : 

(⊗1)  F ⊗ a ⊆ Fi�
LP

;
(⊗2)  For any K ∈ F ⊗ a , a ∈ K;
(⊗3)  For any K ∈ F ⊗ a , K ⊆ F ⊕ a;
(⊗4)  If F⊥

a
= � , then F ⊗ a = {F ⊕ a};

(⊗5)  If A ∈ F ⊗ a , then a = 0;
(⊗6)  If Fg�

LP
(a) = Fg�

LP
(b) then F ⊗ a = F ⊗ b;

(⊗7)  For any K ∈ F ⊗ a ∧ b , there exists H ∈ F ⊗ a such that K ⊆ H ⊕ b;
(⊗8)  For any K ∈ F ⊗ a , if K⊥

b
= � , then there exists H ∈ F ⊗ a ∧ b such that 

K ⊕ b ⊆ H.

The simple, but crucial difference between the usual formulation of the AGM 
postulates for revision and the above one is highlighted in (⊗4) and (⊗8) , where 
trivialisers come into play. A successful revision may now contain contradictory 
formulas, as it is expected when handling a paraconsistent logic. The connection 
between the role of trivialisers and contradictory formulas in classical logic is 
described by Theorem 24, whose proof essentially relies on the following lemma.

Lemma 23 Let ⟨�,Fi�
CL
⟩ ∈ �����∗(⊢CL) . Then for any F ∈ Fi�

CL
 and a ∈ A , 

F⊥
a
= � if and only if ¬a ∉ F.

Proof The right-to-left direction follows by Lemma 20 upon noticing that � is a 
Boolean algebra (and so, it is also a Kleene lattice) and F is a lattice filter of � . 
Concerning the converse direction, just note that if F⊥

a
= � , then ¬a ∉ F , since 

a ∧ ¬a = 0 .   ◻

Theorem 24 Consider ⟨�,Fi�
CL
⟩ ∈ �����∗(⊢CL) and let ⊗ ∶ Fi�

CL
× A → P(Fi�

CL
) 

be a map. Then the following are equivalent: 

 (i) ⊗ is a multiple-conclusion classical AGM revision operator;
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 (ii) ⊗ satisfies postulates ⊗1 −⊗8 of Definition 22.

Proof It follows directly by Lemma 23.   ◻

We now introduce the concrete construction of an AGM revision operator for 
LP . The crucial step is to determine how to remove the set of trivialisers of a fil-
ter by means of a contraction operation. Lemma 27 describes how to do so.

Definition 25 Let � be a Kleene lattice, F ∈ Fi�
LP

 and a ∈ A . We define:

The above definition can be better internalized by considering the following 
example.

Example 26 Consider the setting described in Example 19. The following picture 
describes the result of performing F ⊖ F⊥

b
 . 

Lemma 27 Let � be a Kleene lattice, F ∈ Fi�
LP

 and 0 ≠ a ∈ A . Then there exist 
H ∈ F ⊖ F⊥

a
 without trivialisers.

F ⊖ F⊥
a
∶=

�⋃
{F ⊖ ai ∶ ai ∈ F⊥

a
}, if F⊥

a
≠ �, a ≠ 0

{F} otherwise
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Proof Set F⊥
a
= {ai}i∈I , for some non-empty set of indexes I. Let us con-

sider X = {a ∨ ai ∶ i ∈ I} . Clearly, X ∩ F⊥
a
= � . Now, take Fg�

LP
(X) . Observe 

that b ∈ Fg�
LP
(X) if and only if b = c ∨ ¬c (for some c ∈ A ) or there exist 

a ∨ x1,… , a ∨ xn ∈ X ( n > 0 ) such that

by Lemma 20(i). Clearly, for any i ∈ I , ai ∉ Fg�
LP
(X) , since otherwise ai = c ∨ ¬c , 

which is impossible, or a ∨ aj ≤ ai , for some j ∈ I , and a ≤ ai , i.e. a = 0 , against 
our assumptions. Now, let ai be an arbitrary trivialiser. By Remark 12, Fg�

LP
(X) can 

be extended to H ∈ Max(S(F,ai)) . Clearly, H ∈ F ⊖ ai . Let us show that H ∩ F⊥
a
= � . 

Indeed, if there exists a trivializer ak ∈ H ∩ F⊥
a
 , then ak ∨ ai ∈ H . So, since 

a ∨ ai ∈ H , one has

a contradition. We conclude that H is a solution in F ⊖ ai without trivialisers.   ◻

In light of Lemma 27, the following definitions make sense.

Definition 28 Let � be a Kleene lattice, F ∈ Fi�
LP

 and a ∈ A . We define:

Of course, the notation introduced above might look like imprecise, since the 
set S+

a
 is always defined for a given filter F. However, in the sequel, the filter w.r.t. 

the above set is introduced will be always deducible from the context. Intuitively, 
the members of S+

a
 are precisely the filters belonging to F ⊖ a that do no contain 

trivializers. In other words S+
a
 selects only the "good" solutions of a contraction.

Lemma 29 Let � be a Kleene lattice. Then for any F ∈ Fi�
LP

 and a ∈ A such that 
a ∧ ¬a = 0 , one has

Proof If a = 0 resp. F⊥
a
= � , then ¬a = 1 ∈ Fg�

LP
(�) and ¬a ∉ F (since ¬a ∈ F⊥

a
 ), 

respectively. Hence, in both cases F ⊖ ¬a = {F} = S
+
a
 . Otherwise, suppose that 

a ≠ 0 and F⊥
a
≠ ∅ . By the definition of S+

a
 and Lemma 20(ii), since a ∧ ¬a = 0 , it is 

easy to see that S+
a
⊆ F ⊖ ¬a . Conversely, if H ∈ F ⊖ ¬a , then clearly H ∈ F ⊖ F⊥

a
 

and H ∩ F⊥
a
= � , again by Lemma 20(ii). So H ∈ S

+
a
 .   ◻

Lemma 30 Let � be a Kleene lattice. Then for any F ∈ Fi�
LP

 and a ∈ A:

n⋀

i=1

(a ∨ xi) = a ∨

n⋀

i=1

xi = a ∨ ak,

ai = ai ∨ (a ∧ ak) = (ai ∨ a) ∧ (ai ∨ ak) ∈ H,

S
+
a
∶=

{
{G ∈ F ⊖ F⊥

a
∶ G ∩ F⊥

a
= �}, if F⊥

a
≠ �, a ≠ 0

{F} otherwise

S
+
a
= F ⊖ ¬a.

S
+
a
= {H ∈ F ⊖ F⊥

a
∶ {a ∨ ai ∶ ai ∈ F⊥

a
} ⊆ H}.
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Proof Set X = {H ∈ F ⊖ F⊥
a
∶ {a ∨ ai ∶ ai ∈ F⊥

a
} ⊆ H} . 

If a = 0 , then F⊥
a
= F and {a ∨ ai ∶ ai ∈ F⊥

a
} = F , namely 

X = {H ∈ F ⊖ F ∶ F ⊆ H} =
⋃
{F ⊖ b ∶ b ∈ Fg�

LP
(�)} = {F} = S

+
a

 . 
So, let us assume a ≠ 0 . If F⊥

a
= � , then {a ∨ ai ∶ ai ∈ F⊥

a
} = � and 

X = {H ∈ F ⊖ F ∶ F ⊆ H} = {H ∈ {F} ∶ � ⊆ H} = {F} = S
+
a
 . Finally, suppose 

that F⊥
a
≠ ∅ . Adapting the argument from the proof of Lemma 27, it is easily seen 

that X ⊆ S
+
a
 . Now, consider G ∈ S

+
a
= {G ∈ F ⊖ F⊥

a
∶ G ∩ F⊥

a
= �} . Let us suppose 

for contradiction that there exists ai ∈ F⊥
a
 such that a ∨ ai ∉ G . Since G ∈ F ⊖ F⊥

a
 , 

there exist x1,… , xn ∈ G such that (
⋀n

i=1
xi) ∧ (a ∨ ai) ≤ ak , for some ak ∈ F⊥

a
 . 

Set 
⋀n

i=1
xi = c . One has (c ∧ a) ∨ (c ∧ ai) = c ∧ (a ∨ ai) ≤ ak and so (c ∧ a) ≤ ak . 

Therefore, c ∧ a = 0 and c ∈ G ∩ F⊥
a
 , contradicting G ∩ F⊥

a
= � . We conclude that 

{a ∨ ai ∶ ai ∈ F⊥
a
} ⊆ G and G ∈ X , i.e. S+

a
= X .   ◻

Definition 31 Let � be a Kleene lattice, F ∈ Fi�
LP

 and a ∈ A . The maxichoice-revi-
sion of F with respect to a is defined as:

The above definition of ⊗�� allows to represent with an example the whose pro-
cess of revision, which may be visualized as a 3-stages action.

Example 32 We now graphically represent a concrete example of the 3 steps process 
of revision. Consider the following initial state. According to the previously intro-
duced notation, the bigger rectangle identifies the filter F, the circled elements are 
trivializers, while the small rectangle highlights the element b. 

The next two pictures provide the outcomes of the contraction F ⊖ F⊥
b
 . 

F ⊗LP a ∶= {Fg�
LP
(H, a) ∶ H ∈ S

+
a
}
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Among these two, only the one below belongs to S+
b
 , as the other one still con-

tains trivializers. 

The final result of the revision process, namely F ⊗�� b , is displayed here: 
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The next step is to show that the above defined operator fully copes with the 
AGM account of revision for LP (see Definition 22).

Theorem 33 The revision operator ⊗LP satisfies all the abstract AGM postulates.

Proof (⊗1)-(⊗3 ) are obviously satisfied by ⊗LP . ( ⊗4 ) holds, since 
F ⊖ F⊥

a
= {F} = S

+
a
 when F⊥

a
= � . Let now a ≠ 0 . If F⊥

a
= � , then F ≠ A 

and, by construction, F ⊗LP a = {Fg�
LP
(F, a)} ≠ {A} . If F⊥

a
≠ ∅ , Definition 

22 entails that every solution K ∈ F ⊗LP a is of the form K = Fg�
LP
(H, a) for 

H ∈ S
+
a
 . Since, by Lemma 27, H does not contain trivialisers, Fg�

LP
(H, a) = K 

is non trivial, as required by ( ⊗5 ). If Fg�
LP
(a) = Fg�

LP
(b) = Fg�

LP
(�) , then 

F ⊗LP a = {F ⊕ a} = {F} = {F ⊕ b} . Otherwise, the antecedent of ( ⊗6 ) entails 
a = b and therefore ( ⊗6 ) holds.

To prove (⊗7) , first consider the case that S+
a∧b

= F , i.e. (1) a ∧ b = 0 or 
(2) F⊥

a∧b
= � . If (1), then F ⊗LP (a ∧ b) = {A} and, since a ∈ H for every 

H ∈ F ⊗LP a , we obtain a ∧ b ∈ Fg�
LP
(H, b) = A , as desired. If (2), then clearly 

F⊥
a
= F⊥

b
= � . Therefore, if K ∈ F ⊗LP (a ∧ b) , then K = Fg�

LP
(F, a ∧ b) 

and if H ∈ F ⊗LP a , then H = Fg�
LP
(F, a) . These observations entail that 

K = Fg�
LP
(F, a ∧ b) = Fg�

LP
(F, a, b) = Fg�

LP
(H, b) , as required. The only remain-

ing case to consider is S+
a∧b

≠ F , i.e. a ∧ b ≠ 0 and F⊥
a∧b

≠ � . We claim that if 
P ∈ S

+
a∧b

 , then there exists Q ∈ S
+
a
 such that P ⊆ Q . To this end, let P ∈ S

+
a∧b

 . By 
Lemma 30, xi ∨ (a ∧ b) ∈ P for every xi ∈ F⊥

a∧b
 . Since F⊥

a
⊆ F⊥

a∧b
 , yj ∨ (a ∧ b) ∈ P 

for every yj ∈ F⊥
a
 . By distributivity, we have (yj ∨ a) ∧ (yj ∨ b) ∈ P and, since P is 

an LP-filter, this entails yj ∨ a ∈ P . Therefore, we conclude {yj ∨ a ∶ yj ∈ F⊥
a
} ⊆ P . 

By noticing that P ∩ F⊥
a
= � , we can extend P to Q ∈ F ⊖ yk , for an 
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arbitrary yk ∈ F⊥
a
 . By Lemma 27, Q ∈ S

+
a
 , and this proves the claim. Suppose now 

K = Fg�
LP
(P, a ∧ b) ∈ F ⊗LP (a ∧ b) and consider H = Fg�

LP
(Q, a) ∈ F ⊗LP a . By 

the previous observation K ⊆ F�
g
(Q, a, b) = Fg�

LP
(H, b) = H ⊕ b , as desired.

Finally, to prove (⊗8) , consider K ∈ F ⊗LP a and assume K⊥
b
= � , which entails 

K ≠ A, Fg�
LP
(K, b) ≠ A and a, b, a ∧ b ≠ 0 . First, if F⊥

a
= � , then K = F ⊕ a and, 

since (F ⊕ a)⊥
b
= � , one has F⊥

a∧b
= � and F ⊗LP a ∧ b = {F ⊕ a ∧ b} . So, we 

conclude K ⊕ b = (F ⊕ a)⊕ b = F ⊕ a ∧ b . Therefore, let us assume w.l.o.g. 
that F⊥

a
≠ ∅ which entails that F⊥

a∧b
≠ � . Fix K = Fg�

LP
(Q, a) for Q ∈ S

+
a
 . Con-

sider X = {(a ∧ b) ∨ xi ∶ xi ∈ F⊥
a∧b

} . Since a ∧ b ∈ K ⊕ b , we have X ⊆ K ⊕ b . 
Moreover, X ⊆ F and so X ⊆ (K ⊕ b) ∩ F = D . Now, since K⊥

b
= � entails 

D ∩ F⊥
a∧b

= � , we can extend D to H ∈ F ⊖ xi , for some xi ∈ F⊥
a∧b

 . By Lemma 
30, H ∈ S

+
a∧b

 and so H ⊕ a ∧ b ∈ F ⊗LP a ∧ b . By distributivity, we have 
K ⊕ b = K ⊕ a ∧ b = (K ⊕ a ∧ b) ∩ (F ⊕ a ∧ b) = (K ∩ F)⊕ a ∧ b ⊆ H ⊕ a ∧ b  , 
as desired.   ◻

Remark 34 Observe that, in some cases, the above described operator ⊗LP , when 
applied to the formula algebra, always coincides with the expansion operator ⊕ . 
Indeed, let F ∈ Fi��

LP
 be a non trivial theory, and consider � ∈ Fm . If � = 0 , then 

clearly F⊥
𝜑
= {F} = S

+
𝜑
 and so F ⊗LP 𝜑 = Fg

��

LP
(F,𝜑) = F ⊕𝜑 = Fm . If � ≠ 0 , then 

F⊥
𝜑
= � , as it is immediate to verify that, for every � ∈ F ≠ Fm , we have 𝜓 ,𝜑 ⊬LP 0 . 

Therefore F ⊖ F⊥
𝜑
= {F} , and consequently F ⊗LP 𝜑 = {Fg

��

LP
(F,𝜑)} = {F ⊕𝜑} , 

as desired.

The previous remark highlights the advantages of a semantic-oriented inter-
pretation of the revision operator, in particular when the underlying logic is para-
consistent. Indeed, switching from formulas to the intended algebraic semantics 
allows for a more fine-grained treatment of the revision operator, avoiding its col-
lapse to the expansion operator. A further important difference between the clas-
sical and the paraconsistent case is described in the following Remark 36 and 
Proposition 37.

Definition 35 Let ⟨�,Fi�
LP
⟩ ∈ �����∗(⊢LP) . A filter F ∈ Fi�

LP
 is complete provided 

that, for any a ∈ A , a ∈ F or ¬a ∈ F.

Remark 36 Observe that the revision operator ⊗LP does not fall prey to the usual 
problem of the classical revision operator based on a maxichoice contraction, 
namely that it forces a sort of "logical omniscience" (see e.g. Lévy (1994)). Indeed, 
given a filter F, the fact that ¬a ∈ F does not entail, in general, that solutions of 
F ⊗LP a are complete filters. As an example, consider the figure depicted in Remark 
15 and fix F =↑ a ∧ n . Clearly, a ∨ ¬a ∈ F . However, it is easy to verify that 
F ⊗LP a ∧ ¬a = {↑ a ∧ ¬a} and b,¬b ∉↑ a ∧ ¬a.
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Proposition 37 Let ⟨�,Fi�
LP
⟩ ∈ �����∗(⊢LP) and a ∈ A such that a ∧ ¬a = 0 . 

Then for any F ∈ Fi�
LP

 , ¬a ∈ F entails that K is a complete LP-filter of � , for any 
K ∈ F ⊗LP a.

Proof Assume that a ∧ ¬a = 0 , let F be an arbitrary LP-filter such that ¬a ∈ F . 
Clearly ¬a ∈ F⊥

a
 . Now, if a = 0 , then F ⊗LP a = {A} and our statement trivially 

holds. So, assume that a ≠ 0 . Note that ¬a ∈ F and a ∧ ¬a = 0 entail that F⊥
a
≠ ∅ . 

Let K be an arbitrary filter in F ⊗LP a . Then, by Definition 31, there exists H ∈ S
+
a
 

such that K = Fg�
LP
(H, a) . Let us show that for any b ∈ A , one has ¬a ∨ b ∈ H or 

¬a ∨ ¬b ∈ H . Suppose for contradiction that ¬a ∨ b,¬a ∨ ¬b ∉ H . This means 
that there exist c1, c2 ∈ H such that c1 ∧ (¬a ∨ b) ≤ ¬a and c2 ∧ (¬a ∨ ¬b) ≤ ¬a . 
By distributivity, one has that c1 ∧ b, c2 ∧ ¬b ≤ ¬a . Now, set d = c1 ∧ c2 ∈ H . We 
have that ¬a ≥ (d ∧ b) ∨ (d ∧ ¬b) = d ∧ (b ∨ ¬b) ∈ H and so ¬a ∈ H , a contradic-
tion, since H ∈ S

+
a
 . We conclude that ¬a ∨ b ∈ H or ¬a ∨ ¬b ∈ H . Finally, note that 

¬a ∨ b ∈ H entails that b ∈ K , because of b ≥ b ∧ a = (¬a ∨ b) ∧ a (by distributiv-
ity). By an analogous argument we have that ¬a ∨ ¬b ∈ H entails that ¬b ∈ K .   ◻

Observe that the converse of Proposition 37 is false. This can be easily seen just 
by considering the algebra �� (the algebra corresponding to the Strong Kleene 
tables) and letting F = {1, n} , a = 1.

The next proposition shows that our ⊗LP operator always subsumes any possible 
LP revision operator.

Proposition 38 Let ⊗ ∶ FiA
LP

× A → P(Fi�
LP
) be an arbitrary AGM LP-revision 

operator over a reduced basic full g-model ⟨�,Fi�
LP
⟩ . Then for any F ∈ FiA

LP
 , a ∈ A , 

G ∈ F ⊗ a , there exists H ∈ F ⊗LP a such that G ⊆ H.

Proof If F⊥
a
= � , then by Theorem 33, F ⊗LP a = {F ⊕ a} . Therefore, by (⊗4) our 

conclusion trivially follows. Hence, let us assume w.l.o.g. that F⊥
a
≠ ∅ . Consider 

D = G ∩ F . If F⊥
a
∩ D ≠ � , then G = A and so, if A ∈ F ⊗ a then a = 0 . Hence, 

F ⊗ a = {A} = F ⊗LP a.

So, we can assume w.l.o.g. that F⊥
a
∩ D = � . Since, by (⊗1) and (⊗2) , G ∈ Fi�

LP
 

and a ∈ G , one has that X = {a ∨ ai ∶ ai ∈ F⊥
a
} ⊆ G . Hence, X ⊆ D . Now, extend 

D to a maximal H ∈ F ⊖ ai , for some ai ∈ F⊥
a
 . By Lemma 30, H ∈ S

+
a
 and 

P = Fg�
⊢
(H, a) ∈ F ⊗LP a . Therefore, G ∩ F = D ⊆ P and Theorem  3 entail that 

Fg�
⊢
(a) ∨Fi�

LP (G ∩ F) = (Fg�
⊢
(a) ∨Fi�

LP G) ∩ (Fg�
⊢
(a) ∨Fi�

LP F) = G ∩ (F ⊕ a) ⊆ P ∨Fi�
LP a = P  . 

However, by (⊗3) , one has that G ⊆ F ⊕ a . So, we conclude that G ⊆ P .   ◻

We close this section with a remark concerning the possibility of modelling com-
plex epistemic processes by means of the machinery introduced above. As it has 
been pointed out in the literature (see Mares, 2002), a suitable account of revision 
should allow to represent the behaviour of agents which might hold contradictory 
beliefs, but also refuse some contradiction although it does not cause their belief 
set to be trivial. In what follows, we show that, in our framework, in order to model 
complex epistemic processes, we do not need more (complex) operators than those 
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already encountered in the general theory developed above. To this aim, we first 
observe that contractions and revisions produce families of closed subsets as outputs, 
while expansions take closed sets as inputs. Therefore, to represent ‘compound’ 
epistemic processes, we have to introduce generalised expansion, contraction and 
revision operators over a given ⟨�,Fi�

LP
⟩ ∈ �����∗(⊢LP) . This task can be accom-

plished by representing epistemic states as sets of LP-filters, i.e. as given C ⊆ Fi�
LP

 , 
and epistemic operators as mappings P(Fi�

LP
) × A → P(Fi�

LP
) e.g. by setting

for any C ⊆ Fi�
LP

 and a ∈ A (cf. (Fazio and Baldi 2021, p. 927)). Consider the fol-
lowing example.

Example 39 Consider ⟨�,Fi�
LP
⟩ ∈ �����∗(⊢LP) . Let A  be an agent having an epis-

temic state C = {F} such that a ∈ F and a ≠ 0 . Now, suppose A  recognises that ¬a 
must be accepted and a must be rejected (hence, a ∉ Fg�

LP
(�) ). Moreover, assume 

that, for any K ∈ F ⊗LP ¬a , a ∈ K . This means that a ∧ ¬a can be considered as a 
true contradiction. We show that

produces a new epistemic state C′ such that, for any H ∈ C
� , ¬a ∈ H but a ∉ H . 

Alternatively, we show that (C⊠LP ¬a)⊟
m
𝜏0
a is an epistemic process that accepts 

¬a and rejects a (and so a ∧ ¬a ) successfully.
We first note that

Consider K ∈ C
� , then there exists H ∈ F ⊗LP ¬a such that K ∈ H ⊖ a . By Theo-

rem 33, ¬a ∈ H . Moreover, by Remark 14, a ∉ K . Now, let us suppose for contra-
diction that ¬a ∉ K . By Definition 13, this entails that a ∈ Fg�

LP
(K,¬a) . Therefore, 

(i) ¬a ≤ a , but this is impossible, since, otherwise, a ∈ Fg�
LP
(�) , or (ii) there exist 

x1 … xn ∈ K such that x1 ∧⋯ ∧ xn ∧ ¬a ≤ a . Hence, setting c = x1 ∧⋯ ∧ xn , one 
has a = a ∨ (c ∧ ¬a) = (a ∨ c) ∧ (a ∨ ¬a) ∈ K . Hence, a ∈ K , a contradiction. We 
conclude that ¬a ∈ K.

5  On the Levi and Harper Identities

In the classical AGM framework, Levi and Harper’s identities capture mutual 
interdefinability relationships between basic belief change operators. In par-
ticular, due to Levi’s identity, any (single-output) revision operator ⊗ can be 

C⊞ a ={H ⊕ a ∶ H ∈ C},

C⊟m
𝜏0
a =

⋃
{H ⊖ a ∶ H ∈ C} and

C⊠LP a =
⋃

{H ⊗LP a ∶ H ∈ C},

(C⊠LP ¬a)⊟
m
𝜏0
a

C
� = (C⊠LP ¬a)⊟

m
𝜏0
a =

⋃
{K ⊖ a ∶ K ∈ F ⊗LP ¬a}.
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mimicked by subsequent applications of a suitable contraction ⊖ and expansion 
as follows, for any � ∈ FmCL and F ∈ Fi

��CL

CL
:

Recall that, throughout the present section, the symbol ⊖ does not denote the 
maxichoice contraction based on the absolutely skeptic preference function, but 
an arbitrary contraction. Moreover, any operator defined by (L) with respect to a 
contraction function ⊖ happens to be indeed a revision operator (cf. Gärdenfors, 
1988,  Theorem  3.2, Theorem  3.3). Hence, due to (L), belief revision can always 
serve as a secondary notion constructed via the primitive operations of belief expan-
sion and belief contraction (cf. Nayak et al., 2006). This fact has suggested the fol-
lowing Decomposition principle due to Fuhrmann Fuhrmann (1989) and Hansson 
(2003).

Every legitimate belief change is decomposable into a sequence of contrac-
tions and expansions.

Similarly, Harper’s identity guarantees that any (single-output) contraction 
operation ⊖ can be constructed using a suitable revision ⊗ as follows, for any 
� ∈ FmCL and F ∈ Fi

��CL

CL
:

Moreover, any operation defined by (H) with respect to a revision function ⊗ is 
indeed a contraction (cf. Gärdenfors, 1988, Theorems 3.4, 3.5). Now, in our context, 
given the algebraic and multiple-output nature of our belief change operators, (L) 
and (H) can be rephrased, for any reduced basic full g-model ⟨�,Fi�

CL
⟩ , F ∈ Fi�

CL
 

and a ∈ A , as

and

We will refer to the latter versions of Levi and Harper’s identities by (L) and (H) as 
well.

First, we observe that due to our construction of ⊗LP , we could express the 
connection between contraction and revision provided by (L) for classical logic 
at a greater general level. Indeed, the next proposition shows explicitly that our 
account of revision just replaces consistency preservation by avoiding triviality. 
Alternatively, in our paraconsistent setting, the revision of an LP-filter F by a new 
belief a comprises: 1) removing from F any information which is “incompatible” 
with our new evidence, 2) adding a to obtain a set of non-trivial theories contain-
ing a.

Proposition 40 Let � be a Kleene lattice. Then for any a ∈ A and F ∈ Fi�
LP

 , the fol-
lowing hold: 

(L)F ⊗𝜑 = (F ⊖ ¬𝜑)⊕𝜑.

(H)F ⊖𝜑 = (F ⊗ ¬𝜑) ∩ F.

F ⊗ a = {K ⊕ a ∶ K ∈ F ⊖ ¬a}

F ⊖ a = {K ∩ F ∶ K ∈ F ⊗ ¬a}.
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 (i) F ⊗LP a = {G⊕ a ∶ G ∈ S
+
a
};

 (ii) S
+
a
= {G ∩ F ∶ G ∈ F ⊗LP a}.

Proof 

 (i) trivially follows by the definition of ⊗LP.
 (ii) If a = 0 or F⊥

a
= � , then F ⊗LP a = {F ⊕ a} and so S+

a
= {F} = {(F ⊕ a) ∩ F} . 

Otherwise, suppose that a ≠ 0 and F⊥
a
≠ ∅ . If K ∈ S

+
a
 , then clearly K ⊆ G ∩ F , 

for some G ∈ F ⊗LP a , by the definition of ⊗LP . Moreover, suppose for contra-
diction that there exists c ∈ (G ∩ F) ∖ K . This means that ai ∈ Fg�

LP
(K, c) , for 

some ai ∈ F⊥
a
 and so G = A , i.e. a = 0 , by Theorem 33 ( ⊗5 ), a contradiction. 

We conclude that K = G ∩ F and so S+
a
⊆ {G ∩ F ∶ G ∈ F ⊗LP a} . Conversely, 

consider G ∩ F , for some G = Fg�
LP
(K, a) ∈ F ⊗LP a with K ∈ S

+
a
 . Then rea-

soning as above we have G ∩ F = K and so S+
a
= {G ∩ F ∶ G ∈ F ⊗LP a}.

  ◻

Therefore, if the core meaning of (L) is to add new beliefs avoiding triviality, then 
it still allows the definability of a suitable (at least for the AGM account) revision 
operator since it does not rely on any particular feature of classical logic. Indeed, 
although its formulation in our context depends on algebraic properties of Kleene 
lattices, a closer look shows that the notion of trivialiser is independent both from 
the language and algebraic semantics of logics it is conceived for. Hence, we argue 
that a reformulation of (L) that perfectly fits with an AGM-friendly paraconistent 
revision operator (if adequately generalised up to arbitrary vocabularies starting 
from Definition 22) should be the following:

where F ∈ Fi�
⊢
 , a ∈ A , F⊥

a
 is the set of b’s in F such that F�

g ⊢
(b, a) = A and 

(F ⊖ F⊥
a
)s is a set of subfilters of F resulting from removing trivialisers of a from F 

by a suitable abstract algebraic contraction ⊖ (see Definition 9). Here we do not 
mean that (PL) ensures the definability of a revision operator satisfying our postu-
lates for any contraction operator ⊖ (since e.g. (F ⊖ F⊥

a
)s might be empty). How-

ever, nothing prevents us from arguing that any suitable revision should encode, in 
some respects, (PL) as its key ingredient. We leave the verification of the above con-
jecture and its eventual full development to future studies.

As stated above, (L) can be easily generalised to fully cope with a paraconsistent 
setting. However, the same cannot be argued for (H). Revising a filter F by ¬a need 
not be sufficient for getting rid of a, since the latter might not contradict the former. 
Indeed, as shown by Proposition 40, F ⊖ a need not be fully recoverable using ⊗LP , 
since S+

¬a
 might not coincide with F ⊖m

𝜏0
a . We conclude that, while the regulative 

ideal underlying (L) transcends classical logic, (H) strongly relies on one of its pil-
lars: the non-contradiction principle. So, it cannot be considered as an identity 
which, in general, make sense within a paraconsistent setting.

The remaining part of this section is devoted to motivating why we believe that 
(L) and (H), formulated as they are, fit well within belief revision theory only if its 

(PL)F ⊗ a = (F ⊖ F⊥
a
)s ⊕ a,
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underlying logic is, in some sense, classical. We will outline to what extent (L) and 
(H) can still be considered reasonable defining identities for revision and contrac-
tion, respectively, in the LP setting. Let us summarise the basic achievements to be 
found below.

Concerning Levi’s identity, we will show that, under some conditions (see 
Lemma 43), any output given by (L) extends to a solution of ⊗LP . However, this 
need not hold in general (cf. Remark 41). Consequently, whenever � is such that 
there exists an element a and an LP-filter F such that a ≤ ¬a but F⊥

a
≠ ∅ , outputs of 

(L) cannot be extended to solutions of a suitable revision operator ⊗ over ⟨�,Fi�
LP
⟩ , 

by Remark 41 and Proposition 38. Furthermore, in the (not at all rare) case in which 
one is willing to revise a belief set F with an element a such that ¬a ∈ F ∖ Fg�

LP
(�) , 

the definability of ⊗LP by means of ⊖m
𝜏0

 conveys the very strong requirement that 
a ∧ ¬a = 0 , i.e a is Boolean3, by Theorem 48. Therefore, our framework does justice 
to, and (formally) clarifies the reasoning behind the common insight according to 
which consistency preservation cannot be considered, in general, as the core concept 
of belief revision, when a paraconsistent (here LP ) framework is considered. Indeed, 
it can be regarded as a leading idea in prototyping a revision operator satisfying gen-
eralised AGM postulates, and so, the informational economy principle they encode, 
on the heavy constraint that the underlying logic has a classical negation. Therefore, 
from our perspective, Levi’s identity, as it is, should be mostly considered as an 
accident rather than the substance of revision processes.

A similar argument (mutatis mutandis) applies to (H). Although one can find suf-
ficient conditions under which, for a given filter F and element a, outputs of F ⊖m

𝜏0
a 

can be extended to solutions of S+
¬a

= {H ∩ F ∶ F ⊗LP ¬a} (by Proposition 40 and 
Lemma 43 below), this need not hold in general. As for (L), the possibility of defin-
ing the maxichoice contraction ⊖m

𝜏0
 by (H) when a ∈ F ∖ Fg

�

LP
(�) , conveys the very 

strong requirement that a ∧ ¬a = 0 holds, by Theorem 45.
Considering the above discussion, next we investigate the relationship between 

basic AGM operators introduced so far to highlight sufficient and necessary condi-
tions under which (L) and (H) grant the interdefinability of ⊖m

𝜏0
 and ⊗LP.

Consider (�,Fi�
LP
) ∈ �����∗(⊢LP) , F ∈ Fi�

LP
 and a ∈ A . Let us denote by 

(F ⊖m
𝜏0
¬a)⊕ a resp. (F ⊗LP a) ∩ F the sets {Fg�

LP
(H, a) ∶ H ∈ F ⊖m

𝜏0
¬a} and 

{H ∩ F ∶ H ∈ F ⊗LP a} , respectively.

Remark 41 In general, (L) does not yield, using ⊖m
𝜏0

 , a reliable revision operator for 
LP . Indeed, suppose � ∈ KL is nontrivial and assume ¬a ≥ a ≠ 0 for some 
a ∉ F ∈ Fi�

LP
 such that F⊥

a
≠ ∅ . By the characterization of LP filters, 

¬a = ¬a ∨ a ∈ Fg�
LP
(�) . Therefore, F ⊖m

𝜏0
¬a = {F} . This, together with F⊥

a
≠ ∅ 

entails (F ⊖m
𝜏0
¬a)⊕ a = {A} , showing that Levi’s identity can induce trivial results 

even when starting from a nontrivial setting. A concrete example of this situation 

3 Indeed, it is well known that, given a Kleene lattice � , the set S ⊆ A such that, for any a ∈ S , 
a ∧ ¬a = 0 , forms a Boolean subalgebra of � (the center of � ), see e.g. Giuntini et al. (2016).
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can be obtained, e.g. from the 25-elements Kleene lattice from Remark 15, by let-
ting F =↑ b ∧ n , a = ¬b ∧ n , ¬a = n ∨ b.

In the remaining part of this section, we fix ⟨�,Fi�
LP
⟩ ∈ �����∗(⊢LP ) . The next 

easy lemma will be expedient for developing our arguments.

Lemma 42 For any a ∈ A and F ∈ Fi�
LP

 , if a ≰ ¬a and ¬a ∈ F , then, for any 
H ∈ F ⊖m

𝜏0
¬a , ¬a ∉ Fg�

⊢
(H, a).

Proof If a ≰ ¬a , then ¬a ≠ b ∨ ¬b , for any b ∈ A . Therefore, F ⊖m
𝜏0
¬a ≠ {F} . Now, 

consider G ∈ F ⊖m
𝜏0
¬a . Obviously, ¬a ∉ G . If ¬a ∈ Fg�

⊢
(G, a) , then there exist 

x1,… , xn ∈ G ( n ≥ 1 ) such that x1 ∧⋯ ∧ xn ∧ a ≤ ¬a . Set 
⋀n

i=1
xi = c . One has 

c ∧ a ≤ ¬a . So (c ∧ a) ∨ ¬a = ¬a . However, this entails that ¬a = (c ∨ ¬a) ∧ (a ∨ ¬a) 
and, since (c ∨ ¬a), (a ∨ ¬a) ∈ G , one has ¬a ∈ G . A contradiction.   ◻

The following result summarises some preliminary basic facts concerning the 
interdefinability of ⊗LP and ⊖m

𝜏0
 by (L) and (H). As it will be clear, apart from “triv-

ial” cases, if ¬a resp. a is not a tautology, then any solution of (F ⊖m
𝜏0
¬a)⊕ a resp. 

F ⊖m
𝜏0
a can be extended to a suitable output of F ⊗LP a resp. (F ⊗LP ¬a) ∩ F.

Lemma 43 Let a ∈ A and F ∈ FiA
LP

 . The following hold: 

 (i) If a ≰ ¬a then, for any H ∈ (F ⊖m
𝜏0
¬a)⊕ a , there exists H� ∈ F ⊗LP a such 

that H ⊆ H′.
 (ii) If ¬a ∉ F or ¬a = 1 , then (F ⊖m

𝜏0
¬a)⊕ a = F ⊗LP a

 (iii) If ¬a ≰ a , then for any H ∈ F ⊖m
𝜏0
a , there exists D ∈ (F ⊗LP ¬a) ∩ F such 

that H ⊆ D.
 (iv) If a ∉ F or a = 1 , then F ⊖m

𝜏0
a = (F ⊗LP ¬a) ∩ F.

Proof 

 (i) First, since a ≰ ¬a , then ¬a ≠ b ∨ ¬b , for any b ∈ A . Now, if F⊥
a
= � , then our 

conclusion follows trivially since F ⊗LP a = {F ⊕ a} , by ⊗4 . Therefore, sup-
pose that F⊥

a
≠ ∅ and so ¬a ∈ F (by Lemma 20(ii)). Let G be an arbitrary 

element in F ⊖m
𝜏0
¬a . Set X = {a ∨ ai ∶ ai ∈ F⊥

a
} . We show that X ⊆ G . If 

a ∨ ai ∉ G , for some ai ∈ F⊥
a

 , then, since G ∈ Max(S�0(F,¬a)) , one has 
¬a ∈ Fg�

LP
(G, a ∨ ai) . Hence, there exist x1,… , xn ∈ G ( n ≥ 1 ) such that 

x1 ∧⋯ ∧ xn ∧ (a ∨ ai) ≤ ¬a  .  P u t  
⋀n

i=1
xi = c  .  T h e n 

c ∧ (a ∨ ai) = (c ∧ a) ∨ (c ∧ ai) ≤ ¬a , namely c ∧ a ≤ ¬a . Therefore, we reach 
a contradiction since, by Lemma 42, ¬a ∉ Fg�

LP
(G, a) . We conclude that 

X ⊆ G . Moreover, by Lemma 20(ii), F⊥
a
∩ G = � . Now, consider an arbitrary 

ai ∈ F⊥
a

 and extend G to H ∈ F ⊖m
𝜏0
ai . By Lemma 30, H ∈ S

+
a
 and so 

Fg�
LP
(G, a) ⊆ Fg�

LP
(H, a) ∈ F ⊗LP a.
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 (ii) If ¬a ∉ F , then F⊥
a
= � , by Lemma 21. Therefore F ⊖m

𝜏0
F⊥
a
= F ⊖m

𝜏0
¬a = {F} 

and so (F ⊖m
𝜏0
¬a)⊕ a = {F ⊕ a} = F ⊗LP a (by ⊗4 ). Furthermore, if ¬a = 1 , 

then a = 0 and so (F ⊖m
𝜏0
¬a)⊕ a = {A} = F ⊗LP a.

 (iii) The case F⊥
¬a

= � is clear, since this implies that F ⊗LP ¬a = {F ⊕ ¬a} and 
so H ⊆ F = F ∩ (F ⊕ a) , for any H ∈ F ⊖m

𝜏0
a . So, we assume w.l.o.g. that 

F⊥
¬a

≠ � . Suppose that H ∈ F ⊖m
𝜏0
a . Note that, since ¬a ≰ a , a ∉ Fg

�

LP
(�) . 

Therefore, a ∉ H and so H ∩ F⊥
¬a

= � , by Lemma 20(ii). Now, we show that 
{¬a ∨ ai ∶ ai ∈ F⊥

¬a
} ⊆ H . So, suppose for contradiction that this is not the 

case. Hence, there exists aj ∈ F⊥
¬a

 such that, for some c ∈ H , c ∧ (¬a ∨ aj) ≤ a . 
Then, by Lemma 20(ii), (¬a ∨ aj) ∨ a = (a ∨ aj) ∨ ¬a = a ∨ ¬a ∈ H entails 
that 

 So, we have a ∈ H . However, since H ∈ F ⊖m
𝜏0
a , this means that 

a ∈ Fg
�

LP
(�) (by ⊖4 ). A contradiction. Therefore {¬a ∨ ai ∶ ai ∈ F⊥

¬a
} ⊆ H . 

Let us extend H to a closed subset G ∈ F ⊖m
𝜏0
ai , for some ai ∈ F⊥

¬a
 . By 

Lemma 30, G ∈ S
+
¬a

 . Hence, H ⊆ D = Fg
�

LP
(G,¬a) ∈ F ⊗LP ¬a and so 

H ⊆ F ∩ D.
 (iv) Just note that, if a ∉ F or a = 1 , then F ⊖m

𝜏0
a = {F} . Now, concerning the first 

case, it is easily seen that, by Lemma 20(ii), F⊥
¬a

= � and so 
F ⊗LP ¬a = {F ⊕ ¬a} and our conclusion easily follows. In the latter case, 
since ¬a = 0 , then F ⊗LP ¬a = {A} and so the desired result is obtained by 
noticing that F = F ∩ A.

  ◻

Lemma 44 Suppose that F ∈ Fi�
LP

 , a ∈ A , a ∧ ¬a ≠ 0 and F⊥
a
≠ ∅ . Then there exist 

K ∈ S
+
a
 (and so G ∈ F ⊗LP a ) such that ¬a ∈ K.

Proof If F⊥
a
≠ ∅ , then ¬a ∈ F (by Lemma 20) and it is easily seen that the closed 

subset V = Fg
�

LP
(¬a, {a ∨ ai ∶ ai ∈ F⊥

a
}) ∩ F⊥

a
= � , otherwise (as in the proof of 

Lemma 27) there exist ak, ai ∈ F⊥
a
 such that ¬a ∧ (a ∨ ai) ≤ ak and so ¬a ∧ a = 0 , 

which is impossible. Let us extend V to some H ∈ F ⊖ F⊥
a
 . By Lemma 30, 

a ∈ H ∈ S
+
a
 .   ◻

The next theorem clarifies sufficient and necessary conditions under which ⊖m
𝜏0

 is 
definable using ⊗LP and (H) provided that the proposition a one aims to reject is not 
a tautology. Indeed, this happens if and only if a ∧ ¬a cannot be considered as a true 
contradiction.

Theorem  45 Let F ∈ Fi�
LP

 and a ∈ (F ∖ Fg
�

LP
(�)) ∪ {1} . The following are 

equivalent: 

a ∧ c = ((¬a ∨ aj) ∧ c) ∨ (a ∧ c) = ((¬a ∨ aj) ∨ a) ∧ c ∈ H.
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 (i) F ⊖m
𝜏0
a = (F ⊗LP ¬a) ∩ F;

 (ii) a ∧ ¬a = 0.

Proof We first consider the case a = 0 ( ¬a = 1 ). If F ≠ A , then a ∉ F and so 
F ⊖m

𝜏0
0 = {F} = F ⊗LP 1 and we are done. Moreover, if F = A , by 1 ≰ 0 and 

Lemma 43(iii), for any H ∈ A⊖m
𝜏0
0 there exists 

D ∈ {G ∩ A ∶ G ∈ A⊗LP 1} = A⊗LP 1 such that H ⊆ D . Since 0 ∉ D , by the max-
imality of H, one has H = D . Hence, A⊖m

𝜏0
0 ⊆ A⊗LP 1 . The converse inclusion 

can be proven similarly and so our statement is vacuously true. Furthermore, if 
a = 1 , then our statement holds trivially by Lemma 43(iv). Therefore, in the rest of 
the proof, we can safely assume that a ∉ {0} ∪ Fg�

LP
(�).

(i) ⇒ (ii) . Let us reason by contraposition. Assume that a ∧ ¬a ≠ 0 . If F⊥
¬a

= � , 
then F ⊗LP ¬a = {F ⊕ a} . So F ⊖m

𝜏0
a ≠ {F ∩ (F ⊕ a)} = {F} , otherwise 

a ∈ Fg�
LP
(�) (by ⊖4 ) which is impossible by hypothesis. Also, if F⊥

¬a
≠ � , then by 

Lemma 44, there exists H ∈ S
+
¬a

 such that a ∈ H . Since, by Proposition 40, 
{G ∩ F ∶ G ∈ F ⊗LP ¬a} = S

+
¬a

 , one must have that F ⊖m
𝜏0
a ≠ S

+
¬a

 , otherwise 
a ∈ Fg�

LP
(�) (again by ⊖4 ), as desired.

(ii) ⇒ (i) . It directly follows from Lemma 29 and Proposition 40   ◻

Some remarks clarifying the importance of assumptions in the above theorem 
come next.

Remark 46 Observe that condition a ∈ (F ∖ Fg
�

LP
(�)) ∪ {1} cannot be dropped from 

assumptions of Theorem 45. In fact, if a ∉ F , then item (1) of the above result trivi-
ally holds true even when a ∧ ¬a ≠ 0 , by Lemma 43(iv). Furthermore, note that 
condition a ∉ Fg�

LP
(�) ∖ {1} cannot be eliminated as well. Indeed, taking the 25-ele-

ments Kleene lattice from Remark 15, and setting F =↑ a ∧ ¬a , b = a ∨ ¬a , we have 
F ⊖m

𝜏0
b = {F} = F ⊗LP ¬b = {G ∩ F ∶ G ∈ F ⊗LP ¬a} = (F ⊗LP ¬a) ∩ F but 

¬b = b ∧ ¬b ≠ 0 . However, even if a ∈ Fg�
LP
(�) , (ii) ⇒ (i) of the above proposition 

still holds. In fact, a ∧ ¬a = 0 entails that a = 1 and the claim follows by Lemma 
43(iv).

Remark 47 It is easy to see that assumptions of Thereom 45 cannot be applied to 
Levi’s identity. It is indeed possible to verify that, in the figure of Remark 15, the 
filter ↑ a ∧ n and ¬b ∧ n satisfy all the assumptions of the proposition,

but

The counterexample provided by the above remark strongly relies on the fact 
that in � one might have, for some a ∈ A , ¬a ∈ Fg�

LP
(�) but a ∧ ¬a ≠ 0 . There-

fore, to prove an analogous of Theorem 45 for (L), some specific assumptions are 
needed.

(↑ a ∧ n⊖m
𝜏0
b ∨ n)⊕ ¬b ∧ n =↑ a ∧ n⊗LP ¬b ∧ n

(¬b ∧ n) ∧ (b ∨ n) ≠ 0.
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Theorem 48 Let F ∈ Fi�
LP

 and a ∈ A with ¬a ∈ (F ∖ Fg�
LP
(�)) ∪ {1} . The following 

are equivalent 

 (i) (F ⊖m
𝜏0
¬a)⊕ a = F ⊗LP a;

 (ii) a ∧ ¬a = 0.

Proof First, let us note that if ¬a = 1 , then our statement is trivially true by Lemma 
43(ii). Furthermore, we observe that if F⊥

a
= � , then F ⊗LP a = {F ⊕ a} . However, 

by Lemma 42, for any H ∈ F ⊖m
𝜏0
¬a , H ⊕ a ≠ F ⊕ a . We conclude that (i) does not 

hold. Moreover, since ¬a ∈ F and F⊥
a
= � , one must have a ∧ ¬a ≠ 0 . Hence, (ii) 

does not hold as well. So, also in this case, our statement trivially holds true.
In light of the above arguments, in the rest of the proof, we can assume that 

¬a ≠ 1 and F⊥
a
≠ ∅.

(i) ⇒ (ii) . Suppose, by contraposition, that a ∧ ¬a ≠ 0 . By Lemma 44, there 
exists G ∈ F ⊗LP a such that ¬a ∈ G . However, since a ≰ ¬a and ¬a ∈ F , for any 
K ∈ (F ⊖m

𝜏0
¬a)⊕ a , ¬a ∉ K (Lemma 42). We conclude that 

(F ⊖m
𝜏0
¬a)⊕ a ≠ F ⊗LP a , as desired.

(ii) ⇒ (i) . It follows from Lemma 29 and Proposition 40.   ◻

6  Conclusions

In this paper, we developed a logico-algebraic analysis of AGM, a tool able to 
provide a unique framework for studying contraction in non-classical logics. Spe-
cifically, we showed how this framework can be applied to the Logic of Paradox 
( LP ). We have given an answer to the following question: How is a paraconsistent 
account of belief revision compatible with the AGM perspective? We answered 
arguing that, once the AGM framework is appropriately generalised, there is 
room for treating a paraconsistent revision operator. Specifically, once the classi-
cal interpretation of negation was replaced with a trivialiser (Definition 17), we 
showed that a large part of AGM perfectly fits with a paraconsistent account of 
revision.
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