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Abstract
The aim of this paper is to propose a qualitative approach to the theory of concep-
tual spaces, in contrast to the usual metric framework. This requires qualitative 
notions of similarity, simple concepts, prototypes and conceptual categorisation. For 
this purpose, I will introduce three mathematical models for conceptual spaces. The 
first one is topological and has been proposed by Mormann. The other two are new 
and are based on atomistic orders and similarity relations. I will discuss how each of 
them deals with the Design Principles proposed by Douven and Gärdenfors and with 
further Adequacy Conditions. Despite being apparently different, I will show that 
these three models are mathematically equivalent. Finally, I will address three objec-
tions to the present approach. The first one says that the qualitative notion of a proto-
type is a bad analogue of the metric one. The second one suggests that, in contrast to 
the Voronoi construction, the function qualitatively representing the conceptual cat-
egorisation process is arbitrary. The last one appeals to Goodman’s companionship 
and imperfect community problems to show that there is a flaw in defining simple 
concepts from similarity relations.

1 Introduction

The aim of this paper is to propose a qualitative approach to conceptual spaces that 
stands to Gärdenfors’s metric framework Gärdenfors (2000) and Gärdenfors (2014) 
as qualitative models of belief stand to Bayesian ones. This requires introducing 
qualitative notions of similarity, simple concepts, prototypes and conceptual catego-
risation. For this purpose, I will introduce three mathematical models for conceptual 
spaces based on topology (Mormann’s polar and WSA spaces in Mormann (2020) 
and Mormann (2021)), atomistic orders and similarity relations, respectively (the 
latter two are new). In order to show that these are reasonable counterparts of the 
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metric approach, I will introduce some Adequacy Conditions that concern the fea-
tures that similarity, prototypes and concepts should have. Then I will discuss how 
each of these models deals with these and with the Design Principles proposed by 
Douven and Gärdenfors in Douven and Gärdenfors (2019). Despite being appar-
ently different, these three models will be shown to be mathematically equivalent to 
each other. Finally, I will address three objections that purport to show that there are 
important differences between the two approaches.

More specifically, the outline of the paper is as follows. In Sect. 2, I review the 
basic features of the standard metric framework of Gärdenfors’ conceptual spaces, 
including Douven’s and Gärdenfors’ Design Principles. I add some Adequacy Con-
ditions that a qualitative approach to conceptual spaces should satisfy. In Sect. 3, I 
introduce the first qualitative model for conceptual spaces, namely Mormann’s polar 
and weakly-scattered spaces (WSA spaces). At first, his approach will be seen to 
be at odds with some of the Design Principles. In Sects. 4 and 5, I introduce two 
new qualitative models for conceptual spaces, namely the atomistic model and the 
similarity model, and I argue that they score better with respect to the Design Prin-
ciples and Adequacy Conditions. In Sect.  6, I prove that the polar, similarity and 
atomistic models are mathematically equivalent (in a sense to be explained later on). 
I also provide several examples of conceptual spaces and of how to translate notions 
from model to another in Sect. 6.2. The equivalence shows how each of these mod-
els can make use of notions introduced by the other two to solve the apparent mis-
matches with the Design Principles and Adequacy Conditions. In Sect. 7, I address 
three objections to the qualitative approach that purport to show that the explica-
tions of the notions of prototype, conceptual categorisation and simple concepts are 
either defective or too different from the metric ones. The first objection is that the 
qualitative notion of a paradigm is a bad analogue of the metric one. The second 
one suggests that, in contrast to the Voronoi construction, the choice of the function 
qualitatively representing the conceptual categorisation process is arbitrary. The last 
objection appeals to Goodman’s companionship and imperfect community problems 
to show that there is a flaw in the representation of simple concepts. After replying 
to these objections, the paper concludes with some general remarks and an Appen-
dix 1 with the proofs for the main results.

2  The Theory of Conceptual Spaces

2.1  The Metric Approach to Conceptual Spaces

Let us recall first the core features of the conceptual spaces framework. Gärdenfors 
introduced in Gärdenfors (2000) his conceptual spaces to deal empirically with the 
problem of natural properties. These spaces are called ‘domains’. The most studied 
example is the 3-dimensional colour solid whose dimensions represent the hue, satu-
ration and brightness of colours (see Douven, 2019). In recent years, the theory has 
been successfully applied to other philosophical issues, such as vagueness Douven 
et al. (2013), cognitive semantics Gärdenfors (2014), confirmation Sznajder (2016), 
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explication Benedetto (2020) and the structure of scientific theories Zenker and 
Gärdenfors (2014).

Although the original framework by Gärdenfors was quite liberal regarding which 
mathematical structures to use as representing conceptual spaces, most applications 
have used at least a metric space:

Definition 2.1 Let S be a set and d ∶ S2 → ℝ a real valued function. Then (S, d) is a 
metric space iff ∀x, y, z ∈ S : 

i d(x, y) ≥ 0 . [Positiveness]
ii d(x, y) = 0 ⇔ x = y . [Indiscernibility]
iii d(x, y) = d(y, x) . [Symmetry]
iv d(x, z) ≤ d(x, y) + d(y, z) . [Triangle Inequality]

Usually the space is the familiar space ℝn with the Euclidean or taxicab metric. 
The distance between two points represents the degree of dissimilarity between 
objects. Then (ii) and (iii) are requirements analogous to the reflexivity and sym-
metry of a categorical similarity relation. Actually, (ii) is stronger than reflexivity, it 
says that two objects are maximally similar iff they are identical, which is a version 
of the Identity of Indiscernibles. Given that the metric distance is a function, by (i)-
(ii) any two different objects will be dissimilar to each other up to some degree of 
dissimilarity. (iv) says that degrees of similarity can be added to each other and puts 
a bound to the similarities between any three objects. By taking products of spaces 
one can get spaces with several factors, which represent the respects of comparison. 
A point in each factor space represents a specific determinate attribute and an object 
is represented as an n-tuple of points. In other words, the framework represents 
objects as bundles of attributes and assumes a principle of Identity of Indiscernibles, 
for any two objects having the same determinate attributes will be represented by the 
same point. For instance, an object a corresponds to a pair (x, y) where x is its size 
and y is its colour.

Originally, natural properties (e.g. Red) were conjectured to be adequately repre-
sented by convex regions in a conceptual space. Using the convexity criterion, the 
geometric structure has a way to distinguish between natural and non-natural con-
cepts. In contrast, concepts (e.g. Apple) would be represented as collections of con-
vex regions from possibly different domains (e.g. Green, Sweet, Round, and so on). 
In order to introduce the notion of convexity, one needs to assume a betweenness 
relation among points. In the Euclidean space the usual choice is the affine between-
ness B(x, y, z) iff y = (1 − t)x + tz for some t ∈ [0, 1] . Thus y is between x and z iff 
y is in the shortest segment that joins x and z. From a betweenness relation one can 
define the notion of convexity standardly as follows. A subset of the space A is con-
vex iff it includes every point z that is between any two points x, y that are already 
in A. In the Euclidean space, convex regions have those nice round-like shapes we 
usually associate with the notion of convexity. Although arbitrary intersections of 
convex sets are convex, neither the unions nor the complements of convex sets need 
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to be convex. Moreover, the spatial representation allows for the interpretation of 
several operations among concepts as spatial relations, providing a basic treatment 
of inferential relations between concepts. For instance, two concepts are co-instanti-
ated by a common object iff the corresponding regions overlap, one concept implies 
another concept iff the region corresponding to the former one is included in the 
region representing the latter, and so on.

Gärdenfors proposed convexity as an empirical hypothesis and combined the 
model with the theory of prototypes pioneered by E. Rosch in Rosch (1975). To 
explain conceptual categorization, first several points of the space are chosen as rep-
resenting prototypical objects. Then the space is divided into regions induced by 
the distances from the points of the space to each of these prototypes, by applying 
the Voronoi construction. Each region is a class of points fixed by a prototypical 
item and contains all those items that are more (or equally) similar to it than to the 
other prototypes. The points that are at equal distance from several prototypes form 
the boundary of the tessellation1. The resulting division represents the categorisa-
tion process in terms of prototypes: each object x is compared by similarity to each 
prototype p, and if it is sufficiently similar to p it is included under the correspond-
ing concept. The cells of the tessellation represent the simple concepts, since with a 
suitably chosen metric (say the Euclidean one) the resulting Voronoi cells are con-
vex. Although the empirical evidence originally suggested that convexity is neces-
sary, this claim has been vigorously disputed (see Hernández-Conde, 2017).

Apart from convexity, Douven and Gärdenfors have argued for several ‘design 
principles’ that a system of natural concepts should satisfy. Such principles are cho-
sen by analogy with an optimal conceptual scheme that would be developed to allow 
for a system to make correct, sufficiently fine-grained and successful classifications 
under limited constraints. Let us quote directly Douven and Gärdenfors (2019):

Design Principles

(1) Parsimony: The conceptual structure should not overload the system’s memory.
(2) Informativeness: The concepts should be informative, meaning that they should 

jointly offer good and roughly equal coverage of the domain of classification 
cases.

(3) Representation: The conceptual structure should be such that it allows the sys-
tem to choose for each concept a prototype that is a good representative of all 
items falling under the concept.

(4) Contrast: The conceptual structure should be such that prototypes of different 
concepts can be so chosen that they are easy to tell apart.

(5) Learnability: The conceptual structure should be learnable, ideally from a small 
number of instances.

(6) Well-Formedness: The concepts should be “well-formed" in that the items fall-
ing under any one of them are maximally similar to each other and maximally 
dissimilar to the items falling under the other concepts represented in the same 
space.

1 I will ignore the problems related to the thickness of boundaries, see Douven et al. (2013).
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Parsimony and Informativeness are holistic features, they concern the system of 
concepts as a whole. As the authors note, these conditions pull in opposite direc-
tions. Parsimony requires the overall system of concepts not to have too many con-
cepts, to avoid overloading the memory. However, the system needs to have enough 
concepts to allow for informative inferences involving them. The more concepts we 
have, the more informative and less parsimonious the system of concepts will be, 
and vice versa. At the level of the prototypes, we have Representation and Contrast. 
Whereas Representation requires maximizing the similarities among the instances 
of a concept, Contrast requires maximizing the dissimilarities between prototypes 
of different concepts. Well-Formedness follows from the other two and is the most 
important criterion for this paper. Objects falling under the same concept should be 
maximally similar to each other and maximally dissimilar to objects falling under 
other concepts. By linking concepts to prototypes, the concept Learning process is 
easier, since one can develop the concepts from those prototypes and then recall the 
concepts again by recalling the prototypes.

The use of the terms ‘properties’ and ‘concepts’ in this approach suggests that 
there is an important ontological difference between the two. But in the context of 
conceptual spaces both properties and concepts seem to be the same sort of entities, 
the latter being just combinations of the former (which is needed to account for the 
phenomenon of compositionality). For example, APPLE is a concept obtained by 
combining properties such as Sweet, Round, and so on, which are convex regions 
from different domains (e.g. TASTE, SHAPE, and so on). But these latter ‘proper-
ties’ are Voronoi cells obtained by comparing how similar each object is to the pro-
totypes. Thus these properties are the entities that result from the sort of conceptual 
categorisation process described by the prototype theory of concepts and arguably 
are concepts too. It is just that these concepts are simpler constituents of APPLE. 
For these reasons, I think it is just safer to call the former simple natural concepts 
and the latter complex natural concepts2.

To sum up, according to the metric approach to conceptual spaces, natural sim-
ple concepts are represented as regions in a metric space. Inferences among simple 
concepts are given in terms of spatial relations among them. Concepts are structured 
around prototypical instances and conceptual categorisation works by constructing 
Voronoi tessellations from prototypes and comparing how similar new items are to 
the prototypical instances stored in memory. Moreover, an optimal system of con-
cepts involves a few informative concepts with corresponding prototypical instances, 
in such a way that similarities among the instances of a common concept and dis-
similarities among prototypes of different concepts are maximized.

2.2  The Qualitative Approach to Conceptual Spaces

The differences between the former approach and the models to be introduced 
below can be explained by appealing to Carnap’s distinction between categorical, 

2 We will only consider natural concepts, so I will drop the adjective ‘natural’ from now on.
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comparative and quantitative concepts in Hempel (1972). To take the usual exam-
ple, there are at least three main conceptions of belief. First, we have the logical 
approach that takes belief to be a categorical notion including three propositional 
attitudes, namely believing a proposition, disbelieving a proposition and suspend-
ing judgement over a proposition. Second, we have the order-theoretic approach that 
takes belief to be a comparative notion, and thus allows for comparisons of the sort 
“S is more confident that p than she is that q". These two could be called qualita-
tive notions. In contrast, Bayesian approaches take belief to be a quantitative notion 
admitting of many degrees that can be added. Now consider by analogy the case of 
conceptual spaces. We can take the metric formulation of conceptual spaces to be 
analogous to the Bayesian approaches, in the sense of making use of quantitative 
notions of similarity, prototypicality and so on. But we could also approach the topic 
by making use of categorical and comparative notions. The main aim of this paper 
is precisely to outline and discuss the strengths and possible limitations of such an 
approach.

Although Douven and Gärdenfors introduced the Design Principles with the met-
ric approach in mind, I think that the criteria are general enough to apply to the 
qualitative models too. In particular, in the following sections I will make use of 
them to test the adequacy of the models proposed. Furthermore, it would be desir-
able that the qualitative picture was as similar to the metric one as possible. We 
should require categorical notions of similarity, simple concepts, prototypes and so 
on to have features analogous to those of the metric approach. To check whether this 
requirement is met, let us introduce the following Adequacy Conditions:

Adequacy Conditions

Categorical Similarity:  Categorical similarity relations should be reflexive and 
symmetric. In some cases they also satisfy the Identity 
of Indiscernibles3.

Categorical Concepts:  Categorical simple concepts should be distinguished 
regions in a space and should satisfy the Design 
Principles.

Categorical Prototypes:  Categorical prototypes should determine the simple con-
cepts in virtue of their similarities to the objects falling 
under them.

Bridge Principles:  To explain conceptual categorisation by prototypes, 
some ‘bridge principles’ that link similarity, paradigms 
and concepts are required.

In the following sections, I will introduce three qualitative models based on 
topology, order theory and the theory of similarity, respectively. The last two are 
new. I will go on highlighting how each of these addresses the Design Principles and 

3 According to this Identity of Indiscernibles, any two objects that fall under the same simple natural 
concepts are identical. Note that a similar principle is assumed by the metric approach too, since objects 
are represented as points, which are n-tuples of properties.
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the Adequacy Conditions. Later on I will show that the three of them are mathemati-
cally equivalent to each other. Note that to explain compositionality any interesting 
account of conceptual spaces has to deal with complex concepts alongside simple 
ones. Nevertheless, for reasons of space, I will only focus on simple concepts. To 
account for simplicity, I will take simple concepts to be maximal, in the sense that 
no simple concept will be properly included in another. Since Parsimony and Infor-
mativeness are features of the whole system of concepts, I will be concerned only 
with Representation, Contrast, Learnability and Well-Formedness.

3  The Qualitative Approach to Conceptual Spaces I: Polarity

3.1  The Topological Model

Thomas Mormann has proposed in Mormann (2020) and Mormann (2021) a topo-
logical model for conceptual spaces. It was first introduced by Rumfitt to deal with 
the Sorites paradox in Rumfitt (2015). These polar distributions involve a classifica-
tion of objects in terms of paradigmatic or prototypical objects, called poles. A sim-
ple example is the colour circle used to represent hues. The most prototypical exem-
plars of red, yellow, orange and so on are the poles. Any other colour in between, 
such as an orangish red, gets mapped to the poles to which it is similar (orange, red, 
...). Thus the approach matches the prototype and exemplar models of psychologi-
cal categorisation, but makes use of a categorical notion of a prototype, whereas the 
former usually assume that objects can be more or less prototypical. To distinguish 
between the two, we will use ‘pole’ or ‘paradigm’ for the categorical notion, and 
‘more or less prototypical’ for the comparative and quantitative notions4. For the 
main notions I follow Mormann (2020):

Definition 3.1 Let S be a non-empty set and P ⊆ S . A polar distribution over S is a 
function m ∶ S → ℘(P) that satisfies (1)-(2). A distribution is (PII) iff it also satis-
fies (3): 

(1) ∀x ∈ S m(x) ≠ ∅.
(2) ∀x ∈ S ∀p ∈ P m(x) = {p} ⇔ x = p.
(3) ∀x, y ∈ S m(x) = m(y) ⇒ x = y . (PII)

Elements in P are poles or paradigms. The first axiom says that every element 
gets classified by some paradigm. The second one says that the paradigms are 
exactly the elements that are classified by just one element. The third one is an 
optional indiscernibility constraint, it requires distinct elements to be mapped to 
distinct paradigms. For an example, consider the following digital version of the 

4 The notion of polar distribution I will make use of is the one from Mormann’s paper Mormann (2020), 
not that from Mormann (2021). The latter is slightly more general, see Sect.  7.1. The condition ‘PII’ 
(Identity of Indiscernibles) does not occur in Mormann’s writings.
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colour circle. Right now it does not have the shape of a circle, but do not worry 
about this fact. Our space has some coloured spots COLOUR = {A,B,C,D,E,F,G, 
H, I, J,K, L} as points and the paradigms are P = {A,C,E,G, I,K} . The assignment 
is pictured by arrows in Figure 1, for example, the spot B gets mapped to A and C, 
which are the paradigms of orange and yellow, respectively, i.e. m(B) = {A,C} . It 
can be checked that the circle is in fact polar (PII).

The crucial insight by Rumfitt was that polar distributions have spatial structure. 
To explain this we need to introduce some basic notions of topology5:

Definition 3.2 Let S be a set and O(S) ⊆ ℘(S) a family of sets, to be called the fam-
ily of open sets. Then (S, O(S)) is a topological space iff it satisfies: 

(1) S and ∅ are open.
(2) If A, B are open, then their intersection A ∩ B is open.
(3) If A1,A2,… are open, then their union 

⋃

i Ai is open.

A set B ⊆ S is closed iff Bc is open. The family of closed sets is C(S). A set is clo-
pen iff is both open and closed. Given an element x, an open neighbourhood of x is 
an open set N(x) ∈ O(S) which is such that x ∈ N(x) . In particular, we will say that 
a point x is open (closed) iff {x} is an open (closed) set. Loosely put, one can think 
about a topological space as a set of points and families (open, closed, ...) of regions. 
Since conceptual spaces will be topological spaces, our points will be objects and 
some of the regions will be concepts.

The simplest examples of spaces are the indiscrete space and the discrete space. 
The indiscrete space has as open sets the whole space and the empty set, it is so 
coarse that one cannot use regions to distinguish between the points (i.e. it only has 
trivial concepts). At the other extreme, the discrete space has as open sets every sub-
set of the space, it is so fine-grained that each collection of points counts as a region 
(i.e. every subset counts as a concept). The fundamental notions are:

Definition 3.3 Let (S, O(S)) be a topological space and A ⊆ S . Then: 

(1) Cl(A) ∶=
⋂

{B ∈ C(S) ∣ A ⊆ B} is the closure of A.
(2) Int(A) ∶=

⋃

{B ∈ O(S) ∣ B ⊆ A} is the interior of A.
(3) A is open regular iff A = IntCl(A).
(4) x ≤ y ⇔ ∀A ∈ O(S)(x ∈ A ⇒ y ∈ A) is the specialization preorder of S.

Fig. 1  Colour Circle: Polar 
Distribution

A C E G I K

B D F H J L

5 The concepts are standard and can be found in any textbook on topology, say Willard (2004). The 
reader can find many examples of Alexandroff spaces in the Appendix of Mormann (2021).
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The closure (interior) of a set is the smallest (biggest) closed (open) set includ-
ing (included in) it. The last property says that in every topological space the 
points are preordered by the open sets they belong to. The topological spaces we 
are interested in are those that can be completely described by this preorder:

Definition 3.4 Let (S,≤) be a preorder and A ⊆ S . Then A is up iff if x ∈ A and x ≤ y 
then y ∈ A . The set O(S) = {A ⊆ S ∣ A is up} is the Alexandroff topology over S. The 
closed sets are exactly the down-s, i.e if x ∈ B and y ≤ x then y ∈ B.

The most important and well-known fact about Alexandroff spaces is that they 
can be equivalently described as preorders. In other words, if we start from a 
preorder and take the topology of ups, then its specialization preorder will be the 
preorder we started from, and vice versa. In addition, well-behaved spaces need 
to satisfy an indiscernibility principle (a so-called ‘separation axiom’) in order 
to have enough resources to distinguish the points by making use of the open 
regions:

Proposition 3.1 Let (S, O(S)) be a topological space. The following conditions are 
equivalent: 

(1) O(S) is a T0 space.
(2) ≤ is a partial order.
(3) For all x, y in S, there is an open neighbourhood of x which is not a neighbour-

hood of y, or vice versa.

It turns out that every polar distribution induces an Alexandroff topological 
space as follows Rumfitt (2015), Mormann (2020):

Proposition 3.2 Let (S,  P,  m) be a polar distribution. Let 
O(S) ∶= {A ⊆ S ∣ ∀x ∈ A (p ∈ m(x) ⇒ p ∈ A)} . Then O(S) is a T0 Alexandroff 
topology over S called the polar topology.

So a polar distribution is a space whose fundamental regions, the open sets, 
are ‘centered around’ the paradigms. The topological closure of a paradigm p 
is Cl(p) ∶= {x ∈ S ∣ p ∈ m(x)} . The specialization order is x ≤∗ y iff x = y or 
y ∈ m(x) . The smallest open set for each x is Nx = {x} ∪ m(x) . For example, if we 
consider the ‘colour circle’ in Figure 1 again, we have that whereas the closure 
of the orange spot A is Cl(A) = {L,A,B} , which contains all the orangish spots, 
the closure of the blue spot G is the set Cl(G) = {F,G,H} , which contains all the 
bluish spots. The specialization order is reflected by the arrows, for instance, we 
have that F ≤ G , since the spot F has as a paradigm the blue spot G.

There is a fundamental property that characterizes polar spaces. First note 
that the set of open points in the space is exactly P, the set of poles or paradigms.
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Definition 3.5 Let (S, O(S)) be a topological space and A ⊆ S . Then A is dense iff 
Cl(A) = S . Moreover, O(S) is a Weakly-Scattered Alexandroff space (WSA space) iff 
the set of open points is dense.

A dense region in a space is a set of points that are ‘everywhere’, so to speak. 
Whichever point in the space we choose, we will always be able to find a point 
in the dense region that is as close to it as we wish. The most important fact 
about polar spaces is that they are weakly-scattered. This is proven in Mormann 
(2020). According to Mormann, this is the fundamental topological property 
that makes the idea of there being enough prototypical elements precise: which-
ever object we choose, we will always be able to find a paradigm that is arbitrar-
ily close to it.

For several reasons Mormann suggests taking as a model for conceptual 
spaces the more general class of weakly-scattered Alexandroff spaces. For 
instance, the conceptual spaces approach usually makes use of product spaces, 
but whereas the product of polar spaces is not necessarily polar, the product of 
WSA spaces is WSA. Moreover, whereas the specialization order induced by 
polar spaces only allows for a categorical distinction between prototypical and 
non-prototypical elements, that of WSA spaces allows for a comparative notion 
of prototypicality (we will consider this in depth later on). In particular, this 
means that we can have more complex orders of several ‘layers’ of prototypical-
ity. For instance, the space in Figure 2 is a toy example of a WSA space that is 
not a polar order. The points are particular fruits. Orange is more prototypical 
than papaya, which is more prototypical than tomato. The maximal elements are 
the most prototypical fruits, namely the apple and the orange. Note that some 
fruits, like the mango and the papaya, are incomparable.

Due to scatteredness, one can still take the maximal elements in the order to 
be the maximally prototypical elements in WSA-spaces. So these play the role 
that poles play in polar spaces. Therefore, the polar spaces can be seen to be a 
very special case of WSA-spaces, those where the comparative notion of proto-
typicality collapses into a categorical one. Finally, several examples of digital 
spaces used in computer science, which are the ‘discretized’ analogues of our 
familiar continuous spaces like the Euclidean space (e.g. the digital circle we 
just saw), are non-polar WSA spaces.

3.2  Polarity and the Design Principles

In this section, I want to point at some apparent mismatches between the topo-
logical and metric approaches to conceptual spaces. I will focus on the Adequacy 

Fig. 2  Toy Example: Non-Polar 
WSA Space

Apple

Mango Papaya

Tomato

Orange
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Conditions and the design principles of Representativeness, Contrast, Learnability 
and Well-formedness. Briefly put, the model is this one: 

Topological Model:  According to the topological model, a conceptual space 
is represented as a weakly-scattered Alexandroff space 
(S,  O(S)). Objects are points, most prototypical objects are 
open points and concepts are open regular sets.

First, the metric approach represents degrees of similarity as distances, but it is 
not clear how similarity is represented by the topological model. Similarity rela-
tions are at least reflexive and symmetric6. These properties are well captured by the 
axioms of a metric space. However, they seem to be absent in both polar and WSA 
spaces. In other words, the model breaks the Categorical Similarity Condition.

Second, Mormann takes concepts to be represented by open regular sets, which 
are a special sort of open sets. His motivation for choosing open sets concerns 
vagueness. Take polar open sets to be the semantic values of predicates. If A is open 
and a ∈ A , then a has an open neighbourhood N(a) ⊆ A . The explanation seems to 
be the following one. If an object x falls under a concept A, then one can always 
find a more specific concept N(x) under which x falls too. The more specific con-
cept N(x) contains ‘minor variations’ of x. Thus the concept A is open iff it is stable 
under small changes to its instances, which could be used to explain the phenom-
enon of vagueness. But it is not clear to me that polar open sets properly preserve 
basic intuitions about similarity and therefore I am unconvinced that they are the 
appropriate choice to model natural concepts. An open set can contain two objects 
x and y that lack common poles, so long as it includes all the poles of x and all the 
poles of y. Arguably, if x and y are not similar to a common pole, they are not similar 
to each other. For instance, take the colour circle. L is orange-red and I is purple, so 
they are not similar enough, because they lack common poles, but the set {L, I,A,K} 
including L, I and their poles will be polar open. There is no common pole we can 
point at that will serve as a basis for a similarity judgment. One could reply that 
these are examples of complex concepts, which are unions of simpler ones. How-
ever, the point also concerns simple concepts. For instance, the minimal open set 
N(B) = {A,B,C} of B contains B alongside all its poles. What natural concept does 
this open set correspond to? In what sense are all of B-s poles similar to each other? 
The crucial point is that a good classification should maximize the similarities 
among the members of a common class (by Well-Formedness) while minimizing 
similarities among members of different classes, specially among poles (by Con-
trast). Choosing the polar open sets to represent simple concepts seems to be at odds 
with these two principles. In contrast, consider the closures of paradigms. If we take 
these to be the simple concepts, every pair of objects falling under a concept will be 
mapped to a common paradigm. This is the choice that I will make in the following 

6 Tversky famously argued in Tversky (1977) against the symmetry assumption. I cannot address this 
objection here, see Decock and Douven (2009) for a brief defence of the spatial model.
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sections. For the case of the colour circle, it gives the expected results. For example, 
the closure of E is Green = Cl(E) = {D,E,F} , which gives us the green spots.

Finally, one of the main reasons for considering general WSA spaces instead of 
polar spaces is that, whereas the former provide a comparative notion of prototypi-
cality by making use of the specialization preorder, the latter collapse prototypical-
ity to a categorical notion. However, in this move from polar to WSA spaces an 
interesting feature of polarity is lost. In polar spaces that satisfy (PII), an object can 
be uniquely described by pointing at those poles the object is mapped to, or equiva-
lently, by listing which concepts the object falls under. To put it differently, giving 
the poles exhausts all the relevant information about an object. But some concep-
tual spaces seem to satisfy this condition. For instance, in the colour circle, one can 
uniquely describe each coloured spot by listing the paradigms it is similar to. Apart 
from the colour circle, many other examples of this phenomenon, such as classifica-
tions of geographic location by latitude and longitude, or classifications of dates by 
day, month and year, can be found in section 6.2. Although WSA spaces provide a 
comparative notion of prototypicality, unless we add other constraints this feature 
of polar spaces is lost. To avoid this conclusion, we can add one last condition to be 
satisfied by some spaces: 

Atomism:  For some spaces, there should be a way to explain how an object can be 
completely described by pointing at the prototypes it is similar to.

In the following sections I will introduce two new models. Whereas the atom-
istic model can account for this last problem, the similarity model solves the other 
two. However, I will also show that the three models are mathematically equivalent. 
More specifically, polar distributions are equivalent to certain similarities, and by 
adding the indiscernibility axiom we will get an equivalence between the three mod-
els. A fortiori, the mismatches I just pointed out will be simply apparent since they 
can be dealt with by introducing by definition in this model the successful features 
of the others. Moreover, in a sense, the atomistic structures form a special subclass 
of WSA spaces that still allow us to represent non-trivially prototypicality compara-
tively. Thus my point will be that we can have the best of both worlds: we can keep 
the polar model and still have a special class of WSA spaces that allows for a com-
parative notion of prototypicality that satisfies all the desiderata.

4  The Qualitative Approach to Conceptual Spaces II: Atomism

4.1  The Atomistic Model

The second model I will introduce is order-theoretic. Objects will be in relations 
of more or less prototypicality. So the notion of prototypicalness will be compara-
tive. Nevertheless, there will also be some maximally prototypical objects, which 
will correspond to the poles we discussed before. The simple concepts will be 
the sets of all objects that are less prototypical than these maximally prototypical 
objects. A fortiori, the less prototypical an object is, the more concepts it will fall 
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under, and vice versa. Each object will also be describable as a ‘combination’ of 
its maximally prototypical objects.

In the literature on prototype theories of concepts, it is often highlighted that 
the notion of a prototype is comparative. As was mentioned, Mormann proposes 
to replace the categorical notion of a prototype by a comparative notion, by mak-
ing use of the specialization order that describes the Alexandroff spaces. Since 
WSA spaces require the existence of maximal elements in this order, these rep-
resent the maximally prototypical objects. The closer an element is to a maxi-
mal element, the more prototypical it will be. If we restrict our attention to these 
maximal elements, the categorical and comparative notions of prototypicality 
coincide.

In the following, I will modify this basic idea in two ways. First, I will estab-
lish a correspondence between how prototypical an object is and how many con-
cepts the object falls under. Let us estipulate that y is qualitatively richer than x 
iff y falls under all the concepts that x falls and possibly more. I propose to make 
the order of prototypicality to correspond to the dual of this order. In other words, 
x is more prototypical than y iff y is qualitatively richer than x. The idea is that 
in order to satisfy Representativeness we will require prototypes to fall under as 
few concepts as possible, so that the most representative instance of a concept 
turns out to be an object that only falls under that concept. Formally, we have to 
put the WSA order suggested by Mormann upside-down, so that the maximally 
prototypical objects are now the minimal elements of the order. Second, follow-
ing the discussion in the previous section 3.2, I will require that the information 
about each object be completely exhausted by the maximally prototypical objects 
it is similar to. In other words, we will require some sort of qualitative atomism, 
where each object is the ‘qualitative sum’ of its paradigms. Both examples and 
counterexamples to this condition will be given in section 6.2.

Recall that z is an upper bound (resp. lower bound) of x and y iff x, y ≤ z (resp. 
z ≤ x, y ). An element x is minimal (resp. maximal) iff if z ≤ x then x = z (resp. if 
x ≤ z then x = z ) (see Davey and Priestly (2012)). Our class of orders will be:

Definition 4.1 Let L be a poset. Then L is atomic (resp. co-atomic) iff for each ele-
ment x there is an element z such that z is minimal (resp. maximal) and z ≤ x (resp. 
x ≤ z ). If L is atomic (resp. co-atomic), then L is an atomistic poset (resp. co-atom-
istic poset) iff each element in L is the smallest upper bound (resp. greatest lower 
bound) of all its minimal (resp. maximal) elements.

It is immediate that an Alexandroff T0 space is WSA iff its specialization order 
is co-atomic. Thus the only difference between the model we will introduce now 
and the WSA spaces is the stronger requirement of co-atomism. Recall that an 
element in a poset is the bottom iff it is the smallest element. Note that a poset 
with a bottom element is atomistic iff it has just one element. So atomistic posets 
do not have bottoms. Some examples of atomistic posets are atomic Boolean 
algebras and complete atomistic lattices (with the corresponding bottom elements 
removed).



332 J. Belastegui 

1 3

From now on, we will interpret x ≤ y as “x is more prototypical than y" or 
equivalently as “y falls under all concepts that x falls and possibly more". Let us 
denote the set ↑ x = {y ∈ L ∣ x ≤ y} as usual. The following is an easy topological 
reformulation:

Proposition 4.1 Let L be a poset. Then the following conditions are equivalent: 

(1) L is an atomistic poset.
(2) ↑ x =

⋂

{↑ p ∣ p ∈↓ x and p is minimal} for every x in L.

Let Atom(L) be the set of minimal elements (atoms) in L and atom(x) the set of 
minimal elements below x. We have that if x ≤ y then atom(x) ⊆ atom(y) by tran-
sitivity and conversely, if atom(x) ⊆ atom(y) then x = ∨atom(x) ≤ ∨atom(y) = y . 
From this fact the previous proposition follows.

To represent concepts we will use the sets of the form ↑ p where p is an 
atom, which are known as principal ultrafilters. A concept is the set of all the 
objects that are qualitatively richer (less prototypical) than a given paradigmatic 
object. For instance, take the colour circle again. We will model it as an atomis-
tic poset (see Figure  3). As we can see, the polar order is now upside down. 
The atoms are {A,C,E,G, I,K} , the concepts are now the ultrafilters such as 
Blue =↑ G = {F,G,H} or Red =↑ K = {J,K, L} . We see, for example, that the spot 
A is more prototypical than B. Each coloured spot is the least upper bound of its par-
adigms. This particular example is misleading in one sense. We will later on show 
that the order and topological models are equivalent. Nevertheless, this equivalence 
is not that the polar order and the atomistic order are converses to each other. Usu-
ally, the atomistic order induced by a polar space is much richer than the polar order. 
It is accidentally the case that in this particular example both are converses.

Before we move on let us consider the topology once more. Recall that Alex-
androff spaces and preorders are mathematically equivalent. The weakly-scattered 
Alexandroff spaces of Mormann’s model are exactly the co-atomic posets. So we 
can consider a more specific class of weakly-scattered Alexandroff spaces, the ones 
that correspond to the co-atomistic posets. We just need the topological separation 
condition that is dual to the one we mentioned before, namely:

Definition 4.2 Let (S,  O(S)) be a weakly-scattered Alexandroff topological space. 
Then S is co-atomistic iff Cl(x) =

⋂

{Cl(p) ∣ p ∈ Nx and p is open} for every x ∈ S.

What the previous condition says is that the set of objects that have the same 
properties (and possibly more) of a given object x is exactly the set of objects that 
belong to all the properties induced by the paradigms of x. Topologically, this says 

Fig. 3  Colour Circle: Atomistic 
Order
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that every object z that is sufficiently close to x is sufficiently close to every para-
digm of x. The spaces I propose to consider are the duals of co-atomistic spaces, 
namely those satisfying the topological condition corresponding to atomism.

4.2  Atomism and the Design Principles

It is time to check how well this model satisfies the Adequacy Conditions and the 
principles of Representativeness, Contrast, Learnability and Well-formedness. Let 
me give first a brief description: 

Order-Theoretic Model:  According to the order-theoretic model, a conceptual 
space is represented as an atomistic order (S,≤) . Objects 
are elements, maximally prototypical objects are atoms 
(minimal elements) and simple concepts are principal 
ultrafilters.

Since simple concepts are represented as ultrafilters, it is worth analysing their 
features closely. First, note that every simple concept F is maximal, it is not properly 
included in another concept. Thus the concepts considered are ‘simple’, in the sense 
of not being the result of combinations of other concepts. In particular, the collec-
tion of all objects is not taken to be a simple concept. Second, since we know that 
the Alexandroff T0 topologies are exactly the partial orders and simple concepts are 
ups, they are open regions in the corresponding space. Third, the following hold for 
every simple concept F: 

i If x is F and y is qualitatively richer than x (x is more prototypical than y), then y 
is also F.

ii There is an object p which is the most prototypical instance of F.

These conditions say that a concept is a collection of objects that can be ‘refined’ 
until one reaches a most prototypical instance. This instance is precisely the para-
digm of the concept. Therefore, all the requirements we put on simple concepts and 
prototypes seem to hold. According to Representativeness, each concept should be 
well represented by a prototype. Since we put the order upside down, x is more pro-
totypical than y iff y is qualitatively richer than x. In other words, the fewer con-
cepts an object falls under, the more prototypical it will be. Given the bijective cor-
respondence between simple concepts and paradigms (the atoms), by the previous 
features it follows that each paradigm falls exactly under one simple concept. Thus 
according to this model, paradigms are qualitatively atomic entities. A paradigm of 
a concept is its most representative instance, because it is an object that only falls 
under that concept.

Furthermore, we have the following bridge principle that says that having a para-
digm as a common atom is equivalent to being an instance of a common concept (let 
F be a principal ultrafilter):
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The previous requirement of Atomism that failed in the WSA setting now is satis-
fied, for the information about an object is completely exhausted by giving all its 
atoms. To put it pictorially, each object is the qualitative sum of its paradigms.

Just as in the topological case though, there are no similarity relations. So it would 
seem that Contrast, Well-formedness and the remaining Adequacy Conditions fail. 
But this complaint would be unfair. We already have the simple concepts, so if we 
defined a similarity relation of “falling under a common concept" these principles 
would be satisfied. However, this move still leaves us with a difference between the 
metric and the qualitative approaches. According to the former, similarity relations 
are taken as given and simple concepts are represented as spatial regions induced by 
them. But in this model simple concepts are induced by the prototypicality relations 
between objects and similarity is defined from the concepts.

5  The Qualitative Approach to Conceptual Spaces III: Resemblance

5.1  The Similarity Model

Regrettably, the previous models make no mention at all of similarity relations 
between objects. In contrast, I will provide now a third model based on similarity 
structures. Objects will be in relations of categorical similarity. A paradigm will be 
an object which is such that any two objects that are similar to it are similar to each 
other. The simple concepts will be the sets of objects that are similar to a common 
paradigm.

Some of the notions I will be making use of are from the literature on Carnap’s 
quasianalysis (see Carnap (1923), Carnap (1967), Mormann (1994), Leitgeb (2007), 
Mormann (2009))7. The quasianalysis provided a method to reconstruct properties 
common to objects in similarity relations and then represent those objects as bun-
dles of properties. Since we want to represent concepts as classes of similar objects, 
the quasianalysis is precisely the tool we need.

A similarity structure is a set S with a binary reflexive and symmetric relation 
∼⊆ S × S . The transitive similarities are the equivalence relations8. Examples of 
similarities are “the distance between x and y is less than � ", “x and y fall under a 
common concept" and “x and y share a common prototype". We can depict each 
finite similarity structure geometrically as an undirected graph. Objects will be 

atom(x) ∩ atom(y) ≠ ∅ ⇔ ∃F x, y ∈ F

Fig. 4  Simple Similarity p x q

7 The similarity model is based on Carnap’s pre-Aufbau work. It is different from his later theory of 
attribute spaces. For the latter, see Sznajder (2016).
8 Similarity structures are also called ‘tolerance structures’ and ‘reflexive undirected graphs’.
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pictured as dots and similarities as undirected edges connecting these dots. For 
example, the simple similarity p ∼ x ∼ q will be pictured as in Figure 4:

We just need some basic notions from Mormann (2009):

Definition 5.1 Let (S,∼) be a similarity structure and A ⊆ S . Then we define: 

 (i) co(A) ∶= {x ∈ S ∣ ∃y ∈ A x ∼ y} is the similarity neighbourhood of A.
 (ii) A is a clique ⇔ ∀x, y ∈ A x ∼ y.
 (iii) A is maximal ⇔ ∀z ∈ S ((∀x ∈ A z ∼ x) ⇒ z ∈ A).
 (iv) A is a similarity circle ⇔ A is a maximal clique.

The set of all the similarity circles is SC(S). In the previous example, 
co(x) = {p, x, q} and SC(S) = {{p, x}, {x, q}} . We will take similarity circles to rep-
resent natural simple concepts. The model I will propose is an extension of some 
ideas by Carnap in Carnap (1923):

Definition 5.2 Let (S,∼) be a similarity structure and T ⊆ S and p ∈ S . Then p is a 
generator of order 1 iff if x ∼ p ∼ y then x ∼ y for any two x, y ∈ S . T is a similarity 
circle of order 1 iff T = co(p) for some generator of order 1 p.

It is immediate that p is a generator of order 1 iff co(p) is a similarity circle of 
order 1. The set Gen(S) is the set of generators of order 1 and SC1(S) is the set of 
similarity circles of order 1. Carnap called these generators ‘representing elements’. 
Whereas generators will represent paradigms, similarity circles of order 1 will rep-
resent simple concepts. The following class of similarities provides the model for 
conceptual spaces:

Definition 5.3 Let (S,∼) be a set S with a binary relation ∼⊆ S × S . Then S is a pure 
similarity structure of order 1 iff for all x, y ∈ S and p, q ∈ Gen(S) : 

 (i) x ∼ x . [Reflexivity]
 (ii) If x ∼ y then y ∼ x . [Symmetry]
 (iii) If p ∼ q then p = q . [Pure]
 (iv) If x ∼ y then x ∼ p ∼ y for some generator p ∈ Gen(S) . [Order 1]

The third axiom (Pure) says that any two similar paradigms are identified. In 
other words, paradigms must be ‘maximally dissimilar to one another’. Equivalently, 
a similarity is pure iff each similarity circle T of order 1 has a unique generator p. 
The fourth axiom is crucial, it says that two similar objects must be similar to a com-
mon paradigm. This captures the idea that paradigms classify objects. Equivalently, 
a similarity is of order 1 iff if any two similar objects x and y belong to a com-
mon similarity circle of order 1, x, y ∈ T ∈ SC1(S) , i.e. fall under a common simple 
concept. In order to represent conceptual categorisation, we introduce the following 
functions:
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Whereas the function gen(x) represents each object as the set of its generators (its 
paradigms), the function q(x) represents each object as the set of concepts under 
which it falls. I will come back to these in the following sections.

Finally, in some spaces a stronger indiscernibility axiom holds. We define a 
new relation of duplication that holds between those entities that are similar to 
the same entities. It will follow that two duplicates belong to the same similarity 
circles. We will consider structures for which this relation coincides with identity, 
those that satisfy Mormann (2009):

Definition 5.4 Let (S,∼) be a similarity structure. Then S satisfies the Similarity 
Neighbourhood Indiscernibility Axiom (SNI) iff if co(x) = co(y) then x = y.

This axiom is the similarity analogue of the Identity of Indiscernibles. It 
says that if two entities are similar to the same entities, then they are identical. 
Every (SNI) similarity of order 1 is pure, but the converse is false. For instance, 
y ∼ p ∼ x & y ∼ q ∼ x is pure, but is not (SNI) since x and y are indiscernible.

The previous notions can be checked again using the colour circle, now in Fig-
ure 5. It will now be clearer in what sense this is allegedly a circle.

In this example, the generators of order 1 (paradigms) are A, C, E, G,  I and 
K and the similarity circles of order 1 (the concepts) are the triangles, such as 
Yellow = co(C) = {B,C,D} or Green = co(E) = {D,E,F} . The previous functions 
represent each spot by the paradigms it is similar to, like gen(B) = {A,C} or by 
the concepts it falls under, like q(B) = {Orange,Yellow} = {{L,A,B}, {B,C,D}} . 
It can be checked that the circle is in fact (SNI) of order 1.

5.2  Resemblance and the Design Principles

Let us now check how the similarity model fits the design principles of Repre-
sentativeness, Contrast, Learnability and Well-formedness. The model can be 
briefly described as follows: 

gen ∶ S → ℘(Gen(S)) gen(x) ∶= {p ∈ Gen(S) ∣ x ∼ p}

q ∶ S → ℘(SC1(S)) q(x) ∶= {T ∈ SC1(S) ∣ x ∈ T}

Fig. 5  Colour Circle: Similarity
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Similarity Model:  According to the similarity model, a conceptual space is rep-
resented as an (SNI) similarity structure of order 1 (S,∼) . 
Objects are elements, maximally prototypical objects are gen-
erators and simple concepts are similarity circles of order 1.

Consider the basic axioms and definitions. On the one hand, Representative-
ness is guaranteed by combining the axiom of order 1, which says that two simi-
lar objects are similar to a common paradigm, with the definition of a paradigm 
and the definition of concepts as similarity circles of order 1, which makes all the 
objects similar to a common paradigm similar to each other and the resulting collec-
tion to be maximal. On the other hand, Contrast is assumed by the axiom of purity, 
which states that no two paradigms are sufficiently similar to each other. In other 
words, one can interpret the assumptions made by the similarity model directly as 
the requirements that the conditions of Representation and Contrast be satisfied. 
The condition of Well-Formedness is immediately satisfied by the definition of a 
similarity circle, since any pair of objects falling under a concept will be similar to 
each other. Finally, since each simple concept corresponds uniquely to a paradigm, a 
fewer amount of paradigms will make concept learning easier for the agent9.

What about the Adequacy Conditions? The similarity model provides plausible 
categorical analogues of objects, prototypes, similarity relations, simple concepts 
and the process of conceptual categorisation. It gives formal properties which are 
categorical analogues of those of metric spaces, namely reflexivity, symmetry and 
the identity of indiscernibles. Finally, note that the following bridge principle holds: 

Similarity-Paradigm-Concept:  Two objects are similar iff they fall under a com-
mon concept iff they are similar to a common 
paradigm.

This bridge principle is supported both by the Design Principles and the Proto-
type Theory of Concepts. According to this theory, every concept is generated by 
some prototype. The similarity to this prototype is what determines the conditions 
under which something falls under the concept. So two objects fall under a com-
mon concept iff they are similar enough to the prototype of the concept. But by the 
design principle of Well-Formedness, any two objects falling under a common con-
cept must be similar to each other. Moreover, since the concepts are developed to 
explain the similarities observed between the objects, if two objects are similar then 
this similarity must be explained by some concept that they both fall under.

Note that, in exchange, we lost the comparative notion of prototypicality, atomic-
ity and the condition that concepts should be regions in a space. These problems 
will be fixed in the next section.

9 I grant that requiring just one paradigm for each concept is a quite strong idealization. However, the 
Voronoi cells in the metric approach are also induced by one object.
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6  Equivalence Between the Models

6.1  Similarity‑Topology‑Order Equivalence

In this section I will show that the three models are mathematically equivalent. More 
specifically, I will show that by making use of the primitive notions of one model (e.g. 
poles, polar distribution and so on) we will be able to define all the primitive notions of 
the other models (e.g. similarity, similarity circles, and so on). This is done by defining 
a function that sends each model of one kind (e.g. each polar model) to a model of the 
other kind (e.g. a similarity model) in such a way that by composing these transforma-
tions we will get back to the model we started from. That being so, the problems about 
the previous approaches vanish, since we will be able to introduce the required condi-
tions by making use of similarity, order and topology as wished.

First I will show that the similarity model and the polar model are equivalent. Note 
that given any similarity structure, the function:

that represents each object as a bundle of paradigms is a polar distribution. Con-
versely, a polar distribution induces a similarity as follows:

This shows that there was indeed a similarity hidden in the original polar model. It 
is the similarity of having a common pole. This basic observation provides us the 
resources to show that the two structures are equivalent.

Theorem  6.1 Let (S,  P,  m) be a polar distribution. Then (S,∼) defined as 
x ∼ y ∶= ∃p ∈ P p ∈ m(x) ∩ m(y) is a pure order 1 similarity. It induces a polar dis-
tribution (S, Gen(S), gen) which is such that P = Gen(S) and m = gen . Conversely, 
let (S,∼) be a pure order 1 similarity. Then (S, Gen(S), gen) is a polar distribution 
where (S,∼�) is such that x ∼ y iff x ∼� y.

Corollary 6.1 For a polar distribution and its similarity, the following hold: 

1. The polar distribution is (PII) ⇔ The similarity is (SNI).
2. The poles are exactly the generators of order 1.
3. The closures of poles are exactly the similarity circles of order 1.

The second result establishes that, assuming the indiscernibility axiom, the similar-
ity model and the order-theoretic model are equivalent. In any partial order one can 
define the following similarity of having a common lower bound:

In any similarity structure one can define the following preorder Mormann (2009):

gen ∶ S → ℘(Gen(S)) gen(x) ∶= {p ∈ Gen(S) ∣ x ∼ p}

x ∼∗ y ⇔ m(x) ∩ m(y) ≠ ∅

x ∼∗ y ⇔ ∃z z ≤ x, y
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The similarity is (SNI) iff this preorder is anti-symmetric. Notice that this order cor-
responds to the idea of qualitative richness we mentioned before. Object y is quali-
tatively richer than x iff every object similar to x is similar to y too. Given the cor-
respondence between being similar and sharing a common concept, we have that 
object y is qualitatively richer than x iff y falls under every concept under which x 
falls, and possible more.

These two structures are usually not in unique correspondence. However, we will 
show now that for the case of similarities of order 1 and atomistic orders this holds:

Theorem 6.2 Let (S,∼) be a (SNI) similarity structure of order 1. Then (S,≤co) is an 
atomistic poset where the minimal elements are Gen(S). Moreover, (S,∼∗) , defined 
as x ∼∗ y ∶= ∃z ∈ Min(S) z ≤ x, y , is identical to (S,∼) . Conversely, if (S,≤) is an 
atomistic poset, then (S,∼∗) is a (SNI) similarity structure of order 1 such that x ≤ y 
iff x ≤co∗ y.

Corollary 6.2 For an atomistic order and its similarity, the following hold: 

1. The generators of order 1 are exactly the atoms (minimal elements).
2. The similarity circles of order 1 are exactly the principal ultrafilters.

In other words, the class of (SNI) similarities of order 1 is the class of atomistic 
posets. The generators of order 1 are exactly the minimal elements and the similarity 
circles of order 1 are the principal filters ↑ p of the minimal elements.

This result has an interesting corollary. Whereas WSA spaces give a comparative 
notion of prototypicality, polar spaces are restricted to a categorical one. Neverthe-
less, under the assumption of co-atomism both models are equivalent:

Corollary 6.3 Let (S,  O(S)) be a co-atomistic weakly-scattered Alexandroff space. 
Then (S,Max(S),m�) where m�(x) ∶= {p ∈ S ∣ x ∈ Cl(p) and p is open} , is a (PII) 
polar distribution such that (S,≤) defined as x ≤ y ⇔ m�(y) ⊆ m�(x) is the speciali-
zation order of the original space. Conversely, if (S, P, m) is a (PII) polar distribu-
tion, then (S,≤) is the specialization order of a co-atomistic weakly-scattered Alex-
androff space which is such that Max(S) = P and m� = m.

So if we put their order upside-down, co-atomistic WSA spaces are equivalent 
to the polar spaces. In other words, an object x is more prototypical than an object 
y iff y is similar to all the poles that x is similar to. This is, I think, a surprising 
result: even though generally WSA spaces are richer in their order, coatomistic WSA 
spaces are those spaces where the comparative notion of prototypicality is com-
pletely fixed by the categorical one.

Lastly, it is illuminating to see how the fundamental notions are ‘translated’ 
between the models:

x ≤co y ⇔ co(x) ⊆ co(y)
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Similarity

x is similar to y iff
x and y are similar to a common paradigm iff
x and y fall under a common simple concept iff
x and y, as bundles of simple concepts/paradigms, overlap.

Indiscernibility

x and y are indiscernible iff
x and y are similar to the same objects iff
x and y are similar to the same paradigms iff
x and y fall under the same simple concepts iff
x and y, as bundles of simple concepts/paradigms, are identical.

Paradigms

p is a paradigm iff
Any two objects similar to p are similar to each other iff
p falls under a unique concept iff
p is a qualitatively minimal or maximally prototypical object.

Simple Concepts

T is a simple concept iff
T is the collection of all the objects similar to a paradigm iff
T is a maximal collection of similar objects generated by an object.

Prototypicality

y is qualitatively richer than x iff
y is similar to every object to which x is similar iff
y is similar to every paradigm of x iff
y falls under all the simple concepts that x does iff
x is more prototypical than y is.

6.2  Examples of Conceptual Spaces

We have seen three equivalent descriptions of the colour circle. A similar structure 
with fewer paradigms for sweetness, sourness, bitterness and saltiness would give us 
a taste circle (a digital version of the surface of the taste tetrahedron)10. Let us take a 
look at other new spaces.

10 For empirical purposes a more detailed model of the colour solid may be required, e.g. the one in 
Douven (2019). If so, we need a weaker notion of polar distribution, see Section 7.1.
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6.2.1  Dates and Historical Events

Historical events are usually recalled by appealing to the dates when they occurred. 
Each date can be completely described (e.g. using the Gregorian calendar) by com-
bining the corresponding day, month and year. We can take as points in our space 
specific dates such as:

If we choose a paradigm like the year 1945 (e.g. any specific day of 1945), its simple 
concept Cl(1945) will include all the dates of the events that happened in 1945. Two 
dates are similar iff they concern the same day, month or year. If our space only clas-
sifies dates then it must be (PII). If the aim is to represent historical events and there 
are at least two events that occurred at the same day, then the space will not be (PII) 
but it will still be polar.

6.2.2  Natural and Integer Numbers

Another interesting example is given by the digital or Khalimsky line (see  Mor-
mann (2020)) used in computer science. This is a polar topology that can be 
defined over the integers. Explicitly, the space has the form (ℤ,Even0(ℤ),m) , where 
the set of paradigms Even0(ℤ) contains zero and the even numbers and where 
m(n) = {n − 1, n + 1} iff n is odd, and m(n) = {n} iff n is even or zero. For exam-
ple, m(0) = {0} and m(3) = {2, 4} . Moreover, this particular polar distribution is 
even PII and the natural numbers ℕ (with zero) inherit the topological structure (see 
Figure 6).

6.2.3  Words and Alphabets

There are many interesting symbols that we can use for purposes of rep-
resentation. Most of these can be considered to be letters of our alpha-
bets, such as the Latin alphabet Latin = {a, b, c,… , z} , the Roman numerals 
Roman Numerals = {I, II, III, IV ,…} or the Morse code Morse = {., ,−} . The cru-
cial feature of alphabets is that we can obtain strings by concatenating the sym-
bols. Starting from the latin alphabet we get strings such as b, tree, love, helloworld, 
blabla, and so on. We can classify words by taking as paradigms the symbols in the 
alphabet. The concept induced by a symbol contains all the words that are made up 
by it. Two words are similar iff they share a common symbol.

Since two different words such as ‘risen’ and ‘siren’ can be constituted by the same 
symbols, the space is not (PII). Nevertheless, the space is polar. Mathematically, 

m(end of WWII) = {2d, September, 1945y}

m(Rudolf Carnap’s birthday) = {18d,May, 1891y}

Fig. 6  Natural Numbers . . .4 60 2

1 3 5 . . .
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the previous examples are all cases of the free monoid construction of strings 
from an alphabet (all the strings obtained by concatenating symbols, including the 
empty string � ). By taking as points all the strings, as paradigms the empty string 
� and all the symbols in the alphabet and by defining m(x) = {x} if x is in P and 
m(x) = {p ∈ P ∣ p is substring of x} otherwise, we get that every free monoid is a 
polar distribution. For example, m(aaa) = m(aa) = {a, �} , m(tree) = {�, e, r, t} , 
m(helloworld) = {�, e, d, h, l, o, r,w} , m(a) = {a} and m(�) = {�}.

6.2.4  Classifications by Coordinates

Each location of the surface of the Earth can be described uniquely by giving its lati-
tude and its longitude. We take latitudes and longitudes as paradigms for geographic 
classifications, here are some examples:

If we want to use the Euclidean plane ℝ
2 to represent the previ-

ous locations we can select as paradigms the pairs in the ‘X and Y axes’ 
P ∶= {(x, 0), (0, y) ∣ x, y ∈ ℝ} . Reformulating the examples we would have 
m(Machu Picchu) = {(−13, 0), (0,−72)} . The paradigms would then be the loca-
tions of the Earth that have a latitude or longitude of 0◦ , namely those at the Equator 
or at the Prime Meridian. The concepts would be the lines of latitude and the merid-
ians. Two locations are similar iff they have the same latitude or the same longitude.

For another example, we are used to representing concrete objects as points in 
the 3-dimensional Euclidean space ℝ3 , by providing their length, width and depth 
according to a certain measurement scale (e.g. cm, m, km, ...). We can consider 
again each of the points in the X, Y and Z axes as paradigms. E.g. (0,  3,  0) is a 
paradigm and m(2, 3, 2) = {(2, 0, 0), (0, 3, 0), (0, 0, 2)} . Two objects will be similar 
iff they have the same length, width or depth. For a more abstract example, each 
complex number is usually represented by a pair of real numbers, its real part and 
its imaginary part, and we can use the previous representation to show this e.g. 
m(2 + 3i) = {(2, 0), (0, 3)}.

These are all special cases of a more general phenomenon that I will call 
classification by coordinates, which is a clear example of a polar classifica-
tion. It is crucial to these examples that the same entity (location, object) is 
mapped to several paradigms and not just to one. Note also that there is noth-
ing special about ℝ2 in these examples. The Euclidean plane can be replaced 
by any finite n-dimensional vector space Fn over some field F, by taking first 
the canonical basis B = {(1, 0,… , 0, 0),… , (0, 0,… , 0, 1)} = {�1,… , �n} and 
then choosing as paradigms the vectors obtained by scalar multiplication over 
basis vectors P ∶= {c�k ∣ �k ∈ B, c ∈ F} (includes the zero vector � ). The dis-
tribution is m(�) = {�} if � is in P and m(�) = {c�k ∣ c = vk} otherwise. E.g. 
m(2,−3, 0) = {2(1, 0, 0),−3(0, 1, 0), 0(0, 0, 1)} . The well-known fact that every vec-
tor is uniquely described as the linear combination of its basis vectors guarantees 

m(Machu Picchu) = {−13◦
lat
,−72◦

long
}

m(Athens) = {37◦
lat
, 23◦

long
}
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that it is a (PII) polar distribution, which reflects the atomistic assumption. In these 
examples, every object is the linear combination of its paradigms.

7  Objections to the Qualitative Approach

In the following subsections I will address some objections to the qualitative 
approach. The first one says that the metric prototypes do not have the core features 
that paradigms have. According to the second one, there are many mappings that 
could be said to represent conceptual categorisation processes and thus our choice 
was an arbitrary one. Finally, simple concepts have been represented by maximal 
collections of pairwise similar objects. But there are some famous objections by 
Nelson Goodman that would seem to show that such a strategy must fail11.

7.1  Mismatches between Paradigms and Prototypes

The first objection questions the claim that the paradigms from the similarity model 
are good categorical analogues of the prototypes of the metric approach. This is due 
to a clash between the metric and the categorical notions of similarity.

Let us go back to the metric approach for a moment. In order to represent the con-
ceptual categorisation process, several points in the space are selected as represent-
ing prototypical elements. Then the distances of each point to these prototypes are 
measured, resulting in a Voronoi tessellation:

Definition 7.1 Let (S,  d) be a metric space and A ⊆ S . Then the Voro-
noi tessellation induced by A is defined as the family of the sets of the form 
Vp ∶= {x ∈ S ∣ ∀q ∈ A − {p} d(x, p) ≤ d(x, q)} , for each p ∈ A , called the Voronoi 
cells.

Each class is fixed by a prototypical object and contains all those objects that are 
more (or equally) similar to it than to the other prototypes. Given that an object can 
be at equal distance to several prototypes, it can belong to many such classes. The 
set of all the points that are at equal distance from various prototypes is the bound-
ary of the tessellation. Although the boundary is usually removed from the tessella-
tion in order to get a partition, we will not do this here, for an object can fall under 
several simple concepts. Given a metric space and a number 𝜀 > 0 , a similarity can 
be defined as (points are similar if their distance is less than �):

x ∼ y ∶= d(x, y) ≤ �

11 These are only some possible objections but for reasons of space, I cannot address the rest in this 
paper. For an example, each concept is mapped to a unique paradigm. But an exemplar model of catego-
risation plausibly appeals to several paradigms for each concept.
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Thus two objects are �-similar iff they are sufficiently close ( �-close) to each other. 
Recall that an object is a paradigm iff any two objects that are similar to it are simi-
lar to each other. However, under this similarity it may happen that x ∼ p ∼ y for 
some prototype p ∈ A , while we do not have x ∼ y . This means that the core feature 
of paradigms in the similarity model is not shared by the prototypes of the metric 
model. Moreover, the notion of paradigm seems to clash with other properties of 
the metric similarity too, like the Triangular Inequality. Suppose that x and y are at 
distance �

2
 from each other and are �-similar to a paradigm pxy , whereas y and z are 

at distance �
2
 from each other and are �-similar to a paradigm pyz . Suppose that there 

is no paradigm to which both x and z are �-similar. Nevertheless, by the Triangular 
Inequality x and z are at distance less than � and therefore are �-similar. Based on 
this definition of categorical similarity one may conclude that paradigms are bad 
categorical analogues of prototypes.

But this is not the only way in which we can define a categorical similarity based 
on the metric one. If the simple concepts are to be represented by the cells of the 
tessellation and if we want to keep the bridge principle that says that two objects are 
similar iff they fall under a common concept (see Section 5.2), we should choose a 
different similarity. In the previous counterexample, x and z do not fall under a com-
mon concept, for if they did they would be similar to the corresponding paradigm. 
But then it is the notion of �-similarity that is at fault, for it entails the possibil-
ity that two objects are categorically similar even though they do not fall under a 
common concept. Suppose that every element belongs to at least one cell. Consider 
instead the similarity:

Under this choice it is easy to prove that ∼∗ is a similarity of order 1 where every 
prototype is a paradigm and every Voronoi cell is a similarity circle of order 1 (com-
pare Mormann (2021)). That prototypes (generators of Voronoi cells) are paradigms 
follows from the fact that any two ∗-similar prototypes p and q must be identical, 
because if they were distinct we would have 0 ≤ d(p, q) ≤ d(p, p) = 0 . My point is 
that one is not forced to define a categorical similarity from the metric one as �-simi-
larity. By constructing the Voronoi tessellation through the prototypes the metric 
approach is already introducing a categorical similarity.

Still, this similarity need not be pure (and it definitely does not satisfy PII), 
because it might happen that some non-paradigmatic points belong only to one 
Voronoi cell and so any two such points would be identified. So the qualitative 
approach is not strictly speaking a generalization of the metric one.

On the one hand, one can object for this reason that the models are too strong. 
That tessellations are not a special case of the polar model cast doubts on the 
empirical fruitfulness of the qualitative models. The metric approach has already 
had many empirical applications. Given that some of those empirical results are 
based on tessellations where there are points that belong only to one cell, the 
models presented here cannot account for these empirical facts. But if the metric 
approach were a special case of the qualitative approach then no empirical con-
flict would arise. There is a way to subsume Voronoi tessellations as a special 

x ∼∗ y ∶= x, y ∈ Vp, for some Voronoi cell Vp



345

1 3

A Qualitative Approach to Conceptual Spaces: Prototypes as…

case of the qualitative one by a slight generalization of the notion of polar distri-
bution, which is the one used by Mormann in Mormann (2021). The difference is 
subtle and concerns the second axiom of polar distributions:

This requires that the paradigms be exactly those elements that classify themselves, 
which is compatible with there being non-paradigmatic elements that are classified 
by just one paradigm. If we use this notion, every partition with a choice of repre-
sentative elements, and so every tessellation, is a polar distribution. Voronoi cells 
are then the simple concepts and their generators are the paradigms (and the bound-
ary of the tessellation is the union of the topological boundaries of the concepts). 
This makes the metric approach a special case of the qualitative one (the metric 
space has now two topologies, the metric topology and the polar one).

On the other hand, one may object that the models presented here are too weak 
to be used to explain empirical data. But so long as the previous axioms are satis-
fied this is not really a problem, for particular applications one can always add 
more structure if needed (recall the examples in Section  6.2). In any case, the 
most interesting claims that can be made using metric models can be made using 
qualitative models too. For example, by using a metric one can predict that two 
elements that are equally far from a prototype will be equally prototypical. But 
analogously, since the orders used here are partial orders, they allow the repre-
sentation of cases where two items are incomparable in terms of their prototypi-
cality (e.g. is a mango a more prototypical fruit than a papaya?).

In contrast, I would say that the models that are usually applied tend to be too 
strong. Although I introduced Gärdenfors approach as using metric spaces, many 
applications of his theory make use of much richer spaces, such as the Euclidean 
space. Since qualitative models make fewer assumptions than these do about the 
structure of the data involved, they bring additional benefits.

For instance, they can be used even in cases where there is no clear metric 
or convexity to be applied. If one is given a collection of entities as empirical 
data, there may not be any obvious choice of a metric or convexity (not to say, a 
Euclidean metric or convexity). Consider classifications of ordinary objects like 
clothes, faces or pieces of furniture. Which are the metrics involved? Empirical 
data is often obtained in the form of ordinal rankings or indiscriminability tests. 
Then it is transformed into distances between points and statistical techniques are 
used to embed these into a lower-dimensional Euclidean space. Finally, tessel-
lations are constructed. This process of constructing layers of representations in 
order to spatially represent data is standard practice. Nevertheless, in some cases 
these steps are unnecessary. The qualitative models of similarity and order can be 
used to represent the data (be they sounds, colours, words, and so on) in a space 
directly without any previous numerical representation. The structures involved 
can still be represented by numbers if needed, so long as mostly ordinal behavior 
is preserved.

Furthermore, the qualitative models are specially well equipped to deal with finite 
data. For example, both similarities and partial orders are equivalently described as 

∀x ∈ S m(x) = {x} ⇔ x ∈ P [Polar2]
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graphs, and computer scientists have developed many algorithms to deal with them. 
For another example, the topological structure of a finite metric space is trivial, since 
it is the discrete topology. In a discrete space, the boundary of every set is empty and 
the space is highly disconnected. In order to use non-trivially topological notions 
in a metric space, one has to assume that the domain of the space is infinite. Thus 
one is forced to use an infinite space to model finite data. In contrast, the notions of 
boundary and connectedness work fine both in finite and infinite polar spaces and 
they give us the expected results, e.g. an object belongs to the boundary of a simple 
concept iff it falls under other simple concepts as well iff it is similar to other proto-
types as well. In fact, since every finite topological space must be a WSA space, this 
suggests that the topology doing the work in the conceptual categorisation process 
of finitely many objects is not the metric topology, but the polar one.

Finally, there is no chance of confusion regarding other structural features that 
rich spaces like the Euclidean space have, such as angles, norms, vector structure, 
completeness, and so on, which in many cases will be meaningless for the data. 
Qualitative models are structurally sparse, they include only those features needed 
to represent the main commitments of the conceptual spaces approach, namely para-
digms, similarity, concepts, conceptual categorisation processes and the principles 
that link them together.

To sum up, one can use qualitative models to discuss the very same topics that 
the metric approach has been applied to, such as vagueness Douven et al. (2013), 
Mormann (2021) cognitive semantics of natural language Gärdenfors (2014) or con-
firmation Sznajder (2016). However, in contrast with metric models, the use of qual-
itative models allows for a more cautious representation of the data.

7.2  Non‑Uniqueness of Conceptual Categorisations

The Voronoi tessellation represents the family of simple concepts the objects get 
mapped to. But the categorisation process itself is better represented by the function 
that maps each object to its classes12. In the Voronoi case this map is completely 
determined by an algorithm that says how to construct the cells from the prototypes. 
Granted that simple concepts are plausibly represented by similarity circles, the sec-
ond objection says that selecting the similarity circles of order 1 was an arbitrary 
choice because there are many functions mapping objects to similarity circles that 
could be reasonably called ‘conceptual categorisation processes’. In contrast to the 
Voronoi construction, our mapping is not unique.

Let us go back to the similarity model. Since each concept corresponds to a maxi-
mally prototypical object, this process is represented mathematically in two different 
ways. On the one hand, we have the arrow:

gen ∶ S → ℘(Gen(S))

12 Note that the same object may fall under several simple concepts.
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This is the polar distribution that represents each object by the set of the maximally 
prototypical objects that it is similar to. In other words, it represents each object as a 
bundle of paradigms. On the other hand, we have the arrow:

This is the function that represents each object by the set of concepts it falls under. 
In other words, it represents each object as a bundle of simple concepts. The differ-
ence between them is that the representation in terms of prototypes is much more 
economical. Cognitively speaking, one can obtain a very good description of the 
object just by listing the prototypes it is similar to (again, qualitative atomism).

However, the objection is that there could be other functions q ∶ S → ℘(SC(S)) 
that deserve to be called ‘conceptual categorisations’. My reply is that, under some 
plausible bridge principles, this is not the case: there is a unique function on a simi-
larity model that maps each object to a family of similarity circles it belongs to, 
and therefore this function must be q. So what are these bridge principles? We have 
already seen the following: 

Similarity-Concept:  Two objects are similar iff they fall under a common 
concept.

Similarity-Order:  An object is qualitatively richer than another object iff the 
former falls under all the concepts that the latter falls and 
possibly more.

The first condition says that the conceptual categorisation explains similar-
ity exactly as falling under a common concept. The second condition says that the 
order of qualitative richness corresponds exactly to falling under more or less con-
cepts. We also know that, at least in the similarity model, we get the correspond-
ence between being similar to the same objects and falling under the same concepts. 
Finally, there is a sense in which a Parsimony condition can be imposed even for the 
family of simple concepts. It can be introduced as a bridge principle too: 

Parsimony:  Every concept is indispensable to the categorization process. If we 
deleted one of them some similarity would be left unexplained.

These conditions can be formalized by appealing to Carnap’s quasianalysis as 
defined in Mormann (2009):

Definition 7.2 Let (S,∼) be a similarity structure, Q a non-empty set, ∼∗ the similar-
ity relation A ∼∗ B ∶= A ∩ B ≠ ∅ on ℘(Q) , and q ∶ S → ℘(Q) a function. Then q is 
a strong quasianalysis iff Q ⊆ SC(S) , q(x) ∶= {T ∈ Q ∣ x ∈ T} and satisfies (i)-(iii) 
for any q� ∶ S → ℘(Q�) defined as follows: 

i x ∼ y ⇔ q(x) ∼∗ q(y) . [Similarity-Concept]
ii co(x) ⊆ co(y) ⇔ q(x) ⊆ q(y) . [Similarity-Order]

q ∶ S → ℘(SC1(S))



348 J. Belastegui 

1 3

iii If Q′ ⊆ Q is such that q� ∶ S → ℘(Q�) , defined as q�(x) ∶= {T ∈ Q� ∣ x ∈ T} satis-
fies (i)-(ii), then Q� = Q . [Parsimony]

In principle, there are many functions on a similarity model that could be taken 
to represent processes of conceptual categorisation. However, the following theorem 
shows that if we stick to the similarity model, there is a unique function satisfying 
the previous constraints. The result follows from a more general result first shown by 
Brockhaus in Brockhaus (1963) and refined by Mormann and J. A. Schreider:

Corollary 7.1 (Brockhaus-Mormann-Schreider) Let S be a (SNI) similarity structure 
of order 1. Then it has a unique strong quasianalysis q.

In other words, in a similarity model there is a unique function representing the 
categorisation process that satisfies the three principles just mentioned.

7.3  From Similarity to Concepts: Goodman’s Objections

The reader familiar with the literature on quasianalysis, or with that related to resem-
blance nominalism, will be puzzled. Concepts are here reconstructed as maximal 
classes of pairwise similar objects. But this strategy should not work. Nelson Good-
man in Goodman (1951) directed two devastating objections to Carnap’s method of 
quasianalysis that showed that concepts cannot be reconstructed as similarity circles. 
Our last objection says that, according to these, the previous approach is flawed.

Hannes Leitgeb gives in Leitgeb (2007) a detailed analysis of these problems, 
which we now consider. Take a structure (S, Q) where S is a non-empty set and Q is 
a non-empty family of non-empty subsets of S that covers S. Let us think about the 
elements in Q as simple concepts. Any such structure induces a similarity over S as 
follows:

In other words, two objects are similar iff they fall under a common concept. From 
this it follows immediately that every concept is a clique. But there are many cliques 
that do not correspond to concepts. A reasonable conjecture by Carnap was to take 
only the maximal ones, the similarity circles. For the special case of equivalences 
this will give us the equivalence classes, as expected. However, if we try to recon-
struct the structure of concepts from the similarity by taking the concepts to be the 
similarity circles our strategy will fail for two reasons.

First, whereas some concepts can be properly included into others (e.g. Magenta 
is included into Red), similarity circles are maximal and cannot be properly included 
into one another. This means that some concepts are not similarity circles. This is 
the companionship problem. For instance, take S = {x, z} and Q = {{x}, {x, z}} , then 
the pair {x}, {x, z} forms a companionship. {x} is not a similarity circle because it is 
not maximal. The method fails because one of the concept in Q is not constructed, 
in Leitgeb’s terms, the similarity structure is not ‘full’. Second, it sometimes hap-
pens that given three objects x, y, z ∈ S , while each pair instantiates a common 

x ∼ y ⇔ ∃R ∈ Q x, y ∈ R
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concept, there is no concept which is instantiated by all of them. This means that 
some similarity circles are not concepts. This is the imperfect community problem. 
Imperfect communities are cliques and some of them can be similarity circles. For 
instance, suppose the structure has the form of a Goodman triangle S = {x, y, z} and 
Q = {{x, y}, {y, z}, {x, z}} . Then {x, y, z} is an imperfect community that does not 
correspond to a concept in Q. Now the method fails because the concept constructed 
was not there, the similarity structure is not ‘faithful’. The puzzle can be summa-
rized as follows: 

(1) We start from an arbitrary structure of concepts (S, Q), where Q is a non-empty 
family of non-empty subsets of S that covers S.

(2) We define a binary categorical similarity relation in the domain of objects S as 
falling under a common concept.

(3) We select a certain class of cliques in the similarity structure to recover the 
concepts.

(4) The class of cliques selected must be identical to the original set Q of concepts.
(5) We select as the class of cliques the class of all similarity circles.

We know that if we follow these steps the strategy fails. Thus, in order to answer 
to Goodman’s problems, at least one of them has to be rejected. For example, Leit-
geb (2007) rejects the first one, while Mormann (2009) suggests rejecting steps one, 
four and five. I reject steps one and five. I select only a special class of structures of 
concepts to be reconstructed and a special class of similarity circles, namely those 
of order 1. The reason for this choice is that, as we have seen before, generators and 
circles of order 1 give qualitative representations of prototypes and simple concepts, 
respectively. The special class of the structures of simple concepts for which the pre-
vious reconstruction works is this one:

Definition 7.3 Let S be a non-empty set, P ⊆ S and ∅ ∉ Q ⊆ ℘(S) a covering of S 
by non-empty sets. Then (S, P, Q) is a (PII) polar structure iff: 

(1) ∀R ∈ Q ∃p ∈ P (p ∈ R & ∀r ∈ P (r ∈ R ⇒ p = r)).
(2) ∀p ∈ P ∀R,T ∈ Q (p ∈ R ∩ T ⇒ R = T).
(3) ∀x, y ∈ S ∀R ∈ Q(x ∈ R ⇔ y ∈ R) ⇒ x = y.

Members of P are once again paradigms and members of Q are called simple 
concepts. What (1)-(2) say is that in polar structures there is a bijection between 
concepts and paradigms. (3) Corresponds again to the Identity of Indiscernibles. 
Each concept is in some sense ‘generated’ by a unique element, which is the para-
digm of the concept. These structures are also equivalent to the previous models, let 
i(x) be the set of simple concepts under which x falls:

Theorem  7.1 Let (S,  P,  m) be a polar distribution. Then (S,P,Q∗,∈) , where 
Q∗ ∶= {Cl(p) ⊆ S ∣ p ∈ P} , is a polar structure whose polar distribution (S, P,  n) 
is such that n = m . Conversely, let (S,P,Q,∈) be a polar structure. Then (S, P, n), 
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where n(x) ∶= {p ∈ P ∣ i(x) ∩ i(p) ≠ ∅} , is a polar distribution whose polar struc-
ture (S,P,Q∗,∈) is such that Q∗ = Q.

Why does not this class of similarities fall prey to Goodman’s objections? If there 
is, for each concept, a unique object which is such that it only falls under that con-
cept, then it is no mystery that no companionship problems arise. If all R-s are T-s, 
then the paradigm of R is also a T and since such an object falls under a unique con-
cept, R = T  . Analogously, there cannot be imperfect community problems. If there 
is a (maximal) imperfect community, it is not a concept and therefore there is no 
paradigm corresponding to it. The members of the imperfect community are pair-
wise similar to each other because each pair is similar to a paradigmatic object. But 
there is no paradigm to which all the objects are similar. Equivalently put, similarity 
circles of order 1 cannot be imperfect communities.

Finally, now that we have all the models in place we can combine the previous 
results to get the full picture:

Theorem 7.1 The following qualitative models for conceptual spaces are mathemat-
ically equivalent: 

(1) (SNI) Similarities of order 1.
(2) Atomistic posets.
(3) (PII) Polar distributions.
(4) (PII) Polar structures.
(5) Co-atomistic WSA spaces.

This theorem summarizes several equivalent ways to present the qualitative 
approach to conceptual spaces. They can be introduced in terms of a similarity 
between objects, an order of qualitative richness, an assignment of prototypes to 
objects, a family of concepts and a space with a distinguished dense region of points.

8  Conclusion

The aim of this paper was to introduce a qualitative approach to conceptual spaces 
by providing several models and comparing them by how well they satisfied the 
Design Principles and Adequacy Conditions. Whereas the former were used to 
check that the qualitative models provide a plausible explication of simple natu-
ral concepts and conceptual categorisation, the latter required that the qualitative 
approach provided categorical analogues of the metric notions of similarity, pro-
totypes, simple concepts and conceptual categorisation. I showed that these mod-
els are mathematically equivalent to each other and therefore notions introduced 
by one could be use by the others to satisfy the constraints. I also addressed three 
objections that purported to show that there are important differences between 
the two approaches. Most importantly, one can use qualitative models to discuss 
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the same topics that the metric approach has been applied to, such as vagueness, 
confirmation or cognitive semantics. In contrast with metric models, qualitative 
models are structurally sparse, they include only those features needed to rep-
resent the main commitments of the conceptual spaces approach, namely para-
digms, similarity, concepts and categorisation processes, which allows for a more 
faithful representation of the data.

Appendix

This Appendix contains the main results stated in the paper. The equivalence 
between similarities and polar topologies Theorem 6.1:

Theorem  6.1 Let (S,  P,  m) be a polar distribution. Then (S,∼) defined as 
x ∼ y ∶= ∃p ∈ P p ∈ m(x) ∩ m(y) is a pure order 1 similarity. It induces a polar dis-
tribution (S, Gen(S), gen) which is such that P = Gen(S) and m = gen . Conversely, 
let (S,∼) be a pure order 1 similarity. Then (S, Gen(S), gen) is a polar distribution 
where (S,∼�) is such that x ∼ y iff x ∼� y.

Proof Let (S, P, m) be polar and define x ∼ y ∶= ∃p ∈ P p ∈ m(x) ∩ m(y) , which is 
symmetric. By polarity, m(x) ≠ ∅ and reflexivity follows. Let p ∈ P , if w ∼ p ∼ z , 
then there are r ∈ m(w) ∩ m(p) and s ∈ m(z) ∩ m(p) , so by polarity r = p = s . 
Therefore p ∈ m(w) ∩ m(z) and w ∼ z . So p is a generator. If x ∼ y then there is a 
p ∈ P ∩ m(x) ∩ m(y) and so the similarity is of order 1. Suppose that p, r ∈ P then 
if p ∼ r we have m(p) ∩ m(r) = {p} ∩ {r} ≠ ∅ , so p = r and the similarity is pure.

Now let (S,  Gen(S),  gen). We have Gen(S) ⊆ S and gen ∶ S → ℘(Gen(S)) 
which satisfies gen(x) ≠ ∅ by order 1. If p ∈ Gen(S) , then gen(p) = {p} because 
if q ∈ Gen(S) ∩ gen(p) we have q ∼ p and by purity p = q . And recall that  if 
gen(x)={p} then if y~x~z there are generators shared by x one with y and one with 
z which must both be p and so y~z, which makes x a generator and thus x=p. So it is 
a polar distribution. We already showed that P ⊆ Gen(S) . Let p ∈ Gen(S) we prove 
m(p) = {p} . If q ∈ m(p) then q ∈ m(p) ∩ m(q) and so p ∼ q and again by purity 
p = q . Therefore m(p) = {p} and so p ∈ P . It follows that P = Gen(S) . Therefore, 
p ∈ m(x) ⇔ p ∈ P&p ∼ x ⇔ p ∈ Gen(S)&p ∼ x ⇔ p ∈ gen(x) , because if p ∈ P 
and p ∼ x then there is a q ∈ m(p) ∩ m(x) such that q = p.

Conversely, let (S,∼) be a pure similarity of order 1. We already proved that 
(S, Gen(S), gen) is a polar distribution and that (S,∼�) is pure of order 1. We show 
∼=∼� . By order 1, x ∼ y ⇔ ∃p ∈ Gen(S) p ∈ gen(x) ∩ gen(y) ⇔ x ∼� y .   ◻

Equivalence between similarities and orders Theorem 6.2.

Proposition 8.1 Let (S,∼,≤co) be an (SNI) structure of order 1. Then: 
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i p is minimal ⇔ p is a generator of order 1.
ii x =

⋁

gen(x).

Proof (i) Let p be minimal. It belongs to some similarity circle T of order 1 with 
unique generator z. Then T = co(z) ⊆ co(p) and by minimality p = z . Conversely, 
let p be the generator of an order 1 circle T and y ≤ p . Then y ∈ co(y) ⊆ co(p) = T  
and therefore co(y) = T  . It follows that p = y and so p is minimal. (ii) x is 
greater than each of its generators. Let p ≤ y ≤ x for each generator p of x. Then 
gen(x) ⊆ gen(y) ⊆ gen(x) and therefore x =

⋁

gen(x) .   ◻

Theorem 6.2 Let (S,∼) be a (SNI) similarity structure of order 1. Then (S,≤co) is an 
atomistic poset where the minimal elements are Gen(S). Moreover, (S,∼∗) , defined 
as x ∼∗ y ∶= ∃z ∈ Min(S) z ≤ x, y , is identical to (S,∼) . Conversely, if (S,≤) is an 
atomistic poset, then (S,∼∗) is a (SNI) similarity structure of order 1 such that x ≤ y 
iff x ≤co∗ y.

Proof Let (S,∼) be the similarity. We already proved that the generators are exactly 
the minimal elements and that every element is the join of its generators. Now x ∼ y 
iff gen(x) ∩ gen(y) ≠ ∅ iff x ∼∗ y . Conversely, let (S,≤) be an atomistic poset. If p 
is minimal and x ∼∗ p ∼∗ y then z ≤ x, p and w ≤ y, p and by minimality z = p = w 
and so x ∼∗ y . Conversely, if p is a generator and x ≤ p then min(x) ⊆ min(p) . If 
q ∈ min(p) and y ∼∗ q then y ∼∗ p therefore co∗(q) ⊆ co∗(p) . Since p is a genera-
tor of order 1, x ∈ co∗(p) = co∗(q) and therefore q ∼∗ x , from which it follows that 
q ≤ x by minimality and therefore min(x) = min(p) . Thus x = p and so p is minimal. 
So the minimals are exactly the generators and by definition S is of order 1. Let 
co∗(x) = co∗(y) , then by order 1 min(x) = gen∗(x) = gen∗(y) = min(y) and therefore 
x = y . Finally, x ≤ y iff min(x) ⊆ min(y) iff gen∗(x) ⊆ gen∗(y) iff x ≤co∗ y .   ◻

Equivalence between polar distributions and polar structures Theorem 7.1:

Theorem  7.1 Let (S,  P,  m) be a polar distribution. Then (S,P,Q∗,∈) , where 
Q∗ ∶= {Cl(p) ⊆ S ∣ p ∈ P} , is a polar structure whose polar distribution (S, P,  n) 
is such that n = m . Conversely, let (S,P,Q,∈) be a polar structure. Then (S, P, n), 
where n(x) ∶= {p ∈ P ∣ i(x) ∩ i(p) ≠ ∅} , is a polar distribution whose polar struc-
ture (S,P,Q∗,∈) is such that Q∗ = Q.

Proof (S,P,Q∗,∈) is a covering, since p ∈ m(x) ≠ ∅ implies 
x ∈ Cl(p) ≠ ∅ . If R ∈ Q∗ , then p ∈ m(p) = {p} iff p ∈ Cl(p) = R . Sup-
pose p, r ∈ P ∩ R = P ∩ Cl(q) . Then q ∈ m(p) ∩ m(r) = {p} ∩ {r} , so 
p = q = r . Let p ∈ P ∩ R ∩ T = P ∩ Cl(r) ∩ Cl(t) , then r, t ∈ m(p) = {p} , so 
R = Cl(r) = Cl(p) = Cl(t) = T  , which proves that the structure is polar. We prove 
n is polar. Since p ∈ m(x) ≠ ∅ for all x, x, p ∈ Cl(p) . Let p ∈ P and q ∈ n(p) , then 
p, q ∈ Cl(r) , therefore r ∈ m(p) ∩ m(q) = {p} ∩ {q} and so n(p) = {p}.  The con-
verse follows from n = m , which we prove. Let p ∈ n(x) , then x, p ∈ Cl(q) for some 
Cl(q) ∈ Q∗ . Therefore q ∈ m(p) = {p} , which implies p ∈ m(x).
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Conversely, if p ∈ m(x) then x, p ∈ Cl(p) so p ∈ n(x) . Let n ∶ S → ℘(P) be 
defined as n(x) ∶= {p ∈ P ∣ ∃R ∈ Q x, p ∈ R} . By assumption, for every x we have 
x, p ∈ R for some p ∈ P,R ∈ Q and thus p ∈ n(x) . Let p ∈ P and q ∈ n(p) . Then 
p, q ∈ R so by polarity p = q , which makes n polar. As before,  it follows that 
(S,P,Q∗,∈) is polar. We prove now that Q = Q∗ . Let Cl(p) ∈ Q∗ . Since p is a para-
digm, it corresponds to a unique R ∈ Q . If x ∈ Cl(p) , then p ∈ n(x) , so there is a 
T ∈ Q such that x, p ∈ T = R . If x, p ∈ R then p ∈ n(x) so x ∈ Cl(p) . So Cl(p) = R . 
It follows that Q∗ ⊆ Q . Let R ∈ Q , then it corresponds to a unique paradigm p ∈ R , 
we analogously prove that Cl(p) = R .   ◻
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