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Abstract
The so-called Ramsey–Carnap approach, or Ramseyfication, has gone out of fashion 
in the philosophy of science. Advocates have tried to argue for a revival by writing 
methodological and metatheoretical studies of Ramseyfication. For this paper I have 
chosen a different approach; I will apply Ramseyfication to infrared spectroscopy—
a method used in analytical chemistry—in order to logically analyse the relation 
between measurements and mathematical structures. My aim in doing so is to con-
tribute to the debate about the Application Problem of Mathematics, thereby making 
a case for Ramseyfication as a method of study for scientific theories.

1  Introduction

The aim of the present text is to show that the Ramsey–Carnap approach (or Ram-
seyfication) can be successfully applied to problems in contemporary philosophy, 
specifically the Application Problem of Mathematics as introduced by Wigner.1[See 
Wigner (1960).] My aim is not to introduce the Application Problem in full detail or 
to develop solutions to every aspect of it. The focus here is on adapting and develop-
ing the Ramsey–Carnap method further to provide interesting partial solutions to 
this particular problem. Neither am I particularly keen on conducting a metatheo-
retical analysis of the Ramsey–Carnap method. Partly because this has already been 
done in numerous publications by Lutz (2014b, 2017), and partly because I believe 
that methods such as logical analysis or rational reconstruction reveal their benefits 
when they are applied to interesting examples. The example in this case is infra-
red spectroscopy, a common technique for qualitative analysis in organic chemis-
try that provides directs links between theoretical chemistry—i.e. applied quantum 
mechanics—and the practices of scientists working in a laboratory. This link makes 
infrared spectroscopy an ideal element of scientific practice for finding interesting 
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correspondence rules, as Carnap called the logical bridges between theoretical and 
observational (or empirical) content of scientific theories.

Historically, Rudolf Carnap’s aim in separating theoretical and observational 
content was to carve out the structural properties that were hidden in the theoretical 
content and required to make a theory empirically adequate.2 The guiding idea of 
Ramseyfication, i.e. dividing the language of a theory into an observational and a 
theoretical part, provided the means to perform such a separation. Carnap’s original 
intention was to eventually eliminate the ontological commitments to the referents 
of the theoretical part by characterising these entirely through structural properties. 
[See Psillos (1999), p. 47–48 and Uebel (2011) for more on these topics.]

Some philosophers have tried to interpret this as a way of eliminating ontological 
commitments to any unobservable entity, including abstract objects. These philoso-
phers therefore regard mathematical terms as belonging to the theoretical vocabu-
lary of a language. [See Psillos (1999, p. 47).] Note that, instead, I will be following 
Carnap’s original view by including terms of elementary mathematics in the obser-
vational language as presented in Sect. 4. This reconstitution of Carnap’s original 
idea will prove to be essential when it comes to understanding how results from pure 
mathematics apply to quantified data and measurements.

To align mathematics with the structural nature of the Ramsey–Carnap method, 
I adopt the stance on mathematics proposed by Maddy (2008). In Maddy’s view, 
mathematics is a kind of warehouse of structures that can be applied to the sciences 
and (reused) in mathematics itself. She argues in favour of this view historically, 
dividing the history of mathematics into three phases: antiquity, the period after 
the scientific revolution up to the development of modern algebra, and the phase 
of modern algebra. The connection between mathematics and the sciences was sev-
ered during the transition from the second to the third phase, as mathematicians 
became more occupied with studying structures for reasons specific to their disci-
pline. Hence, mathematics can offer these structures for other disciplines to use as 
they please. As Maddy also states in (2008, p. 35), she views this as support for her 
criticism on the indispensability argument for mathematical realism as proposed by 
W.V.O. Quine and H. Putnam, which is one of her central tenets in Second Phi-
losophy. [See Maddy (2007, IV.2).] Both authors argue in favour of a kind of holism 
in which mathematics and the sciences form a contiguous whole, because the ref-
erences to mathematical entities cannot be eliminated from their contexts.3 I agree 
with Maddy’s historical description of mathematics. Moreover, my use of Ramsey-
fication will support her critique of the indispensability argument for mathemati-
cal realism. Even if the reader disagrees, Maddy’s view is surely influential and fits 

2  I will not be clarifying the meaning of “structural content” in this paper because there is no need to 
choose an account of structuralism at this point. In fact, my stance might even provide the grounds to 
attack structuralism in a novel way.
3  Note that Patrick Suppes also holds that mathematics cannot be practically separated from the theoreti-
cal sciences in Suppes (2002, p.33).
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perfectly into the Ramsey–Carnap tradition, which shows that the received view can 
still contribute to current debates.4

There is another peculiarity to my approach besides my opposition to mathemati-
cal terms being excluded from the observational part of a theory. Given that my 
aim is to enlighten on the Application Problem of Mathematics, I cannot conflate 
formalisation with the application of mathematics from the beginning.5 Therefore, I 
will desist from targeting specific mathematical entities as referents when formalis-
ing, i.e. when formulating a syntax and axioms. But since physical phenomena (e.g. 
temperatures) and numbers (e.g. 20 degrees centigrade) are frequently linked, I must 
handle identifications like these in a different way. Rather than viewing these links 
as mere identities, I focus on the measurement unit used to link these elements. In 
Sect. 5, therefore, I will introduce a logic of measurement units. I do not want to 
raise any false hopes though; there will neither be a formalisation nor a discussion 
of the logical properties of measurement units. However, since the lack of a clear 
picture of the logical properties of units is ultimately unproblematic, their logical 
behaviour can be ignored. In fact, one major finding of this paper is that the applica-
tion of mathematics justifies this ignorance. And I would claim that this is an essen-
tial element of the application of mathematics to the sciences.

Moreover, I would argue that my framework incorporates the problem of units 
adequately, because the possibility for units to be ignored here at least partly 
explains why the logic of units does not appear as a problem in the praxis of the 
sciences.

The paper will proceed as follows: Sect. 2 will introduce the Application Prob-
lem of Mathematics, then in Sect.  3 I will provide a technical introduction to the 
Ramsey–Carnap method. Section  4 will clarify the role of mathematical terms in 
the distinction between observational and theoretical content. Then in Sect. 5, I will 
use this information to paint a general picture of how the application of mathematics 
in the sciences can be analysed using the Ramsey–Carnap method. Sects. 6–8 will 
incorporate a little chemistry by introducing infrared spectroscopy and applying the 
idea developed in the preceding sections. To finish, I will explain how my applica-
tion of Ramseyfication relates to a possible solution for the Application Problem.

2 � The Application Problem of Mathematics

Mark Colyvan’s paper (2001) provides an extensive investigation of the Applica-
tion Problem of Mathematics. Colyvan’s main concern here is that the Application 
Problem is independent from any metaphysical stances one might have. I agree with 
him on this point. I will therefore refrain from getting involved in any deeper debate 
about structuralism; instead, I will stick to the grounds of Maddy’s view—i.e. the 

4  Consequently, I will not be arguing the case for her view in this paper.
5  Other authors do this frequently. For instance, Patrick Suppes conflates formalisation and the applica-
tion of mathematics while formalising theoretical vocabulary in Newtonian physics when he immediately 
includes explicit definitions of functions on real numbers. [See Suppes (1957, Sec.12.5).]
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warehouse which offers structures. However, as Colyvan explains, the Application 
Problem can be traced back to Wigner (1960), but was reformulated several times. 
Mark Steiner posed the problem as follows:

[H]ow does the mathematician - closer to the artist than the explorer - by 
turning away from nature, arrive at its most appropriate description? (Steiner 
1995, p. 154)

Colyvan identifies several questions and subproblems that must be solved by a solu-
tion to the Application Problem. I will focus on the following two questions.6

1.	 How does the mathematician, by turning away from nature, arrive at its most 
appropriate description?

2.	 Why does mathematics lead to simpler theories and simpler calculations?

In a more recent paper, Daniel Waxman formulates the Application Problem as an 
explanatory challenge. [See Waxman (2021).] He identifies two components of this 
challenge, which are roughly aligned with Colyvan’s questions. 

	 (i)	 Pure mathematics is an a priori discipline that appeals essentially to aesthetic 
considerations. (Waxman 2021, p. 85)

	 (ii)	 Scientific practice draws substantially on mathematical concepts and struc-
tures. (Waxman 2021, p. 86)

The explanation provided by Waxman (2021) in response to this explanatory chal-
lenge is basically that mathematicians do not stray very far from a rather small set 
of structures which are naturally occurring in the sciences. The aesthetic aspects 
come into play when these structures are studied in an intelligible way.7 The appli-
cability of any further development from these structures therefore comes as no sur-
prise. Waxman tries to make his claim apparent by means of two examples: Galois 
Theory and Probabilistic Number Theory. I do not intend to argue in favour or 
against his claim here.8 Instead, I choose to tackle the Application Problem from 
a different angle, by trying to logically analyse the relations between mathematical 
structures and the data produced by measurement devices used in the natural sci-
ences. I also try to make a case for this method through the successful application of 
Ramseyfication.

7  Waxman is rightly pointing out that the aesthetics follows a certain seriousness in mathematics, i.e. not 
everything is considered worth studying.
8  See Footnote 34 for a commentary on Waxman’s thesis in the light of my analysis.

6  Colyvan also argues in (2001, pp. 266–267) that any solution to the Application Problem must address 
the question of how mathematics plays a role in the predictions made by scientific theories. I disagree, 
because I see no reason why the case of a theory making predictions by mathematical means and the 
case of a theory making predictions without mathematics should be addressed separately. If an approach 
solves all the other aspects of the Application Problem, then the problems with predictions coincide with 
the single question of how any kind of theory, mathematical or otherwise, can lead to true predictions.
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3 � Ramseyfication: Technical Details

At this point, I will depart from the standard presentation of Ramseyfication in the 
literature (especially in Definition 2); this departure will be justified in Sect. 4. To 
formalise a scientific theory, I will use a standard formal system for second-order 
logic with equality, comprising a set of formulas F(�) , which is formulated over a 
signature � , a finite set of sentences T, i.e. the theory in a narrower sense, and a syn-
tactically or semantically given consequence relation ⊢.9 I will denote such a formal 
system by ⟨F(𝛼), T ,⊢⟩.10 If there is a need to specify a semantics, one might choose 
between the three standard options for second-order logic, e.g. full, Henkin or frame 
semantics, taken from the Tarski tradition; for this text, however, it does not really 
matter, and further restrictions may be appropriate depending on the case in ques-
tion.11 I separate the signature � into theoretical terms �T and observational terms 
�O , such that � = �O ∪ �T and �O ∩ �T = � . [See Carnap (1956).] This bipartition 
of the signature induces a tripartition of the set of sentences from F(�) into three 
categories: (1) theoretical sentences, i.e. sentences of F(�) which lack occurrences 
of symbols from �O ; (2) observational sentences, i.e. sentences of F(�) which lack 
occurrences of symbols from �T ; and (3) correspondence rules, i.e. sentences which 
include occurrences of both parts of �.12

Definition 1  I will refer to a formal system T = ⟨F(𝛼), T ,⊢T⟩ as a theory if T is 
finite and comprises only theoretical sentences and correspondence rules.

I use T ⊢ 𝜑 to express that � ∈ F(�) has a subset Φ ⊂ T  , such that ⟨Φ,�⟩ is in the 
consequence relation of the formal system T = ⟨F(𝛼), T ,⊢T⟩.

Definition 2  The observations OT  of a theory T  are a finite set of observational 
sentences.13

I refer to OT = ⟨F(𝛼O),OT,⊢O⟩ as a data-model of T .

9  This is deliberately formulated without further restrictions. I see no reason for a metatheory at this 
stage. These notions are supposed to form a framework, covering as many theories as possible.
10  The choice of ⊢ is strongly related to the theory under consideration and one’s aims. In Toppel (2020), 
I provided an extensive explanation of how to choose such a formalisation. I will leave this open here.
11  In Halvorson (2019) assumes that this does matter for Ramseyfication, but our discussion here goes 
beyond his scope.
12  Some readers might be confused by my decision to refer to these sentences as rules. But the reason 
why they are called by this name is because they formalise certain rules that scientists and laymen follow 
when connecting theoretical notions with measurement devices. Examples for such rules include looking 
at the thermometer to see the temperature, and the interpretation rules for infrared spectra mentioned in 
Sect. 7. Many philosophers see a close relationship between the rules outside of a formal system and the 
rules that define a calculus. Whether this relationship is indeed as close as propagated is up for debate. 
But it is not up for debate here. In this case, we only want to ensure that the formalisation of the rules 
followed by scientific practice are represented in a single sentence. This makes life easier when applying 
this apparatus.
13  Hence, the only requirement imposed by the theory on its observations is that they are reported in the 
same language.
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Note that observations can have any degree of logical complexity and that the 
consequence relations of OT  and T  do not have to coincide. In fact, I take these rela-
tions to be radically different.14 I will use OT ⊢ 𝜑 analogously to T ⊢ 𝜑.

To clarify how these formalisations are related to scientific practice, allow me to 
define the following notions, which are taken from (or inspired by) Lutz (2014a).

Definition 3  Assume T  is a theory and OT  its data model. 

1.	 I say that T  is empirically adequate with regard to OT  if there is no � ∈ F(�O) 
such that T ⊢ 𝜑 and OT ⊢ ¬𝜑.

2.	 I say that T  is empirically supported by � ∈ F(�O) and OT  if T ⊢ 𝜑 and OT ⊢ 𝜑.15

If T  is a theory that includes T = {�1, ..., �n} , then I take � to be the conjunction 
�1 ∧ ... ∧ �n . Note: since T includes correspondence rules, observational and theo-
retical terms occur in � . I emphasise the occurrence of these terms in � by 𝜏(o⃗, t⃗).

Definition 4  Assume 𝜏(o⃗, t⃗) is obtained from the theory T .
The Ramsey sentence of T  is

We also call this Ramsey sentence the Ramseyfication of the theory T  . The Carnap 
sentence of T  is

Note that second order quantifiers occur in ℜ(T) when at least one theoretical 
term is a predicate or function symbol, which, of course, is usually the case. Also 
note that ℜ(T) is an observational sentence and that all consequences of ℭ(T) are 
logically valid.16

The following theorem is easy to prove:

Theorem  3.1  Assume that ⊢T is one of the standard second-order consequence 
relations. For any observational sentence, � holds that:

T ⊢T 𝜑 if and only if ℜ(T) ⊢T 𝜑.

Theorem 3.1, and the result that ℭ(T) is logically true, i.e. does not imply substan-
tial truth, is the reason why some see ℜ(T) as the carrier of the empirically relevant 

ℜ(T) ≡ (∃X⃗)𝜏(o⃗, X⃗).

ℭ(T) ≡ ℜ(T) → �.

14  They can differ in their logical properties or the mathematical resources available to them. They might 
also model different causal relations.
15  Note that it is possible for a T  to be both empirically inadequate and supported. For example, when 
research progresses and a new OT  is formed, one which includes all the support given by a former data 
model but shows that the theory is empirically inadequate according to new findings.
16  The latter is easy to check. Proof can be found in Rozeboom (1962, pp.291–292).
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content of a theory which is structural in its nature. However, I am not going to 
argue the case for a version of structuralism in this paper. I identify the structural 
content of ℜ(T) with its ability to adopt a unique model-theoretical structure; I will 
not be drawing any ontological consequences here.

4 � An Extended Observational Language

Carnap’s observational–theoretical distinction reflects two contexts of verification 
(in the sciences) for a proposition, claim or sentence: either the verification proceeds 
through observations, e.g. through direct observations or measurements, or through 
an argument that draws on the theoretical background of the academic discipline. 
Noteworthy, mathematical vocabulary is frequently used in both contexts. Hence, 
Carnap includes these terms in observational sentences.

It is important to understand [...] that Ramsey’s approach cannot be said to 
bring theories into the observation language if “observation language” means 
(as is often the case) a language containing only observational terms and the 
terms of elementary logic and mathematics. (Carnap 1966, p. 252)

This quotes confirms that Carnap includes elementary notions of mathematics in his 
weakest version of an observational language. This is a version he is going to extend 
even further through the need for second order quantifiers to match the syntax of 
the Ramsey sentence. Carnap proceeds by introducing the notion of an extended 
observational language. He extends the realm of possible referents for observational 
sentences to match the needs of the second order quantifiers. The fact that there 
are, therefore, no syntactical restrictions on the length or order of quantification in 
observational sentences was pointed out by Lutz (2014a, p. 1173) and is something I 
implicitly used myself in Sect. 3; hence, this is the promised justification for Defini-
tion 2. However, I consider this uncontroversial. What I wish to pinpoint is the inter-
relation between the occurrence of elementary mathematical notions in the obser-
vational sentences alongside second order quantifiers. The combined occurrence of 
these elements is the reason why I called an OT  a data model, because it allows for 
the introduction of continuous mathematics and statistical methods into OT  . I like 
to think of the corresponding ⊢O as extending logic to a mathematical consequence 
relation, which might be chosen as a constructive system, e.g. intuitionistic math-
ematics or characterisations of computability classes or such. I will explore where 
this thought might lead in the following section.

5 � Applying Mathematics in the Sciences

In order to show how the application of mathematics can be understood with the 
apparatus described in the previous sections, let us start with a simple example that 
closely relates to Carnap’s discussion in (1966, p. 225):
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The phrase “twenty centigrade” is (or rather, should be formalised as) an obser-
vational term, since it can be easily measured using a manual device such as a 
thermometer. Also, the number term 20 is elementary enough to count as obser-
vational in the sense of a verification context as distinguished at the beginning of 
Sect. 4.17 The noun-phrase “this rock” can be formalised as an observational term 
without causing controversy, whereas “temperature” is a theoretical term.18 Hence, 
( ∗ ) should be formalised as a correspondence rule.19 It is tempting to formalise this 
statement as

However, this would be wrong because no temperature is identical to a number. 
According to modern physics, temperature is a configuration of the movements of 
the particles which are aggregating to a material body. To view temperature as a 
number is to relate these configurations to those of another body by a scale.20 I con-
sider it most appealing to specify the scale by using an operator, as in

Of course, the need for this becomes more apparent when more than one measure-
ment device with different units is in use. I did not include this in Sect. 3, because I 
have no characterisation of their logic and one of the aims of this paper is precisely 
to show that the logic of these operators does not have to be spelled out. So we keep 
working with T(r) = 20 as the formalisation.21 Note that this problem only occurs 
in the case of correspondence rules, because the unit only denotes a logical func-
tion when combined with a theoretical term like temperature or mass. Furthermore, 
methodologically speaking, ignoring this aspect of the sentence is not a problem—
as will be made clear later. It is just a syntactical change (which was skipped in 
Sect.  3) from modal to pure first-order that would have appeared before the step 
discussed here. By this I am referring to the step from first-order to the Ramsey sen-
tence, which is a second-order sentence.

(∗) This rock has a temperature of twenty centigrade.

T(r) = 20.

◦C[T(r) = 20].

17  Of course, one might wonder how big a natural number can be or how the denominator of a fraction 
can be such that a number term still counts as a elementary notion of mathematics. Discussions such as 
those in Suppe (1972) are to be avoided. As long a measurement device is fixed, the situation is rather 
clear: readability on the scale or the limits of the display will clarify on the limits of whether a number 
term counts as observational
18  Carnap also explicitly states this in (1956,  p.  48). It is also clear from the requirement that 
�
O
∩ �

T
= � and the fact that “temperature” frequently appears in theoretical contexts.

19  Carnap also implies this in (1956, p. 48). Readers who are well-acquainted with Carnap should not 
be confused by the fact that Carnap also calls this sentence an empirical law, for this apparent conflict of 
notions can be resolved by distinguishing between a pre-formalised sentence and a formalised sentence. 
[See Toppel (2020, pp. 34–35.)].
20  For instance, when a thermometer was calibrated by being previously applied to a body with known 
temperature.
21  Here the opposition to those using mathematical entities as intended referents becomes effective, as it 
was promised in the introduction.



3365

1 3

Applying Ramseyfication to Infrared Spectroscopy﻿	

Since T(r) = 20 is a correspondence rule, after Ramseyfication it is identified 
with

This is an observational sentence. Whatever the semantic value of T was before, 
after Ramseyfication we are free to take whatever we want for f’s value. We are 
only restricted by the condition that r ↦ 20 . Hence, depending on how objects are 
formalised into language, if these objects are represented by coordinates then the 
choice for such a function can be viewed as a mathematical regression (or any other 
kind of statistical modelling).

Rephrasing this in the terminology of Definition 3, we can say the following:
A case of empirical support for a theory T  can be made when two things happen: 

1.	 ℜ(T) ⊢ ∃f𝜑(f )

2.	 OT ⊢ ∃f𝜑(f )

Theorem 3.1 assures that (1.) does not go beyond the scope of Definition 3. Addi-
tionally, the use of different consequence relations in (1.) and (2.) might yield fur-
ther informative results for theories under investigations. This is because the con-
sequence relation in (1.) is some suitable fragment of classical second-order logic 
provided by a system of deduction or customary semantics, whereas the conse-
quence relation in (2.) is not purely logical. That is to say, it may incorporate basic 
causal relations and statistical methods, and it should proceed constructively.22

(1.) tells us that in any possible reinterpretation of T  , one can find a function that 
satisfies the conditions expressed by � , which only includes occurrences of symbols 
from �O.

In cases where �O comprises only denotations for numbers (and maybe easy func-
tions on these numbers), this allows for a change of reference for �T , from concrete 
entities (like atoms) to entirely abstract entities (like numbers).23 ℜ(T) allows for a 
change of reference to a richer structure previously provided by mathematics.24 The 
richer structure actually allows a function such as f—e.g. the solution to an eigen-
value equation in quantum physics—to be found. But if the function is found and 
its existence can be proven by ℜ(T) , then it can be justified by T  alone by means of 
Theorem  3.1.25 This also avoids issues with the different logical requirements for 

∃f [f (r) = 20].

22  The requirement to proceed constructively does not reflect a philosophical stance; it is just a matter of 
fact that data analysis in the sciences is carried out by effective algorithms, e.g. when a working scientist 
analyses data with a computer programme.
23  I agree with Halvorson when he says that:
  To the contrary, logical semantics is... wait for it... just more mathematics.
(Halvorson 2019, p. 15)
  But of course, this is on the metalevel. It still makes sense to say that “Hans” denotes a particular pro-
fessor of the formal philosophy of science and that “1” denotes the number one.
24  See Maddy’s (2008) for the underlying picture of mathematics adopted here.
25  Although this requirement might sound strong, notice that it is satisfied by the example of infrared 
spectroscopy.
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units that may appear in the correspondence rules, because changing the reference 
to an abstract object eliminates the dependency of a predefined scale. The theory 
T  is then empirically supported when the data allows a suitable (similar enough) 
function to be found, i.e. when OT  finds a function that satisfies the same conditions 
(those expressed by �).

This leads us to an answer for Steiner’s question:

How does the mathematician, by turning away from nature, arrive at its most 
appropriate description?

The answer is: she does not. As Maddy described in (2008), the mathematician only 
provides mathematical structures that can be applied in the sciences. But the theory 
provides a separate structure, and mathematics is only tied to this latter structure 
through the fixture that is provided by the mathematical terms in the observational 
language. However, this tying is obviously highly interpretative, i.e. the mathemati-
cal structure can only act as a mathematical model when it simultaneously satisfies 
two conditions: (1) it must fit the data model, and (2) it must embody the structure 
provided by the theory. Hence, there is no epistemological gap to be bridged.

I would like to close this section by claiming that the most interesting cases 
include observational languages which are entirely constructed on the basis of math-
ematical notions. I claim this because (1) the language of measurements is entirely 
mathematical in scientific contexts, and (2) the application of mathematics—as 
described above—seems most appropriate when this language is used. This will 
become clearer when such a language of measurements is studied in relation to its 
measurement technique in the following sections.

6 � Infrared Spectroscopy

It seems like I did two bad things. First, I gave a “solution” to the Application Prob-
lem of Mathematics, which is just basic model theory. Second, I identified a prob-
lem with the logic of unities, which I then solved immediately by using again basic 
model theory. One might therefore say that I artificially constructed a problem.

In order to show that something of substance is revealed when Ramseyfication 
is considered (or used) in this way, I will use the method on infrared spectroscopy. 
However, the range of the quantifier in the existence claim as described in Sect. 5 
does not include functions but only single values, when the data is given as an infra-
red spectrum.

Infrared spectroscopy is a standard measurement technique that has many appli-
cations in organic chemistry. It is mainly used in the qualitative analysis of chemi-
cals, i.e. to identify the chemical or the components of a mixture. The basic princi-
ple of this technique is that heat causes vibrations in the atoms of a molecule. Also, 
sub-molecular structures can only remain in discrete quantum stages that correspond 
to the energy levels they are able to absorb. Moreover, since energy corresponds to 
the wavelength of radiation and heat corresponds to infrared radiation, wavelengths 
correspond to sub-molecular structures. Now the idea behind infrared spectroscopy 
is to measure the wavelengths that are not absorbed in order to draw conclusions 
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about the wavelengths that have been absorbed. This data allows the chemist to 
ascertain certain properties of the sub-molecular structure. Since the bond must be 
stable in order to move, this method works best with atomic bonds, e.g. bonds 
between two carbon atoms ( C − C ), a carbon and a hydrogen atom ( C − H ), a car-
bon and an oxygen atom ( C − O ), and an oxygen and a hydrogen atom ( O − H ). 
This is why it is widely applicable in organic chemistry. The type of movement that 
infrared radiation induces in a molecule is the vibration of the atoms along their 
bonds. There are six types of vibrations to be distinguished in a molecule; however, 
these need not concern us here. The data produced by the measurement devices are 
points that pair a wavelength ( � ) in centimetres (cm) with the intensity (I) of the cor-
responding radiation. However, it proves rather useful to consider the matter of 
related magnitude: the wave-number ( 1

�
 ) in cm−1 and the transmittance in % ( I

I0
⋅ 100 , 

with I0 as the original intensity). When the data is displayed in a suitable diagram 
and the lines are connected, a curve is obtained. Below is the curve for ordinary 
alcohol (ethanol), which has the following structure:

The (downward) peaks corresponds to an atomic bond. For instance the huge 
peak at the beginning, i.e. between 3500 and 3000 cm−1 , is a sign for O − H . The 
sharper peak close to 3000 cm−1 is a sign for H − C − H.
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I consider it important and essential to the theory behind this measurement 
method that a chemist does not have to know any quantum physics in order to use 
this measurement technique competently, i.e. to interpret a spectrum. Also, there 
is no need for mathematics as yet. All there is, is a taxonomy of chemical bonds 
and their possible vibrations, which correspond to wave numbers.

Let me pre-empt two possible counter-arguments against my decision to 
use this example. I can think of two such arguments, the most common prob-
ably being that I am ignoring the fact that the theory of infrared spectroscopy is 
deducible from quantum mechanics. However, this is wrong. The taxonomy of the 
vibrations must be used when formulating and solving the eigenvalue equations. 
The logic of the unmathematical theory therefore precedes that of the mathemati-
cal theory. [See Bright Wilson et al. (1980).] Others might argue that the theory 
I have presented so far is merely a degenerative form of a more advanced theory 
which is highly mathematical and basically equates to applied quantum mechan-
ics. I agree, but this does not make the theory, as I present it, any less of a theory 
in its own right. Indeed, it is taught, used and applied in this form in an academic 
context.

Moreover, coming from the Ramsey–Carnap tradition, it is not that unnatural to 
look into spectroscopy. As one of the closest connections between the unobservable 
micro-structure of the world and the data scientists gather about it, spectroscopy is 
the natural place to look for correspondence rules.
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7 � Applying Ramseyfication to Infrared Spectroscopy

Of course, formalising the theory of infrared spectroscopy is not possible in the 
narrower scope of this paper; moreover, it is also extremely boring. Instead, I rely 
on the reader’s imagination and the suggestion that a molecule can be easily rep-
resented as a finite connected graph whose edges have finitely many properties. It 
is easy to see that all the taxonomies given in a standard textbook on IR spectros-
copy can be spelled out in a second-order system.26 The theoretical sentences should 
comprise the following information: 

1.	 They should state that the smallest components of a molecule are atoms and that 
anything that is composed of molecules is also a molecule.

2.	 They should state which bonds can appear between certain atoms and which types 
of vibrations these bonds can perform, and state certain connections between 
these vibrations.

3.	 They might also include more advanced parts of the theory, i.e. how vibrations 
change when intermolecular changes occur, including a theory of hydrogen bonds 
and so on.

In order for this to count as a theory in the sense of Definition 1, we also need cor-
respondence rules. These should express the standard interpretation rules for spectra 
as given in the textbooks (like Hesse et  al. 2012), e.g. “A ( H − C − H ) peaks at 
between 3050 and 2850 cm−1”.27

There are also certain aspects that help us with the task of formalising a data 
model in the sense of Definition 2; note that 4001 is a prime number and the stand-
ard measurement devices only produce data in the natural numbers. Hence we need 
only number terms for natural numbers up to 4000 and we get a field—and therefore 
all of basic arithmetic - for free.28 On the other hand, there is no need for number 
terms at all in the theoretical vocabulary, because the formalisation of molecules as 
finite graphs means that alternating existence quantifiers can perform any counting 
required, e.g. for chemical formulas like CxHyOz.

Coming back to the observational language, a spectrum can be formalised as a 
mere list of peaks, e.g. as a finite list of pairs of numbers, the first of which denotes 
the wave number while the second indicates the magnitude of the peak. After all, the 
graph above purely benefits human cognition; the same information is provided in 
the list below the graph.

At this point, the example already shows the extent to which number terms can be 
taken as observational: there is no problem of epistemological accessibility in recog-
nising that the first peak is at 3423 cm−1 in the spectrum of ethanol. In other words, 
it is epistemologically unproblematic to verify that

26  For any sceptics I offered some suggestions in this regard in Toppel (2020).
27  See the tabular in Hesse (2012, p. 51).
28  Because the ring of integers modulo 4001 then becomes a field.
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where S(x) ∧ Ethanol(x) says “is a spectrum of ethanol” and p is a function denoting 
the wavenumber for the first, second peak (and so on) in a spectrum, is true; there-
fore, to call it observational is justifiable.

So, I provided a good example of a formalisation of a scientific theory, with the 
particularity that mathematics only occurs in observational sentences. It also makes 
a clear and uncontroversial distinction between epistemologically problematic and 
epistemologically unproblematic sentences when it comes to verification or acces-
sibility. Note that we only need three types of entities here: 

1.	 Natural numbers between 0 and 4000.
2.	 Spectra, i.e. a finite list of pairs of numbers.29

3.	 Atoms and molecules.

The first two entities are presupposed by the observational sentences, whereas the 
third is only presupposed by the theoretical sentences. Chemicals are not required as 
an ontological basis in addition to their spectra and their molecular structure.30

It is usually considered a malfunction of formal systems that they cannot specify 
their models up to isomorphism, whereas this is the main benefit of formalisation for 
our purposes here. Since the theory can have models of any cardinality, we can con-
struct a structure based on the real numbers; one that satisfies the theory but adds 
more structure. This is what it means to use mathematics in the case of this theory. 
The structure added by the mathematics can then be used for theoretical purposes.

8 � Applying Mathematics to the Theory

We have a choice here. We can either opt for the mathematics that classical physics 
developed by using a quantified version of the harmonic oscillator (like in Hesse 
et al. 2012), or we can incorporate the entire mathematical apparatus that contem-
porary quantum physics has to offer (as in Bright Wilson et al. 1980). Based on my 
view on the application of mathematics, it should suffice for us to work with the 
classical version as described in Hesse et al. (2012).

We start by identifying atoms with the (numerical) value of their atomic mass. 
Hence our ontology changes from H, C, N, O and S to 1, 12, 14, 16 and 32.31 Iden-
tifying atoms with the value their atomic mass does not disregard important links 

∃x[S(x) ∧ Ethanol(x) ∧ p(1, x) = 3423],

29  Their type-token distinction is no more epistemologically or metaphysically problematic than that of 
any entity that can be printed.
30  This does not mean that I am concluding that the material basis of the measurement technique is 
reducible. I want to recall that we just picked out one identifiable portion from a collection of scientific 
theories in organic chemistry. This theory is not intended to stand on its own.
31  I have used rounded values for the sake of simplicity. Note that these are not number terms; they are 
numbers that serve as the reference for variables which are quantified by an existence quantifier in the 
Ramsey sentence.
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between the notion of mass and mathematics. Indeed, infrared spectroscopy does 
not explicitly talk about mass in addition to the quality of an atom or its vibrations, 
so this does not appear to be relevant in terms of its mathematical modelling when it 
comes to this particular context of verification. If I failed to include this aspect, then 
it is not because I took a shortcut, but because it can be eliminated in this particular 
case. After reinterpretation, both “mass of 12” and “carbon atom” become “is 12”.

Adequate mathematical objects must be chosen as references for the other vari-
ables in Ramseyfication depending, in particular, on how molecules have been for-
malised. For explanatory purposes, I use triples of numbers (k,m1,m2) for bonds, 
where k encodes the quality of the bond and the mi s are either 1, 12, 14, 16 or 32. 
Of course, additional axioms must be added to the Ramsey sentence so that both the 
references of the variables are specified and suitable operations can be performed. 
The details should not be hard to estimate. This allows us to add new structure by 
adding one further axiom to the Ramsey sentence of infrared spectroscopy:

if (k,m1,m2) is a bond, then

This formula is derived from Hooke’s law, where a bond is viewed as a harmonic 
oscillator.32 Note that the correspondence rules took the form

“A ( H − C − H ) peaks at between 3050 and 2850 cm−1”

This is how they look after Ramseyfication and mathematisation:

“For any x, such that (x,1,12) is a bond, (∗∗) gives a value ṽ(x, 1, 12) such that 
3050 ≤ ṽ(x, 1, 12) ≤ 2850.”

The correspondence rules are then either consistent or not. If they are consistent, then 
the mathematical model is adequate. Of course, whether the mathematical model 
is adequate depends on how narrow ranges such as “ 3050 ≤ ṽ(x, 1, 12) ≤ 2850 ” are 
taken to be.

To link this to the discussion in Sect. 5 regarding the formula ∃f�(f ) , the required 
existence claim here only concerns a value provided by the function ṽ(x, 1, 12) and 
not the function itself. It has the form

This formula can be proven by the theory because we assume that there are certain 
bonds in a molecule, and it can be proven by the data model because a value can be 
read off a spectrum by the function p from Sect. 6.

(∗∗) k =
m1⋅m2

m1+m2

⋅

(
ṽ

1302

)
.

∃y�(3050 ≤ y ≤ 2850).

32  I explained this in detail in Toppel (2020).
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9 � Conclusions

In this paper, I upgraded the presentation of Ramseyfication to make it more appli-
cable to modern science, and I applied the approach to the method and theory of 
infrared spectroscopy. I sketched a formalisation of the theory of infrared spectros-
copy TIR as a kind of finite graph theory with extra information about edges. I built 
a data model in the sense of Definition 2 OTIR

 , which is basically a theory about a 
finite set of finite lists. I then extended ℜ(TIR) with the addition of (∗∗) and basic 
arithmetic.

Since the observation language of TIR was formed entirely of mathematical terms, 
the canonical model for ℜ(TIR) + (∗∗) + (some basic math) is a structure that com-
prises only numbers and other abstract objects.

The above shows that Ramseyfication, has something valuable to say about an 
unsolved philosophical problem: in this case, the Application Problem of Mathemat-
ics mentioned in Sect.  2. Mathematicians provide mathematical structures. Apply-
ing mathematics in the sciences means tying these structures to the structural content 
given by the Ramsey sentences of a theory in question. This tying is interpretative in 
the sense that the mathematical terms in the observational language provide a fixture 
in which these structures have to fit.33 This interpretive aspect of the application is 
the reason why no epistemological gap arises between abstract objects and concrete 
objects, since all structures of relevance to concrete objects were already present in 
the theoretical part of the theory.34 As mentioned in Sect. 4, the distinction between 
a theoretical language and an observational language reflects the distinction between 
the contexts of justification for claims, propositions or sentences. Since mathematical 
terms cannot be separated from their observational context, such terms must remain in 
the observational language. However, the example of infrared spectroscopy shows that 
the situation is different in the case of higher mathematics and the theoretical content 
of a theory. More elementary (or constructive) concepts are integral to the observa-
tional part of the language, which allows higher mathematics to be applied to the theo-
retical content and removed as required, provided two factors are taken into account. 
Firstly, the mathematics must satisfy the structural needs of the theoretical content 
(as given by the Ramsey sentence) and, secondly, its structure must match the outline 
demanded by the elementary mathematics in the observational part.

I see this as a convergence between a more developed version of Ramseyfication 
and the position expressed by P. Maddy’s claim that higher mathematics and the 
sciences are not as strongly intertwined as Quine and Putnam believed or as argued 
by the indispensability argument for mathematical realism. [See Maddy (2007, 
IV.2).] When it comes to the sentences of mathematics and theoretical physics, 
33  This might be seen as a criticism of structuralism, because not only is finding a structure highly inter-
pretive, but the structural content (whatever this is) also changes in relation to the chosen units, i.e. one 
might view the theory of organic molecules from the perspective of mass spectroscopy instead of infra-
red spectroscopy.
34  Note, for instance, that the basic taxonomies of vibrations, which presuppose a structure, must be 
given in order to formulate the eigenvalue equation in the case of quantum physics. (See Bright Wilson 
et al. 1980.) Whether this supports or disclaims Waxman’s thesis as presented in Waxman (2021) cannot 
be decided without further analysis of the structures presupposed by the theories. But the problem identi-
fied in Footnote 33 seems to raise a challenge for Waxman.
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mathematical notions might be superficially connected to theoretical terms by the 
scientist’s linguistic practice, but that does not make them logically inseparable.
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