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Abstract
Octopuses are highly intelligent animals with vertebrate-like cognitive and behav-
ioural repertoires. Despite these similarities, vertebrate-based models of cogni-
tion and behaviour cannot always be successfully applied to octopuses, due to the 
structural and functional characteristics that have evolved in their nervous system 
in response to the unique challenges posed by octopus morphology. For instance, 
the octopus brain does not support a somatotopic or point-for-point spatial map of 
the body—an important feature of vertebrate nervous systems. Thus, while octo-
puses are capable of motor tasks whose vertebrate counterparts require detailed 
interoceptive monitoring, these movements may not be explainable using motor con-
trol frameworks premised on internal spatial representation. One such motor task 
is the extension of a single arm. The ability of octopuses to select and use a single 
arm without the guidance of a somatotopic map has been regarded as a motor con-
trol puzzle. In an attempt at a solution, this paper develops a predictive processing 
account of single-arm extension in octopuses.

1  Introduction

It is somewhat of a motor control puzzle that octopuses are capable of using a single 
arm (Zullo and Hochner 2011)—that is, if the starting point of inquiry is a motor 
control model based on vertebrates, which is commonly the case in cognitive sci-
ence. Cognitive science has focused largely on vertebrates for much of its history, 
a trend reflected in its received views and explanatory paradigms. One such histori-
cally entrenched, vertebrate-based notion is that motor control requires an internal 
model of the body, to be used by the motor system as a frame of reference when for-
mulating motor commands. Because the internal model is a spatial map of the body, 
it enables the motor system to monitor the location of the effectors and precisely 
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direct motor command volleys to specific muscles. However, such a model may not 
be present in octopuses, due to the inability of their central nervous system to sup-
port somatotopic representation, or a point-for-point map of the body (Zullo et al. 
2009). Models that presuppose internal spatial representation of the body—repre-
sentation-based models, for short—thus have difficulty accounting for motor control 
in octopuses (Gutfreund et al. 1996), in particular complex movements that suppos-
edly require close control of the effectors. One such type of octopus behaviour is the 
extension of a single arm to retrieve an object.

A considerable corpus of studies—consolidated in (Levy et al. 2017) and (Zullo 
and Hochner 2011)—describes in detail the embodied and distributed motor control 
strategies octopuses use to direct their arm movements. These strategies differ radi-
cally from the representation-based motor control models familiar to cognitive sci-
ence in a number of ways. One is that in octopuses, control and processing routines 
whose vertebrate counterparts are high-level and originating from the central nerv-
ous system (CNS) are offloaded to the peripheral nervous system (PNS). Another is 
the extensive use of morphological computation, or “the phenomenon that computa-
tion can be obtained through interactions of physical form” (Paul 2006, 619) to sim-
plify motor control routines that would otherwise have been neurally exorbitant and 
beyond the capacity of the octopus’s central nervous system (Gutfreund et al. 1996). 
For instance, octopuses “pseudo-articulate” the arm by forming bends analogous to 
the joints of the human arm to accomplish tasks such as object retrieval (Sumbre 
et al. 2001, 2005). The location of the bend around which the arm pivots in order 
to ensure the correct trajectory when bringing the object closer to the body is deter-
mined by the collision point of waves of muscle activation triggered by contact with 
the object (Sumbre et al. 2001).

An important aspect of octopus motor control—which is the source of the appar-
ent puzzle—is that in order to extend an arm, the higher motor centres in the brain 
“[generate] a single extension command that is distributed to several arms” (Zullo 
et  al. 2009, 1633) instead of being directed towards the selected arm alone. It is 
believed that tactile and visual information can “filter” the extension command, acti-
vating only the selected arm while suppressing movement in the non-selected ones 
(Zullo et al. 2009). Nevertheless, the question remains of how these tactile and vis-
ual signals are associated with a particular arm without the guidance provided by a 
somatotopic map. In other words, “[if] there is no somatotopic representation of the 
body, how can the [octopus] determine which arm/s to move during natural behav-
iour?” (Zullo and Hochner 2011, 28). Due to the octopus’s lack of a somatotopic 
map, representation-based models are hard put to answer this question (Levy et al. 
2017). In an attempt to close this explanatory gap, this paper formulates a predictive 
processing account of single-arm use in octopuses, which is premised on the notion 
that what the CNS transmits downstream are not explicit motor commands but pre-
dictions of proprioceptive input (Adams et al. 2013a, b).

The flow of the paper is as follows. Section 2 provides an overview of the features 
of the octopus nervous system. Section 3 is an exposition of representation-based 
motor control. Section 4 discusses predictive processing. Section 5 presents the pre-
dictive processing-based account of single arm use. Finally, Sect. 6 concludes the 
paper.
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2 � The Octopus Nervous System

The octopus nervous system is hierarchically organized and functionally decentral-
ized, with peripheral components that are highly elaborated and autonomous. Being 
entirely soft-bodied with almost no hard parts, octopus morphology lacks permanent 
structures that can function as proprioceptive guideposts that help to simplify motor 
control (Levy et al. 2017). These neuroanatomical features “pose several major dif-
ficulties for accomplishing motor control that is based on the body representation 
scheme” (Levy et al. 2017, 3), such as the inability of the motor centres in the octo-
pus brain to support a somatotopic or point-for-point map of the body.

With 500 million neurons—approximately the same number found in dog 
brains—the octopus nervous system is the largest of all invertebrate nervous sys-
tems, and is well within the vertebrate size range (Hochner 2004). These neurons 
are organized into the three hierarchical and autonomous components comprising 
the nervous system, wherein the peripheral elements function largely independently 
of the brain. Most of the neurons are found in the PNS, which is connected to the 
brain by just about 30,000 nerve fibres. These anatomical features imply that sen-
sory information and motor commands are processed extensively in the PNS before 
they are transmitted upstream to the brain.

While the brain (CNS) is at the top of the hierarchy, it is also the smallest part of 
the nervous system, with 45–50 million neurons. The paired optic lobes are typically 
considered part of the PNS, but are sometimes regarded as components of the brain 
(Zullo and Hochner 2011). Between them, the optic lobes have 120–180 million 
neurons. The visual lobes are lateralized, i.e., each lobe processes the visual input 
from the ipsilateral eye and transmits information directly to the brain. Information 
from the visual lobes is then integrated in the brain.

The largest component is the peripheral arm nervous system,1 with 350 million 
neurons distributed equally between the octopus’s eight arms. A ring of fibres at 
the bases of the arms called the interbrachial commissure connects the arms to 
each other and to the brain. All the octopus’s arms are anatomically and func-
tionally identical (save for the third right arm in male octopuses, which is hecto-
cotylized or anatomically modified for sexual function). The anatomical hierar-
chy within the arm nervous system, in descending order, is as follows: the axial 
nerve cord, five intramuscular nerve cords, sucker ganglia, and sensory recep-
tors. The axial nerve cord is the highest-level processing and control centre in 
the PNS (Richter et  al. 2015), and connects the brain with the lower elements 
in the arm nervous system, such as the muscles and suckers. It transmits high-
level motor commands from the brain to the arm, consolidates sensorimotor input 
within the arm, and integrates central and peripheral information. The intra-
muscular nerve cords are responsible for the motor innervation of the arm. The 
rows of sucker ganglia, each one containing hundreds of neurons, innervates and 

1  A detailed description of the arm nervous system is found in P. Graziadei, "The Nervous System of 
the Arms," in The Anatomy of the Nervous System of Octopus Vulgaris (Oxford: Clarendon Press 1971), 
which is still considered a comprehensive reference on the subject.
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receives sensorimotor input from its respective sucker. Finally, every octopus arm 
has about 240 million sensory receptors in the skin, suckers, and muscles, which 
respond to tactile, mechanical, and chemical stimuli.

The distribution of motor control labour in the octopus is likewise hierarchical 
(Sumbre et  al. 2001, 2005, 2006). The highest motor control centres are found in 
the octopus brain, i.e., the basal lobe system. The brain’s motor control responsibili-
ties are “cognitive and executive functions like motor coordination, decisionmaking 
(sic), and learning and memory” (Levy et al. 2017, 7). For instance, the brain selects 
the type of movement to be executed, such as arm extension or object retrieval, and 
initiates the command to activate the movement. However, the “details for the exe-
cution of various motor program (sic)” (Levy et al. 2017, 8), i.e., stored patterns of 
information regarding the spatial parameters necessary for actualizing a particular 
movement, are embedded in the arm nervous system (Zullo et al. 2009, 2019). Many 
of these peripheral motor programs are stereotypic, as they specify the fixed kin-
ematic parameters of commonly used movements (Sumbre et al. 2001, 2005).

Stimulation experiments to the basal lobes (Zullo et al. 2009)—the highest motor 
centres in the octopus nervous system—yielded a finding crucial to understand-
ing motor control in octopuses: the absence of a somatotopic map to represent the 
octopus’s body parts. This conclusion was reached because direct stimulation to the 
basal lobes (1) resulted in multiple arms moving identically, and (2) it was not pos-
sible to elicit the extension of a single arm. (It is ambiguous from the original text 
whether this refers to all of the arms, or a set of adjacent arms.) These results sug-
gest that high-level motor commands originating from the basal lobes are transmit-
ted globally, so that multiple arms rather than a single one receive the same exten-
sion command (Zullo et al. 2009). It was further inferred that the brain “generates 
only one motor command to all arms if they are activated in the same behavioral 
context” (Levy et al. 2017, 12).

Another significant finding was that the same type of movement can be elicited 
through stimulation of different areas of the basal lobes (Zullo et al. 2009). If the 
octopus’s arms were somatotopically represented, then different areas of the basal 
lobes would govern different sections of the arms (see Hochner 2012). Were soma-
totopic representation present, stimulating a particular area of the basal lobes would 
produce movements varying in shape and trajectory, depending on the part of the 
arm they originate from. The conclusion is thus that the highest-level motor centres 
in the CNS are unable to proprioceptively distinguish between the octopus’s indi-
vidual arms, due to the absence of a somatotopic map that would have made such 
identification possible. Moreover, the octopus brain does not have adequate neural 
resources to “be able to deal with such a huge number of parameters that would be 
sufficient to represent its muscular system” (Levy et al. 2017, 3).

The difficulty of spatially representing the arms is further exacerbated by the 
absence of a rigid skeleton, which would have simplified the task by providing fixed 
structures that serve as proprioceptive guideposts for the motor system (Gutfreund 
et  al. 1996; Wolpert 1997). The absence of fine-grained central mechanisms for 
interoceptively monitoring the body thus precludes the highest-level motor centres 
from formulating detailed motor commands prescribing the activation patterns for 
specific muscles to execute a particular movement, as is the case in vertebrates.
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Instead of a spatial map of the body, the motor centres in the brain are likely to 
represent motor programs or functions (Zullo et  al. 2009), which could be “inte-
grated with multimodal sensory information” (Zullo and Hochner 2011, 28). Selec-
tion and activating the type of movement is thus the responsibility of the CNS. This 
implies that the brain registers the kind of movement in process, but may not attrib-
ute it to specific appendages, at least proprioceptively.

3 � Representation‑Based Motor Control

In vertebrates, representation-based motor control is the dominant paradigm. The 
main premise of representation-based motor control (see Wolpert 1997) is that the 
CNS constructs an internal spatial model of the organism from consolidated bot-
tom-up information sourced from the exteroceptive and proprioceptive senses (Clark 
2013). The model supplies the motor system with information about the position 
of body parts—especially the effectors—in relation to the rest of the body, as well 
as the structural limitations imposed by the organism’s morphology. This way, the 
motor system is “guided” when formulating commands that specify which muscle 
groups are to be activated, and how. In other words, motor control “[involves] inter-
nal representation of the target and limb positions and coordinate transformations 
between different internal reference frames” (Flash and Sejnowski 2001, 656).

The articulation of a model refers to the degree of accuracy and detail in which 
it corresponds to the anatomical segmentation and proprioceptive landmarks of the 
organism’s body (Grush 2001). A well-articulated model is thus of immense help 
to the motor system, as extensive detail makes it possible for the motor system to 
formulate highly specific motor command volleys. The motor command volleys are 
in turn directed to the appropriate muscle groups, where their activation signals are 
transmitted to specific muscles to produce movement.

Representation-based motor control can be described as follows. Within this par-
adigm, motor control is understood as the task of specifying the set of spatiotem-
poral coordinates and movement trajectory that bring the effectors into a particu-
lar shape (Wolpert 1997). To accomplish this task, the motor system selects a set 
of coordinates or degrees of freedom of movement from those that are available to 
the effectors concerned. The more rigid an effector is, the simpler it is to control: 
the movement possibilities of rigid structures are fewer than those of flexible ones, 
thereby narrowing down the range of degrees of freedom that are available to the 
motor system to choose from.

The internal model provides the motor system with information about the degrees 
of freedom available to the movable parts of the body. It also allows motor possi-
bilities to be modelled offline, i.e., without the need to actually execute the desired 
movements (see Grush 2001, 2004). Through offline modelling, the motor system 
gains information about the various possible techniques in which an effector can be 
used to carry out a motor task, such as the different ways to hold a pencil. Each 
possible technique comes with its own unique set of spatiotemporal coordinates. 
Actualizing the movement thus entails selection and implementation of a particular 
technique, a process functionally equivalent to selecting one set of coordinates over 
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the others. Once the motor technique, i.e., a specific set of spatiotemporal coordi-
nates, has been selected, the motor system must then transform these coordinates 
into motor commands that eventually produce muscle activity. In turn, motor com-
mands work by formulating of a set of signals that activate certain muscles while 
suppressing others.

Representation-based motor control frameworks place a heavy emphasis on 
bottom-up information (Clark 2013), wherein sensorimotor signals transmitted 
upstream are crucial aspects of motor control. (Nevertheless, this must not be inter-
preted as ignoring the role of top-down information). Importantly, representation-
based motor control is particularly dependent on proprioceptive information and 
somatotopic mapping (see Gallagher 2006). Under this view, effective motor control 
requires the motor system to “know” exactly to which muscle groups to direct and 
transmit specific activation signals. Precision and accuracy are especially important 
for complicated or delicate movements that demand fine-grained control in order 
to bring them into their target shape and position, for instance playing the violin or 
threading a needle. In cases such as these, the transmission of muscle activation sig-
nals and the sequence in which the muscles are to be activated must be very precise.

The importance of proprioceptive signals lies in their conveyance of information 
to the motor system about whether a movement is on track or not. It is not unu-
sual for effectors to deviate from their intended trajectory, or for movements to have 
unexpected consequences. In such situations, the upstream proprioceptive signals 
(often in combination with visual feedback) that the effector transmits are used by 
the motor system to adjust the activation volley, thereby bringing the effector back 
onto the directed path, or to formulate a new volley that may be more appropriate.

Given these features of representation-based motor control, its applicability to the 
activation and control of single arms in octopuses is problematic. As the octopus 
brain does not somatotopically represent the arms (Zullo et  al. 2009), it is uncer-
tain whether a representation-based motor control schema is implemented in octo-
puses (Gutfreund et al. 1996; Levy et al. 2017; Zullo and Hochner 2011). Moreover, 
anatomical and functional studies suggest that the highest-level motor centres in the 
octopus brain may be incapable of formulating motor command volleys as detailed 
as those in vertebrates.

Instead, the motor control schema that evolved in octopuses (Hochner 2012, 
2013; Sumbre et al. 2001, 2005; Zullo et al. 2009) radically differs from that of its 
vertebrate counterparts, on which representation-based motor control models are 
based. In vertebrates, the detailed spatiotemporal coordinates are prescribed in the 
volley of top-down motor commands that are transmitted from the brain to the effec-
tors. In octopuses, the CNS selects the type of movement, while the arm nervous 
system is responsible for computing the coordinates needed to actualize it; the motor 
centres within the octopus brain thus do not directly activate the arm muscles.

Thus, without (1) a somatotopic map that would enable the CNS to proprio-
ceptively distinguish between the arms (Zullo et al. 2009), and (2) direct innerva-
tion between the CNS and the arm musculature (Zullo et al. 2019), it is difficult to 
account for single arm extension in octopuses using a representation-based frame-
work. However, a predictive processing framework will fare better, as will be estab-
lished over the course of the next sections.
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4 � Predictive Processing

The basic idea behind predictive processing is that the neurocognitive system 
uses exteroceptive and interoceptive sensory information to construct a model of 
the world that is in accordance with how the organism’s sensory array responds to 
stimuli (Clark 2016). Central to the predictive processing framework for percep-
tion and action—and therefore cognition and adaptive behaviour—is the notion 
of the generative model (not to be confused with spatial representations that 
internally map an organism’s physical configuration).

As it does not have direct access to the environment external to the organ-
ism, the neurocognitive system depends on a hierarchical sensorimotor model—
the generative model—for information about the world. This generative model is 
built up from sensory signals registered by the organism’s sensorium. Bottom-
up sensory input thus provides the neurocognitive system with the “raw facts” 
about what the world is like. But to be effective, the generative model also 
needs to “know” how these raw facts are put together, and so must account for 
the causal relationships that produce any given sensorimotor scenario. The gen-
erative model thus infers or reconstructs “how sensory signals…are generated by 
hidden causes” (Wiese and Metzinger 2017, 14). In reconstructing “the causal 
matrix responsible for…the structure” (Clark 2013, 182) of the world, the gen-
erative model in effect generates “mock sensory signals” (Wiese and Metzinger 
2017, 14) that are “approximations [of the] sensory states” (Clark 2016, 94) that 
it registers. In inferring the causal matrix, the generative model draws on stored 
information or prior beliefs—or simply priors—in order to support its hypoth-
eses about the structure of the world (Hohwy 2013). Priors are either learned 
through experience, or are innate, i.e., “pre-programmed” information encoded 
in the organism’s phenotype (Ramstead et al. 2019). The generative model is thus 
a reconstruction of the world and its underlying causal structure based on how 
the organism’s sensorium responds to stimuli and the information the organism 
already has.

One of the tasks that follows from reconstructing the causal matrix is generat-
ing predictions. Predictions are formed by combining priors about the world with 
actual sensorimotor input in order to generate hypotheses about the sensorimotor 
states the organism is likely to experience in the proximal or distant future, given 
past and present conditions. However, the generative model is susceptible to com-
mitting errors. If the actual sensorimotor state that the organism experiences 
conforms to the prediction, then the prediction is correct. On the other hand, if 
the actual sensorimotor state that is experienced differs from the prediction, then 
prediction error arises and must be corrected. Since predictions are the basis of 
the organism’s responses to environmental conditions, it is in the organism’s best 
interest that they be as accurate as possible. Thus, the generative model needs to 
be constantly fine-tuned to minimize prediction error.

Before the discussion proceeds, the issue of how a generative model may be 
formed in octopuses must be addressed. Evolution may have played an extensive 
role in the development of a generative model in octopuses, especially where 
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proprioception is concerned. The octopus visual system is as sophisticated as that 
of vertebrates. Octopuses also have an extensive capacity for short- and long-
term memory, as evidenced by their behavioural plasticity and ability to learn 
a wide variety of tasks (Hochner et  al. 2006; Mather 2008; Mather and Kuba 
2013). Thus, it is well within reason to suppose that the octopus CNS is capa-
ble of storing and retrieving information or priors for use in forming predictions 
about exteroceptive sensory states. However, it is with regards to proprioception 
that the development of a generative model may differ radically from vertebrates. 
It is a canonical belief in cephalopod studies that the evolution of the octopus’s 
internal monitoring and motor control mechanisms was influenced by the unique 
challenges posed by its morphology (Levy et al. 2017). One such evolved charac-
teristic is the development of a repertoire of stereotypic motor programs embed-
ded in the arm nervous system. Since these motor programs are encoded in the 
octopus’s phenotype, the respective interoceptive sensations they generate when 
activated may likewise be encoded in the CNS as innate priors. If so, this would 
be consistent with the proposed representation of movements or motor programs, 
rather than body parts, in the octopus brain (Zullo et  al. 2009). Consequently, 
upon selecting and activating a motor program, the CNS may be able to form a 
prediction of the interoceptive state that it will experience. Once the arm nervous 
system executes the movement, the signals that arise will travel upstream to the 
brain, where they are compared to the interoceptive prediction.

Now, back to prediction error minimization. Prediction error is minimized in 
two ways. The first is through perception, wherein the generative model is modi-
fied so that its representation of the world is made more accurate. The process of 
perception begins with the formulation of a prediction of such-and-such sensorimo-
tor states, which is transmitted downstream throughout the neurocognitive system. 
At the same time, the sensorium registers sensory signals, which are transmitted 
upstream. If the actual sensorimotor signals do not match the prediction, the predic-
tion error generated is transmitted back upstream, where it is used by the generative 
model to make the necessary adjustments to its reconstruction of the world. These 
adjustments then inform future predictions, hopefully increasing their accuracy. This 
process of top-down predictions being confirmed or updated by bottom-up sensory 
input is repeated throughout the different levels in the neurocognitive system, and 
until prediction error is minimized. Prediction error can also be minimized through 
action. When actual sensorimotor signals do not match the prediction, an organism 
can physically alter its surroundings. These changes to the environment then give 
rise to sensory input that conforms to the prediction.

It has also been proposed that prediction error plays an important role in motor 
control. The starting premise is that the higher motor control centres in the nerv-
ous system transmit top-down predictions of proprioceptive input, rather than motor 
commands (Adams et al. 2013a, b). A motor command is understood as “a top-down 
signal that activates a motor unit, i.e. a muscle,” whereas a prediction of propriocep-
tive input is defined as a “top-down encoding of the consequences of a movement” 
(Adams et  al. 2013a, b, 615). As will be discussed later, a motor command con-
tains detailed information about the spatial coordinates and trajectory that an effec-
tor must realize, as well as the muscle activation patterns necessary to execute the 
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movement. On the other hand, proprioceptive predictions “specify the desired con-
sequences of a movement” (Adams et al. 2013a, b, 615), i.e., the proprioceptive and 
other sensory signals expected to arise when the movement is realized or completed.

Another important idea is that movement is one way by which prediction error is 
minimized (Adams et al. 2013a, b): proprioceptive prediction error activates motor 
neurons, triggering movement. Recall that action is regarded as a strategy to mini-
mize prediction error, wherein the organism modifies the environment to make it 
conform to sensory predictions. Successful modification requires the control system 
to first determine (1) what movements are necessary to bring the surroundings into 
the configuration specified in the prediction and (2) the proprioceptive signals that 
will arise when the organism performs these movements, i.e., the proprioceptive 
prediction. Thus, the intention—used in the conceptually thin sense of a psychologi-
cal state whose content includes a goal, which in turn specifies how the organism is 
to respond to a stimulus and the movements necessary to actualize that response—to 
execute a particular movement is formulated alongside the proprioceptive prediction 
(see Vance 2017). So, when moving a chair to the left is necessary for making my 
surroundings conform to my model of the world, my motor control system generates 
the intention to move the chair to the left and the prediction of the proprioceptive 
signals that will arise when I do so.

Importantly, minimizing prediction error requires proprioceptive predictions to be 
fulfilled rather than corrected (Adams et al. 2013a, b), as they specify what should 
be the case. When the higher motor centres formulate an intention and its accom-
panying proprioceptive expectations, the signals that encode expected propriocep-
tive input are transmitted downstream through the motor system hierarchy. However, 
because the effector concerned is still immobile, the proprioceptive signals it gen-
erates do not match the predictions sent from the higher levels. Prediction error is 
thus produced. It is this prediction error arising from the discrepancy between pro-
prioceptive predictions and actual proprioceptive feedback that activates the motor 
neurons and thereby the muscles. Proprioceptive predictions are thus effectively 
transformed into motor commands as they travel downstream through the periphery. 
Because the motor units “are engaged to move [the effector] in the appropriate way, 
the predictions are fulfilled and prediction errors are quashed” (Vance 2017, 5).

In addition to proprioception, vision is known to play a vital role in motor con-
trol. Empirical studies have demonstrated that when proprioceptive information 
ceases to be available to the motor system, visual input can take over as the princi-
pal mechanism for control and monitoring (Cole and Paillard 1998; McNeill et al. 
2010). Some of the most compelling findings on vision-based motor control come 
from studies on patients with proprioceptive deafferentation (e.g., McNeill et  al. 
2010; Aranyosi 2013), a neurological condition wherein proprioceptive signals from 
the body partially or completely fail to reach the central nervous system. Deaffer-
entation usually results from interruptions in the afferent connections between the 
body and the brain. One of the best-documented cases of deafferentation is that of 
Ian Waterman (McNeill et al. 2010), who lost all proprioceptive sensation below the 
neck. Without interoceptive awareness of his body, Waterman had to train himself to 
control his movements solely through visual guidance of the effectors. Similarly, in 
István Aranyosi’s (2013) case, proprioceptive input and motor control of the limbs 
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were compromised due to temporary chemotherapy-related damage to the PNS. He 
reports using vision and coarse-grained proprioceptive information from proximal 
body parts to control his movements. Although they vary in many respects, such as 
the extent or aetiology of deafferentation, the cases of Waterman and Aranyosi dem-
onstrate that motor neurons are capable of responding to visual signals.

It has thus been proposed that in the absence or interruption of proprioception, 
visual signals become the main source of information about the states of the effec-
tors. Vision and other exteroceptive signals “help generate relevant prediction errors 
in the somatomotor hierarchy, which can help improve the accuracy of somatomo-
tor predictions during movement” (Vance 2017, 8), proving invaluable to guiding 
an effector when proprioception is unavailable. To be more specific, vision-based 
predictions take the form of imagining the position and location of the effectors, and 
how they look when in motion (Vance 2017). Fulfilling such predictions thus takes 
place by bringing the effectors into the shape and trajectory that they are visualized 
to realize.

5 � Prediction Error‑Based Arm Activation

The motor control routine for octopus arm activation is as follows. A command to 
extend is generated in the higher motor centres in the brain, and is “distributed to 
several arms” (Zullo et al. 2009, 1633). While this command is global, it neverthe-
less possible for a single arm to actually extend. Zullo et al. (2009) hypothesize that 
this is due to a gating mechanism2 in the octopus brain, which inhibits or suppresses 
responses to irrelevant input or noise (Cromwell et al. 2008). When the gating mech-
anism is activated, it prevents the extension command from travelling downstream 
in the nervous system. The gating mechanism can be released by visual or tactile 
signals, allowing the extension command to proceed to the selected arm or arms 
(Zullo et al. 2009), where the “pattern generator [confined] to the arm’s neuromus-
cular system” (Sumbre et al. 2001, 1846) executes and controls the movement. At 
the same time, these visual or tactile signals are registered by the gating mechanism 
as irrelevant to the non-selected arms, which are then suppressed or prevented from 
extending. The use of visual and tactile input to release the gating mechanism and 
thereby activate a specific arm is consistent with findings that octopuses tend to pre-
fer the arm that is directly in the line of sight of the eye and the target object (Byrne 
et al. 2006a, b).

Although the gating hypothesis explains how single arm extension is possible 
even though the extension command is received by multiple (perhaps all) arms, there 
remains a gap in the account: How does the gating mechanism distinguish between 

2  The gating hypothesis is very recent, and is the first attempt at explaining how visual signals influence 
motor control in order to extend a single arm. Thus, there is still much that is unknown about the pro-
posed gating mechanism, e.g., its location in the nervous system and how it uses visual signals to “filter” 
the extension command. The predictive processing account developed here is likewise an attempt to pro-
vide an answer to the latter.
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the selected and non-selected arms without the guidance of a somatotopic map that 
would direct motor commands to the desired appendages? That is to say, how is the 
extension command simultaneously registered as relevant to the selected arm and 
irrelevant to the non-selected ones? The discussion now proceeds to answering this 
question, by formulating a predictive processing account of selection and activation 
of a single arm.

For starters, the selection of a single arm for extension is visually influenced: 
octopuses tend to extend the arm that lies directly in the line of sight between the 
eye used to view an object and the object itself (Byrne et al. 2006a). Upon seeing 
an object, the octopus brain then formulates what is best described as an intention. 
Again, an intention is defined here as a psychological state whose content includes 
a goal, which in turn specifies how the organism is to respond to a stimulus as well 
as the movements necessary to actualize that response. The content of an intention 
thus includes predictions of the exteroceptive and interoceptive sensory input the 
organism may experience upon realizing the action specified in the intention (Clark 
2013). For instance, when an octopus sees a fish, its visual system transmits infor-
mation to the brain, which formulates the intention to retrieve and eat the fish. A 
prediction then arises, specifying the sensorimotor states that arise from reaching for 
and grasping the fish.

This prediction consists of the (1) visual image of a particular arm reaching out 
and grasping the fish, and (2) the proprioceptive and tactile sensations that accom-
pany the arm’s movement as it moves to grasp the fish. The prediction is then trans-
mitted downstream to the peripheral arm nervous system, where multiple arms 
receive it (Zullo et  al. 2009). Because the arms are not moving at this point, the 
actual bottom-up sensory signals do not match the top-down prediction. Prediction 
error thus arises. To correct the prediction error, the peripheral neuroanatomical 
components responsible for actualizing the motor task (see Sumbre et al. 2001) are 
activated, thereby making the arm move in accordance with the prediction. Because 
the arm is now moving in the predicted manner, it begins to generate sensory signals 
that increasingly match the prediction, thereby minimizing prediction error.

Although tactile stimulation to an arm generates “robust electrical activity in the 
central brain” (Levy et al. 2017, 10), these signals are not plotted onto a somatotopic 
map. Thus, while the CNS registers information that an arm has been stimulated, 
proprioceptive identification of the specific arm is unlikely. Proprioceptive predic-
tions generated by the brain could thus be very coarse grained: they may be able 
to predict both the sensation of an arm grasping the fish and the type of movement 
used to do so, but unable to identify exactly which arm will experience the relevant 
tactile and motor sensations. This account explains how centrally issued multimodal 
predictions are able to activate arms. But without central mechanisms of singling 
out a particular appendage, and multiple arms receiving the extension command, 
how does single arm activation take place? The visual component of the prediction 
appears to be the linchpin in this motor and gating task.

As with deafferented humans (Vance 2017), visual signals could be detailed 
enough to compensate for the coarse grain of proprioceptive predictions in octo-
puses. The centrally generated prediction could contain a visual image of an arm 
reaching for and eventually grasping the fish, which is at, say, ten o’clock relative 
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to the eye. Borrowing the nomenclature used by (Byrne et al. 2006b), the activated 
arm is designated L1, shorthand for “the first arm on the left side” of the octopus, 
counting from front to back. The second arm on the left hand side is referred to as 
L2, and so on until L4, which is the rearmost arm on the left side. The same goes for 
the right side, with the arms designated as R1–R4. In line with findings that visual 
input influences arm use (Byrne et al. 2006a), (1) the arm directly in the line of sight 
between the eye used and the fish is the one to be extended, and (2) the arm would 
follow a trajectory within this direct line of sight. Based on the documented behav-
ioural tendencies of octopuses (Byrne et al. 2006a), as well as the actual visual input 
that L1 is the one directly in line with the eye and the fish, the visual component of 
the prediction then specifies that a particular arm, in this case L1, will handle the 
fish at ten o’clock. (NB: L1 is not always used in retrieval tasks, as arm selection 
is influenced by the parameters that determine which arm is directly in the line of 
sight, e.g., the eye and the angle from which the octopus looks at the fish.)

Assuming that L1 is positioned directly between the eye and the fish and that the 
rest of the octopus remains stationary, the visual signals that arise when the octo-
pus looks at the fish includes information that upon activation, L1 will extend in 
a straight line between the eye and the fish whereas the other arms would follow 
a diagonal trajectory. These visual signals are then transmitted upstream from the 
visual lobe(s) to the brain, which formulates a prediction containing (1) the visual 
image of L1 reaching for the fish and (2) the proprioceptive sensation of an arm 
extending and eventually coming into contact with the fish. The prediction could be 
formed somewhere in the brain where it can be accessed by the gating mechanism 
that filters out the extension command in order to activate only L1.3 Since the octo-
pus may be able to visually discriminate between its arms, as suggested by findings 
on the role of vision in motor control (Byrne et al. 2006a, b; Gutnick et al. 2011), 
the visual prediction is likely more detailed and therefore supplements the coarser-
grained proprioceptive prediction.

The visual signals that the position of L1 makes it the best choice for the task 
then weight the visual aspect of the prediction. Furthermore, the tendency to use the 
arm that forms a straight line between the eye and the attended object—possibly an 
evolved strategy to simplify motor control—acts as a prior, adding more weight to 
the prediction that L1 is to be used. More attention may thus be directed towards L1 
as a result of the increased weight, providing yet more weight to this aspect of the 
prediction (Adams et al. 2013a, b; Pareés et al. 2014). The gating mechanism, which 
presumably responds to visual and proprioceptive signals alike, then registers the 
additional weight in favour of L1 provided by the visual signals before transmitting 
the overall prediction down to the PNS. Moreover, in singling out L1, the visual pre-
diction specifies the unique set of spatial coordinates relative to the fish and the eye 
that L1 occupies.

Because the other arms are positioned differently, they do not match the image 
supplied by the visual prediction that an arm will extend in a straight line to reach 

3  Without detailed information about the gating mechanism, it is difficult to pinpoint where in the CNS 
this process occurs.
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for the fish. Thus, even though activating them would fulfil the proprioceptive pre-
diction that an arm is extended for fish retrieval, they would not match the visual 
prediction that the arm positioned at ten o’clock—L1—is the one to accomplish the 
task. A corollary of the visual prediction that L1 reaches for the fish is that the other 
arms are not predicted to extend. Consequently, there is no top-down visual pre-
diction that the other arms will move, which in turn would have to be matched by 
bottom-up signals caused by movement in these arms in order to quash the visual 
prediction error. Without this prediction, there is nothing to activate the other arms 
(Adams et al. 2013a, b), and so the gating for the arms other than L1 is not released.

Additionally, in order to suppress movement in the non-selected arms, the gating 
mechanism may involve an anti-Hebbian process, wherein simultaneous activation 
of multiple “units in the layer…[makes] the connection between them more inhibi-
tory, so that joint activity is discouraged” (Földiák 1990, 166). If this is true, then 
the extension command may be somehow “weakened” by being received by mul-
tiple arms. The combined weight supplied by the visual prediction, the prior belief 
that the arm that forms a straight line between the object and the eye is often used 
in reaching tasks, and the resulting increase in visual attention to L1 might counter-
act this weakening, thereby strengthening the signal enough to direct it towards and 
release the gating for L1. Thus, only the extension of L1 can fulfil both the proprio-
ceptive and visual modalities of the prediction, and thereby correct prediction error.

An analogy to train doors with a two-step opening process may be helpful at this 
point. In order for a door to open, the button on it must be pressed once it turns 
green, signalling that the driver has enabled door opening. When a train reaches a 
stop, the train driver issues what can be described as a global command that allows 
all the doors to open, hence turning all door buttons green. In effect, this is the driv-
er’s prediction that doors will open, which in turn corresponds to the proprioceptive 
prediction that an arm will retrieve the fish. However, any given door will open only 
if its button is pushed. This can be compared to a passenger’s prediction that a par-
ticular door will open, which then corresponds to the visual prediction that a specific 
arm is extended to grab the fish. The passenger is analogous to the gating mecha-
nism, and her proximity to a particular door is comparable to the additional weight 
provided by the visual signals, priors, and attention directed to L1. Since common 
sense dictates that the passenger exits through the nearest door, she pushes the but-
ton on the door in front of her, in the same way that the gating mechanism allows the 
activation of L1.

Two predictions are therefore fulfilled when a door opens: the train driver’s global 
prediction that doors open, and the button-pressing passenger’s prediction that a par-
ticular door will open. Thus, any door that receives the general command to open 
and whose button is pushed fulfils both the driver’s and the passenger’s predictions, 
just as any arm that receives the proprioceptive prediction and is the subject of the 
visual prediction must extend in order to minimize prediction error.

However, activating an arm other than L1 is like door A opening even though it 
was door B’s button that was pressed. Door A opening does not fulfil the passenger’s 
prediction that her selected door B opens. In the octopus, extending another arm 
would not fulfil the visual prediction of L1 reaching out for the fish. Thus, activating 
an arm other than L1 may minimize proprioceptive prediction error by fulfilling the 
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proprioceptive prediction, but is inconsistent with the visual prediction that the arm 
with such-and such coordinates is to be used and so does not correct visual predic-
tion error.

6 � Concluding Remarks

Single arm extension via prediction error minimization can be summarized as fol-
lows. Multiple arms receive the proprioceptive prediction to extend, but only the 
arm that will also fulfil the visual prediction that specifies being directly in the line 
of sight between the eye and the target object is activated. In this case the appropri-
ate arm happens to be L1, but it is not necessarily so. Thus, although the octopus 
brain may be unable to make a fine-grained proprioceptive prediction of which arm 
will be used, visual predictions could supplement this information. As such, using 
L1 and not the other arms generates a sensory state to the effect that “L1 is directly 
in the line of sight and is reaching for the fish,” as specified by the prediction. In 
other words, L1 is the only one that can correct prediction error by moving to fulfil 
the prediction.

Due to the hypothesized disparity in accuracy of proprioceptive and visual pre-
dictions, the extent of detail in signals needed to match them varies depending on the 
modality. Visual predictions require fine-grained confirmation, i.e., seeing exactly 
where the arm is, whereas proprioceptive predictions might need only the electrical 
signal caused by tactile stimulation (Levy et al. 2017) to indicate that physical con-
tact between an arm and an object has been made. Nevertheless, these cross-modal 
signals must be consistent, complementary, and corroborative of each other.

The morphology and neurophysiology of the octopus are such that they demand 
accounts of motor control that differ radically from representation-based explana-
tory models that have traditionally dominated cognitive science. In particular, the 
structure and functional characteristics of the octopus nervous system, the absence 
of somatotopic mapping, and the use of dynamical muscle activity to bring the arms 
into the required shape to perform a motor task are features that make represen-
tation-based models of motor control difficult to apply to octopuses. Furthermore, 
there are still many unknowns about the octopus nervous system, such as the extent 
to which the brain uses representations of the body and if so their format and con-
tent, and whether the arm nervous system can support representation. While I have 
argued that a predictive processing framework effectively accounts for single-arm 
use in octopuses, this positive thesis does not rule out the possibility that represen-
tation-based motor control models are likewise capable of doing so—an important 
matter that demands an investigation of its own, and which future research would do 
well to look into.
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