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Abstract
The paper surveys different notions of implicit definition. In particular, we offer an 
examination of a kind of definition commonly used in formal axiomatics, which in 
general terms is understood as providing a definition of the primitive terminology of 
an axiomatic theory. We argue that such “structural definitions” can be semantically 
understood in two different ways, namely (1) as specifications of the meaning of the 
primitive terms of a theory and (2) as definitions of higher-order mathematical con-
cepts or structures. We analyze these two conceptions of structural definition both in 
the history of modern axiomatics and in contemporary philosophical debates. Based 
on that, we give a systematic assessment of the underlying semantics of these two 
ways of understanding the definiens of such definitions, by considering alternative 
model-theoretic and inferential accounts of meaning.
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1  Introduction

The notion of implicit definition is a fundamental concept in modern mathematics, 
in particular in formal axiomatics.1 It is also ubiquitous in contemporary philosophi-
cal debates, ranging from the fields of philosophy of science and mathematics to 
philosophy of logic and language. As examples of the importance of this notion one 
can mention the debate on the meaning of theoretical terms in science, the contribu-
tions by Michael Friedman (and others) on the relativized a priori, as well as recent 
work in the philosophy of mathematics.2 Concerning the latter field, implicit defini-
tions play a central role in neologicism and the discussion of abstraction principles 
as well as in mathematical structuralism. Finally, the notion features prominently 
in epistemology, in particular, in Boghossian’s work on epistemic analyticity (e.g. 
Boghossian 1997).

Despite the relevance of this notion, it is surprising that it is commonly used very 
informally in these philosophical debates. The aim of this paper is to make more 
precise what implicit definitions are. We will address this issue by distinguishing 
between several types of definitions which are usually associated with the label 
“implicit definition”. In particular, the focus here will be on a kind of definition used 
in formal axiomatics, which in general terms is usually understood as providing a 
definition of the primitives terms of a given axiomatic theory. In the context of the 
paper, we will label this sort of definition “structural definitions”.

A central claim of this paper is that it is unclear how such definitions should be 
understood semantically. More precisely, we propose that both in modern mathemat-
ics and in subsequent philosophical debates one can distinguish between two ways 
of understanding structural definitions, namely (1) as specifications of the meaning 
of the primitive terms of a theory and (2) as definitions of higher-order concepts 
of mathematical objects, e.g. the concepts of a natural or real number system. The 
central aim in the following will be to survey these two conceptions of structural 
definitions both in the history of mathematics and in selected philosophical debates.

The paper is organized as follows. Section  2 presents a brief exposition of the 
logic of implicit and structural definitions. In Sect. 3, we then turn to a more detailed 
survey of the two conceptions of structural definitions, namely as definitions of the 
meaning of primitive terms of a theory (Sect. 3.1) and as definitions of higher-order 
concepts (Sect. 3.2). Section 4 contains a more systematic assessment of these two 
ways of thinking about structural definitions. In particular, in Sect. 4.1, we propose 

2  Compare, e.g., Friedman (1999). See Shapiro (1997) for a discussion of the role of implicit definitions 
in mathematical structuralism.

1  In this paper we use the expression “formal axiomatics” to refer more generally to the modern or 
abstract conception of the axiomatic method, inaugurated by Hilbert’s investigations on the foundations 
of geometry (Hilbert 1899) and the arithmetic of real numbers (Hilbert 1900a). In these early develop-
ments, formal axiomatics was characterized by a formal understanding of mathematical language and the 
search for rigorous but non-formal proofs. In its mature mathematical form, formal axiomatics requires 
the use of a formal language, an explicitly formulated logical calculus, as well as a formal semantics. For 
the early developments of “formal axiomatics” see, e.g., Awodey and Reck (2002) and Sieg and Schlimm 
(2014).
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two model-theoretic explications that capture the informal accounts presented in the 
previous section. Section  4.2 outlines an alternative, inferentialist account of the 
semantics of structural definitions. Section 5 presents some concluding remarks.

2 � What Axiom Systems Define

A definition is generally understood as a statement or a set of statements that deter-
mine the meaning of an expression. Our focus here will be on stipulative definitions 
as used in mathematics and sometimes also in philosophical contexts. Such defini-
tions are usually understood to establish the semantic interpretation of non-logical 
constants in a formal language. Expressions defined in this sense can be either rela-
tional or functional symbols (of a given arity) or individual constants of the lan-
guage in question.

In modern logic, one usually draws a distinction between two types of such defi-
nitions, namely explicit and implicit definitions. Explicit definitions are statements 
of a specified syntactical form that have to meet the two standard criteria of ade-
quacy for definitions, namely non-creativity and eliminability.3 Implicit (or contex-
tual) definitions, in turn, are usually understood as sets of sentences that specify the 
interpretation of a newly introduced term contextually or holistically, that is, as a 
function of the meaning of the defining statements.4 Unlike explicit definitions, they 
do not need to satisfy any syntactic constraints.

In this paper, our focus will be on a specific kind of stipulative definitions related 
to axiomatic theories. For this purpose, it makes sense to draw a finer distinction 
between two types of implicit definitions that are often conflated with each other in 
the literature (cf. Gabriel 1978). We will label the first type implicit definitions in 
the strict sense and the second type structural definitions.5 Historically speaking, 
both methods were first developed in the context of modern formal axiomatics in the 
nineteenth-century.

Structural definitions concern the axiomatic specification of the primitive non-
logical terms of a given mathematical theory. Starting with the work of Hilbert and 
others, it is usually held that a formal axiom system provides a holistic definition of 
all of the primitive symbols used in the formulation of the theory. Thus, the axioms 
of Peano arithmetic serve as a definition of the primitive arithmetical terms ‘natu-
ral number’, ‘zero’, and ‘successor’; Hilbert’s axiom system of Euclidean geometry 
serves as a definition of the primitive geometrical terms ‘point’, ‘line’, ‘plane’, as 
well as of the relation symbols ‘incidence’, ‘betweenness’, ‘congruence’, etc.; ZFC 
defines the membership predicate ‘ ∈ ’ in the language of set theory, and so on.

3  Compare, e.g., Antonelli (1998) and Belnap (1993).
4  Compare Antonelli on this point: “[A]ny sentence containing a new symbol could be taken to be a 
candidate for a definition of that symbol. Such definitions are called ‘contextual’, in that the meaning of 
the new symbol is specified (at least partially) by giving the meaning of some larger expression in which 
it occurs; the symbol itself, when occurring in isolation, need not be endowed with any meaning at all” 
(Antonelli 1998, p. 151).
5  See Shapiro (unpublished) for a similar distinction.
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Implicit definitions in the strict sense, in contrast, are sentences (or collection of 
sentences) through which the interpretation of a term is specified in terms of one or 
several already interpreted terms. Thus, such definitions presuppose that all terms 
except the defined one are already interpreted. Implicit definitions in this sense were 
first introduced in the work of Gergonne and later by Padoa and are also often speci-
fied in axiomatic form.6 Roughly speaking, a set of axioms is taken to implicitly 
define a term if the axioms specify a unique interpretation of the term (relative to the 
given interpretation of the primitive vocabulary in the language in question).

To get a better idea of the difference between implicit definitions in the strict 
sense and structural definitions, it will be useful to present both notions more for-
mally and to compare them with the standard specification of explicit definitions.7 
Let L be a (not necessarily first-order) language with signature {�1,… , �m} and let 
R be a relation symbol (of arity n) not contained in L . Let L∗ = L ∪ {R} be the 
expanded language containing R. Moreover, let T be a theory (understood here in the 
usual sense as the closure of a given set of sentences under semantic consequence) 
expressed in L∗.

Definition 1  (Explicit definition) The relation symbol R is explicitly defined by T in 
terms of L if a sentence in L∗ of the form:

is a consequence of T (with Φ is a sentence in L).

An implicit definition in the strict sense of R in terms of the base language L also 
consists of sentence or a set of sentences of the expanded language L∗ . As men-
tioned above, the sentences in T implicitly defining R do not need to have a par-
ticular grammatical form as in the case of explicit definitions. Instead, implicit defi-
nitions are usually defined model-theoretically, that is, in terms of a constraint on 
possible interpretations of T. More formally, we say that:

Definition 2  (Implicit definition) The relation symbol R is implicitly defined by T in 
terms of L if for any two L∗-structures M, N that are models of T, we have:

if M ∣ L = N ∣ L then RM = RN.8

∀x1,… , xn(R(x1,… , xn) ↔ Φ(x1,… , xn)) (Ψ)

8  M ∣ L and N ∣ L present the L-reducts of the L∗-structures M and N. See again Hodges (1993), p. 149.

6  Padoa (1900) might be credited as presenting the first sharp conceptualization of the notion of implicit 
definition in a strict sense. Moreover, he also provided a method for proving the indefinability of a primi-
tive term of a formal theory from the remaining primitives of that theory, which later had a significant 
reception in Tarski’s theory of definitions. For details, see Hodges (2008). See Gabriel (1978) for a his-
torical discussion of the relation between implicit definitions in the tradition of Gergonne and structural 
definitions or “definitions through axioms”.
7  In the following, we strongly draw on the definitions presented in Hodges (1993). For simplicity, we 
restrict our attention here to the definition of relation symbols. Our discussion can easily be generalized 
to hold also for other types of non-logical constants.
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The interpretation of predicate R is specified here in terms of the base language 
in the following way: a theory implicitly defines the predicate in case that any two 
models that assign the same interpretation of each of the terms {�1,… , �m} , also 
agree on the interpretation of R. Put differently, a theory implicitly defines R if it 
uniquely determines its interpretation relative to a given interpretation of the non-
logical symbols of the base language.9

Turning to structural definitions, we mentioned that such definitions are usually 
understood as simultaneous specifications of the primitive non-logical vocabulary 
of a given language in terms of an axiomatic theory. More specifically, given our 
choice of terminology, we can say that the primitive terms �1,… , �n of some theory 
T

′ expressed in the base language L are structurally defined by the axioms of T ′ . A 
central requirement for the adequacy of such structural definitions is that T ′ itself is 
consistent (in the semantic sense of the term), that is, that there exists an interpreta-
tion of L that forms a model of T ′.

Let us consider a mathematical example from real analysis to illustrate these two 
types of implicit definitions. Ordered fields are structures of the form ⟨R, 0, 1,+, ⋅,≤⟩ 
consisting of a set R, an operation of addition +, an operation of multiplication ⋅ , 
and an order relation ≤ , such that addition and multiplication are associative and 
commutative, 0 is the identity of addition, 1 the identity of multiplication, multi-
plication is distributive over addition, every element has an additive inverse, every 
element different from 0 has a multiplicative inverse, ≤ is a total order, and the ele-
ments greater than or equal to 0 are closed under addition and multiplication. A 
(first-order) axiomatization of ordered fields can be specified as follows:10

Example 1  (Ordered fields) Let L be the language of ordered fields with signature 
{0, 1,+, ⋅,≤} . The theory of ordered fields is axiomatized as follows:

Moreover, if a (second-order) axiom of completeness is added to the (first-order) 
axioms of ordered fields, one obtains an axiomatization of a complete ordered field. 

(F1) ∀x∀y∀z((x + y) + z = x + (y + z)) (F2) ∀x∀y∀z((x ⋅ y) ⋅ z = x ⋅ (y ⋅ z))

(F3) ∀x∀y(x + y = y + x) (F4) ∀x∀y(x ⋅ y = y ⋅ x)

(F5) ∀x(x + 0 = x) (F6) ∀x(x ⋅ 1 = x)

(F7) ∀x∃y(x + y = 0) (F8) ∀x(x ≠ 0 → ∃y(x ⋅ y = 1))

(F9) ∀x∀y∀z(x ⋅ (y + z) = (x ⋅ y) + (x ⋅ z))

(F10) ∀x∀y∀z((x ≤ y) ∧ y ≤ z) → x ≤ z) (F11) ∀x∀y(x ≤ y ∨ y ≤ x)

(F12) ∀x∀y((x ≤ y ∧ y ≤ x) → x = y)

(F13) ∀x∀y((0 ≤ x ∧ 0 ≤ y) → (0 ≤ x + y ∧ 0 ≤ x ⋅ y))

9  In the context of first-order theories, Beth’s definability theorem shows that explicit and implicit defi-
nitions are equivalent. It follows that implicit definitions in the strict sense also satisfy the criteria for 
explicit definitions, namely eliminability and non-creativity. See, e.g., Hodges (1993, pp. 301–302) for 
further details.
10  This axiomatization has been provided by Shapiro (1991). For an alternative axiomatization, see Tar-
ski (1994).
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A common alternative is to postulate, for instance, the following least upper bound 
axiom, which asserts that every bounded set has a least upper bound:

(F14) ∀X([∃yX(y) ∧ ∃z∀y(X(y) → y ≤ z)] → ∃z∀y(∃u(X(u) ∧ y ≤ u) ∨ z ≤ y))

Now, it should be noted that, in the above axiom system for complete ordered 
fields, the elements of the signature {0, 1,+, ⋅,≤} are not all independent, but three 
of them can be defined in terms of the others. More specifically, the order relation 
‘ ≤ ’ can be explicitly defined in terms of addition and multiplication as follows:

Then, theory (F1–F14) gives an implicit definition (in the strict sense) of the 
term ‘ ≤ ’ with respect to L∕{≤} . A central aspect here is that in the theory of com-
plete ordered fields the ordering relation is uniquely determined. Analogously, 
explicit definitions of the individual constant ‘0’ and ‘1’ can also be given in terms 
of multiplication and addition.11 Moreover, since these axioms specify the notion of 
a complete ordered field, the theory (F1–F14) can be viewed as a structural defini-
tion of the terminology of complete ordered fields in L with signature {0, 1,+, ⋅,≤}.

This example illustrates nicely how the two types of axiomatic definitions differ 
from each other. Two points should be mentioned here. First, implicit definitions 
in the strict sense and structural definitions can be viewed as two ways in which an 
axiom system can act as a definition of non-logical terms. In the case of implicit 
definitions, we saw that axioms provide a definition of a particular term in terms of 
the primitive terms of the theory. In the case of structural definitions, no semantic 
specification of a base language is presupposed. Here, an axiom system is taken to 
holistically specify the meaning of the primitives independently of any prior seman-
tic stipulations.

The second point also concerns an important difference in the semantic under-
standing of structural and implicit definitions. The latter type of definition is usually 
specified model-theoretically by fixing the reference of the newly introduced term. 
More specifically, a theory is said to implicitly define a term relative to a given sig-
nature just in case it uniquely determines the reference of the term relative to models 
with the same interpretation of the primitive terms. Thus, the model-theoretic con-
dition expresses a requirement of the uniqueness of reference for implicitly defined 
terms.

In contrast, in the case of structural definitions, this kind of uniqueness of refer-
ence is deliberately ruled out. Starting with Dedekind’s and Hilbert’s work, there 
is a consensus in the literature on formal axiomatics that axiom systems–taken as 
structural definitions of primitive terms–do not have to fix a unique reference of 
these terms. Rather, their specification through an axiom system is deliberately left 

∀x∀y[x ≤ y ↔ ∃z(x + (z ⋅ z) = y)]

11  The symbols ‘0’ and ‘1’ can be explicitly defined in terms of addition and multiplication as follows:
1. x = 0 ↔ ∀y(y + x = y)

2. x = 1 ↔ ∀y(y ⋅ x = y)

  For details see Tarski (1994).
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semantically indeterminate. Compare, for instance, Hilbert’s famous remark on this 
issue in a letter to Frege of 1899:

You say my concepts, e.g., ’point’, ’between’, are not unambiguously deter-
mined; (…) Yes, it is obvious that any theory is actually only a framework or a 
schema of concepts, together with the necessary relations of these concepts to 
each other, and the base elements can be thought of in an arbitrary way. If, as 
my points, I think of some system of things, e.g., the system: love, law, chim-
ney sweep… and then assume my axioms as relations between these things, 
then my theorems, too, hold of these things, e.g., the Pythagorean Theorem. 
In other words, any theory can always be applied to infinitely many systems 
of basic elements. (Hilbert to Frege, 29 December 1899, reprinted in: Frege 
(1980))

The indeterminacy of reference embraced by Hilbert clearly distinguishes structural 
definitions from implicit definitions in the strict sense. At the same time, it leaves us 
puzzled about the proper semantic understanding of the former kind.12 Whereas the 
referential semantics of implicitly defined terms is well understood, it is not clear, at 
least semantically, how structural definitions work. Put differently, given that such 
definitions do not fix the reference of the defined terms, what do structural defini-
tions actually define?

3 � Two Notions of Structural Definitions

The aim of this section is to distinguish between two ways of understanding the 
semantics of structural definitions. The first way conceives structural definitions as 
determining the meaning of the primitive terms of a mathematical theory. The sec-
ond way considers structural definitions as definitions of higher-order concepts of 
mathematical objects, or more precisely, of a class of models for a given theory. We 
will show that these two ways not only can be found in historical formative work 
in formal axiomatics, but that they are also widespread in the contemporary philo-
sophical literature.

3.1 � Structural Definitions of Primitive Terms

A first way of understanding the semantics of structural definitions consists in claim-
ing that the axioms of a mathematical theory define or establish the meaning of the 
primitive terms. Historically, this conception of structural definitions is related to 
methodological innovations triggered by the emergence of the modern axiomatic 
method. This view is also present in contemporary philosophical literature, but 

12  On the thesis of the indeterminacy of reference in modern axiomatics see Hallett (2010).
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usually explained or illustrated in an informal fashion. In this section we do not aim 
at presenting a detailed historical analysis of the occurrence of this understanding 
of structural definitions in key historical figures, but just to illustrate our contention 
with some representative textual support.13 As we will see, while several authors 
refer to the “meaning of primitive terms” when discussing axiomatic definitions, 
they usually leave unspecified what constitutes the meaning of a mathematical term. 
We will return to this issue in Sect. 4.1.

One of the most important and original methodological innovations which are 
commonly related to David Hilbert’s early works in formal axiomatics, especially in 
his influential Foundations of Geometry (1899), is the introduction and systematic 
use of the so-called “method of implicit definitions”.14 In the explanatory remarks 
of that booklet, Hilbert asserts that “the axioms of this group [i.e., axioms of order] 
define the concept of ‘between”’(Hilbert 1971,  p. 5) and that “the axioms of this 
group [i.e., axioms of congruence] define the concept of congruence and with it that 
of displacement” (Hilbert 1971, p. 10). Moreover, the key idea of this new concep-
tion of mathematical definitions is concisely expressed in the first lines of the classic 
monograph:

Consider three distinct sets of objects. Let the objects of the first set be called 
points… the objects of the second set be called lines… and the objects of the 
third set be called planes.

[…] The points, lines and planes are considered to have certain mutual rela-
tions and these relations are denoted by words like “lie”, “between”, “congru-
ent”, The precise and mathematically complete description of these relations 
follows from the axioms of geometry. (Hilbert 1971, p. 3)

And a similar description can also be found in the Paris conference on “Mathemati-
cal Problems” of 1900:

When we are engaged in investigating the foundations of a science, we must 
set up a system of axioms which contains an exact and complete descrip-
tion of the relations subsisting between the elementary concepts [elemen-
tare Begriffe] of that science. The axioms so set up are at the same time the 
definitions of those elementary concepts. (Hilbert 1900b, p. 447)

Hilbert’s assertion that the axioms of a mathematical theory should be taken 
as the definition of its primitive concepts is a consequence of his novel view 
of the schematic nature of mathematical primitives. According to the abstract 

13  For a general outline of the emergence of the notion of structural definitions in modern axiomatics see 
Menahem (2006).
14  It is well known that Hilbert did not use the expression “implicit definition” in published work. How-
ever, we located at least one use of this expression in the notes for the lecture course “Wissen und math-
ematisches Denken”, held in the winter semester of 1922/1923: “Already when we consider the position 
of three points [on a line], we recognize the fact that ‘betweenness” is evidently the fundamental concept, 
the deciding criterion. For this purpose, we lay down the following axioms, which implicitly define this 
[concept]” (Hilbert 1988, p. 82. Our emphasis). For the introduction of the term “implicit definition” see 
Gabriel (1978).
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conception of the axiomatic method, mathematical primitive concepts and rela-
tions do not have a pre-theoretical or pre-axiomatic given sense; on the contrary, 
all mathematically relevant properties are established in the axioms. Neither 
have the primitive terms a given fixed reference or extension, but they are free to 
receive multiple and diverse interpretations, as long as these interpretations make 
the axioms true. However, the schematic character of the mathematical primitives 
does not imply for Hilbert that they should be regarded as mere symbols with-
out meaning. Geometrical axioms bestow a meaning to geometrical primitives 
such as ‘line’, ‘point’, ‘plane’, etc., since they determine or fix the range of their 
possible interpretations. This idea is usually illustrated in an informal fashion by 
claiming that, in Hilbert’s axiomatization of geometry, the geometrical primitive 
terms designate whatever entities satisfy the relations established in the axioms. 
In other words, the axioms serve as the definition of the mathematical primitives, 
insofar as they stipulate the meaning they must have in order to make the axioms 
true.

In response to a series of critiques raised by Frege in a well-known letter 
exchange, Hilbert attempted to clarify his viewpoint concerning axiomatic defi-
nitions. Some brief comments on this are in order. First, an important aspect of 
Hilbert’s conception of structural definitions is that the fundamental properties or 
characteristics of each particular primitive concept are established by means of 
its relations to the other primitives of the theory, as they are described in the axi-
oms. This implies that the axioms stipulate the meaning of the primitives holisti-
cally–so to say, since the “meaning” of every concept consists in its relations to 
the other primitives. Hilbert expresses this idea, in one of his replies to Frege, as 
follows:

In my opinion, a concept can be fixed logically only by its relations to other 
concepts. These relations, formulated in certain statements, I call axioms, 
thus arriving at the view that axioms (perhaps together with propositions 
assigning names to concepts) are the definitions of the concepts. (Hilbert to 
Frege, 22 September 1900, reprinted in: Frege (1980))

Second, Hilbert makes plain that the whole axiomatic system, and not a particular 
axiom or group of axioms, must be regarded as the definition of the primitive 
concepts and relations. A complete understanding of the primitives requires the 
totality of the axioms, since each particular axioms brings something to the “con-
tent” of the primitives. This view is essential to Hilbert’s systematic method of 
proving independence results by means of the construction of different numeri-
cal “models” or interpretations of the geometrical axioms. As Hilbert explains to 
Frege,

Every axiom contributes something to the definition, and hence every new 
axiom changes the concept. A ‘point’ in Euclidean, non-Euclidean, Archi-
medean and non-Archimedean geometry is something different in each case. 
(Hilbert to Frege, 29 December 1899, reprinted in: Frege (1980))



1670	 E. N. Giovannini, G. Schiemer 

1 3

Finally, Hilbert establishes explicitly that consistency is a necessary and sufficient 
condition of adequacy and success of structural definitions. As long as the proper-
ties of the primitives established in the axioms do not contradict each other, and 
thereby the axiomatic system proves to be consistent, the axioms accomplish the 
goal of defining the primitive concepts and relations occurring in them. However, 
it should be noted that, at this early stage, Hilbert did not have a sharp distinction 
between syntax and semantics. Accordingly, it is not clear whether he was conceiv-
ing ‘consistency’ in a more syntactic sense, as deductive consistency, or in a seman-
tic sense, as satisfiability.15 In any case, an essential aspect of this initial model of 
structural definitions is that the consistency of the axioms is not a matter of stipula-
tion. On the contrary, according to Hilbert, only in the case one has proved that the 
axioms are consistent (e.g., satisfiable), one can legitimately claim that they provide 
a successful structural definition of the primitive concepts and relations.

The conception of structural definitions as definitions of the primitive terms of 
a mathematical theory was even more explicitly formulated by the members of the 
Peano School, by the end of the nineteenth century and the beginning of the twenti-
eth century. For instance, in a talk pronounced at the International Congress of Phi-
losophy in Paris, in 1900, Burali Forti addressed the problem of definitions in math-
ematics. He distinguished there three sorts of definitions: “nominal definitions”, 
“definitions by postulates” and “definitions by abstraction”. Regarding the second 
kind of definitions, Burali Forti offered the following characterization:

One uses the definition by postulates for a grouping x of objects, when we do 
not know or do not want to define them nominally. The group x is defined by 
postulates by means of the logical relations among the x. M. PEANO defined, 
in this way, the group of words point, segment, and the group of words whole 
number, zero, successor of a number, and M. PIERI the group of words point, 
movement. (Burali 1901, p. 295.)

According to this view, the meaning of mathematical primitives in a (formal) axi-
omatic theory is then constituted by their mutual logical relations, as they are estab-
lished in the axioms. Moreover, this notion of definition by postulates or axioms 
was soon after taken up by F. Enriques, who was the first to link this conception of 
structural definitions with the term “implicit definition”.16

15  Hilbert’s semantic interpretation of consistency is suggested, for example, by the following famous 
claim in his controversy with Frege: “if the arbitrary given axioms do not contradict one another with all 
their consequences, then they are true and the things defined by the axioms exists” (Hilbert to Frege, 29 
December 1899, reprinted in: Frege 1980). A more syntactic reading of Hilbert’s early view of consist-
ency has been defended by Sieg (2009). On Hilbert’s early metatheoretical view of axiomatic systems 
see, e.g., Awodey and Reck (2002) and Blanchette (2017).
16  In an influential article for the Encyklopädie der mathematischen Wissenschaften (vol. III, 1.1), pub-
lished in 1907, Enriques claimed: “This conception of rigor […] is exhibited in the abstract logical view-
point according to which the postulates appear as arbitrary agreements, and the totality of logical rela-
tions which they express, constitutes a sort of implicit definition of the primitive concepts” (Enriques 
1907, p.11).
  According to Gabriel (1978), Enriques is responsible not only for the introduction of the expression 
“implicit definition” in the German speaking world, but also for the confusion between implicit definition 
(in the strict sense) and structural definitions in the first sense, that is, as definitions of primitive math-
ematical concepts.
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Hilbert’s new method of “implicit definitions” exerted a remarkable influence 
among early twentieth-century philosophers of science and mathematics. In particu-
lar, Moritz Schlick argued that this new kind of definitions in mathematics was a 
fundamental tool to ground our mathematical knowledge on a secure and a priori 
basis. In his General Theory of Knowledge (1974), Schlick makes the following 
remark:

Hilbert’s geometry begins with a system of propositions in which a number of 
terms occur (such as ‘point’, ‘straight-line’, ‘plane’, ‘between’, ‘outside of’, and 
the like) that, to begin with, have no meaning or content. These terms acquire 
meaning only by virtue of the axiom system, and possess only the content that 
it bestows upon them. They stand for entities whose whole being is to be bear-
ers of the relation laid down by the system. (Schlick 1974, p. 34)

For Schlick, the method of “implicit definitions” was a fundamental methodological 
tool to avoid the appeal to intuition and experience in the formation and determina-
tion of mathematical and scientific concepts, thereby contributing to the acquisition 
of rigorous and certain knowledge.17 This appeal was avoided due to the fact that, by 
means of this definitional method, the basic or simple mathematical concepts were 
deprived of their original intuitive meaning, namely of their ordinary sense as well 
as their usual denotation. On the contrary, by considering that an (abstract) system 
of axioms provided an implicit definition of its primitive concepts, the meaning or 
“content” of each primitive concept consisted now exclusively in its logical relations 
to the other concepts as expressed in the axioms. According to Schlick, this provided 
a complete and exact determination of all simple mathematical concepts, although 
they were not endowed anymore with a fixed or intuitive reference.

It is worth noting that, although the above distinguished promoters of this initial 
model of structural definition agreed that, when successful, this new kind of defini-
tion provided a meaning to the primitive terms of a mathematical theory, the very 
notion of ‘meaning’ invoked here was rarely made clear or even explicitly analyzed 
within these early discussions.18 On the contrary, the common standpoint during 
the period was limited to the suggestion that, since structural definitions do not fix 
the reference of the defined terms, their meaning or “content” consisted now in the 
mutual (logical) relations that each primitive concept bore to the other primitive 
concepts. In the following Sect. 4.1, we will focus more closely on this “holistic” 
nature of the meaning involved in this first conception of structural definitions.

The conception of structural definitions as definitions of the meaning of primitive 
terms is very much alive and widespread in the contemporary philosophical litera-
ture. This contention can be illustrated by indicating two interesting receptions and 
reinterpretations of this view of “implicit definitions”, stemming from epistemology 

17  For the significance of the doctrine of “implicit definitions” in the development of logical empiricism, 
and particularly for Schlick, see Coffa (1991).
18  Of course, the main exception to this claim was Frege, who on the basis of his fully elaborated seman-
tical theory rejected this first understanding of structural definitions. See Frege (1980).
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and philosophy of mathematics and logic. The first case is related to the current phil-
osophical discussion of the notion of analyticity and a priori knowledge. In particu-
lar, Boghossian (1996, 1997) has put forward a concept of analyticity on the basis of 
an implicit definition account of the meaning of logical constants. According to this 
epistemological concept of analyticity, a statement S is analytic if the mere grasp of 
the meaning of S is a sufficient condition for justified belief in its truth.19 Then, Bog-
hossian has argued that an analytic theory of our a priori knowledge of logical truths 
can be sustained, by appealing to the doctrine that logical axioms–or certain rules 
of inference—constitute an implicit definition of the logical constants occurring in 
them. The central notion of implicit definition is specified as follows:

Implicit definition: it is by arbitrarily stipulating that certain sentences of logic 
are to be true, or that certain inferences are to be valid, that we attach a mean-
ing to the logical constants. More specifically, a particular constant means that 
logical object, if any, which makes valid a specified set of sentences and/or 
inferences involving it. (Boghossian 1997, p. 348)

The central contention here is that the meaning of logical constants is fixed or 
determined by stipulating that certain sentences or rules which contain them are 
respectively true or valid. If the implicit definition is successful, the logical con-
stants acquire the meaning required for the sentences or logical rules to be respec-
tively valid or true. Then, a novel ingredient of this model is the explicit stipulation 
of the deductive validity of the rules working as implicit definitions of the logical 
constants. It is worth mentioning that Boghossian takes this conception of implicit 
definition of logical constants as the immediate application, in the case of logic, of 
the method of determining the meaning of geometrical primitives or “indefinables” 
by means of the postulation of a set of axioms, as introduced in modern axiomatic 
geometry. Moreover, Gentzen’s suggestion that the meaning of logical constants 
might be determined by the stipulation of the rules for their introduction and elimi-
nation is also commonly mentioned as an important motivation of the “standard” 
conception of implicit definition.20

This particular understanding of the notion of implicit definition is usually indi-
cated in contemporary philosophical literature as the “standard conception” or the 
“standard model” of implicit definitions.21 The key idea of the standard model is that 
the decision to regard a certain sentence, or a set of sentences, as true is essential to 
provide the implicitly defined term with a meaning. In other words, the stipulative 
truth of the sentence, or set of sentences, determines the meaning that the implicitly 
defined term acquires, since in a successful implicit definition the definiendum gets 
the unique meaning required for the definiens to express truth.22

19  Cf. Boghossian (1997, p. 334).
20  For details of Gentzen’s remark see below, Sect. 4.2.
21  See Horwich (1997, 1998).
22  In the literature it is often argued that this kind of implicit definition has a fundamental epistemologi-
cal import, for it can be used to provide a satisfactory account of the possibility of a priori knowledge, 
particularly in logic and mathematics. The view that implicit definitions can underwrite important kinds 
of non–inferential a priori knowledge has been described as the “traditional connection”. For details see, 
e.g., Hale and Wright (2000) and Ebert (2016).
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The second case of deployment of the concept of “implicit definition” in con-
temporary philosophical literature is connected with the neologicist program in the 
philosophy of arithmetic. For some neologicists—particularly Bob Hale and Crispin 
Wright—a special notion of implicit definition is fundamental to provide an account 
of our a priori knowledge in arithmetic. This is related to the fact that they con-
sider the abstraction principle known as “Hume’s principle” (henceforth HP) as an 
implicit definition of the notion of cardinal natural number. Informally, Hume prin-
ciple asserts that two concepts have the same number if and only if the objects that 
fall under them can be put into a one to one correspondence. Formally, HP is usually 
formulated as follows:

where F, G stand for concepts (or properties, or sets), i.e., they are second order 
variables; the symbol “ ≈ ” denotes the relation of numerical equivalence, or more 
precisely, the equivalence relation of equinumerosity of concepts, and the numeral 
symbol “#” stands for a function that takes concepts as arguments and returns an 
object (a number) as a value. The expression “#F” refers to a singular term which 
must be read as the number of F. Hence, HP stipulates an equivalence between the 
notion of numerical identity and the notion of biunivocal relation.

The main tenet defended by some neologicists, such as Hale and Wright, is that 
by means of the stipulation of the truth of HP, it is possible to grasp the meaning of 
the cardinal operator, which occurs two times in the left–hand side flanking an iden-
tity sign. As Hale and Wright observe: “by stipulating the truth of HP the sense or 
meaning of the numeral operator ‘#’ is implicitly defined or adequately explained” 
(Hale & Wright 2001, p. 310. Our emphasis). It should be noticed that what is here 
stipulated is not simply the truth of HP. On the contrary, the model of meaning-
fixing stipulation involved in HP consists in asserting that the truth-conditions for 
numerical identity statements depend on the holding of a one-to-one correlation 
between a pair of concepts, i.e., on the equinumerosity relation between concepts.23

To conclude this section, it is worth asking how this general notion of “implicit 
definition” used in contemporary philosophical literature is related to the first con-
ception of structural definitions, i.e., definitions of the meaning of the primitive 
terms of a given axiomatic theory. In particular, while in the former case the stipula-
tion of the truth of a sentence, or a collection of sentences, usually fixes a meaning 
for a particular non-logical term there contained, in the latter case the laying down 
of an axiomatic system provides simultaneously a definition of the several non-
logical terms appearing in the axioms. In this regard, Ebert (2016) has pointed out 
recently that structural definitions—or “Hilbert-style” definitions—do not constitute 
a different sort of mathematical definition, but must be conceived just as a particular 
instance of the broader notion of implicit definition (or contextual definition).24 The 

∀F∀G(#(F) = #(G) ⇔ (F ≈ G)),

23  It should be noted that, although this conception of implicit definition presupposes a notion of valid-
ity, the latter notion is not specified in model-theoretic terms but rather taken as primitive. We thank an 
anonymous referee for calling our attention to this point. For a full discussion of the interpretation of HP 
as an implicit definition see Hale and Wright (2000), Ebert and Shapiro (2009) and MacFarlane (2009).
24  See Ebert (2016, pp. 137–138).
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alternative here is then to consider that a structural definition of the meaning of the 
primitive terms of an axiomatic theory is a collection of multiple implicit definitions 
(in a strict sense). We will investigate this issue more formally in Sect. 4.

3.2 � Structural Definitions of Higher‑Order Concepts

The second understanding of structural definitions holds that what an axiomatic sys-
tem defines is not the meaning of its primitive terms, but a higher-order concept of 
mathematical objects. In modern terminology, a structural definition is a definition 
of the class of models of a given axiomatic theory. Historically, this conception also 
originated with the emergence of formal axiomatics, although it was not so explic-
itly formulated as the first view of structural definitions. In the contemporary scene, 
this understanding of structural definitions plays a central role in the structuralist 
conception in the philosophy of mathematics. In what follows we present some rep-
resentative examples of this second view of the semantics of structural definitions, 
both from early formative work in modern axiomatics and its philosophical analysis.

Dedekind’s seminal work on the foundations of arithmetic, in the classic essay 
Was sind und was sollen die Zallen? (1888), represents an early example of the con-
ception of structural definitions as definitions of higher-order concepts of mathemat-
ical objects. This can be appreciated in the central definition [Erklärung] §71 of the 
concept of simply infinite system. For better readability, we state the definition using 
current terminology.

Definition 3  A set S is said to be simply infinite if there exists a function f on S and 
an element a ∈ S such that the following hold:

1.	 f (S) ⊆ S , i.e. f is a mapping from S into itself.
2.	 a ∉ f (S) , i.e., a is not in the image of S under f.
3.	 f (x) = f (y) implies x = y, i.e., f is a one–to–one function.
4.	 S is the smallest set containing a and closed under f, i.e., it is the intersection of 

all such sets.25

Dedekind carefully avoided the use of the word ‘axiom’ to describe the require-
ments 1–4 in the above definition, and refers to them instead as “characteristic 
conditions” [characteristische Bedingungen]. However, it has been firmly estab-
lished in the literature that his methodological approach clearly exhibits a modern 
understanding of the axiomatic standpoint.26 More specifically, Dedekind is very 
precise about the fact that this definition provides a general characterization of the 

25  We follow here the reconstruction provided by Awodey and Reck (2002, p. 6). It should be noted that 
the order of the conditions 1–4 do not obey Dedekind’s original setting. Moreover, the condition 4 is for-
mulated by Dedekind on the basis of his theory of chains, by stating that S is the chain under f with base 
point a. Cf. Dedekind (1888, §71).
26  For a detailed analysis of Dedekind’s understanding of the modern axiomatic standpoint, see Sieg and 
Schlimm (2014) and Sieg and Morris (2018).
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higher-order abstract concept of simply infinite systems, and not a description of a 
particular system of objects which instantiates this concept. Moreover, in the follow-
ing definition §73, he defines the natural numbers as the “abstract type” of simply 
infinite systems.27 Dedekind can thus be considered a pioneer of the second under-
standing of structural definitions.

Another, at least partial, insight into this second understanding of structural defi-
nitions can be found in Frege’s attempt to reconstruct the logical form of “Hilbert’s 
definitions” in Grundlagen. As is well known, Frege plainly rejected the view that 
the axioms of geometry can provide a definition of the primitive geometrical ter-
minology. Since in Hilbert’s axiomatic theory the primitives do not have a fixed 
reference and are free for reinterpretation, its axioms do not express evident true 
propositions and cannot be considered as genuine geometrical axioms. Neither 
can Hilbert’s axioms be regarded as definitions of the primitives, since they fail to 
deliver the main task of all definitions, i.e., to fix the reference and provide a sense 
for the defined expression. However, Frege suggested that an alternative view of the 
definitional character of axioms could be possible in principle. If Hilbert’s axioms 
define anything at all, they define “second-level concepts” under which many differ-
ent first-order concepts fall:

Now, how do things stand with Mr. Hilbert’s definitions? Apparently every 
single point is an object. From this it follows that the concept of a point (is a 
point) is of the first level. If we now go through Mr. Hilbert’s axioms, consid-
ering them as parts of the definition of a point, we find that the characteris-
tics stated in them are not of the first level. That is, they are not properties an 
object must have in order to be a point. Rather, they are of the second level. 
Therefore, if any concept is defined by means of them, it can only be a second-
level concept. It must of course be doubted whether any concept is defined 
at all, since not only the word ‘point’ but also the words ‘straight-line’ and 
‘plane’ occur. (Frege 1903, p. 374. Our emphasis)

Frege understands “second-level concepts” as higher-level concepts under which 
other concepts, but no objects, fall. For instance, if an individual point is an object, 
then the concept of point is a first-level concept. However, Frege argues that the con-
ditions formulated in Hilbert’s axioms for the geometrical primitives do not aim to 
characterize first-level concepts, but second-level concepts, under which particular 
first-level concepts fall. More precisely, according to Frege, the first-order concepts 
“is a (Euclidean) point” and “is a pair of numbers from the domain Ω ” could fall 
under a second-level concept, whose characteristic marks are established in Hilbert’s 
axioms.28 Now, Frege’s proposal can be generalized by noting that what is defined 
here is not a second-level concept, but a higher-order relation, which connects the 
geometrical primitives ‘point’, ‘straight-line’, ‘plane’, ‘between’, and so on. If this 
reading could be sustained, Frege’s reconstruction of the logical form of Hilbert’s 

27  The specific nature of the process of abstraction involved in definition §73 has been extensively dis-
cussed in the literature. For recent studies see Klev (2017) and Sieg and Morris (2018).
28  The domain Ω refers to Hilbert’s construction of a minimal Pythagorean field. See Hilbert (1899, §9).
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definitions would be very close to the modern view that axioms define (classes of) 
relational structures.29

Now, we have seen that Hilbert explicitly stressed the idea that his axioms estab-
lish the meaning of the primitive concepts and relations of the geometrical theory. 
Accordingly, it has often been emphasized in the literature that, although in practice 
Hilbert provides structural definitions of geometrical structures, he could not have 
foreseen this conception of structural definitions in this early period.30 However, a 
different picture emerges when Hilbert’s unpublished notes for lecture courses on 
the foundations of mathematics, corresponding to this period, are taken into con-
sideration. For example, the notes for the lecture course Logical principles of math-
ematical thinking (1905a, b), which contain the most complete description of his 
early view of the axiomatic method, are very informative in this regard. Concerning 
the axiomatic construction of the real number system, Hilbert makes the following 
remark:

In the construction of arithmetic we have deviated from its intuitive founda-
tion, namely the concept of natural number, which constitutes the starting 
point of the genetic method. For us the number system was ultimately nothing 
but a scaffolding of concepts, which was defined by means of the 18 axioms. 
(Hilbert 1905a, p. 36. Our emphasis)31

A similar observation can also be found in a second version of these lecture notes, in 
relation to the axiomatic system for Euclidean geometry:

We consider geometry as a system of things, which we designate as points, 
lines, etc. and we establish for them certain connections, by means of which 
the conceptual scaffolding of geometry is completely defined. (Hilbert 
1905b, pp. 36–37. Our emphasis)32

These passages explicitly reveal that, in this early period, Hilbert also considered an 
alternative view of structural definitions as definitions of higher-order concepts of 
mathematical objects, i.e., classes of mathematical structures. The axiom system of 
Euclidean geometry provides a definition of a three dimensional Euclidean space, 
while his axioms for the real number system constitute a definition of a complete 
ordered field.

29  This interpretation has recently been defended by Hallett (2012), who also offers a formal logical 
reconstruction of Frege’s view. See also Eder (2016).
30  Classical examples of this reading are Gabriel (1978) and Resnik (1974). Recently, Klev (2011) has 
also defended a similar view.
31  „Wir sind beim Aufbau der Arithmetik von deren anschaulicher Grundlage, dem Anzahlbegriff, 
schließlich ganz abgekommen, der ja noch bei der genetischen Methode den Ausgangspunkt bildet. Uns 
war das Zahlsystem schließlich nichts, als ein Fachwerk von Begriffen, das durch 18 Axiome definiert 
war“.
32  „Man betrachtet die Geometrie als ein System von Dingen, die als Punkte, Gerade, etc. bezeichnet 
werden und legt für gewisse Verknüpfungen fest, durch deren Gesamtheit dann das begriffliche Fachwerk 
der Geometrie definiert ist“.
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Let us now turn again to the early philosophical reflection of modern axiomatics 
in the twentieth-century. The philosopher whose work contains the most detailed 
discussion of axiomatic definitions is Rudolf Carnap. More specifically, in Car-
nap’s work on “general axiomatics” from the late 1920s, one finds a clear expression 
of the Fregean view that what it is defined by means of structural definitions is a 
higher-order concept or a class of models. For instance, this idea is expressed infor-
mally in his notes on a course titled Philosophy of Space; Foundations of Geometry, 
first presented in Vienna in 1928. Carnap describes the axiomatic method here as 
follows:

The AS [axiom system] is about undetermined objects. It determines only a 
relational structure between them.

Implicit definition: but more precisely: definition of a class of systems of 
objects, that is the shared “structure” of these systems. (RC 089-62-02)

Thus, an implicit definition in this sense does not specify the meaning of the primi-
tive terms of a theory. Rather, it specifies the “structure” shared by all of its systems 
or models.

This distinction between structural definitions in the first sense and in the sec-
ond sense is made more explicit in Carnap’s published works from the time. In his 
“Eigentliche und uneigentliche Begriffe” (1927), Carnap refers to Schlick’s discus-
sion of axiomatic definitions mentioned above. Carnap argues here that an axiom 
system can be understood as giving an “implicit definition” of the primitive concepts 
of a theory. However, it is central for Carnap that the concepts defined in this way 
do not constitute “proper” but “improper concepts”. They are improper in the sense 
that they remain indeterminate in an important sense: it is not possible to determine 
in isolation whether a particular object (or function) falls under one of the concepts 
in question. For instance, it is impossible to determine whether a particular function 
qualifies as an arithmetical successor function without taking into account the other 
concepts defined by the axiom system for arithmetic.

Whereas implicit definitions (understood here as structural definitions in our first 
sense) remain indeterminate, Carnap identifies a second sense in which an axiomatic 
theory can function as a definition that does not have this limitation. An axiom sys-
tem, if consistent, not only implicitly defines its primitive terms, it also provides an 
explicit definition of a proper (and higher-order) concept. In the case of arithmetic, 
this is the concept of an arithmetical progression (i.e. in modern parlance, the con-
cept of natural number system); in the case of Euclidean geometry, it is the concept 
of Euclidean space, etc.

The fact that each formal axiom system also defines a “proper concept” is also 
discussed in closer detail by Carnap in his Abriss der Logistik of 1929. In Part II 
of the book—titled “Applied Logistic”–, Carnap gives a type-theoretic formaliza-
tion of several axiomatic theories, including different versions of basic arithmetic, 
set theory, projective geometry, and topology (based on Hausdorff’s neighborhood 
axioms). In light of these theories, Carnap reiterates the point that an axiom system 
does not only give implicit definitions of the primitive terms occurring in the axi-
oms, but also an explicit definition of a higher-order concept, the Explizitbegriff of 
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an axiom system. Put in modern and purely extensional terms, such an explicit con-
cept is understood here as the class of models of a given theory. Thus, the explicit 
concept defined by the axioms of basic arithmetic is simply the class of all progres-
sions (or number systems), the concept defined by the Hausdorff axioms is the class 
of all neighborhood spaces, etc.

Carnap’s view that axioms define classes of mathematical systems also forms a 
central tenet of the structuralist conception in contemporary philosophy of mathe-
matics. The main idea here is that an effective way to understand and acquire knowl-
edge of a mathematical structure is by means of a direct description of it. This is 
achieved by providing an axiomatization of the mathematical theory, which deter-
mines—when successful—the class of all its models. The view that mathematics 
consists in the study of mathematical structures and the structural properties of 
their objects is then a fundamental motivation for this understanding of structural 
definitions:

The structuralist orientation of modern mathematics naturally leads to the use 
of axiomatization. To understand a kind of structure, for instance the structure 
of a group, is to have an overview over all its instantiations. In an axiomatic 
system, this is accomplished by capturing all those structures as the models of 
the system. […] this method is the natural one for a structuralist. The axioms 
determine a class of structures as models of the axiom system. By deriving 
theorems from the axioms a mathematician can study those structures. (Hin-
tikka 2011, p. 70. Our emphasis.)

It is worth mentioning that this conception of structural definitions is particularly 
suitable for non-eliminative versions of mathematical structuralism, specifically 
for ante rem structuralism.33 Non-eliminative structuralism is the position which 
considers structures as existing entities in an abstract realm. In particular, accord-
ing to ante rem structuralism, abstract structures and positions should be conceived 
as bona fide objects which exist independently of the particular systems of objects 
which constitutes their concrete instantiations. For the ante rem structuralist, it is 
then essential that one can communicate and refer to pure structures and positions, 
independently of their concrete instantiations. Now, a successful structural definition 
does not define a concrete mathematical system, but the class of the models of the 
axiomatic theory. Accordingly, in virtue of this model of structural definitions, it is 
possible to describe pure mathematical structures, even if no particular instance is 
displayed or known. In the words of Shapiro:

Structures successfully described by implicit definitions are naturally con-
strued as ante rem (if they exist at all, of course). […] In an implicit defini-
tion, asking about Julius Caesar is similar to the aforementioned listener who 
is wondering about the name of the center fielder’s mother. The speaker was 
describing a structure, not a system of particular people. The mathemat-
ics book is not describing a system of sets or Platonic objects or people. It 

33  See, for example, Shapiro (1997) and Parsons (1990).
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describes a structure or a class of structures. (Shapiro 1997, pp. 130–132. Our 
emphasis.)

There is an important connection between the present view of structural definitions 
and the function of axiomatization in mathematical practice. When axiom systems 
are considered from a semantic point of view, by focusing on their meaning, one can 
distinguish between descriptive and prescriptive axiomatizations.34 According to the 
former, the function of an axiomatization is to describe a given domain. Accord-
ing to the latter, the function of an axiom system consists in turn in prescribing or 
establishing conditions for certain domains, i.e., in determining and defining what 
the axiomatic theory is about.35 The conception of structural definitions as defini-
tions of classes of mathematical structures is then intimately tied to a specific way 
in which axioms are used in mathematical practice. More specifically, when axioms 
are considered in their semantic prescriptive dimension, they do not strictly define 
the meaning of its primitive terms, but the class of models of the axiomatic theory:

If the meanings of the primitives of an axiomatic system depend entirely on 
the relations that are expressed by the axioms, then the axioms are consid-
ered to be prescriptive (or normative), i. e., they determine the subject matter 
under consideration, and one also speaks of them as ‘implicit definitions’. […] 
Considered in this way, a system of axioms generally cannot determine a sin-
gle interpretation for its terms, but only the structure of the relations that hold 
between them; understood in this way, axiom systems are also called relational, 
structural, algebraic, or abstract. In other words, such a system of axioms does 
not define one single model, but a class of models. (Schlimm 2013, pp. 50–51)

Finally, axiom systems can also be considered from a syntactic perspective, by 
focusing on the deductive role of axioms as the starting points for deducing theo-
rems. According to their syntactic role, axioms are viewed as sentences which deter-
mine the propositions that pertain to a theory, i.e., all those sentences that can be 
deductively obtained from them. Prima facie, the syntactic dimension of axioms has 
then no bearing on any particular understanding of structural definitions. We will 
contest this last claim in the following section, by assessing the relevance of differ-
ent views of meaning in the formal account of structural definitions.

4 � Assessment

As the last section made clear, structural definitions play an important role in the 
history of mathematics as well as in analytic philosophy. However, it was also 
shown that the notion is used only informally in these debates. This is particularly 
true for recent work in the philosophy of language and mathematics, for instance, on 

34  This distinction has been recently investigated in Schlimm (2013). A related distinction between 
assertory and algebraic axiom systems has been defended by Shapiro (2005).
35  See Schlimm (2013, p. 49).



1680	 E. N. Giovannini, G. Schiemer 

1 3

abstraction principles or structuralism. Perhaps more surprisingly, the two notions 
also lack a rigorous logical explication in modern axiomatic mathematics in the 
wake of Dedekind’s and Hilbert’s work.

We saw in the previous section that one can distinguish between two ways of 
understanding structural definitions, namely (1) as specifications of the meaning of 
primitive terms of a theory and (2) as specifications of higher-order mathematical 
concepts or structures (e.g. the concepts of Euclidean space, number progressions, 
abstract groups, etc.). Given these two types of structural definitions, how can we 
think of them semantically? In the following, we will provide a more systematic 
discussion of the semantic understanding of structural definitions, first in terms of 
model theory and second in terms of an inferential semantics.

4.1 � Structural Definitions and Model Theory

Can one provide a model-theoretic explication of structural definitions? In con-
trast to the well-known semantics of implicit definitions, there is no straightforward 
model-theoretical account of structural definitions. More specifically, it is not prima 
facie clear how by the stipulation of the consistency of a theory, one also deter-
mines the meaning of its primitives terms. Moreover, recall from Sect. 2 that in the 
case of implicit definitions (in the strict sense), the central model-theoretic condition 
expresses a uniqueness condition for the interpretation of the defined symbol. This 
kind of uniqueness of reference is, as we saw, deliberately ruled out in the infor-
mal discussions of structural definitions in the work of Hilbert and others, at least if 
understood as definitions of the primitive terms of a theory.

This lack of a clear semantic specification of structural definitions through axiom 
systems has led logicians and model theorists to question the validity of this form 
of definition. Consider, for instance, Hodges’ insightful remarks on the historical 
development of the notion:

Unfortunately there used to be a very confused theory about model-theoretic 
axioms, that also went under the name of implicit definition. By the end of the 
nineteenth century, mathematical geometry had generally ceased to be a study 
of space, and it had become the study of classes of structures which satisfy 
certain ‘geometric’ axioms. Geometric terms like ‘point’, ‘line’ and ‘between’ 
survived, but only as the primitive symbols in axioms; they no longer had any 
meaning associated with them. (…)

Problems arose because of the way that Hilbert and others described what they 
were doing. (…) they went on to say that the axioms together form an implicit 
definition of the concepts plus, minus and 0 together, and that this definition is 
only partial but it says about these concepts precisely as much as we need to 
know.

One wonders how it could happen that for fifty years nobody challenged this 
nonsense. (…) Frege’s demolition of the implicit definition doctrine was mas-
terly, but it came too late to save Hilbert from saying, at the beginning of his 
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Grundlagen der Geometrie, that his axioms give “the exact and mathemati-
cally adequate description” of the relations ‘lie’, ‘between’ and ‘congruent’. 
Fortunately, Hilbert’s mathematics speaks for itself, and one can simply bypass 
these philosophical faux pas. (Hodges 2001/2013, §2)

According to Hodges, the “confusion” about the concept of implicit definitions in 
modern axiomatics really concerns structural definitions in our first sense. This 
notion simply does not have a precise sense from a model-theoretic point of view. 
Thus, whereas one can view an axiom system as a definition of a higher-order con-
cept along Fregean lines, it is not possible to think of it as specifying the meaning of 
the non-logical primitives.

The standard model-theoretic treatment of the Fregean understanding of axiom 
systems is based on the definability of model classes. The notion was first intro-
duced by Tarski in the 1950s and is today usually specified as follows:36

Definition 4  (Definable classes of structures) Let T be any theory expressed in a for-
mal language L . Let K be a class of L–structures. Then T defines (or axiomatizes) K 
if K is the class of all L-structures which are models of T, that is, if

A structural definition in the second sense is naturally framed in model theory 
as the definition of a class of models or structures satisfying the axioms of the the-
ory in question.37 Consider again the example of the theory of analysis presented 
in Sect. 2. What this axiomatic theory defines is the class of its models, that is, the 
class of all complete ordered fields satisfying the above mentioned condition.

Notice that this model-theoretic account of structural definitions can be traced 
back to early contributions on the axiomatic method. Hodges, in his discussion of 
the history of model theory, holds that “[i]t was Hilbert and his school who first 
exploited axioms, higher-order as well as first-order, as a means of defining classes 
of structures.” (Hodges 2001, p. 69) We saw in Sect. 3.2 that Hilbert’s own meth-
odological remarks on this topic in Grundlagen and in related writings remain rather 
vague. In contrast, Carnap, in his work on axiomatics from the 1920s, effectively 
identifies the “explicit concept” defined by an axiom system with its class of models.

What about structural definitions in the first sense, as specifications of the mean-
ing of a theory’s primitive terms? We saw in Sect. 3.1 that several authors explic-
itly refer to the notion of meaning in this context without given a further clarifica-
tion what meaning is supposed to be. Does this notion of structural definitions, as 
Hodges suggests, therefore simply rest on a confusion with the notion of definable 
model classes or is there a way of making sense of it model-theoretically? Contra 
Hodges, we believe that there are in principle two ways to vindicate the notion and 

K = Mod(T) = {M ∣ M ⊧ T}

36  See Hodges (1993, p. 30).
37  Notice that the notion of model classes is left informal here. See Hodges (1993) for a similar treat-
ment. Many examples of axiomatizable classes of models are, strictly speaking, proper classes and not 
sets and should thus be studied in a formal class theory such as NBG. We would like to thank an anony-
mous reviewer for emphasizing this point to us.
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to provide a model-theoretic analysis of it. Let us briefly outline each of them in 
turn.

First, one might argue that structural definitions present special cases of implicit 
definitions in the strict sense (as outlined in Sect. 2). More specifically, one could 
understand a structural definition of several primitive terms by an axiomatic theory 
as a set of implicit definitions (in the strict sense), where each definition in the set 
specifies the meaning of one primitive term relative to stipulated meanings of the 
other terms. More formally, given a theory T expressed in a formal language L with 
signature {�1,… , �m} , the structural definition of the primitives by T (in symbols 
SD(�1,… , �m;T) ) can be schematically presented as follows:

where each IDi presents the implicit definition (in the strict sense) of a given primi-
tive term �i by the theory T in terms of the remaining signature L∕{�i}.

Notice that in this interpretation, structural definitions turn out to be proper defi-
nitions in the sense that a certain semantic uniqueness condition is met. The refer-
ence of any primitive term is uniquely determined here relative to a given inter-
pretation of the other primitive terms. At the same time, the definition is clearly 
contextual or holistic in the intended sense: the interpretation of each primitive con-
stant can be specified only relative to the interpretation of the other terms and vice 
versa.

The second approach to a semantic understanding of structural definitions is 
based on an intensional interpretation of the primitive vocabulary. The key idea 
here is to take seriously remarks by philosophers such as Schlick or Boghossian 
to the effect that theories specify the meaning of its basic terms. If this talk about 
the meaning or sense of primitive terms is taken literally, then one should not think 
about structural definitions in terms of a referential semantics. The meaning of 
mathematical terms should not be understood referentially, but rather intensionally.

The standard intensional account of properties and relations goes back to Car-
nap’s Meaning and Necessity (1947) and to Lewis’ (1986) possible–worlds approach 
to properties. Applied to the context of mathematics, a natural way to think of the 
intension of a given primitive symbol is as a function from the models of a given 
mathematical theory to sets of tuples of elements in these systems that can be used 
for the interpretation of the symbol in question. Thus, according to this account, the 
primitive terms of a theory do not refer to relations or functions understood exten-
sionally as sets in a given model domain, but rather as functions from models to 
local extensions.

SD(�1,… , �m, T) =

⎧
⎪
⎨
⎪
⎩

ID1(�1, T ,L∕{�1})

ID2(�2, T ,L∕{�2})

⋮

IDm(�m, T ,L∕{�m})
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Following a recent proposal made in Korbmacher and Schiemer (2018), one can 
capture the mathematical properties or “concepts” (in Hilbert’s sense) expressed by 
the primitive terms of a theory more formally in the following way:38

Definition 5  (Mathematical Properties) Let � be a property of elements of systems 
of a given mathematical signature L . The local extension of � in a system S is the 
class �S� = {x ∈ D

S | �(x)} of all and only those things in the domain of S that have 
the property. The intension of property � is the function �𝖯 ∶ S ↦ �S𝖯 that assigns 
to every system S of signature L the local extension �S� of � in system S (compare 
Korbmacher and Schiemer 2018, p. 300).

Given this account of mathematical properties and relations, we can say that a 
theory T provides a structural definition of its primitive terms in the sense that it 
specifies their respective intensions. Thus, for instance, the axiom system of Peano 
arithmetic defines the meaning of the primitive terms ‘natural number’, ‘zero’, and 
‘successor’ in the following sense: it (uniquely) determines three functions from PA-
models to the local extensions of these terms in each model. Put more schemati-
cally, the meaning of the primitive terms {�1,… , �n} (i.e. in language L ) defined 
by a theory T (as a set of sentences in L ) is simply a sequence of such functions 
{Φ�1

,… ,Φ�n
} with the model class Mod(T) as its domain.

Notice that in this account of structural definitions, the semantic uniqueness con-
dition constitutive for proper definitions is met. However, in the present context, this 
does not concern the uniqueness of reference relative to a given model. Rather, it 
concerns the fact that an axiom system identifies a single property or relation as 
the meaning (or proper interpretation) of each primitive term. These properties and 
relations are understood as intensional entities however, that is, as functions from 
models to local extensions.

4.2 � Structural Definitions and Inferentialism

There is a second possibility of understanding structural definitions, which is moti-
vated by a different account of the way in which linguistic expressions acquire their 
meaning. This alternative understanding of structural definitions is also intimately 
related to two different approaches in modern axiomatics. As is well known, one 
can identify two main traditions within formal axiomatics, both from historical and 
systematic perspectives. The first considers axiom systems primarily from a seman-
tic standpoint, as a way to define the subject-matter of a theory. This perspective 
focuses on the referents of the axioms, that is, on providing a clear understanding 
of what precisely a particular axiom system refers to. On the contrary, the sec-
ond tradition grants a privilege to the proof-theoretical function or role of axioms. 

38  In order to keep the discussion simple, we restrict our attention here to properties or unary relations. 
Similar definitions can be given for relations and functions of any arity.
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Accordingly, axiom systems are mainly conceived as tools or devices to prove 
theorems.39

These two perspectives on the roles of axioms in modern axiomatics can be illus-
trated by considering a simple mathematical example. In geometry, an affine plane 
A is a system of points and lines together with an incidence relation between points 
and lines such that the existence of non-intersecting “parallel” lines is allowed. 
More formally, if � and � are two one-place predicates which stand respectively for 
“points” and “lines”, and � is a two-place predicate which designates the relation of 
points “lying on” a line, then an affine plane is an incidence structure ⟨�,�, �⟩ which 
satisfies the following axioms:

(AP.1)	� Given two distinct points P and Q, there exists a unique line l such that P 
lies on l and Q lies on l.

(AP.2)	� Given any line l and any point P not on l there exists one and only one line 
m such that Q is on m, and l and m have no common point.

(AP.3)	� There exist three non-collinear points.40

From a semantic perspective, one shall focus then on the different domains or 
systems of objects which satisfy the conditions prescribed by the axioms, that 
is, on the models of the axioms. This includes, for instance, the usual Euclidean 
plane, the Moulton plane41, as well as finite models consisting only of four points 
and six lines.42 On the contrary, when the syntactic dimension of axioms as the 
starting points of mathematical deductions is the central aspect, one might inves-
tigate which immediate consequences can be obtained by means of these condi-
tions. For example, one can prove that parallelism is an equivalence relation by 
using axiom (AP.2) and the definition of parallelism: a line l is parallel to a line 
m (denoted l ∥ m ) if either they are equal (l = m) or the two lines have no points 
in common.

Theorem 1  “Parallel” is an equivalence relation.

Proof  By definition “parallel” is clearly reflexive and symmetric. To prove that this 
relation is also transitive, let us assume that l1, l2, l3 are three distinct lines and that 
l1 ∥ l2 and l2 ∥ l3 . If l1 ∦ l3 , then they meet at a common point P. But this implies 

39  For a detailed analysis of these two traditions in modern axiomatics, and its historical and concep-
tual connections with late nineteenth-century mathematical practice, see Schlimm (2013) and Blanchette 
(2017).
40  These axioms are a slight modification of the axioms given in Artin (1957, pp. 52–53). There are sev-
eral ways to axiomatize affine planes, but the present one is the most convenient for our purposes.
41  The Moulton plane is an affine plane in which Desargues’ theorem does not hold. For a historical 
account of this model, see Arana and Mancosu (2012).
42  In fact, the smallest affine plane has exactly four points and six lines, and can be described syntheti-
cally as follows: P = {A,B,C,D} and L = {{AB}, {AC}, {AD}, {BC}, {BD}, {CD}} . For details on finite 
models of affine planes, see Bennett (1995).
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that l1 and l3 are two distinct lines through a point P parallel to l2 , which is impos-
sible by axiom AP2. Then, l1 ∥ l3 . 	�  ◻

The tradition that conceives axioms mainly as inference tools in demonstra-
tions is known as deductivism or if-thenism, that is, the view that mathematics 
is strictly speaking the study of the logical consequences that can be obtained 
from a set of given formal or uninterpreted axioms.43 Historically, Moritz Pasch’s 
axiomatic investigations into the foundations of projective geometry, in his book 
Vorlesungen über neuere Geometrie (1926), are usually credited as the earliest 
and clearest example of this conception within modern axiomatics. In an often 
quoted passage, Pasch makes the following observation regarding the nature of 
proofs in axiomatic geometry:

If geometry is to be truly deductive, the process of inference must be inde-
pendent in all its parts from the meaning of the geometrical concepts, just 
as it must be independent of the diagrams; only the relations specified in the 
propositions and definitions may legitimately be taken into account. During 
the deduction it is useful and legitimate, but in no way necessary to think of 
the meanings of the terms; in fact, if it is necessary to do so, the inadequacy 
of the proof is made manifest. (Pasch 1926, p. 91)

Pasch’s notable insight consisted in noticing that, when the focus is set on the 
inferential role of axioms, their meaning is completely irrelevant for the process 
of deduction. More precisely, rigor in demonstrations can only be achieved if 
mathematical inferences are carried out independently of any particular sense and 
reference that might be attached to the primitives concepts occurring in the axi-
oms. Now, given this way of understanding the function of axioms in mathemat-
ics, a natural way to proceed is not only to claim that the meaning is not required 
for deductions, but also to take a step forward and claim that the axioms, as kinds 
of rules of inference, constitute the meaning of the primitives. In other words, one 
could claim that the meaning of (geometrical) primitives is determined precisely 
by the specific inferential patterns prescribed in the axioms, when they are con-
sidered from a strictly syntactic viewpoint.

This view is, in fact, widespread in relation to the understanding of logical 
constants, specifically in the inferentialist conception of the meaning of a logical 
constants. According to logical inferentialism, the meaning of logical constant 
can be equated with the usual rules of inference that govern their correct use. 
Thus, for instance, the meaning of ‘and’ is determined by its introduction and 
elimination rules, and to understand the meaning of this logical expression is to 
apply correctly these rules of inference. The inferential account of the meaning of 
logical constants has its roots in G. Gentzen’s (1935) famous suggestion that the 

43  See Putnam (1967) and Musgrave (1977) for detailed discussions of the if-thenist conception of math-
ematics. Compare, in particular, Musgrave’s analysis of the critical impact of Gödel’s first incomplete-
ness theorem on if-thenism as well as of possible attempts to vindicate the position.
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introduction rules, in his systems of natural deduction, could be taken as “defini-
tions” of the respective logical operator:

To every logical symbol &,∨,∀,∃,→,¬ , belongs precisely one inference fig-
ure which ‘introduces’ the symbol—as the terminal symbol of a formula—and 
one which ‘eliminates’ it. […] The introductions represent, as it were, the ‘def-
initions’ of the symbols concerned, and the eliminations are no more, in the 
final analysis, than the consequences of these definitions. (Gentzen 1935, p. 
80)

There is, an important observation to be made here regarding our discussion of 
structural definitions. The semantic tradition in modern axiomatics is clearly con-
nected with a model-theoretic reading of structural definitions, in particular, with the 
second understanding of structural definitions as definitions of higher-order concepts 
or classes of structures. On the contrary, the syntactic or “proof-theoretic” perspec-
tive is more related to the first conception of structural definitions, that is, as speci-
fications of the meaning of the primitive terms of a (mathematical) theory. But an 
essential point is that this understanding of structural definitions rests upon an infer-
ential account of semantics, or more broadly, on a “use-theoretic” view of meaning, 
according to which the meaning of linguistic expressions is essentially determined 
by the basic regularities and rules of its use. In a nutshell, while a “model-theoretic” 
or “truth-theoretic” stance on meaning naturally leads to the second conception of 
structural definitions, a “use-theoretic” view of meaning, and in particular an infer-
ential role semantics, leans towards the first conception.44

It should be mentioned that the proposal of explaining structural definitions in the 
first sense, not in a model-theoretic fashion, but in terms of an inferential view of 
meaning, has been already suggested in the recent philosophical literature. Particu-
larly, Horwich (1997, 1998) has argued that many important problems faced by the 
“standard” or truth-theoretic model of implicit definitions (Cf. Sect. 3.1) can be sur-
mounted by adopting a “use-theoretic” conception of implicit definitions. Accord-
ing to the latter model, the specification of the meaning of a term by means of the 
assertion of a sentence (or sentences) containing it amounts to establishing a set of 
regularities for its correct use. More precisely, if the set of sentences comprising 
the implicit definition is a given (scientific or mathematical) theory, then the mean-
ing of the defined term consists precisely in its theoretical role in such a theory. 
Then, the central contention of this “use-theoretic” model is that in an implicit or 
contextual definition a new term acquires its meaning just by regarding the sentence 
(or sentences), in which it occurs, as true. In other words, this view denies that the 
statements which comprise the implicit definition have to be true in order to be suc-
cessful in providing a meaning for the definiendum.45

44  For a very informative account of the “use-theoretic” approach to semantics, in particular, to inferen-
tial role semantics, see Murzi and Steinberger (2017).
45  Cf. Ebert (2016), p. 140. Ebert (2016) has elaborated on Horwich suggestion of applying a “use-the-
oretic” view of meaning for explaining the concept of implicit definition, and has provided a general 
framework for the notions, distinguishing several semantic and epistemic dimensions.
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Now, a striking trait in the former attempts to provide an account of implicit defi-
nitions on the basis of an inferential view of meaning is that the resulting concep-
tion is not related primarily to formal languages. Thus, it remains to be determined 
whether such notions can be adequately characterized in more formal terms, in rela-
tion to specific formal languages. Moreover, logical inferentialism has proved to 
be an appealing view regarding the nature of the meaning of logical constants. But 
what about the application of this inferentialist point of view to the case of math-
ematical theories?

While we cannot present a worked-out theory of an inferential semantics for axi-
omatic theories in the present paper, it should be noted here that such an approach 
has been suggested in the literature on inferentialism. In particular, Peregrin (2014) 
contains a discussion of the inferential role of mathematical axioms in the above 
sense. Understood in this way, they can also serve as specifying the meaning of the 
primitive vocabulary described in the axioms. For instance, given the example of 
Peano arithmetic, Peregrin argues that one could “see its axioms as a complex infer-
ential pattern characterizing its basic vocabulary: 0, S, +, ⋅ ” (Peregrin 2014, p. 54). 
A central difference to logical inferentialism is that the meaning of terms is specified 
here not in terms of a rule-based calculus, but rather in terms of several axiomatic 
conditions. Moreover, Peregrin’s proposal also differs from more familiar rule-based 
versions of inferentialism in the kind of holism implied by it. Instead of specifying 
a single operator in terms of its corresponding pair of introduction and elimination 
rules, an axiom system is supposed to give a holistic specification of the meaning of 
all of its primitive terms.

5 � Conclusion

The central aim in this paper was to give a historically informed answer to the ques-
tion “What are implicit (or structural) definitions?”. More specifically, we analyzed 
how the view that axiom systems present definitions was understood in mathematics 
as well as in modern analytic philosophy. In the context of modern axiomatics, we 
saw that it makes sense to distinguish between different types of definitions through 
an axiom system. These are, on the one hand, implicit definitions in the strict sense, 
that is, definitions of newly introduced terms based on a given interpretation of the 
primitive vocabulary in some base language. On the other hand, we take structural 
definitions to be definitions through an axiom system that are independent of any 
prior semantic stipulations.

The history of formal axiomatics surrounding Hilbert’s work shows that one 
should further distinguish between two ways of understanding structural definitions, 
depending on what the definiens of such definitions is taken to be. According to the 
first approach, axiom systems provide a holistic definition of the meanings of its 
primitive terms. In the second approach, they are viewed as definitions of higher-
order mathematical concepts or structures. For instance, in Dedekind’s foundational 
work on arithmetic, the system of axiomatic conditions is explicitly described by 
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him as a definition of a higher-order concept, namely the concept of a simply infinite 
(number) system.

Interestingly, both ways of thinking about structural definitions in modern axi-
omatics can also be identified in modern debates in analytic philosophy. Specifically, 
we saw that the notion of implicit definition (construed as a form of structural defi-
nitions in the first sense) plays a crucial role in Boghossian’s and Horwich’s work on 
analyticity. A similar notion is used again in neologicism, in particular in the discus-
sion of the status of abstraction principles such as Hume’s principle. Analogously, 
the notion of structural definitions in the second sense is employed in modern con-
tributions to the philosophy of mathematics, most explicitly in Shapiro’s discussion 
of non-eliminative structuralism.

Based on the survey of the different uses of the notions in modern mathemat-
ics and analytic philosophy, we gave a more systematic assessment of the underly-
ing semantics of the two ways of understanding the definiens of such definitions. 
Whereas the model-theoretic reconstruction of structural definitions in the second 
sense as definitions of model classes is straightforward, the semantic interpretation 
of structural definitions in the first sense is significantly less clear. In the paper, we 
outlined two possible ways of understanding such definitions semantically. Accord-
ing to the first, model-theoretic account, the meaning of a primitive term defined 
through an axiom system is understood not referentially, but rather intensionally as 
a function from models to local extensions. According to the second, inferentialist 
account, the meaning of the primitive terms is not specified model-theoretically at 
all. Instead, their meaning is determined by their inferential role in deducing theo-
retical consequences from the axiom system in question.

Both the intensional and the inferentialist accounts of axiomatic definitions—
understood as definitions of the meaning of the primitive terms of a theory—have 
only been sketched briefly here. A more thorough analysis of the different semantics 
of structural definitions resulting from them has to be given in a different paper.
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