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Abstract
We present a framework for epistemic logic, modeling the logical aspects of System 
1 (“fast”) and System 2 (“slow”) cognitive processes, as per dual process theories 
of reasoning. The framework combines non-normal worlds semantics with the tech-
niques of Dynamic Epistemic Logic. It models non-logically-omniscient, but mod-
erately rational agents: their System 1 makes fast sense of incoming information by 
integrating it on the basis of their background knowledge and beliefs. Their System 
2 allows them to slowly, step-wise unpack some of the logical consequences of such 
knowledge and beliefs, by paying a cognitive cost. The framework is applied to three 
instances of limited rationality, widely discussed in cognitive psychology: Stereo-
typical Thinking, the Framing Effect, and the Anchoring Effect.

1 � Econs, Logons, and Humans

2017 Nobel laureate in economics Richard Thaler dubbed “Econs” and “Humans” 
two different species studied, respectively, by mainstream economists and by 
behavioral and cognitive scientists (Thaler and Sunstein 2008). Econs are the 
agents of classical economic theory: fully consistent and endowed with well-
ordered preferences as per Bernoulli’s expected utility theory. Of course, the 
terminology implies that Humans, unlike Econs, are the real thing. The discrep-
ancies between the two kinds of agents have sparked a well-known “rationality 
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debate” (Cohen 1981; Kahneman and Tversky 1983; Cherniak 1986; Evans 
and Over 1996; Gigerenzer 1996; Kahneman and Tversky 1996; Stein 1996; 
Stanovich and West 2000; Stenning and van Lambalgen 2008). As 2002 Nobel 
laureate in economics Daniel Kahneman has it:

[Assume] rationality is logical coherence—reasonable or not. Econs are 
rational by this definition, but there is overwhelming evidence that Humans 
cannot be. [...] The definition of rationality as coherence is impossibly 
restrictive; it demands adherence to rules of logic that a finite mind is not 
able to implement. Reasonable people cannot be rational by that definition, 
but they should not be branded as irrational for that reason. (Kahneman 
2011, p. 411)

Now just as mainstream economics has forgotten Humans to focus on Econs, 
so has mainstream logic forgotten them to focus on Logons. We name this way 
the ideal agents studied in ‘static’ epistemic logic with possible worlds seman-
tics (Hintikka 1962) and in AGM belief revision theory (Alchourrón et al. 1985). 
These agents are logically omniscient: perfectly consistent, closed under classical 
logical consequence in their beliefs, and free from framing effects in their belief 
revision policies (Hintikka 1975; Fagin and Halpern 1987; Moses 1988; Parikh 
2008; Halpern and Pucella 2011). In fact, Econs may just be Logons engaged in 
rational choice. The focus on Logons has opened a rift between logic and cog-
nition, similar to the one between the latter and economics. Experiments like 
the Wason Selection Task (Wason 1968) or the Suppression Task (Byrne 1983) 
have had in deductive reasoning roles similar to the Framing Effect and Anchor-
ing Bias (Tversky and Kahneman 1974, 1985): they have exhibited widespread, 
persistent fallacies leading various cognitive scientists to conclude that logic is 
utterly peripheral to Humans’ reasoning (Cosmides 1989).

We think that such a conclusion has been distorted by the interpreters’ under-
standing of “logic” as normal, static modal logic. The goal of this paper is to pre-
sent a system of epistemic logic that does more justice to Humans by modeling 
the logical aspects of a distinction, which has played a key role in the rationality 
debate: the one between System 1 and System 2 or, in Kahneman’s more color-
ful terminology, fast and slow thinking. We briefly present this distinction, and 
explain the sense in which we claim to logically model it, in the following Sec-
tion. The Section after that recaps the logical foundation of this paper, namely 
the worlds semantics of normal modal-epistemic logics and its development into 
Dynamic Epistemic Logic (DEL). These will serve as the background for our 
model of the two Systems’ logic, in Sect. 4. In Sect. 5, the framework is put to 
work in the modeling of three kinds of phenomena: Stereotypical Thinking, the 
Framing Effect, and the Anchoring Effect. We close with a philosophical coda 
in Sect. 6, where we wonder whether our model is normative. We answer that it 
is, but its rational “ought”, unlike the “ought” of normal, static epistemic logic, 
implies “can”.
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2 � Dual Process Theories of Reasoning

The talk of System 1 and System 2, introduced by Stanovich and West in their dual 
process view, had a key role in countering the picture of agents as Econs in eco-
nomics.1 It may have a key role in countering the picture of agents as Logons in 
static epistemic logic. Systematic errors in reasoning and choice are not to be taken 
as corruption of rationality. Rather, they are grounded in the ordinary workings of 
the machinery of cognition—specifically, in a combination of mistakes due to Sys-
tem 1—which, however, conforms to logic most of the time: (Bago and De Neys 
2017)—and System 2—which can run out of cognitive resources, or be lazy when it 
should take over from System 1.

Dual process theories characterize the operations of System 1 as fast, automatic, 
and associative, governed by habit, biases, and evolutionary heuristics. They typi-
cally have no cognitive cost. System 1’s task is to make sense of the continuously 
incoming new information, integrating it with our background beliefs and build-
ing a coherent picture starting from minimal clues (Paul is French: does he like red 
wine?). In Kahneman’s words:

The main function of System 1 is to maintain and update a model of your 
personal world, which represents what is normal in it. [...] System 1 excels at 
constructing the best possible story that incorporates ideas currently activated, 
but it does not (cannot) allow for information it does not have. (Kahneman 
2011, p. 71 and p. 85)

The operations of System 2 are slower, stepwise, rule-based, deliberately con-
trolled, and have cognitive costs (What is 19 × 26 = ?). System 2 exploits the work-
ings of System 1 to generate its own outputs, following an orderly application of 
steps:

I describe System 1 as effortlessly originating impressions and feelings that 
are the main sources of the explicit beliefs and deliberate choices of System 2. 
The automatic operations of System 1 generate surprisingly complex patterns 
of ideas, but only the slower System 2 can construct thoughts in an orderly 
series of steps. (Kahneman 2011, p. 21)

When System 2 takes over, it engages in reasoning processes, of which deductive 
reasoning is a key example, based on the available information. Its slow, step-wise 
and rule-adhering workings generate our—now explicit—knowledge and beliefs. To 
unpack information, System 2 breaks larger tasks into parts:

We normally avoid mental overload by dividing our tasks into multiple easy 
steps, committing intermediate results to long-term memory or to paper rather 

1  There are concerns regarding the use of the term “system”, raised by Stanovich himself. Kahneman 
(2011), pp. 27–29, observes that Systems 1 and 2 are not systems in some standard sense. We stick to the 
terminology, thinking of it as a label for families of processes. Such fictions are convenient for formal 
modeling at a certain level of abstraction.
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than to an easily overloaded working memory. We cover long distances by tak-
ing our time and conduct our mental lives by the law of least effort. (Kahne-
man 2011, p. 38)

Given that the process is effortful, and our resources are bounded, it must eventu-
ally halt, whether it succeeds or not. This is in accordance with our experience of 
occasionally failing in demanding tasks due to cognitive overload.

As clarified in (Evans 2018), one should not take System 1 as merely descrip-
tively representing what people, as a matter of fact, do most of the time, and System 
2 as embedding the normative standards of rationality. On the contrary, System 2 
can occasionally fail to do its job in correcting the mistaken outputs of System 1, 
which, on the other hand, can display good logical intuitions and get things right on 
most occasions: see Bago and De Neys (2017).

Dual process theories have been mostly neglected by formal modelers in logic 
(relevant exceptions are Stenning and van Lambalgen 2008; Balbiani et al. 2016). 
We aim to contribute to filling the gap by modeling the logical aspects of System 1 
and System 2 reasoning activities: those that are connected to logical inferences—
a most classical topic of logical investigation—and the formation and revision of 
beliefs—a core topic of doxastic-epistemic logic and belief revision theory.2

3 � Background: Dynamic Epistemic Logic

3.1 � Epistemic Logic

Possible-worlds semantics has been used in epistemic logic since Hintikka 
(1962). Epistemic logic is here conceived as a propositional logic, supplemented 
with two modal operators K and B where K� reads “the agent knows that � ” and 
B� , “the agent believes that � ”. In knowing or believing something, one obtains 
a way of determining which among a range of possibilities is the way things actu-
ally are, i.e., the actual world. In this representation, possible worlds represent 
the alternative ways things could be. The semantic interpretations are then given 
in terms of these possible worlds: an agent knows(/believes) that � if and only 
if, in all possible worlds compatible with what the agent knows(/believes), it is 
the case that � . More concretely, the modeler captures the compatibility among 
the agent’s epistemic or doxastic alternatives via binary relations on a set of pos-
sible worlds, that represent the agent’s epistemic or doxastic accessibility. The 
set of worlds and the accessibility relations, augmented by a valuation function 
to indicate which propositional atoms are true at each world, provide us with the 

2  The official dual process doctrine has it that the two systems engage in a range of further activities: 
System 1 deals with face recognition, orientation, perception, etc. System 2 deals with probabilistic 
estimates, the weighing of options, etc. An expansion of the model proposed below in the direction of 
probabilistic reasoning may be especially interesting, as our setting can be combined with a probabilistic 
framework and as dual process theories have been developed in relation to the new Bayesian approaches 
in the psychology of reasoning (Elqayam 2018); this is left for further work.
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formal model in which every sentence of the new language is interpreted recur-
sively with respect to a world. As standard, a formula is said to be valid in a 
model whenever it is true at each world of the model. Algebraic properties of 
the accessibility relations are associated with the validity of certain formulas that 
capture epistemologically desirable properties of knowledge and belief. Requir-
ing that a model satisfies these properties leads to the definitions of epistemic and 
doxastic models as in the received view (e.g., Fagin et al. 1995; van Ditmarsch 
et al. 2007).

The standard epistemic logical system is static: it doesn’t represent the con-
stant changes in our knowledge and beliefs triggered by both our internal men-
tal processes (e.g., performing inferences) and our external interactions (e.g., 
the integration of information provided by an interlocutor). To capture such pro-
cesses, we have to move to a dynamic setting.

3.2 � Tools of Dynamic Epistemic Logic

Dynamic Epistemic Logic (DEL) (Baltag et  al. 1998; Baltag and Moss 2004; 
van Ditmarsch et al. 2007; van Benthem 2011) is the name for a class of logical 
systems enriching the language of static epistemic logic by modal operators that 
encode actions capable of altering an agent’s epistemic or doxastic state. Such 
actions are understood as triggering model transformations: they take us from a 
model representing one’s epistemic/doxastic state to a new model representing 
the updated epistemic/doxastic state. Given action � , a formula of the form [�]� , 
where [�] is a dynamic operator, is then evaluated in a model by examining what 
the truth value of � is at the model obtained by transforming the original model 
when carrying out the action encoded by �.

While the first logical systems within DEL were designed to model epistemic 
updates, more sophisticated theories have been developed to represent a variety 
of informational changes including epistemic updates, doxastic changes, prefer-
ence change, etc. The tools that we need to represent an agent’s beliefs are called 
plausibility models (Grove 1988; van Benthem 2007; Baltag and Smets 2008b). 
Such models allow the study of nuanced epistemic and doxastic attitudes and 
facilitate the introduction of a repertoire of epistemic and doxastic actions. They 
will be the background for our representation of fast and slow thinking, and we 
provide the definition here:

Definition 3.1  (Plausibility model) A plausibility model M is a structure ⟨W,≥,V⟩ 
where:

•	 W is a non-empty set of possible worlds.
•	 ≥ is a locally well-preordered (plausibility) relation on W, such that w ≥ u 

reads “w is considered no more plausible than u”.
•	 V is a valuation such that each propositional atom from a given set Φ is 

assigned to the set of worlds where it is true.
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Between any two possible worlds entertained by the agent as ways things could 
be, there is a (relative) plausibility ordering. The ordering is a local well-preorder-
ing, which means that ≥ is reflexive, transitive, locally connected, and converse 
wellfounded, i.e., there is no infinite ascending ≥-chain, thus a set of most plausible 
worlds can always be retrieved (Baltag and Renne 2016). A pair (M, w) consisting 
of a model M and a designated world w of the model, taken as the actual world from 
the perspective of the modeler, is called a pointed model.3

Plausibility models allow us to characterize a variety of epistemic and doxastic 
attitudes (Baltag and Smets 2011, 2013) including, besides the strong concept of 
Knowledge mentioned above in the context of static epistemic logic (i.e., knowledge 
as truth in all possible worlds), also weaker epistemic attitudes. In Baltag and Smets 
(2008b), one such weaker attitude is coined “safe belief” or “ (in)defeasible knowl-
edge” referring to the epistemic concept described in Lehrer and Paxson (1969), 
Lehrer (2000), Stalnaker (2006). If we explain defeasible knowledge in terms of the 
extra ingredients one needs to add to belief, the most straighforward way is to refer 
to a ‘stability’-account (Rott 2004): defeasible knowledge is justified true belief sta-
ble when new true information is received.4 We follow in this paper the literature of 
DEL in Baltag and Smets (2008b) and represent Defeasible knowledge by a modal 
operator □ . The truth conditions for □� , when evaluated at a world in a plausibil-
ity model, ask for � to hold at all worlds that are at least as plausible as the point of 
evaluation. The truth conditions for B� require that � holds at the set of most plausi-
ble worlds of the model, denoted by min(W).5

The cognitive workings of System 1 and System 2 are aligned with this more 
graded outlook of different attitudes. Our attitude towards a piece of information 
uncovered by one of the two systems is oftentimes not as strong as the strong con-
cept of infallible knowledge requires, nor as weak as plain belief.

As for the dynamic operators in this plausibility setting, Baltag and Smets 
(2008b), van Benthem (2007, 2011) introduce a number of different ones, trans-
forming a given plausibility model into a new one. Three specific operators can be 
matched to three different policies of integrating external information, depending on 
the level of trust one has over the information source (van Benthem 2011). A radi-
cal upgrade with � , denoted by [� ⇑] , stands for a communicative action whereby 
the source is mostly, but not entirely, trusted; the updated model triggered by [� ⇑] 
is one where the �-satisfying worlds are prioritized in terms of plausibility over the 

4  If, as Floridi (2005) claims, information is factive, then there cannot be false information. Works on 
belief revision, however, generally adopt a weaker sense of information, whereby (declarative) informa-
tion is taken to be meaningful data, not perforce truthful: see e.g. van Benthem (2011).
5  One can further define conditional belief in terms of the two forms of knowledge we discussed, i.e., 
both the strong and weaker notion, see van Ditmarsch et al. (2015); Baltag and Renne (2016). This is 
instrumental in capturing so-called static belief change, as it expresses what we believe conditional to 
some other piece of information.

3  Plausibility orderings make for a qualitative representation of belief entrenchment and dispositions to 
belief revision. However, the DEL framework can also be extended to a quantitative setting, representing 
degrees of belief and embedding probabilistic insights: see van Benthem (2003), Kooi (2003), Baltag and 
Smets (2008a), van Benthem et al. (2009). Such a framework makes for a plausible basis for the afore-
mentioned promised extension of our logic of fast and slow thinking to a probabilistic setting.
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non-� ones, leaving the ordering intact in the two zones. The ways the two cognitive 
systems shape our epistemic/doxastic state will be expressed precisely as model-
changing actions on plausibility models.

3.3 � The Problem of Logical Omniscience

The described DEL models use only possible worlds, which are closed under logi-
cal consequence: if a world makes � true, it makes true any logical consequence of 
� . Since the interpretations for formulas involving propositional attitudes quantify 
over sets of possible worlds, the corresponding agents know or believe everything 
that follows from what they already know or believe. In logic and Artificial Intel-
ligence (AI), this situation is labeled as the problem of logical omniscience (Fagin 
et al. 1995, Chapter 9): such agents will not be susceptible to the logical errors that 
might have been generated by System 1, and they are not subjected to the cognitive 
limitations of System 2.

To deal with the problem of logical omniscience, the logic and AI literature con-
tains a number of different proposals (Halpern and Pucella 2011). We will focus on 
one in particular. Starting with Hintikka (1975), a number of authors (Rantala 1982; 
Wansing 1990; Priest 2001; Kiourti 2010; Berto 2012; Nolan 2013; Jago 2014; Ras-
mussen and Bjerring 2018) have suggested to supplement the usual possible-worlds 
models with non-normal or impossible worlds: worlds that represent logical impos-
sibilities, i.e., that are not closed under logical consequence. If these worlds are epis-
temically accessible by the agent, the closure properties of knowledge and belief that 
generate the problem are invalidated. But a naive impossible worlds approach faces 
an issue of ‘bounded rationality’: how should one constrain the accessible worlds, 
so as to model a moderately rational, though not omniscient, agent, which manages 
to unpack some, though not all, of the logical consequences of its beliefs or knowl-
edge? The model we present below answers the question by combining non-normal 
worlds semantics with DEL techniques.6

4 � Modeling Fast and Slow Thinking

In this section we introduce a new logical system, define its syntax and semantics in 
order to use them to represent and model agents capable of fast and slow thinking. 
Overall our logic-technical aims are to:

6  Jago (2009) already used insights from AI for a logic of rule-based agents, whose beliefs expand via 
transitions between states obtained whenever a logical inference rule is fired. Velázquez-Quesada (2011) 
discerns implicit and explicit information and constructs logical systems in DEL that capture how deduc-
tive inferences enrich the agent’s explicitly held information. Building on Duc (1997), Rasmussen (2015) 
and Rasmussen and Bjerring (2018) track the agent’s deductive reasoning via dynamic operators that 
stand for the agent’s applications of inference rules. The latter work also has a semantics using non-
normal worlds, and is the closest antecedent of our proposal below.
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•	 Enrich the standard possible worlds semantics of epistemic logic with non-nor-
mal worlds to encode the beliefs of a Human, logically competent but not omnis-
cient, agent.

•	 Use tools from DEL to model how incoming information is automatically incor-
porated by System 1 into the currently held beliefs.

•	 Use tools from DEL to capture the agent’s stepwise deductive reasoning via Sys-
tem 2.

•	 Allow for the interaction of the two systems.
•	 Account for how the two systems differ in terms of cognitive resource consump-

tion.

4.1 � Language

Besides operators for (defeasible) knowledge, □ , and belief, B, our language has 
dynamic operators to express (1) System 1’s fast upgrades in the arrangement of our 
beliefs—policies of automatic integration of new information—and (2) System 2’s 
cognitively costly choices and applications of logical inference rules.

Definition 4.1  (Language) Given a set P of propositional atoms and a set of infer-
ence rules R available to the agent, the language L is inductively defined from:

where

•	 p ∈ P

•	 □� reads “the agent defeasibly knows that �”.
•	 B� reads “the agent believes that �”.
•	 [�] is schematic for a model-changing action performed in thought. These can be 

of the two aforementioned kinds:

(1)	 [� ⇑] , where � is a propositional formula, denotes a fast upgrade with � : 
given incoming information � , the agent automatically makes plausible 
sense of the situation in the light of its background knowledge and beliefs. 
Then [� ⇑]� reads “after upgrading with � , � is true”.

(2)	 ⟨Rk⟩ , where Rk ∈ R , that is, an inference rule available to the agent.7 The 
agent can deliberately choose one of them, apply it to some available infor-
mation and, as we shall see, pay some cognitive cost for it. Then ⟨Rk⟩� 
reads “after some application of inference rule Rk , � is true”.8

� ∶∶= p | ¬� | � ∧ � | □� | B� | [�]�

7  One can, in principle, build dynamic models with rules representing various kinds of rule-based Sys-
tem 2 reasoning. For the purposes of this paper, however, we will take R as comprising just rules of 
elementary logic, such as Modus Ponens or Conjunction Introduction.
8  The idea of such operators comes from Rasmussen (2015), Rasmussen and Bjerring (2018), them-
selves drawing on Duc (1997). We should note here that, as clarified by recent literature (Bago and De 
Neys 2017; Ball and Thompson 2018), also System 1 is capable of detecting and appreciating simple 
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4.2 � Semantics

We supplement the possible worlds apparatus with non-normal or impossible 
worlds, but we don’t aim at a modeling of thought where anything goes. In particu-
lar, we adopt the principle of Minimal Rationality, put forward by Cherniak (1986) 
as a realistic alternative to the notions of perfect rationality. According to Minimal 
Rationality, the agent undertakes some, but not necessarily all, of those actions that 
are apparently appropriate. This, in turn, translates to the ability of the agent to 
eliminate inconsistencies: the agent eliminates some, but not necessarily all, of the 
inconsistencies arising in her belief set. As a result, our agent is fallible and enter-
tains inconsistencies, for example due to inputs of System 1; this fallibility is wit-
nessed by the impossible worlds of the model. On the other hand, the agent should 
be endowed with the ability to eliminate some of them. To start with, we introduce 
a Minimal Consistency (MC) requirement on our model: none of the impossible 
worlds accessible to an agent will at least represent a blatant contradiction of the 
form � , ¬� . An implicit contradiction arising in her belief set can be eliminated, e.g. 
because the agent resorts to System 2, but only provided that certain conditions are 
met.

We further impose a plausibility ordering on worlds, encoding the agent’s back-
ground beliefs: the more plausible a world looks given the agent’s experience, 
biases, etc., the better it is ranked (the ordering is qualitative, mirroring belief 
entrenchment). Plausibility is instrumental in modeling, as we will see, the changes 
induced by both (1) the fast incorporation of external information by System 1, (2) 
the slow reasoning processes of System 2.

We need ways to represent which cognitive resources are explicitly depleted dur-
ing System 2 reasoning (time, memory, etc.), what each reasoning step costs, and 
what the agent can afford with respect to them. Each step corresponds to an applica-
tion of an inference rule. Yet not all inference rules require equal cognitive effort, as 
indicated by experimental evidence. For example, Johnson-Laird et al. (1992), Rips 
(1994), Stenning and van Lambalgen (2008) claim that the asymmetry in perfor-
mance observed when a subject uses Modus Ponens and Modus Tollens is suggestive 
of an increased difficulty to apply the latter. Similarly, Rijmen and De Boeck (2001) 
also provide experimental evidence to support the claim that different costs should 
be assigned to different basic rules. Cherniak (1986) also argues for a “well-order-
ing of inferences” in terms of their difficulty. Concrete assignments of the different 
cognitive costs and capacity rely on empirical research that sheds light on the units 
that best describe resources, the values corresponding to each inference rule, etc. 
We adopt a simple numerical approach to the values of resources because this seems 

logical forms. The key twofold difference between System 1 and System 2 in this respect is that the latter, 
but not the former, can choose which logical rules to apply, and must pay a cognitive cost for it. Thanks 
to an anonymous Referee for pressing us to clarify this point.

Footnote 8 (continued)
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convenient in terms of capturing the availability and cost of time, and it is also sup-
ported by psychologists’ research on memory (Miller 1956; Cowan 2001).9

Definition 4.2  (Dual-process plausibility model) Fix R, the set of inference rules 
available to the agent, and Res, a finite set of resources, such as memory, time etc. 
Let r∶=|Res| , i.e., the number of resources. A dual-process plausibility model is a 
tuple M = ⟨WP,WI , ord,V ,C, cp⟩ where:

•	 WP,WI are countable non-empty sets of possible and impossible worlds respec-
tively.

•	 ord ∶ W → Ω is a function from W∶=(WP ∪WI) to the class of ordinals Ω , 
assigning one to each world. Intuitively: the smaller the ordinal is, the more 
plausible the world.

•	 V ∶ W → P(L) is a function assigning to each world in W a set of sentences in 
L . The function assigns to each w ∈ WP the set of atomic formulas true at w. It 
assigns to each w ∈ WI all formulas, atomic or composite, true at w.10 Thus, V 
maps logically complex formulas to truth values directly at impossible worlds, 
in a non-recursive fashion: this allows such worlds to break any (non-trivial, i.e., 
different from ‘If � , then � ’) logical principle (they can, e.g., be such that � is 
true at them while � ∨ � isn’t, or they can make both � and � true without mak-
ing true their conjunction.) However, according to our (MC), we stipulate that 
{𝜙,¬𝜙} ⊈ V(w) for all w ∈ WI.

•	 C ∶ R → ℕ
r is a function such that every inference rule Rk ∈ R is assigned a par-

ticular cognitive cost for each resource.
•	 cp denotes the agent’s cognitive capacity, i.e., cp ∈ ℕ

r , intuitively standing for 
what the agent is able to afford with regard to each resource.

We will work with pointed plausibility models (M, w), where M is a dual-process 
plausibility model and w a designated-base world in it. The ord extracts a plausi-
bility ordering in the usual sense, i.e., a binary relation on W: w ≥ u if and only if 
ord(w) ≥ ord(u) . The ranking of worlds is reflected in the ordering of ordinals. The 
intended reading is “w is no more plausible than u”. The ordering satisfies reflexiv-
ity, transitivity, connectedness, and converse wellfoundedness.

Fast and slow thinking will be reflected in the interpretation of the sentences 
involving the operators for upgrades and inference rule application. We thus have to 
define how the model changes through these actions.

9  Numerical assignments might be connected to the use of pupil assessment and eye-tracking as meas-
ures of attention and indicators of cognitive effort (Kahneman and Beatty 1967; Kahneman 1973; Sears 
and Pylyshyn 2000; Xu and Chun 2009).
10  We will assume that worlds are unique valuation-wise: the valuation function can be taken as 
V∶=Vp ∪ Vi , where Vp and Vi , taking care of possible and impossible worlds respectively, are injective. 
This serves simplicity: we avoid a multiplicity of worlds unnecessary for our purposes.
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4.3 � Model Transformations, Fast and Slow

4.3.1 � The Fast Updater

Each transformation is governed by its corresponding system: thus, System 1’s 
actions of integrating new information will be affected by the agent’s stereotypes, 
biases, experience, etc., as these are hardwired in the initial plausibility ordering. 
Based on this, the system incorporates new information by prioritizing the worlds 
satisfying it. That is, an upgrade with � changes the plausibility ordering as follows: 
�-worlds become more plausible than non-� ones (i.e., those that do not satisfy � ) 
keeping the previous ordering intact within the two zones. Moreover, as fast think-
ing, this activity requires no effort; therefore the relevant components of the model 
should be unaffected by the upgrade.

Definition 4.3  (Plausibility model transformation by a System 1 upgrade) 
Given a model M = ⟨WP,WI , ord,V ,C, cp⟩ , its transformation by � ⇑ is a model 
M�⇑ = ⟨WP,WI , ord�⇑,V ,C, cp⟩ where ord�⇑ can be any function from the set11 
{f ∶ W → Ω ∣ for any w, u ∈ W ∶ f (w) ≥ f (u) if and only if w ≥�⇑ u}.

The characterization via ordinals does not interfere with radical upgrades. We 
will not be interested in the assigned number per se, but in the action-induced re-
arrangement (i.e., plausibility of worlds relative to other worlds). Thus, all functions 
from {f ∶ W → Ω ∣ for any w, u ∈ W ∶ f (w) ≥ f (u) if and only if w ≥�⇑ u} work for 
our purposes.

4.3.2 � The Slow Controller

We account for the step-wise, deliberate and cognitively costly workings of System 
2 via our rule-application operators. To define the transformation induced by these 
operators, we will employ the notion of Rk-accessibility. For a pointed plausibility 
model (M�,w) to be Rk-accessible from a given pointed plausibility model (M, w), 
the set P≥(w)∶={u ∈ W ∣ w ≥ u} of worlds at least as plausible as w is replaced by 
a choice of worlds reachable by an application of Rk from the elements of P≥(w) , 
while the remaining ordering is adapted accordingly. We focus on the more or 
equally plausible worlds, as these would be prioritized whenever one applies an 
inference rule. By specifying the effect of each rule separately, it is possible to trace 
back a sequence of slow reasoning, unravel it and verify its order-sensitivity. In 
addition, the agent’s cognitive capacity should be reduced by the cost of applying 
this particular inference step.

To capture the change induced by applications of inference rules, we first have 
to encode their effect on the structure of our models. The effect of applying a rule 

11  To determine ord�⇑ , first consider the relation ≥ that can be derived from it. As an auxiliary step take: 
≥�⇑= (≥ ∩(W × [[�]])) ∪ (≥ ∩([[�]] ×W)) ∪ (∼ ∩([[�]] × [[�]])) , that is the familiar re-arrangement 
due to a radical upgrade as found in DEL.
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is an expansion of the agent’s factual information. We first introduce the following, 
assuming that propositional formulas are assessed as usual in possible worlds:

Definition 4.4  (Propositional truths) Let M be a model, w ∈ W a world of the 
model and LP the standard propositional language. If w ∈ WP , its set of propositional 
truths is V∗(w) = {𝜙 ∈ LP ∣ M,w ⊧ 𝜙} . If w ∈ WI , V∗(w) = {� ∈ LP ∣ � ∈ V(w)}.

V∗ is in fact determined by V. Next, we fix a particular instance of the inference 
rule Rk . This has a set of (propositional) premises, denoted by pr(Rk) , and a conclu-
sion, denoted by con(Rk) . Then we impose the condition of Succession:

For every w ∈ W , if:

1.	 pr(Rk) ⊆ V∗(w)

2.	 ¬con(Rk) ∉ V∗(w)

3.	 con(Rk) ≠ ¬� for all � ∈ V∗(w)

then there is u ∈ W such that V∗(u) = V∗(w) ∪ {con(Rk)}.
We use V∗(w) ⊢Rk

V∗(u) to say that for some instance of Rk , u expands w in 
terms of this condition. If pr(Rk) ⊆ V∗(w) for no instance of Rk , we take the only 
Rk-expansion of w to be itself. This is because, in that case, an application of Rk 
would trigger no further expansion on w. If pr(Rk) ⊆ V∗(w) for an instance of Rk , 
but condition 2 or 3 is violated, then there is simply no Rk-expansion with regard to 
this instance. This is because, in that case, the application of Rk would uncover an 
inconsistency in the composition of w.12 Notice that by conjoining successive rules, 
such as R1,… ,Rn , the notation can be generalized to ⊢R1,…,Rn

.

Definition 4.5  (Rule-specific radius) Given an inference rule Rk ∈ R , the Rk-radius 
of a world w ∈ W is wRk = {u ∣ V∗(w) ⊢Rk

V∗(u)}.

A member of wRk is therefore an Rk-expansion of w. Note that wRk = {w} for 
w ∈ WP due to the deductive closure of possible worlds, while the Rk-radius of 
impossible worlds can contain different Rk-expansions. Under the conditions, ⊢Rk

 
is such that V∗(u) preserves V∗(w) and extends it just by a conclusion of Rk . This 
is how we obtain a monotonicity feature: Rk-expansions (as per the name) enrich 
the state from which they originate, in terms of Rk ; inferences are not defeated 
as reasoning steps are taken, to the extent that MC is respected. Granting a sort 
of monotonicity that is restricted by MC is in line with the workings of Sys-
tem 2 and the criterion of informational economy (Board 2004), adapted to our 
framework: belief change in light of new information should be no greater than is 
necessary to incorporate that new information. As a result, applications of rules 

12  Conditions 2 and 3 guarantee that there is no expansion that violates MC. In other words, “refining” 
a world that violates 2 or 3 amounts not to finding an expanded world in terms of Rk , but to eliminating 
it altogether once the application of the rule takes place. Therefore, in these cases, there should be no Rk

-expansion.
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should refine the state of the agent, not only by allowing her to know or believe 
more, but also by eliminating inconsistencies when spotted. However, in light of 
an application of a rule Rk , an expansion should involve just the conclusion of 
some instance of Rk.

Not all instances of a rule are equally informative. Compare an application of 
Conjunction Introduction that allows the agent to conclude that � ∧ � , from � and 
� , and an application that generates � ∧ � from � . In Rips (1994), rules are clas-
sified into self-constraining and self-promoting. Self-constraining rules, such as 
Modus Ponens, generate a limited number of new sentences from their premises. 
Self-promoting rules, such as Conjunction Introduction, generate an infinite num-
ber of conclusions from their premises. It is natural to aim at reducing the space WI 
from the (possibly infinite) worlds corresponding to non-informative applications of 
self-promoting rules. This is not to say that the conclusions of these applications 
should not be available to the agent. In principle, the setting should allow for appli-
cations leading to the agent knowing/believing such conclusions. In order to do jus-
tice to both points, the modeler might simply assume that a world’s expansion cor-
responding to a non-informative instance is the world itself. However, we abstain 
from imposing this as a strict condition on the general class of our models, in order 
to allow for the modeling of a variety of types of agents that may require different 
readings of informativeness, thus different compositions of a world’s radius.

Definition 4.6  (Choice function) Let C ∶ P(P(W)) → P(P(W)) be a choice func-
tion that takes a set W = {W1,… ,Wn} of sets of worlds as input and returns the set 
C(W) of sets of worlds which results from all the ways in which exactly one element 
can be picked from each non-empty Wi ∈ W . A member of C(W) is called a choice 
of W.

A choice function on a set consisting of the radii of worlds will capture how Sys-
tem 2 can deliberate and choose its next step of slow thinking. Given the aforemen-
tioned remark on informative and non-informative instances, the several choices that 
the function yields correspond to the different effects of applying a particular rule.

Now we can explain the effect of System 2’s applications of an inference rule 
Rk : if a world u was considered at least as plausible as w before an application of 
the rule Rk , but does not survive such application, then the agent can rule u out 
as a doxastic or epistemic possibility. This world must have been an impossible 
world: a possible world will always survive applications of inference rules, as 
its radius amounts to itself. What was taken as an epistemic possibility has been 
spotted as impossible by a slow computation of System 2. Once we rule out such 
worlds, we preserve the previous ordering to the extent that it is unaffected by 
the application of the inference rule, again in agreement with informational econ-
omy. That is, there might be parts of the model still independent of this particular 
application of deductive reasoning, remaining influenced by System 1 alone.

To make this precise, we use the ordinal function and the notion of rule-spe-
cific radius. Let M = ⟨WP,WI , ord,V ,C, cp⟩ a plausibility model. We spell out the 
transformation in steps: 
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Step 1	� Let (M,  w) be a pointed model. Then, given an inference rule Rk , let 
PRk (w)∶=c where c is some choice in C({vRk ∣ v ∈ P≥(w)}) . In words, a 
choice of Rk-expansions of the worlds initially considered at least as plausi-
ble as w.

Step 2	� Based on the argument used above, if u ∈ P≥(w) but u ∉ PRk (w) , then 
u must be excluded from the new model. So in any case, the Rk-acces-
sible pointed model (M�,w) should be such that its set of worlds is 
WRk = W ⧵ {u ∈ P≥(w) ∣ u ∉ PRk (w)} . The elimination in fact affects WI.

Step 3	� We now develop the new ordering ordRk following the application of the 
inference rule. Let u ∈ WRk : 

1.	 If u ∉ P≥(w) ∪ PRk (w) , then ordRk (u) = ord(u) , i.e., the assigned ranking remains 
the same, for worlds that were less plausible than w and are not contained in the 
choice.

2.	 Next consider u ∈ PRk (w) . This means that there is at least one v ∈ P≥(w) such 
that u ∈ vRk for the particular choice c that gave rise to PRk (w) . Denote the set of 
such v’s by T. Then ordRk (u) = ord(z) for z ∈ min(T) . Therefore, if a world is in 
PRk (w) , then it takes the position of the most plausible of the worlds from which 
it originated.13

Step 4	� Finally, for worlds u, v ∈ WRk : u ≥Rk v if and only if ordRk (u) ≥ ordRk (v) , 
therefore again all the required properties are preserved.

Step 5	� The other components of the model remain unchanged, except from V 
which is restricted to the worlds in WRk and cpRk∶=cp − C(Rk) . Reducing the 
value of cognitive capacity models slow thinking as resource-consuming.14

Here’s an example to get a feel of how this model transformation works:

Example 1  Let s stand for “the odds of survival one month after surgery are 90%”, m 
for “mortality within one month of surgery is 10%”, r for “the surgery is safe”. Sup-
pose Jill entertains the worlds depicted in the model M below, where WP = {w1} and 
WI = {w2,w0} . Let ord(w2) = 2, ord(w1) = 1, ord(w0) = 0 . For the possible world 
w1 , we list only the propositional atoms it satisfies, since all the rest can be com-
puted recursively. For the impossible worlds, we write down all the propositional 

13  As emphasized before, in certain cases there are no Rk-expansions, so it might be that a world is elimi-
nated without being replaced by one that preserves its propositional truths. This intuitively corresponds 
to those cases where the agent uncovers an inconsistency, realizing the explicit contradiction underly-
ing it by means of reasoning, and therefore drops it. Thanks to an anonymous Referee whose comments 
helped in clarifying this.
14  Agents can, of course, use methods like note-taking, or resort to other external devices, for the off-
loading of cognitive resources such as memory. In terms of our quantitative assignments, this would 
entail an increase in capacity. This can be easily achieved by the introduction of actions that increase the 
value of cp . It does not affect the crucial aspect hereby captured: the resource-consumption caused by 
System 2.
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formulas satisfied there (and only those) to illustrate Succession and the definitions 
involved in the model transformation. All worlds validate s → r , s, r and s → m , but 
m does not hold in the most plausible world w0 : the most plausible world is such to 
represent that Jill has not inferred that m follows from s15 although she has inferred 
r from s. Finally, given that we focus on the resources of time and memory, we take 
the cost of applying Modus Ponens to be C(MP) = (3, 2) , and the capacity of the 
agent to be cp = (15, 9).

We then unravel step-by-step the model transformations due to applications of 
MP (once we give our semantic clauses, we will see how these transformations 
affect the development of Jill’s epistemic and doxastic state). In search of all the 
ways the pointed model (M,w1) can change following an application of the rule MP, 
we follow the procedure sketched above:

Step 1 First, we compute {vMP ∣ v ∈ P≥(w1)} . It amounts to {{w1}, {w0,w2}}.
As a resut, C({{w1}, {w0,w2}}) = {{w1,w0}, {w1,w2}}.
So PMP(w1) = {w1,w0} or PMP(w1) = {w1,w2}.

1.	 In case PMP(w1) = {w1,w0}:
	 Step 2 WMP = W

	 Step 3 Since w2 ∉ PMP(w1) ∪ P≥(w1) , ordMP(w2) = ord(w2) = 2 . Next, 
w1 ∈ PMP(w1) and w1 ∈ wMP

1
 ,  so ordMP(w1) = ord(w1) = 1 .  Finally, 

w0 ∈ PMP(w1) and w0 ∈ wMP
0

 , so ordMP(w0) = ord(w0) = 0.
	 The MP-transformed model is in this case identified with the initial model 

because it was generated by an application of MP that yielded no new infor-
mation.

2.	 In case PMP(w1) = {w1,w2}:
	 Step 2 WMP = W ⧵ {u ∈ {w1,w0} ∣ u ∉ {w1,w2}} = {w1,w2}.
	 Step 3 As above, ordMP(w1) = ord(w1) = 1 . Then, w2 ∈ PMP(w1) and, check-

ing from which world(s) it originated in the particular choice, we find 
w2 ∈ wMP

0
 , so ordMP(w2) = ord(w0) = 0.

 The MP-transformed model is in this case different; the impossible world that 
did not satisfy m, despite satisfying both s → m and s, was uncovered by Jill, pre-
cisely because she used an application of MP that generated new information. 
The effect of taking this slow inferential step is now reflected in the new model.
Step 4 The new plausibility ordering is depicted in the figure.
Step 5 The new valuation is obviously restricted to the worlds that survive the 
application of MP. The cognitive capacity of both MP-accessible models is 
reduced by the cognitive cost of applying MP, therefore cp = (12, 7) (Fig. 1).

15  This is in fact just an example of framing as discussed in Kahneman (2011). More specifically, it has 
been shown that subjects are risk-averse when an option is presented in terms of gains and risk-seeking 
when presented in terms of losses.
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4.4 � Semantic Clauses

We have explained how the original model changes after fast upgrades and slow 
applications of inference rules. Now come the truth conditions:

Definition 4.7  (Semantics) The following inductively define when a formula � is 
true at w in M (notation: M,w ⊧ 𝜙 ) and when � is false at w in M (notation:M,w  �).

For w ∈ WP:

•	 M,w ⊧ p if and only if p ∈ V(w) , where p ∈ Φ

•	 M,w ⊧ ¬𝜙 if and only if M,w ̸⊧ 𝜙
•	 M,w ⊧ 𝜙 ∧ 𝜓 if and only if M,w ⊧ 𝜙 and M,w ⊧ 𝜓
•	 M,w ⊧ □𝜙 if and only if M,w′ ⊧ 𝜙 for all w′ such that w ≥ w′

•	 M,w ⊧ B𝜙 if and only if M,w′ ⊧ 𝜙 for all w� ∈ min(W)

•	 M,w ⊧ [𝜓 ⇑]𝜙 if and only if M⇑𝜓 ,w ⊧ 𝜙
•	 M,w ⊧ ⟨Rk⟩𝜙 if and only if M′,w ⊧ 𝜙 for some (M�,w) which is Rk-accessible 

from (M, w)
•	 M,w  � if and only if M,w ̸⊧ 𝜙

Fig. 1   The first figure depicts the model M, with an MP-dashed arrow from w to u denoting that u is 
an MP-expansion of w. The node of w1 is thicker to show that this world is in WP . Then, we obtain two 
potential transformations of the pointed model (M,w1) , i.e., two MP-accessible pointed models, based on 
the two ways the set of w1 ’s more (or equally) plausible worlds can change due to MP 
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For w ∈ WI:

•	 M,w ⊧ 𝜙 if and only if � ∈ V(w)

•	 M,w  � if and only if ¬� ∈ V(w)

Logical validity is defined in terms of possible worlds only: a sentence is valid in 
a model if and only if it is true at every possible world.

In accordance to what the dual-process theories prescribe, our System 1 
actions affect what is (defeasibly) known or believed without checking whether 
there is valid reasoning supporting the piece of information.16 This fits manifesta-
tions of System 1 being in charge. For example, experiments on the belief bias 
(Evans 1989, 2003) demonstrate that subjects are reluctant to believe “unbeliev-
able” (given their prior conceptions) statements even when they logically follow 
from a set of premises. They also tend to believe “believable” conclusions, even 
though the underlying reasoning is problematic, due to the influence of pre-exist-
ing impressions and biases. These are hardwired in the model’s plausibility order-
ing, while the fast upgrades integrate information based on them, thus forming 
the agent’s epistemic or doxastic state without engaging in the effortful task of 
assessing what is valid. This falls under the responsibility of System 2; if the 
agent comes to know or believe something new following an action of System 2, 
this must follow logically from what is already known or believed.

Now we can develop our initial example into:

Example 2  Recall the scenario of Example 1. It is now easy to see that, based on our 
semantics, ¬□m , ¬Bm , □s , Bs, □r , Br are all valid; initially, Jill does not know, 
nor believes that m, despite knowing and believing that s. In addition, ⟨MP⟩□m , 
⟨MP⟩Bm , ⟨MP⟩¬□m , ⟨MP⟩¬Bm are all valid. That is, there is some application of 
MP that provides Jill with knowledge and belief of m (because she inferred it from 
s → m and s) and another application of MP that does not provide her with any new 
information (because she merely used s → r and s as premises, which only comes as 
a confirmation of her already held belief and knowledge of r).

The example shows how different applications of a rule, captured as different 
choices of expansions, may lead to different developments of the agent’s knowl-
edge and beliefs. Notice that the reading of ⟨Rk⟩� is existential: it asks that there 
be some application of Rk leading to � . Different choices allow both informative 
and uninformative applications by a competent agent with sufficient resources. 
One can have a dual [Rk]�∶=¬⟨Rk⟩¬� , read as “after all applications of Rk , � 
is true”. This is satisfied whenever all Rk-accessible pointed models validate � . 
Using the universal operator, the modeler may express the overall effect of a rule 
to the agent’s reasoning.

16  But, recall the aforementioned capacity of System 1, of automatically appreciating simple logical 
forms of reasoning, in contrast to the tendency to endorse believed conclusions: see Bago and De Neys 
(2017). Our semantics does not prohibit System 1’s having logical cues: if there are any logical forms 
appreciated by it, they can be encoded in the plausibility model.
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The previous example illustrated a simple case where slow thinking is afford-
able and the reasoning step of Modus Ponens is performed. In the next example, 
we model a failure to apply Conjunction Introduction (CI), following an applica-
tion of Double Negation Elimination (DNE) and Modus Ponens. This is illustra-
tive of a depletion of resources that would halt the reasoning processes of System 
2 and make the agent fall back to System 1. It corresponds to a series of exam-
ples offered by (Kahneman 2011, ch. 2): whenever the mental effort that System 
2 requires wears the agent out completely, then she retreats to default System 1 
activity.

Example 3 

–	 Let model M = ⟨WP,WI , ord,V ,C, cp⟩ with R = {DNE,MP,CI} , 
Res = {time,memory} . Also take C(MP) = CI = (2, 2),C(DNE) = (3, 1) 
while cp = (5, 10) . In addition, suppose that for world w ∈ WP : 
M,w ⊧ □¬¬𝜙 ∧□(𝜙 → 𝜓).

–	 Then, M, u ⊧ ¬¬𝜙 and M, u ⊧ 𝜙 → 𝜓 for all u such that w ≥ u . Because of 
Succession, there is a model M′ with cp� = cp − C(DNE) = (2, 9) such that 
M′,w ⊧ □𝜙.

–	 Following the same procedure for MP, we get a model M′′ with 
cp�� = cp� − C(MP) = (2, 9) − (2, 2) = (0, 7) such that M′′,w ⊧ □𝜓.

–	 But then there cannot be any CI-accessible pointed model as the step is not 
affordable (compare C(CI) and cp′′).

–	 So finally, M��,w ̸⊧ ⟨CI⟩□(𝜙 ∧ 𝜓) , therefore M��,w ⊧ ¬⟨CI⟩□(𝜙 ∧ 𝜓) . But this 
means that M�,w ⊧ ⟨MP⟩¬⟨CI⟩□(𝜙 ∧ 𝜓).

–	 In turn M,w ⊧ ⟨DNE⟩⟨MP⟩¬⟨CI⟩□(𝜙 ∧ 𝜓).
–	 As a result, indeed M,w  ⊧ [DNE][MP]⟨CI⟩□(𝜙 ∧ 𝜓).

Before moving on to applications of the model, we introduce the following two 
Theorems. These cast light on reasoning processes involving both inference rules 
used by System 2, provided that they are affordable, and fast upgrades by System 1. 
They can be generalized for more upgrades, applications of rules, and thus number 
of premises. Theorem 4.2 also exemplifies the order-sensitivity of a reasoning pro-
cess that is orchestrated by both systems.

Theorem  4.1  (Reasoning from rules) If � logically follows from {�1,… ,�k} 
by applying the rules R1,… ,Rn ∈ R and ⟨‡⟩mi□�i is valid for 1 ≤ i ≤ k , where 
each ⟨‡⟩mi is a sequence of mi-many inference rules available to the agent, then 
⟨‡⟩m1 … ⟨‡⟩mk⟨R1⟩… ⟨Rn⟩□� is valid.

Proof  Let arbitrary model M and world w ∈ WP of the model. Suppose 
M,w ⊧ ⟨‡⟩mi□𝜙i, for 1 ≤ i ≤ k . For each �i , there is a model Mi such that 
Mi,w ⊧ □𝜙i which has Wi = W ⧵ {u ∈ P≥(w) ∣ u ∉ Pi(w)} where

–	 Pi(w) = c where c is some choice in C({vi ∣ v ∈ P≥(w)})
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–	 vi = {u ∣ V∗(v) ⊢⟨‡⟩mi V
∗(u)}

–	 V∗(v) ⊢⟨‡⟩mi V
∗(u) denotes that u is a Ri1,… ,Rimi

-expansion of v for Ri1,… ,Rimi
 

composing the sequence ⟨‡⟩mi.

This means that for all u ∈ Wi such that w ≥ u , Mi, u ⊧ 𝜙i . Due to Succession, 
there is some model M∗ such that for all u ∈ P∗(w) : M∗, u ⊧ 𝜙i , for all 1 ≤ i ≤ k , 
where W∗ = W ⧵ {u ∈ P≥(w) ∣ u ∉ P∗(w)} with:

–	 P∗(w) = c where c is some choice in C({v∗ ∣ v ∈ P≥(w)})

–	 v∗ = {u ∣ V∗(v) ⊢⟨‡⟩mi…⟨‡⟩mk V
∗(u)}

–	 V∗(v) ⊢⟨‡⟩m1…⟨‡⟩mk V
∗(u) denotes that u is a R11,… ,R1m1

,… ,Rk1,… ,Rkmk
-expan-

sion of v.

Next, from the fact that � logically follows from {�1,… ,�k} through applying 
R1,… ,Rn ∈ R , and Succession, we get that there is a model M⊛ such that for all 
u ∈ P⊛(w) : M⊛, u ⊧ 𝜓 , which has W⊛ = W ⧵ {u ∈ P≥(w) ∣ u ∉ P⊛(w)} where

–	 P⊛(w) = c where c is some choice in C({v⊛ ∣ v ∈ P≥(w)})

–	 v⊛ = {u ∣ V∗(v) ⊢⟨‡⟩mi…⟨‡⟩mk ,R1,…,Rn
V∗(u)}

–	 V∗(v) ⊢⟨‡⟩m1…⟨‡⟩mk ,R1,…,Rn
V∗(u) denotes that u is a 

R11,… ,R1m1
,… ,Rk1,… ,Rkmk

,R1,… ,Rn-expansion of v.

But then clearly M⊛,w ⊧ □𝜓 , and overall M,w ⊧ ⟨‡⟩m1 … ⟨‡⟩mk⟨R1⟩… ⟨Rn⟩□𝜓 . 	
� ◻

Theorem  4.2  (Reasoning from upgrades and rules) If � logically follows from 
{�1,�2} by applying the rules R1,… ,Rn ∈ R and [� ⇑](□�1 ∧ ⟨‡⟩m□�2) is valid, 
then [� ⇑]⟨‡⟩m⟨R1⟩… ⟨Rn⟩□� is valid.

Proof  Let arbitrary model M and world w ∈ WP of the model. Suppose 
M,w ⊧ [𝜓 ⇑](□𝜙1 ∧ ⟨‡⟩m□𝜙2) . This amounts to M𝜓⇑,w ⊧ (□𝜙1 ∧ ⟨‡⟩m□𝜙2) , i.e., 
M𝜓⇑, u ⊧ 𝜙1 for all u ∈ P�⇑(w) [1] and there is a model M∗ such that M∗,w ⊧ □𝜙2 
which has W∗ = W ⧵ {u ∈ P�⇑(w) ∣ u ∉ P∗(w)} where

–	 P∗(w) = c where c is some choice in C({v∗ ∣ v ∈ P�⇑(w)})

–	 v∗ = {u ∣ V∗(v) ⊢⟨‡⟩m V∗(u)}

Then, M∗, u ⊧ 𝜙2 , for all u ∈ P∗(w) . Due to Succession and [1], M∗, u ⊧ 𝜙1 , for all 
u ∈ P∗(w) . Due to � following from {�1,�2} and Succession, there is a model M⊛ 
such that M⊛, u ⊧ 𝜒 , for all u ∈ P⊛(w) where

–	 P⊛(w) = c where c is some choice in C({v⊛ ∣ v ∈ P𝜓⇑(w)})

–	 v⊛ = {u ∣ V∗(v) ⊢⟨‡⟩m,R1,…,Rn
V∗(u)}

But then clearly M⊛,w ⊧ □𝜒 , and overall M,w ⊧ [𝜓 ⇑]⟨‡⟩m⟨R1⟩… ⟨Rn⟩□𝜒 . 	�  ◻
By making the semantic interpretations of propositional attitudes quantify over 

impossible worlds, it is guaranteed that some consequences of the agent’s knowledge 
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or beliefs are not known or believed: logical omniscience is thus avoided. Unlike 
other approaches though, the problem is escaped in a balanced manner, committed 
to the idea that competent agents would come to know and believe consequences 
lying within affordable applications of rules.

In view of considerations coming in Sect. 6, notice that one can read our models 
as normative, but realistic: an agent ought to choose and apply slow thinking rules 
to the extent that she can do it, given the cognitive resources at hand, and until these 
are depleted. Before we get there, in the next Section, we put the framework to work.

5 � Three Case Studies

Interaction between System 1 and System 2 (or, stereotypes gone wrong) System 1 
provides its—sometimes incorrect—impressions to System 2. These impressions 
exemplify biases that are often attributed to our experience, the so-called familiarity 
heuristic. System 2 can then unpack their logical consequences. It is not uncommon 
for System 2 to eventually override System 1. To demonstrate this, we introduce and 
analyze a variant of the restaurant scenario17:

Jack (agent 1) and Jill (agent 2) have entered a restaurant. They are joined by 
John (agent 3) shortly after. Waiter A takes their order, which includes three 
dishes: Vegan, Meat and Fish. Waiter B is supposed to serve them. Waiter B is 
acquainted with Jack: he knows that Jack is a passionate animal rights activist, 
often arguing against the consumption of any animal product. He has not met Jill 
but he has the impression that she is pretty close to Jack and implicitly assumes 
that she shares his opinion and lifestyle. On the other hand, John is a frequent 
customer: almost every time he orders the same meat-based dish. As the meals 
are prepared, Waiter B has an intuitive, yet incomplete, idea on their distribution. 
System 1 is at work. Influenced by his stereotypes and experience, he thinks that 
Jack will definitely get the vegan dish, and John the meat. For someone carefully 
and consciously reading the story, this would mean that Jill ordered fish. Not 
for waiter B, though: due to Jill’s closeness to Jack, he has trouble inferring this 
conclusion. He is also willing to consider, albeit reluctantly, that John gets fish. 
Again he is subconsciously confused enough to take a stance on Jill’s option. 
Finally scenarios in which Jack orders meat or fish are ruled out by the waiter.

Denote by vi , mi , fi ( i = 1, 2, 3 ) the atoms expressing which dish goes to which 
agent. Let R be the set of rules containing Conjunction Introduction (CI) and Modus 
Ponens (MP). The following figure depicts the plausibility model18 for waiter B, and 
according to our semantics, both Bv1 and Bm3 are valid.

17  “You are in a restaurant with your parents, and you have ordered three dishes: Fish, Meat, and Veg-
etarian. Now a new waiter comes back from the kitchen with three dishes. What will happen?” (van 
Benthem 2008a).
18  Thicker borders of nodes are used to denote possible worlds. Here, we took CI arrows to be reflexive 
and wrote down only the conjunctions obtained between atoms to increase the readability of the figure. It 
need not be so, as applications of CI could have been informative for this given scenario.
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“John got fish this time!”, says Waiter A. Waiter B overhears the comment and 
instantly incorporates this new piece of information.

The new model, following the upgrade with f3 , is depicted below and is the outcome of 
combining the already held opinions of the waiter and incoming information. System 1 
deals with what is believed, on the basis of incoming information and biases generated 
by familiarity, experience etc., and it does not investigate what follows logically.

As Waiter B prepares to serve our three agents and prompted by his curiousness, 
he takes a moment to figure out what Jill actually ordered, contrary to what he 
would have expected. In particular, he realizes that he should not let her relation-
ship with Jack interfere with his beliefs, but instead infer what follows from what 
he already believes, i.e., that Jill got the meat-based dish after all! This is due to a 
conscious procedure of System 2.

Following an application of CI and MP, in that order, it is easy to verify that over-
all [f3 ⇑]⟨CI⟩⟨MP⟩Bm2 (as well as [f3 ⇑]⟨MP⟩Bm2 ) is valid. For example, the final 
pointed plausibility model based on w1 has worlds eliminated as epistemic possibilities 
by slow thinking: it exemplifies how System 2 took over System 1.

Framing effect Decision-making by Humans is heavily influenced by the mode of 
presentation of options (Kahneman 2011, Part 4). For instance, different responses 
are evoked whenever a question on the outcome of a surgery is presented in terms 
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of survival or in terms of mortality. The statements “the odds of survival one month 
after surgery are 90%” and “mortality within one month of surgery is 10%” are 
equivalent: they have the same truth conditions. But under the first frame or mode of 
presentation, the situation seems somewhat more reassuring.

The framing effect poses a challenge for ‘static’ epistemic logic. Propositional atti-
tudes towards logically equivalent statements are the same under possible worlds seman-
tics, due to the closure properties of possible worlds. Also, according to the AGM 
approach to belief revision (Alchourrón et al. 1985), the beliefs of an agent are repre-
sented by a set of sentences in a formal language. This set is taken as closed under logical 
consequence. Therefore, if two sentences p and q are logically equivalent, then believing 
the one amounts to believing the other, and revising one’s beliefs after being informed 
that p gives the same outcome as revising them after being informed that q. This too 
disregards the influence of the mode of presentation on Humans, as opposed to Logons.

We will now show that framing can fit into our logical framework.19 Let s and 
m denote the two statements discussed earlier (odds of survival/mortality rate). Let 
s ↔ m be valid in our dual-process semantics. Suppose that the initial plausibility 
model for our agent is as follows, i.e., ¬Bm and ¬Bs:

Following an upgrade with m, based on something the agent heard at the 
patients’ waiting room, we obtain the model below. Therefore [m ⇑]Bm . As 
a result of framing, the agent has upgraded with m and believed in it, without 
simultaneously believing in s.

Again, some slow reasoning performed by System 2 will help the agent over-
come framing: by performing an inference using Modus Ponens (assuming, as 

19  Note that in the context of this paper we model framing in an epistemic-doxastic setting but that our 
tools can be aligned with dynamic preference logics (van Benthem 2011; Liu 2008, 2011) and hence a 
model of framing-effects on an agent’s preferences instead of on beliefs can be accounted for.

754



1 3

The Logic of Fast and Slow Thinking﻿	

we have done so far, that the agent believes that m → s ), the agent can come to 
believe that s too.

Anchoring effect The anchoring effect (Tversky and Kahneman 1974) is a cog-
nitive bias that makes Humans rely heavily on the first piece of information they 
receive: this piece works as an “anchor”, and even if it is clearly arbitrary and 
irrelevant, it can over-influence the formation of subsequent beliefs. For example, 
suppose that an agent is interested in a new edition of a high-end smartphone but 
has not made up her mind on whether to purchase it. The agent considers three 
options:

•	 r1 : the new edition falls in the price range [1000–1100).
•	 r2 : the new edition falls in the price range [1100–1200).
•	 r3 : the new edition falls in the price range [1200–1300).

Suppose that the agent visits a store. She entertains the following options:

•	 q1 : the store’s offer is in the price range [1000–1100).
•	 q2 : the store’s offer is in the price range [1100–1200).
•	 q3 : the store’s offer is in the price range [1200–1300).

In the store, there is a tag indicating that the original price of the desired item is 
1200, but the store offers it for 1100. As a result, the agent performs a fast System 1 
upgrade with the formula [(r3 ∧ q2) ⇑] . The value 1200 works as the anchor, because 
it is indicated by the store’s tag as the market price of the new phone. As a result the 
formula [(r3 ∧ q2) ⇑]B(r3 ∧ q2) is verified.

Next, the agent activates System 2, which performs a reasoning step that allows 
her to believe that she saves a certain amount of money, which makes the bargain 
good (denote “good bargain” by b; also note that whenever ri ∧ qi , we consider the 
difference of prices negligible and thus not substantial enough to make the agent 
consider it a bargain). Therefore, we obtain a new validity: [(r3 ∧ q2) ⇑]⟨MP⟩Bb . 
Based on that belief, she eventually acts accordingly and buys the smartphone. 
If there was no indication of an original market price of the smartphone or if the 
anchor was an initial value that the agent had set (i.e., deciding that only prices in 
the range [1000–1100) are acceptable/affordable), the evolution of the scenario 
would have been different and no purchase would have been made. Below, there is 
a depiction of the initial model, succeeded by the model following the anchoring 
upgrade, and one final model after the application of Modus Ponens.
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6 � Coda: “Ought Implies Can”

We conclude with a general philosophical issue: is our model merely descriptive of 
some of the cognitive workings of Humans, or rather normative? In the latter case, 
how so, since it aims to avoid the idealisation of agents as logically omniscient?

One may take the logical approach proposed above as roughly standing to ‘static’ 
(S5) epistemic logic and AGM belief revision theory as Kahneman and Tversky 
(1979)’s prospect theory of rational choice stands to expected utility theory. Just 
like prospect theory, our logic of fast and slow thinking is more complex than its 
mainstream counterpart: it adds operators and parameters to the standard frame-
work for epistemic logic, in order to provide a more realistic account of reasoning by 
Humans. Complexity is generally taken as a theoretical cost, to be justified by a gain 
in explanatory and predictive power. Here we have an unavoidable trade-off. Any 
framework for epistemic logic needs to strike a balance between two desiderata. The 
pull towards simplicity and idealization leads in the direction of Logons. The pull 
towards modeling realistic Humans can easily lead to conceptually gerrymandered 
frameworks, or to logics that are too weak to be of serious interest. Take Human 
Jill, who knows that � ∧ � . What epistemic facts follow? She may fail to unpack her 
knowledge, so she need not know that � . She may also not know that � , although � 
turns out to be logically equivalent to the conjunction of � and �.

The trade-off between simplification and realism overlaps that between descrip-
tion and prescription. Prospect theory was justified as a descriptive theory of rational 
decision, in opposition to the normative status of classical expected utility theory. 
We have a more nuanced stance with respect to the logic proposed above. We aim at 
a normative logical theory; but, one whose rational “ought”, unlike the “ought” of 
static epistemic logic, implies “can”.

To unpack: the mainstream approach in both static (S5) epistemic logic and 
choice theory is most commonly defended on the basis of its normative status. It 
tells us how rational agents ought to reason and act. The experimental deviations 
don’t threaten the effectiveness of this normative model; they do not, according to 
its apologists, contradict the claims on human rationality. They are merely attributed 
to unsystematic performance errors, momentary failures that do not say much about 
the rational behavior agents are actually capable of achieving (Cohen 1981; Stein 
1996). This view is at times defended by drawing analogies with other disciplines, 
such as the use of frictionless planes in physics. With respect to the idealized mod-
els, the observed fallibility of agents is merely a kind of negligible cognitive fric-
tion. Besides, such models are claimed to serve an evaluative purpose with respect 
to the performance of imperfect human agents. However Humans fail, their ultimate 
goal should be to approximate the standard predicted by the mainstream proposals: 
the closer, the better.

We find these arguments unsatisfactory. The internal coherence of Human sub-
jects (Stanovich and West 2000; Stenning and van Lambalgen 2008) shows that the 
errors are not just random and unsystematic slips in one’s reasoning. Nor are the 
idealized models of other disciplines suitable for an accurate analogy. Once scien-
tists manage to account for more realistic assumptions and complex elements, their 
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new models are often considered more reliable. This is not in agreement with the 
“as good as it gets” campaign adopted by proponents of the traditional “ought”. 
Even when Humans are asked to approximate the predictions of mainstream models 
of reasoning, the indeterminacy involved in what counts as a good approximation 
weakens the effectiveness of such choices of normative standards (Pollock 2006).20

Forcing one to commit to models that are either merely descriptive, or represent-
ing omniscient agents, may be a false dilemma. Whereas the mainstream logical 
“ought” fails to imply “can”, one may be interested in investigating an “ought” that 
does: “it seems simply perverse to judge that subjects are doing a bad job of reason-
ing because they are not using a strategy that requires a brain the size of a blimp” 
(Stich 1990,  p. 26). Actually, even a blimp may not be enough: Logons know or 
believe the infinitely many logical consequences of what they know or believe. But 
Humans’ available resources are not infinite (Cherniak 1986), and “become infinite” 
is a strange thing to ask of a finite mind.

In our approach, factual evidence can contribute in picking the appropriate nor-
mative model. Limitations in terms of time, memory, computational power, etc., are 
important in adjusting the rationality standard expected from the agents. Empirical 
data should be utilized in constructing the right normative model, e.g., by filling in 
the right parameters for how different logical inference rules can be resource-con-
suming. So we put forth our logic above as a better normative model: one delivering 
a can-implying “ought”. A finite and fallible, but rational agent ought to reason to 
the extent that, ceteris paribus, its limited time, memory, and computational power 
resources allow. No more can be asked without violating that implication, but also 
no less: “Be rational until, ceteris paribus, you run out of cognitive steam”.21

7 � Conclusions and Further Work

To sum up, we have built a system of dynamic epistemic logic that avoids the prob-
lem of logical omniscience, which has plagued standard static logical systems. Most 
importantly, it does so by taking on board a popular line of research in psychol-
ogy of reasoning: dual-process theories. Our system includes two different kinds of 
dynamic operators, one responsible for the fast and effortless integration of infor-
mation and one accounting for the slow and costly steps of deductive reasoning. 

20  We notice that Hintikka, who introduced standard epistemic and doxastic logics, did not presuppose 
a defense of his systems due to normativity: “Logical truths are not truths which logic forces on us; they 
are not necessary truths in the sense of being unavoidable. They are not truths we must know, but truths 
which we can know without making use of any factual information. [...] The fact that the so-called laws 
of logic are not ‘laws of thought’ in the sense of natural laws seems to be generally admitted nowadays. 
Yet the laws of logic are not laws of thought in the sense of commands, either, except perhaps laws of the 
sharpest possible thought. Given a number of premises, logic does not tell us what conclusions we ought 
to draw from them; it merely tells us what conclusions we may draw from them—if we wish and we are 
clever enough.”(Hintikka 1962, p. 37).
21  The ceteris paribus parameter matters. What amount of cognitive resources ought to be allocated to 
reasoning tasks is heavily context-dependent: one should not be asked to deploy cognitive resources to 
perform logical deductions when this would make it dangerous to thoughtlessly cross a busy street.
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In order to accommodate the respective actions, tools from DEL (plausibility 
models, more nuanced propositional attitudes) were combined with non-normal 
worlds semantics. We demonstrated that this framework successfully captures desir-
able properties of reasoning processes composed by both systems. In particular, we 
showed that phenomena that have been studied multiple times in the literature of 
various disciplines can be now formally treated in logical terms. Our exposition was 
finally furnished with a philosophical discussion on the contribution of this attempt, 
and more specifically, on its normative nature.

The model deals only with a fragment of the activities undertaken by the two 
systems. Apart from adding probabilistic reasoning for a more elaborate modeling 
of System 2, other directions of further work can be envisaged. First, the policy of 
upgrading with incoming information need not be unique. More conservative Sys-
tem 1 actions can be modeled, sensitive to the reliability of the source (van Benthem 
2011). Second, one may combine our work with the ideas of van Benthem (2008b) 
and Velázquez-Quesada (2009), who discern implicit acts of observation (“bare see-
ing”) and explicit acts of observation (“conscious realization”). This distinction can 
fit in our framework by introducing additional actions representative of the two sys-
tems: the former kind is effortless and corresponds to System 1’s fast processing 
of incoming information. The latter kind is resource-consuming and corresponds to 
System 2 activities. Third, one may model higher-order reasoning, accounting for 
how the agent thinks over its own reasoning processes, learns or forgets inference 
rules, that in turn affect her deductive inferences. So far, we have focused on how the 
agent expands her factual information without delving into the progress of metarea-
soning. It seems that, in order to enrich the picture of reasoning run by System 2, we 
need to impose additional constraints on the model’s structure and define suitable 
actions of rule-based and effortful higher-order reasoning.
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