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Abstract
Direct inferences identify certain probabilistic credences or confirmation-function-
likelihoods with values of objective chances or relative frequencies. The best known
version of a direct inference principle is David Lewis’s Principal Principle. Certain
kinds of statements undermine direct inferences. Lewis calls such statements inad-
missible. We show that on any Bayesian account of direct inference several kinds of
intuitively innocent statements turn out to be inadmissible. This may pose a significant
challenge to Bayesian accounts of direct inference. We suggest some ways in which
these challenges may be addressed.

1 Introduction

Direct inferences identify values of some probabilistic credences with values of objec-
tive chances or relative frequencies. The main idea has been around for a long time.
It goes by various names and has been articulated in a variety of ways.1 Peirce calls
it “probable deduction.” Contemporary logicians sometimes call it “statistical syllo-
gism.” David Lewis’s Principal Principle is perhaps the most widely known version
of an explicit direct inference principle (Lewis 1980).

Accounts of direct inference usually draw on two distinct notions of probability: an
object-language notion, either relative frequency or some notion of objective chance,
and a higher level metalinguistic notion that applies to object-language expressions,

1 See Peirce (1883), Venn (1888), Reichenbach (1949), Salmon (1971), Kyburg (1961, 1974), Levi (1977),
Pollock (1990), Bacchus (1990), Thorn (2012, 2018), and Wallmann (2017).
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usually characterized as some kind of logical probability or as a probabilistic measure
of rational credence. Carnap (1962), for instance, calls the object language notion
probabili t y2, and takes it to represent relative frequencies of attributes among mem-
bers of populations. He calls the metalanguage notion probabili t y1, and takes it to
be a kind of degree of logical entailment, which he calls “degree of confirmation.”

For notational convenience we write ‘P’ for the probabili t y1 notion and ‘ch’ for
the probabili t y2 notion. Although we will often take the ch function to represent
some kind of objective chance, in most contexts the reader may interpret it to be either
a chance function or a relative frequency function. In either case, expressions involving
the function ch will take the form: ‘ch(Ax, Rx) = r ’. On a reading of ‘ch’ as relative
frequency, this expression says that the frequency of objects (or systems, or events)
possessing attribute A among those in reference class R is r . On the reading of ‘ch’ as
chance, this expression says that the chance that a system in initial state R will acquire
attribute A is r .

Letting P represent the probabili t y1 notion and taking ch to represent the
probabili t y2 notion, here is a generic version of a direct inference principle. Later
we’ll extend it to more complex chance hypotheses.2

Generic Direct Inference Principle—G-DIP:3

Let P be an “appropriate” probability function on a language that contains chance
(or frequency) claims. Let ‘ch(Ax, Rx) = r ’ be an object-language statement
that says that the chance that a system in state R acquires attribute A is r (alter-
natively, that the frequency of possessing attribute A among objects in reference
class R is r ), where r is a standard term for a real number between 0 and 1
(inclusive). Let ‘Rc’ say that system c is in state (or reference class) R, and let
‘Ac’ say that system c acquires (or possesses) attribute A. Then,

P[Ac | ch(Ax, Rx) = r · Rc · E] = r ,

2 Direct inference principles have been proposed by a number of probabilistic logicians. Prominent among
them are proposals by Carnap (1962), Kyburg and Teng (2001), Levi (1977), Lewis (1980), Pollock (2011),
and Bacchus (1990), and Thorn (2012, 2018). These accounts differ in their interpretations of the P and ch
notions. Carnap and Kyburg take the ch notion to be frequencies (of attributes among members of reference
classes), Pollock interprets it as nomic probability (or proportions among physically possible objects), and
Bacchus and Thorn explicate it as a kind of expected frequency; Levi and Lewis both take ch to be some kind
of objective chance, although their accounts of chance differ in significant ways—e.g. Lewis takes chance
statements to apply to whole propositions at specific times, while Levi takes them to apply to predicates
containing free variables, as in G-DIP. These accounts also interpret the P notion in several distinct ways.
Carnap, Levi, and Lewis take the P notion to be Bayesian probability functions of some kind, although they
differ on the interpretation of these probability functions (e.g. for Carnap they are logical, for Levi they
are credal probability functions (relative to a potential corpus of certain knowledge, K ), for Lewis they are
reasonable initial credence functions).
3 Contrary to what the term direct inference suggests probability1 statements are not strictly inferred from
probability2 statements. G-DIP is a statement about what value certain conditional probabilities should
attain. However, since the name ‘direct inference’ has regularly been used for principles like G-DIP, we use
it here as well.
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provided that E is both consistent with (ch(Ax, Rx) = r · Rc) and admissible
with respect to (ch(Ax, Rx) = r · Rc) (where tautologies are always considered
admissible).4

Wewon’t attempt to spell out an account of admissibility. Doing so is a complex and
controversial undertaking. But, for our purposes, no specific account of admissibility
need be supposed. Thau’s proposalworkswell enough for our purposes: “Aproposition
is inadmissible if it providesdirect information aboutwhat the outcomeof some chance
event is.” (Thau 1994, p. 500, emphasis added)

Since tautologies are always admissible, the admissibility of any other statement E
requires that E be probabilistically independent of Ac, given (ch(Ax, Rx) = r · Rc)
(for P). However, admissibility does not simply reduce to probabilistic independence;
rather, it is designed to motivate probabilistic independence in appropriate cases. For
instance, Lewis’ substantive account (in Lewis 1980) declares a statement admissible
for a direct inference provided that it contains only information about particularmatters
of fact that occur before the time at which the associated chance outcome occurs. On
this account, all future statements about particular matters of fact are inadmissible,
even those that may happen to be probabilistically independent of Ac given chance
claim (ch(Ax, Rx) = r · Rc).5

When a statement D fails to be probabilistically independent of Ac, given
(ch(Ax, Rx) = r · Rc · E) for admissible E (for probability function P), then we say
that D defeats the corresponding direct inference. That is, defeat of a direct inference
by D just means that P[Ac | D · ch(Ax, Rx) = r · Rc · E] �= P[Ac | ch(Ax, Rx) =
r · Rc · E] = P[Ac | ch(Ax, Rx) = r · Rc] = r for admissible E .

Notice that if D is a defeater, then on any adequate account of admissibility, (D ·E)

must be inadmissible for the direct inference, since failure of probabilistic indepen-
dence is a sure-fireway for admissibility to fail. But its also possible for admissibility to
fail in cases where probabilistic independence remains intact. In such a case, although
D (or (D · E)) is inadmissible, D does not count as a direct inference defeater, not as
we use that term in this paper. Thus, as we use the term, a direct inference defeater is
a particularly strong kind of inadmissible statement.6

Wewill investigate several kinds of cases where, on purely logical grounds, when P
satisfies the classical axioms of probability, direct inference outcomes must fail to be
probabilistically independent of a statement D. Thus, any account of direct inference
based on G-DIP will rule the defeating statement D to be inadmissible, regardless
of the particular account of admissibility employed. These are the kinds of troubles

4 When ‘ch(Ax, Rx)’ represents the relative frequency of A among R, perhaps the premise must also
include a statement saying that c is a random member of R with respect to being an A. The proper way to
spell out the account of randomness is controversial.
5 This account of admissibility seems to work just fine, provided that chance is taken to be fundamental.
The well-known “bug” in this approach only bites those already infected by the Lewisian-Humean best
systems account of the nature of chance. For discussion of this “bug” see Lewis (1994), Hall (1994), and
Thau (1994).
6 This terminology parallels its use for defeasible conditionals. Direct inferences are defeasible in much
the same way that some kinds of strong conditionals are defeasible. For such conditionals, when (C → A)

holds, the addition of some statements D to the antecedent may defeat the connection between C and A:
thus, ((C · D) → A) may fail to hold.
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we consider. These troubles pose significant challenges if an agent wants to use these
probability functions in a certain epistemic situation she finds herself in. One such use
is to determine one’s current credence via the total evidence requirement.

For Bayesians, the logic of credence functions (or confirmation functions) is cap-
tured by the way in which the axioms of probability theory constrain the numerical
values of P[A | B] for the range of statements A and B, often under conditions
(or suppositions) that constrain the probability values of other statements. Logically
speaking, a direct inference rule such as G-DIP is merely an additional axiomatic
constraint. Any function P that satisfies the other axioms, but violates the direct infer-
ence rule, is “ruled out” for failing to be an “appropriate” credence (or confirmation)
function.7 However, the further issue of how a rational agent is supposed to apply
these functions, given the situation in which she finds herself, including her current
state of knowledge, is not a purely logical matter. Carnap realized this long ago. His
Requirement of Total Evidence is merely a way to make explicit our usual implicit
assumptions about how an agent is supposed to apply her credence (or confirmation)
function. Here is a fairly close paraphrase of Carnap’s requirement, adapted to apply
to the P functions of G-DIP.

Total Evidence Requirement: Suppose that the logic of credence functions (or
confirmation functions) supplies a result of form ‘P[A | B] = r ’, where A and
B are statements, r is a real number between 0 and 1, and P is the rational initial
credence function (or the confirmation function) for an agent. If B expresses this
agent’s total available evidence at the time t , then she is justified at t in believing
A to the degree r , and hence in betting that A is true with a betting quotient no
higher than r .8 (Compare Carnap 1962, p. 211.)

For an agent to apply our version of the direct inference principle, G-DIP, the
agent’s total evidence should be captured by ‘(Rc · E)’. What about the chance claim

7 Lewis (1980) places additional constraints on “appropriate” credence functions. One of his requirements
is that they be initial credence functions. That is, for direct inference to work properly, the same initial
credence function must be maintained throughout. For, in order for any account of direct inference to work
properly, careful account must be kept of whatever statements E is conditionalized upon, so that their
admissibility for a proposed direct inference may be assessed. When probabilistic updating occurs in the
usual Bayesian kinematic way, via Pnew[S] = P[S | K ] for an agent who learns K , the updated function
Pnew suppresses the learned information K by assigning Pnew[K ] = 1. This introduces complications
with admissibility assessments of information that might well defeat a proposed direct inference. To assess
whether Pnew[Ac | ch(Ax, Rx) = r · Rc] = r holds, one needs to keep track of any update-information K
from which Pnew results, so that one can assess its admissibility. In cases where all updating is via explicit
information K , this is easy enough to accomplish, but not significantly different than simply making
information K explicit as a premise in the initial credence function, P[S | K ]. However, whenever Pnew
results from P in a less direct way, such as via Jeffrey conditionalization, the resulting credence function
may be deflected from the (seemingly appropriate) direct inference value, with no justification via the
inadmissibility of some explicit statement K . Later, in Sect. 4, we will construct a specific example of
this kind. So, Lewis’s approach to direct inference largely bypasses the kinematics of Bayesian updating.
Rather, the Bayesian agent is taken to employ the same initial credence function throughout. On this
approach, Bayesian updating simply amounts to what the logic of credence functions implies about the
results of conditionalizing on additional premises.
8 When an agent’s betting quotient is r (or less), she should be willing to place a bet that loses her 1 (or
less) if A turns out to be false, but gains her at least (1 − r)/r dollars if A turns out to be true (supposing
the utility curve is linear for the amounts of money involved).
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‘ch(Ax, Rx) = r ’ (the chance claim X , for Lewis)? The Applications of the direct
inference principle need not require that the chance claim itself be part of the agent’s
total evidence, nor need the agent know it to be true. Here is a close paraphrase of
what Lewis says about this point (Lewis 1980, p.267 continued):

If in addition you are sure that the chance claim ch(Ax, Rx) = r is true (i.e.
if P[ch(Ax, Rx) = r | Rc · E] = 1, where (Rc · E) is your total evidence),
it follows also that r = P[Ac | Rc · E] is your present unconditional degree
of belief that Ac is true. More generally, whether or not you are sure about the
chance claim ch(Ax, Rx) = r , your unconditional degree of belief that Ac is
given by summing over alternative hypotheses about chance:
P[Ac | Rc · E] = ∑

q q × P[ch(Ax, Rx) = q | Rc · E].9

We investigate several kinds of cases where, on purely logical grounds, direct infer-
ence outcomes must fail to be probabilistically independent of a statement D. Thus,
any adequate account of admissibility should rule the defeating statement D to be
inadmissible. We call such statements logically inadmissiblewith respect to the direct
inferences they defeat. In some cases we show precisely how much the addition of
these defeaters to the premises of a direct inference must divert the credence value
from the associated chance value. We argue that some of these logically inadmissible
statements may be easily acquired by an agent, thus tainting her total evidence and
inhibiting her warrant to engage in legitimate direct inferences about these chance
events.

Here is how we’ll proceed. In Sect. 2 we prove results10 that show that material
conditional and biconditional statements involving the conclusions of direct inferences
must be inadmissible on purely logical grounds. This may present some surprising
challenges for Bayesian direct inference principles.

In Sect. 3 we show that in an important class of cases the evidential relevance of
a statement D to an outcome Ac implies the logical inadmissibility of D. It seems to
be relatively easy for an agent to acquire this kind of information. Thus, an agent’s
ability to engage in direct inferences is shown to be somewhat fragile.

In Sect. 4 we consider some fairly mild conditions on credence functions that
makes them “inappropriate” for G-DIP, because any credence function that satisfies
these conditions must get straightforward direct inferences wrong.

In Sect. 5 we discuss direct inferences in cases where several reference classes
may compete. We argue that direct inference probabilities are best characterized as
expected values over credences of possible observational statements or over extensive
chance theories. We show how this fact is problematic for Bayesian direct inference
principles.

The authors of this paper are divided over what these results show. One of us
(Wallmann) thinks that many of these logically inadmissible statements should not

9 Lewis’ article suggests a continuum of possible chance values for ch(Ax, Rx); so it makes sense to read
“summing” to mean integrating, the limit of summing over arbitrarily small intervals: P[Ac | Rc · E] =
∫ 1
0 q × p[ch(Ax, Rx) = q | Rc · E] dq. The function p[ch(Ax, Rx) = q | Rc · E] is a density function
such that P[u < ch(Ax, Rx) ≤ v | Rc · E] = ∫ v

u p[ch(Ax, Rx) = q | Rc · E] dq.
10 Detailed proofs of all theorems can be found in the “Appendix”.
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defeat direct inferences. Rather, an agent who has such information as part of her
total evidence should still conform her rational credences, and her betting behavior,
to the objective chances. Therefore, this author reads these troubles as showing that
the Bayesian account of direct inference fails, that having P satisfy the axioms of
conditional probability is incompatible with a correct account of direct inference. The
other author thinks that the logically inadmissible statements explored in this paper
should indeed defeat direct inferences, so the Bayesian account gets it right. We will
elaborate our reasons for disagreement in the main body of the paper. In any case, the
paper explores a wide range statements of a kind that must turn out to be inadmissible
on any Bayesian account of direct inference.

2 Logical Admissibility Troubles

The troubles we will raise for direct inference principles in this section and the next
are quite general. They plague all Bayesian accounts where the P notion satisfies
the usual axioms of conditional probability, regardless of whether the conception of
objective chance applies to full propositions (as does Lewis’s Principal Principle) or is
couched in terms of generic probabilities (containing only open sentences, as inG-DIP,
above). All the admissibility failures we’ll discuss draw on cases where probabilistic
independence must fail on purely logical grounds. We will first investigate several
kinds of such logically inadmissible statements. Section 3 will go on to provide a more
general characterization of an important class of logically inadmissible statements.

2.1 Logically Inadmissible Biconditionals

Consider the following situation. John and Maria are standing next to the craps table
watching the action. Let H represent the chance hypotheses associated with a fair
pair of dice tossed onto a flat surface in the usual (fair) way. In particular, R says
that a pair of fair dies is tossed onto a flat surface in the usual (fair) way, and A says
that the outcome of a toss is seven. According to chance hypothesis H , the chance
of outcome A for a system in state R is 1/6, ch(Ax, Rx) = 1/6, which is the usual
objective chance for getting seven on a (fair) toss of a pair of fair dice. Let c be the
event consisting of the next toss of the dice, so Rc says that the next toss is that of a
pair of fair dice (fairly) tossed onto a flat surface, and Ac says that the next toss comes
up seven. Let E represent Maria’s background knowledge about dice and craps tables,
and perhaps about human relationships, and about anything else that may be relevant
to the following situation (including the fact that Maria trusts John to keep his word).
Surely E is itself admissible with respect to possible chance outcomes for (H · Rc)—
otherwise wewill already have trouble applying direct inference principles to this kind
of chance situation. Thus, we should have the direct inference P[Ac|H ·Rc·E] = 1/6,
where P is Maria’s (initial) credence function.

Now, John says to Maria, “I’ll buy you dinner this evening if, but only if, the next
toss comes up seven.” That is, John sincerely asserts a statement of form (F ≡ Ac),
where Maria understands F to say that John will pay for Maria’s dinner this evening
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(provided that no extraordinary circumstance arises—e.g. provided that Maria permits
it, and John doesn’t fall ill before hand, etc.).11

Taking John at his word, Maria adds (F ≡ Ac) to her total body of evidence.
Thus, the premise for the direct inference regarding Ac, based on her total body
of evidence, becomes (H · Rc · E · (F ≡ Ac)). Should Maria’s rational credence
that the dice will come up seven on the next toss now differ from the objective chance
value?—i.e. does P[Ac | H · Rc · E · (F ≡ Ac)] differ from1/6?Or hasMaria’s total
information, (E · (F ≡ Ac)) become inadmissible, undermining the direct inference?
More urgently, should Maria still be willing to bet on the next toss turning up seven at
the usual fair odds (which is 5 to 1 against, corresponding to the chance of occurrence
being 1/6)? You might well think so! 12

As it happens, probability theory itself guarantees that this kind of biconditional
information is almost always logically inadmissible for the relevant direct inference.
For, whenever P[F | H · Rc · E · Ac] �= P[¬F | H · Rc · E · ¬Ac], Ac cannot
be probabilistically independent of (F ≡ Ac) given (H · Rc · E). And any such
failure of probabilistic independence entails inadmissibility. Worse yet, we will see
that, according to her credence function, the odds at which Maria should be willing
to bet that seven turns up may differ significantly from the usual fair betting-odds
suggested by the objective chance.

Theorem 1 Inadmissible Biconditionals.
Let r be any real number such that 0 < r < 1. Suppose P[Ac | H · Rc · E] = r and
1 > P[(F ≡ Ac) | H · Rc · E] > 0. Then both P[F | H · Rc · E · Ac] = s and
P[¬F | H · Rc · E · ¬Ac] = t are well-defined (for some s and t), and

(1) either s > 0 or t > 0, and either s < 1 or t < 1, and
(2) P[Ac | H · Rc · E · (F ≡ Ac)] = 1 / [1 + ((1 − r)/r) × (t/s)].
Furthermore,
P[Ac | H · Rc · E · (F ≡ Ac)] > r if and only if s > t ,
P[Ac | H · Rc · E · (F ≡ Ac)] < r if and only if s < t ,
P[Ac | H · Rc · E · (F ≡ Ac)] = r if and only if s = t .

11 It seems that there is a causal asymmetry between John’s offer to pay for dinner and the outcome of the
dice roll. We will consider this issue below in Sect. 2.3, so hold it aside for now.
12 White (2010) uses a similar example to argue that imprecise credences lead to irrationality. However,
White’s argument assumes both P[Ac|H ·Rc·E ·(F ≡ Ac)] = P[Ac|H ·Rc·E] and P[F |H ·Rc·E ·(F ≡
Ac)] = P[F |H · Rc · E]. Given these assumptions, it’s straightforward to show that P[F |H · Rc · E · (F ≡
Ac)] = P[Ac | H · Rc · E · (F ≡ Ac)]. It then follows that P[F | H · Rc · E] = P[Ac | H · Rc · E]—i.e. that
P[F | H · Rc · E] must have the same value, r , as the direct inference P[Ac | H · Rc · E] = r , regardless
of the content of statement F . In our example this means that the value of P[F | H · Rc · E] must be
1/6 for Maria—her rational credence that John will buy her dinner this evening must be 1/6 before John
even brings up the subject. This is absurd! For, by similar reasoning, had it happened that John instead
told Maria that he’d buy her dinner just in case seven does not turn up on the next toss (had he told her
(F ≡ ¬Ac)), then Maria’s rational credence must be P[F | H · Rc · E] = 5/6 before John even brings
up the subject. However, the second premise of White’s argument might be challenged. Our argument here
won’t make any such assumption. White’s argument has attracted quite a debate: Hawthorne et al. (2017),
White (2010), Sturgeon (2010) endorse it, while Joyce 2010; Pedersen and Wheeler 2014; Pettigrew 2018;
Hart and Titelbaum 2015; Titelbaum and Hart 2018 reject it.

123

963



C. Wallmann, J. Hawthorne

If, in addition, P[Ac |H · Rc ·E ·F] = P[Ac |H · Rc ·E] (i.e. if Ac is probabilistically
independent of F given H · Rc · E), then P[Ac | H · Rc · E · (F ≡ Ac)] = r if and
only if P[F | H · Rc · E] = 1/2.

Thus, when John says to Maria, “I’ll buy you dinner this evening if, but only if, the
next roll comes up seven”, almost everyonewhooverhears this assertion, andwho takes
John to be sincere, should employ credences, based on the total available evidence, that
fail to match the objective chances of the dice coming up seven on the next roll. Only
one kind of exception is possible. Those individuals whose credences remain faithful
to the objective chance are just those individuals who, before hearing John’s statement,
happen to find the conditional credibility of the claim “John will buyMaria dinner this
evening” given seven comes up on the next roll (i.e. P[F | H · Rc · Ac · E]) equal to
the conditional credibility of the claim “John won’t buy Maria dinner this evening”
given seven does not comeupon the next roll (i.e. P[¬F | H · Rc · ¬Ac · E])—where
both credence conditions include the agent’s total available evidence E together with
the relevant chance claims, (H · Rc).

Indeed, before hearing John’s statement (F ≡ Ac), perhaps Maria and most
bystanders will have taken “seven comes up on the next roll” to be probabilistically
independent of “John buys Maria dinner this evening”, given (H · Rc · E). Such an
agent cannot have her credence that “the next roll turn up seven” remain faithful to
the objective chance unless she happens to assign P[F | H · Rc · E] = 1/2. Thus, the
Bayesian account of direct inference apparently implies a formof the principle of indif-
ference (Hawthorne et al. 2017). However, it seems highly doubtful that most agents
will assign the value 1/2 to P[F | H · Rc · E]. For, in place of F , John might well
have asserted biconditionals involving any number of distinct alternative conditions,
F1, F2, F3, …, etc. (e.g., “I’ll buy you dinner atMcDonald’s”, “I’ll buy you dinner at
Chez Panisse”, …, etc.). But the statements Fk for the resulting biconditional claims,
(Fk ≡ Ac), cannot all have conditional credence values P[Fk | H · Rc · E] = 1/2.
Thus, the agent’s direct inference credence P[Ac |H ·Rc ·E ·(Fk ≡ Ac)]must deviate
from the objective chance value 1/6 for almost all such claims, Fk .

When the value of s = P[F | H · Rc · A · E] is much closer to 0 than the value of
t = P[¬F | H · Rc · ¬A · E], the value of P[Ac | H · Rc · E · (F ≡ Ac)] must be
very close to 0, as the theorem shows.13 So, if Maria (and eavesdropping bystanders)
takes John’s offer to be very unlikely before he asserts it, then her total-evidence
credence for seven on the next toss should be very close to 0! Thus, if the objective
chance values provide the correct betting odds, then Maria (and bystanders) should be
willing to accept wagers against seven at incorrect odds that are extremely unfavorable
to themselves. This is true regardless of whether there is any evidence available for
Maria (or the bystanders) that justifies assigning low credence to John paying for the
dinner.Wewill discuss situations inwhich credences based on no evidencewhatsoever
lead to defeat of direct inferences in more detail in Sect. 5.2.

13 P[Ac | H · Rc · (F ≡ Ac) · E] = 1 / [1 + ((1 − r)/r) × (t/s)] = 1 / [1 + ((5/6)/(1/6))(t/s)] =
1/[1+ 5(t/s)] = 1/(large-number). e.g. if t is 10 times the size of s, then P[Ac | H · Rc · (F ≡ Ac) · E] =
1/51 << 1/6.
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2.2 Some Other Logically Inadmissible Statements

Similar to biconditionals,material conditionals and disjunctions involving the outcome
Ac must be logically inadmissible. The extent to which the resulting probabilities
deviate from the corresponding direct inference probabilities will be characterized
precisely here.Wewill also prove a result for the case where adding a further statement
to the body of evidence defeats a defeater and restores the original direct inference.

A statement is a defeater just in case its negation is also a defeater. The only
exceptions are cases where the candidate statement has probability 1 or 0, given the
premise of the direct inference. This suggests an easy algorithm for generating a host of
inadmissible statements: (1) find an obvious inadmissible statement (e.g. (¬F ·¬Ac));
then (2) take its negation (e.g.¬(¬F ·¬Ac), which is logically equivalent to (F∨Ac)).
The following result establishes this claim.

Theorem 2 Defeater just when Negation-Defeater.
P[D | H · Rc · E] > 0 and P[Ac | H · Rc · E · D] �= P[Ac | H · Rc · E] if and only
if P[¬D | H · Rc · E] > 0 and P[Ac | H · Rc · E · ¬D] �= P[Ac | H · Rc · E].

It follows immediately that whenever 0 < P[D |H ·Rc ·E] < 1, we have P[Ac |H ·
Rc·E ·D] �= P[Ac|H ·Rc·E] if and only if P[Ac|H ·Rc·E ·¬D] �= P[Ac|H ·Rc·E].
It also follows immediately that disjunctions and material conditionals involving the
outcome Ac are inadmissible. From P[Ac | H · Rc · E]= r > 0 and P[¬(Ac∨F)|H ·
Rc · E] > 0, we have 0 = P[Ac | H · Rc · E · ¬(Ac ∨ F)] �= P[Ac | H · Rc · E]; so
(via the previous result) P[Ac | H · Rc · E · (Ac∨ F)] �= P[Ac | H · Rc · E]. Similarly,
from P[Ac | H · Rc · E] = r > 0 and P[¬(Ac ⊃ F) | H · Rc · E] > 0, we have
1 = P[Ac | H · Rc · E ·¬(Ac ⊃ F)] �= P[Ac | H · Rc · E]; so (via the previous result)
P[Ac | H · Rc · E · (Ac ⊃ F)] �= P[Ac | H · Rc · E]. The following theorem extends
this result by showing more precisely the degree to which P[Ac |H · Rc ·E ·(F∨ Ac)]
differs from P[Ac | H · Rc · E].
Theorem 3 Inadmissible Disjunctions.
Let r be any real number such that 0 < r < 1.
Suppose P[Ac | H · Rc · E] = r and P[(Ac ∨ F) | H · Rc · E] < 1.
Then P[F | H · Rc · E · ¬Ac] = s is well-defined for some value of s < 1, and
P[Ac | H · Rc · E · (Ac ∨ F)] = 1 / [1 + ((1 − r)/r) × s] > r .

It follows immediately that:

Corollary 4 Inadmissible Material Conditionals.
Let r be any real number such that 0 < r < 1 and suppose P[Ac | H · Rc · E] = r .

1. If P[Ac ⊃ F | H · Rc · E] < 1, then P[F | H · Rc · E · Ac] = s is well-defined
for some s < 1, and P[Ac | H · Rc · E · (Ac ⊃ F)] = 1/[1+ ((1− r)/r)/s] < r .

2. If P[¬Ac ⊃ F | H · Rc · E] < 1, then P[F | H · Rc · E · ¬Ac] = s is well-defined
for some s < 1, and P[Ac |H ·Rc ·E ·(¬Ac ⊃ F)] = 1/[1+((1−r)/r)×s] > r .

3. If P[F ⊃ Ac |H · Rc ·E] < 1, then P[F |H · Rc ·E ·¬Ac] = 1−s is well-defined
for some s < 1, and P[Ac | H · Rc · E · (F ⊃ Ac)] = 1/[1+ ((1−r)/r)× s] > r .
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This corollary characterizes additional counter-intuitive defeaters for Bayesian
direct inference. Suppose that in our craps example from Sect. 2.1 John says “If seven
comes up on the next toss, I’ll buy you dinner this evening”. Then, where r = 1/6, for
s = 0.5, P[Ac |H · Rc · E · (Ac ⊃ F)] = 1/11. Furthermore, if, believing that John is
stingy,Maria considers “John buysMaria dinner this evening”, F , to be highly unlikely
(given H · Rc · E), say s = .01, then P[Ac | H · Rc · E · (Ac ⊃ F)] = 1/501 << 1/6.
Thus, such (material) conditional claims turn out to overwhelmingly defeat the direct
inference. This is true regardless of whether Maria has any evidence that justifies her
in considering John as stingy.

In some cases a defeated direct inference may be restored by the addition of
information. Consider, for example, the case where (Ac ∨ F) is a defeater for the
direct inference to Ac, but where F is not itself a defeater. In that case, although
P[Ac |H · Rc · E · (Ac∨ F)] �= P[Ac |H · Rc · E], adding F as a premise restores the
direct inference, since P[Ac | H · Rc · E · (F ∨ Ac) · F] = P[Ac | H · Rc · E · F] =
P[Ac | H · Rc · E]. In this case the statement F is a defeater–defeater for the defeater
(Ac∨ F). An earlier (Theorem 2) showed that the negation of a defeater must also be
a defeater. So, one may well wonder whether the negation of a defeater–defeater may
also be a defeater–defeater. The following theorem shows that this never happens.
The negation of a defeater–defeater can never restore the previously defeated direct
inference.

Theorem 5 Negations of Defeater–Defeaters cannot be Defeater–Defeaters.
Suppose P[Ac | H · Rc · E · D] �= P[Ac | H · Rc · E], but for G such that 1 >

P[G |H · Rc · E ·D] > 0 we have P[Ac |H · Rc · E ·D ·G] = P[Ac |H · Rc · E]—i.e.
suppose that D defeats the direct inference P[Ac | H · Rc · E] = r but G defeats the
defeater, restoring the direct inference. Then 1 > P[¬G | H · Rc · E · D] > 0 and
P[Ac | H · Rc · E · D · ¬G] �= P[Ac | H · Rc · E]—i.e. ¬G cannot also defeat the
defeater D.

The next subsection provides an important example of a defeater–defeater.

2.3 Escape from These Troubles via Stronger Conditionals

The craps table examples presented in Sects. 2.1 and 2.2 show how easy it can be to
taint an agent’s total body of evidence with statements that defeat her direct inferences.
But perhaps our way of interpreting these examples is mistaken. For, although direct
inferences are indeed defeated by such material conditionals and biconditionals (in
which the antecedents are the target statement of the direct inference, or its negation,
Ac or ¬Ac), perhaps such defeating conditionals and biconditionals may not be so
easily introduced into an agent’s total body of evidence in such away that they function
as defeaters. If this suggestion is right, then although the formal results about material
conditional and biconditional defeaters are correct, the intuitive examples we used to
illustrate the impact of these formal results may be misleading. Properly represented,
the intuitive examples might not give rise to direct inference defeaters after all. Here
is what we have in mind.
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We first treat the case of simple conditional statements, before turning to the bicon-
ditional case. Consider John’s conditional assertion to Maria, “If seven comes up on
the next toss, I’ll buy you dinner this evening.” As usually understood, such an asser-
tion suggests a clear causal asymmetry between John’s dinner offer (i.e. “I’ll will buy
Maria dinner this evening”) and the outcome of the dice roll (i.e. “seven comes up on
the next toss”). John may wait for the outcome of the toss and may then act in such a
way that the conditional will be true. So, perhaps the representation of the example in
terms of a mere material conditional is inadequate. Perhaps the conditional involved is
more adequately represented by some stronger kind of indicative or causal conditional.
Let’s formally represent John’s assertion this way: (Ac → F), where → represents
some kind of strong, causal or indicative conditional. Then, the central issue is whether
or not P[Ac | H · Rc · E · (Ac → F)] = P[Ac | H · Rc · E] may hold for direct
inference P[Ac | H · Rc · E] = r . The following result will prove useful.

P[Ac | H · Rc · E · (Ac → F)] = P[Ac | H · Rc · E]—i.e. the direct inference
remains undefeated by (Ac → F)—whenever
P[(Ac → F) | H · Rc · Ac · E] = P[(Ac → F) | H · Rc · E]—i.e. whenever
Ac provides no evidence for (or against) (Ac → F), given (H · Rc · E).14

Arguably, in the craps-table example the claim Ac (given (H · Rc · E)) does not
provide evidence for or against a strong (causal or indicative) conditional claim of form
(Ac → F).15 Thus, our example of easy defeat for an agent’s direct inference may
be side-stepped. Supplying the agent with a convincing conditional claim involving
the target statement of her direct inference, Ac, need not defeat her direct inference
after all, unless that convincing conditional claim is merely a material conditional
claim. A truly convincing example of easy defeat via the acquisition of a knowledge
of conditional claim will have to show how the rational agent may (easily) become
convinced of the material conditional claim in cases where she is not also convinced
of the corresponding strong conditional claim.16

All of the previous points carry over fairly directly to the case of the biconditional
defeater. In this context, John’s biconditional assertion to Maria, “I’ll buy you dinner
this evening if, but only if, seven comes up on the by next toss”, clearly suggests a causal
asymmetry between John’s dinner offer and the outcome of the dice roll. So, perhaps
John’s biconditional assertion is not adequately captured by thematerial biconditional.

14 Proof: P[Ac | H · Rc · E · (Ac → F)] = P[Ac · (Ac → F) | H · Rc · E]/P[(Ac → F) | H · Rc · E] =
P[Ac | H · Rc · E] × P[(Ac → F) | H · Rc · E · Ac]/P[(Ac → F) | H · Rc · E].
15 i.e., given (H · Rc · E), but in the absence of any additional information about whether F or ¬F holds,
Ac provides no evidence for or against the strong conditional claim.
16 Notice that the stronger conditional claim ‘(Ac → F)’ should logically entail the material conditional
claim ‘(Ac ⊃ F)’. Proof: Presumably, ((Ac → F) · Ac) logically entails F ; so (Ac → F) logically entails
(Ac ⊃ F) via the deduction theorem for deductive logic. So, when the agent adds the strong conditional
claim of form ‘(Ac → F)’ to her total evidence (H ·Rc ·E), her total evidence will also contain the material
conditional claim ‘(Ac ⊃ F)’. But, although thematerial conditional claim is a defeater when on its own, its
ability to defeat the direct inference ismitigated by the presence of the strong conditional claim that logically
implies it. That is, technically, although (Ac ⊃ F) is a defeater of the direct inference from (H · Rc · E) to
Ac, the stronger claim ‘(Ac → F)’ is a defeater–defeater—adding ‘(Ac → F)’ to (H · Rc · E · (Ac ⊃ F))

restores the direct inference: P[Ac | H · Rc · E · (Ac ⊃ F) · (Ac → F)] = P[Ac | H · Rc · E · (Ac →
F)] = P[Ac | H · Rc · E].
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Perhaps it is more adequately represented by a conjunction of stronger, indicative or
causal conditional claims, as follows: ((Ac → F) · (¬Ac → ¬F)), where → again
represents some kind of strong, causal or indicative conditional. Then, the issue is
whether or not P[Ac | H · Rc · E · ((Ac → F) · (¬Ac → ¬F))] = P[Ac | H · Rc · E]
may hold, where P[Ac | H · Rc · E] = r is a direct inference. The following result
should help.

The direct inference remains undefeated by the strong biconditional—i.e.
P[Ac | H · Rc · E · ((Ac → F) · (¬Ac → ¬F))] = P[Ac | H · Rc · E]—
whenever Ac and ¬Ac each provide the same evidence for (or against)
((Ac → F) · (¬Ac → ¬F)), given (H · Rc · E)—i.e. whenever P[((Ac →
F) · (¬Ac → ¬F)) | H · Rc · E · Ac] = P[((Ac → F) · (¬Ac →
¬F)) | H · Rc · E · ¬Ac].17
Arguably, in the context of the craps-table example, the claims Ac and ¬Ac should

(given (H · Rc · E)) each provide the same amount of evidence for or against a strong
(causal or indicative) biconditional claim of form ((Ac → F) · (¬Ac → ¬F)).18

Thus, the prospect of easy defeat for an agent’s direct inference about a future chance
event, via the easy acquisition of a biconditional, may be averted. Informing the agent
with a convincing biconditional claim need not defeat her direct inference, unless
that convincing biconditional claim involves only a material biconditional, rather than
conditionals of some stronger kind.

None of this is to suggest that defeat via material conditionals and biconditionals
is unimportant to Bayesian direct inferences; only that their availability should not be
so easily acquired as the craps-table examples suggest. Furthermore, in cases where
the chance event Ac has already occurred, when the agent’s total available evidence
remains admissible for the relevant direct inference, her chance claims may continue
to guide her credence that Ac holds via the usual kind of direct inference. However,
in such cases an agent may more easily become informed of a material conditional or
biconditional statement that informationally ties Ac to another statement F .When that
happens, this additional information may well defeat her chance-based direct infer-
ence regarding the chance event Ac, as indicated by the defeater theorems presented
in this section. From a Bayesian perspective, this may sound plausible. When F and
Ac are informationally tied together by a material conditional or biconditional claim,
and that claim is added to the agent’s total evidence, then whatever credence F itself
already had will drag the credence of Ac away from its direct inference value.19 This
is true, however, even for the case where no evidence is available for or against F . In

17 Proof: Let ‘BC’ abbreviate the strong biconditional claim ‘((Ac → F) · (¬Ac → ¬F))’; let P[Ac | H ·
Rc ·E] = r , P[BC |H · Rc ·E · Ac] = s, and P[BC |H · Rc ·E ·¬Ac] = t . Then, P[Ac |H · Rc ·E ·BC] =
P[Ac ·BC |H ·Rc ·E]/P[BC |H ·Rc ·E] = s×r/P[BC |H ·Rc ·E]. Similarly, P[¬Ac |H ·Rc ·E ·BC] =
t×(1−r)/P[BC |H · Rc ·E]. Then, P[Ac |H · Rc ·E · BC] = 1/(1+ P[¬Ac |H · Rc ·E · BC]/P[Ac |H ·
Rc · E · BC]) = 1/[1 + ((1 − r)/r) × (t/s)], which equals r just when t = s.
18 i.e., given (H · Rc · E), but in the absence of any additional information about whether F or ¬F holds,
Ac should provide no more evidence for (or against) the strong biconditional claim than does ¬Ac.
19 And vice versa, the credence-based direct inference value that Ac already had will drag the credence of
F away from its previous value. The addition to the total evidence of a material conditional or a material
biconditional between Ac and F , Bayesian credences cannot hold the value of one of them fixed and only
readjust the other. That’s essentially what the theorems in this section establish.
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this case, it seems that defeat by biconditionals may be problematic. We will discuss
situations in which credences based on no evidence whatsoever lead to defeat of direct
inferences in more detail in Sect. 5.2.

3 Evidential Relevance and Admissibility

It is commonly supposed that chance hypotheses screen off “many propositions that
one can easily come to know and that would otherwise be relevant to the proposition
A under discussion.” (Schwarz 2014, p. 82). When this is so, the direct inference
from the chance hypothesis is said to be resilient.20 A high degree of resiliency for
direct inferences is crucial. Otherwise, they may be largely inapplicable, given the
total evidence available to agents. In this section we will characterize a broad class of
statements that, on logical grounds, must defeat direct inferences. Thus, to the extent
that such information is readily available to agents, direct inferences may turn out to
be rather less resilient than usually supposed.

We investigate some quite general conditions under which a statement D may
defeat direct inferences. Our results are general enough to apply to extensive chance
hypotheses—i.e. chance hypotheses (and theories) that entail chance claims for an
algebra of outcomes of initial chance states R, and may do so for any number of
distinct initial chance states. We’ll say more about the nature of extensive chance
hypotheses below.

We will characterize some classes of statements that must defeat direct inferences,
and so must be inadmissible on any account. For example, under assumptions very
commonly met, one of our main results shows that evidential support of a state-
ment D for Ac implies inadmissibility of D in direct inferences for Ac and goes like
this:

Let A1c and A2c be any two possible chance outcomes of initial state R for
chance system c, and suppose E is admissible for the direct inferences from H
to each of these two outcomes. Consider a statement D to which each of the
possible chance events (Rc · A1c) and (Rc · A2c) is directly relevant. Indeed,
suppose that each of these possible chance events is so directly relevant to D
that it overrides (or screens-off ) whatever relevance H might have to D, given
E (for credence function P). Then, provided that D is more likely according to
one of these two chance events than according to the other, given E (for P), D
must defeat either the direct inference from (H · Rc · E) to A1c or the direct
inference from (H · Rc · E) to A2c (for P). Thus, any such statement D, in
conjunction with the admissible statement E , must be inadmissible for direct
inferences from (H · Rc).

This section is mainly devoted to explicating several results of this kind.
We proceed by first characterizing extensive chance hypotheses, and generalizing

the principle of direct inference, G-DIP, to cover them. Then we identify an important

20 Skyrms (1977) introduced the notion of resiliency for chances. Some philosophers have adapted Skyrms’
idea to the Principal Principle, e.g. Schwarz (2014).
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class of statements D that turn out to defeat direct inferences from chance hypothesis
H : statements D to which some of H ’s chance outcomes are “more directly rele-
vant” than is H itself. We provide an illustrative example of such a case. Finally,
we establish two general results that show the logical inadmissibility of such state-
ments. The first result, stated informally above, provides sufficient conditions for such
statements to defeat direct inferences. The second result provides necessary and suf-
ficient conditions for such statements to defeat direct inferences, but under slightly
stricter conditions (involving partitions of chance outcomes) than supposed by the first
result.

3.1 Extensive Chance Hypotheses and Algebras of Attributes

Sophisticated chance hypotheses (or chance theories) entail chance claims for all
Boolean combinations of possible outcome attributes of an initial chance state (or
reference class) R. That is, whenever the hypothesis entails chance claims of form
ch(Ax, Rx) = r and ch(Bx, Rx) = s, it also entails chance claims of form
ch(¬Ax, Rx) = p, ch((Ax∨Bx), Rx) = q, and ch((Ax ·Bx), Rx) = t , where p, q,
r , s, t are standard terms for real numbers between 0 and 1. Thus, associated with each
chance state Rx is a Boolean algebra of outcome attributes�R for R, where, whenever
�R contains Ax and Bx , it also contains ¬Ax , (Ax ∨ Bx), and (Ax · Bx); and where
�R contains no other expressions.21 Furthermore, for each initial state (or reference
class) R treated by H , the associated chance function ch( , Rx) should satisfy the
usual axioms of probability theory for its algebra of attributes, �R .22 An extensive
chance theory of this kind will often cover a variety of distinct initial states (or refer-
ence classes) Rx , and provide chance claims for Boolean algebras of outcomes, �R ,
for each such R.

One more bit of notation will prove useful. When a particular chance system c is
in an initial chance state R, we denote the algebra of chance outcomes for event Rc
by the term ‘�R(c)’, which represents the algebra of outcome attributes for R, �R ,
applied to the individual system c. That is, when Rc holds, for each Ax in �R , there
is an associated possible outcome of Rc, Ac, in the algebra of associated outcomes
�R(c).

Throughout the remainder of this paper our treatment of chance and direct inference
will apply to the kind of extensive chance hypotheses just described. We’ll use ‘H ’
to represent chance hypotheses of this kind. Here is a generalization of the direct
inference principle that applies to direct inferences from extensive chance hypotheses.

Generalized Generic Direct Inference Principle—GG-DIP:
Let P be an appropriate classical probability function (credence function) on a
language that contains chance (or frequency) statements. Let H be any extensive

21 When chances are represented in terms of sets, rather than attribute–predicates of form ‘Ax’, the asso-
ciated collection of sets is called a field of sets.
22 Let ‘� Fx’ say that Fx has the form of a tautology. For each attribute Ax and Bx in �R : (1) 0 ≤
ch(Ax, Rx) ≤ 1; (2) if � A, then ch(Ax, Rx) = 1; (3) if � ¬(A · B), then ch((Ax ∨ Bx), Rx) =
ch(Ax, Rx) + ch(Bx, Rx). This suffices to guarantee that ch( , Rx) satisfies all the usual theorems of
probability theory.
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chance hypothesis: that is, for each initial state (or reference class) R treated
by H , for each A j in the associated Boolean algebra, �R , of possible outcome
attributes for systems in state R, H entails a chance claimof form ch(A j x, Rx) =
r j , where r j is a standard term for a real number between 0 and 1 (inclusive), and
where each chance function ch( , Rx) satisfies the usual axioms of probability
theory on �R . Then, for each outcome attribute A j in �R , for each chance
system c,

P[A jc | H · Rc · E] = r j ,

provided that E is both consistent with (H · Rc) and admissible with respect to
(H · Rc) over �R(c) (where tautologies are always considered admissible).

A statement E may defeat some of the direct inferences based on (H · Rc), while
leaving others intact. That is, we may have P[A jc |H · Rc · E] = r j for some possible
outcomes A jc, while P[Akc | H · Rc · E] �= rk for some other possible outcomes. In
that case E should count as inadmissible for the direct inferences from (H · Rc) to the
outcomes in �R(c), regardless of the fact that some of these chance outcomes happen
to be probabilistically independent of E . For, when a agent’s total body of evidence
consists of (Rc·E) and she is contemplating bets on outcomes of Rc, no proper account
of admissibility should count her total evidence as admissible for some of the possible
outcomes, but inadmissible for others—admissible for the dice coming up six, but
inadmissible for coming up nine. Any proper account of admissibility involves more
thanmere probabilistic independence. Any specific notion of admissibility is supposed
to provide a rational for probabilistic independence in direct inference contexts, and
that rational should apply to all the possible outcomes of an initial chance state Rc for
a chance system c.

At the beginning of this section we introduced the notion of resiliency for direct
inferences. The idea is that the alignment of credences with chances should not be
undermined by the addition of easily acquired information. Otherwise, the ability to
apply direct inferences becomes unstable. Resiliency is meant to capture this kind of
desired stability for direct inferences. A direct inference is highly stable provided that
nearly all of the kinds of information that might become available to an agent who is
in a position to apply that direct inference falls within its “sphere of resiliency”. It will
prove useful to specify this notion formally.

Definition 6 Resiliency Spheres.
For a credence function P , an extended chance hypothesis H , and a chance system c in
initial state R covered by chance claims in H , the resiliency sphere for direct inferences
from (H · Rc) is the collection of statements E such that, for every outcome Ac in
algebra�R(c)of outcomes for Rc (according to H ), P[Ac|H ·Rc·E] = P[Ac|H ·Rc].

Notice that a resiliency sphere surrounds not merely individual chance outcomes,
taken one at a time, but the whole algebra of outcomes of chance state Rc. A statement
E that is probabilistically independent of one outcomeof Rc, given (H ·Rc), but fails to
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be probabilistically independent of another of its outcomes, falls outside the resiliency
sphere.23

The resiliency sphere for (H ·Rc)will usually be broader than its class of admissible
statements, depending on how the notion of admissibility is specified. To see why,
notice how GG-DIP (and G-DIP) is supposed to work. Any application of GG-DIP
presupposes some concrete notion of admissibility, specified in advance of identifying
associated credence functions P . That is, a concrete notion of admissibility specifies,
for each chance statement in H and its initial state Rc (for arbitrary systems c),
exactly what statements E are to count as admissible. It will usually do so in terms
of the information carried by the chance claims in H , the information carried by
Rc and its associate chance outcomes in �R(c), and by the information carried by
statements E . This will usually involve conditions that take into account whether the
information in E is (or is not) “directly relevant” to outcomes Ac in �R(c).24 The
specification of admissibility doesn’t depend in any way on the particular credence
function considered. Rather, after a specific account of admissibility is spelled out,
GG-DIP (or G-DIP) does its work by ruling out those credence functions P that either
fail to make P[Ac | H · Rc] = r when H entails ch(Ax, Rx) = r , or that fail to make
P[Ac|H ·Rc·E] = P[Ac|H ·Rc]when E has been deemed admissible by the account
of admissibility on offer. All credence function P that are not ruled out in this way
may count as “appropriate” for some agent, provided that they satisfy whatever other
constraints are deemed proper (e.g. for Lewis they must also satisfy regularity). The
point is, for a credence function P that passes these hurdles, so succeeds in satisfying
GG-DIP, there may well be a number statements E not designated as admissible but
that still yield P[Ac | H · Rc · E] = P[Ac | H · Rc] = r for all Ac in �R(c).
Thus, the resiliency sphere of (H · Rc) for P may well contain more than the class
of admissible statements for (H · Rc) specified by a specific account of admissibility.
However, any statement E that falls outside the resiliency sphere of (H · Rc) for P
must be inadmissible for (H · Rc) according to every possible coherent account of
admissibility.

3.2 When Chance Outcomes of a Hypothesis H Override Its Relevance to a
Statement D

Typically, the relevance of a chance hypothesis H to a statement D will be overridden
by outcomes of an initial chance state Rc in the following kind of situation. Statement
D contains information about possible chance outcome Ac (and its alternatives), so
Ac is evidentially relevant to D given (Rc · E). And because hypothesis H is relevant
to chance outcome Ac, it will be relevant to (information in) D as well. But, the chance
claim ch(Ax, Rx) = r entailed by H is more directly about outcome Ac than about
D, so the relevance of H to D derives from its relevance to Ac. When that’s the case,
the information contained in outcomes Ac and ¬Ac may override what information

23 For the same reason that admissibility should work this way—see above.
24 Lewis (1980) does this in terms of the times at which events occur: if E consists entirely of propositions
about matters of particular at times before the chance outcome occurs, then it is admissible for that chance
outcome, and for all the alternative outcomes.
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H contains (about possible outcomes) that is relevant to D, given (Rc · E), because
the information Ac and ¬Ac contain is more directly tied to D than the information
contained in H . Thus:

P[D | Ac · H · Rc · E] = P[D | Ac · Rc · E] and
P[D | ¬Ac · H · Rc · E] = P[D | ¬Ac · Rc · E].

In such cases let’s say that the relevance of chance hypothesis H to statement D is
overridden by the associated chance outcomes of chance state Rc. It turns out that
whenever this condition holds and D is evidentially relevant to Ac (P[D | Ac ·H · Rc ·
E] �= P[D | Rc · E]), D (together with admissible E) must defeat the direct inference
from (H · Rc) to Ac.

Definition 7 Chance Outcomes with Overriding Relevance to D.
The relevance of chance hypothesis H to statement D is overridden by its direct
inference outcomes in �R(c) = {Aic, A jc, . . . , Akc} (which is some subset of the
algebra of outcomes �R(c) for chance state Rc), given admissible E , just in case for
each of the chance outcomes A jc in �R(c) (associated with direct inferences based
on (H · Rc), for admissible E), P[D | A jc · H · Rc · E] = P[D | A jc · Rc · E].
Here is an illustration of a case where chance outcomes {Ac,¬Ac} of a chance hypoth-
esis H are overridingly relevant to a statement D.

Let H be a theory about the chances that people who fit some particular profile R
have the attribute, “will develop Alzheimer’s disease by age 70”, attribute A. Thus,
H entails ch(Ax, Rx) = r , for some specific value r (e.g. perhaps r = .83). Suppose
that a 50 year old male named Chuck, c, fits the profile, so Rc holds. Thus, for
admissible background information E , P[Ac | H · Rc · E] = r is a perfectly good
direct inference about Chuck’s chances of developing Alzheimer’s by age 70. E may
include whatever admissible background information we may know about medical
conditions and medical testing (including brain imaging), about the chance theory H ,
about Chuck himself, etc.

We may be interested in other indications of whether Chuck will develop
Alzheimer’s by age 70, indications that are independent of the information provided
by chance theory H . Suppose that by means of an imaging technique it is possible
to detect brain plaque of the kind usually associated with Alzheimer’s. The detec-
tion of a “moderate accumulation” of this plaque (in a patient like Chuck) does not
guarantee that the patient will acquire Alzheimer’s as he ages, but it is an indica-
tion of a significantly increased risk of developing the disease. Included among the
admissible background knowledge E may be information about this technique and
its implications. Let statement Fc state the fact that Chuck undergoes the imaging
technique at age 50, and let statement D say that the image of Chuck’s brain shows
that a “moderate accumulation” of plaque is present. Presumably, absent the result
D, Fc taken together with the other information in E is admissible, so let’s suppose
that Fc is included within E . However, the result of this this procedure, D, may well
be evidentially relevant to whether or not Chuck will develop Alzheimer’s at age 70.
Suppose it indicates an increased likelihood of the onset of Alzheimer’s by age 70:
P[Ac | D · Rc · E] > P[Ac | Rc · E].
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Regardless of whatever relevance a person’s chances of developing Alzheimer’s
by age 70, H , may have to his likelihoods of exhibiting a “moderate accumulation”
of brain plaques by age 50, D, the relevance of that chance claim H to image result
D is overridden by the claim that the individual will indeed develop Alzheimer’s by
age 70, Ac. That is, the fact that a person will develop the disease, Ac, is predictive
enough about the amount of plaque build up over time that it overrides the relevance of
the chances of developing the disease (expressed by H ) to the likelihood of outcome
D from a brain scan at age 50. Thus, P[D | Ac · H · Rc · E] = P[D | Ac · Rc · E].
Similarly, the fact that a person will not develop the disease,¬Ac, is predictive enough
about the amount of plaque build up over time that it overrides the relevance of the
chances of developing the disease (expressed by H ) to the likelihood of outcome D
from a brain scan at age 50. Thus, P[D | ¬Ac · H · Rc · E] = P[D | ¬Ac · Rc · E].

Thus, in the order discussed, we have the following:

1. P[Ac | H · Rc · E] = r is a direct inference about Chuck’s chances of developing
Alzheimer’s by age 70, given he fits profile R.

2. 1 > P[Ac | D · Rc · E] > P[Ac | Rc · E] > 0: given membership in risk group
R, the fact that a person’s brain scan at age 50 shows a “moderate accumulation”
of plaque is positive evidence that the person will develop Alzheimer’s by age 70.

3. P[D | Ac · H · Rc · E] = P[D | Ac · Rc · E] and P[D | ¬Ac · H · Rc · E] =
P[D | ¬Ac · Rc · E]: relevance of the chances of developing Alzheimer’s by age
70 (according to hypothesis H ) to whether a person’s brain scan at age 50 shows a
“moderate accumulation” (statement D) is overridden by the claim that the person
will (or will not) develop Alzheimer’s by age 70 (the direct inference outcomes of
H in {Ac,¬Ac}), given admissible E .

Therefore, the claim that Chuck’s brain scan shows a “moderate accumulation”
of plaque, D, defeats the direct inference regarding Chuck’s chances, r , of devel-
oping Alzheimer’s by age 70: P[Ac | D · H · Rc · E] �= P[Ac | H · Rc · E] = r ,
for admissible E . Thus, D (in conjunction with E) must be inadmissible for this
direct inference.

Here is the relevant formal result. It shows that whenever a chance hypothesis H
satisfies the above “overridden relevance to D” condition for its outcomes {Ac,¬Ac},
given (Rc · E), statement D must defeat the direct inference from (H · Rc · E) to Ac
if and only if D is evidentially relevant to Ac, given (Rc · E).

Corollary of Theorem 9 Inadmissible Evidence for Outcomes.25

We assume throughout that P[D · H · Rc · E] > 0 (so that all the conditional proba-
bilities are well-defined).
Let P[Ac | H · Rc · E] = r for 0 < r < 0, be a direct inference for admissible E.
Suppose P[D | Ac · H · Rc · E] = P[D | Ac · Rc · E] and

P[D | ¬Ac · H · Rc · E] = P[D | ¬Ac · Rc · E].
Then, P[Ac | D · Rc · E] �= P[Ac | Rc · E]

if and only if (D · E) falls outside the resiliency sphere of (H · Rc)
(since P[Ac | D · H · Rc · E] �= P[Ac | H · Rc · E]).

25 Follows from Theorem 9 by taking �(c) = {Ac,¬Ac}.
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3.3 TheMain Results

The next two theorems provide the main formal results of this section. Each result has
two parts. Near the beginning of this section we summarized the first part of the first
theorem. Here is an interpretive account of both parts of the first theorem.

Let P be any classical probability function (or rational credence function) that
satisfies GG-DIP for the direct inferences from (H ·Rc ·E) for admissible E . Let
A1c and A2c be any two possible chance outcomes of initial state R for chance
system c. Suppose that (according to the credences represented by function P)
each of these two chance events overrides (or screens-off ) whatever relevance
H might have to D, given E (according to P):
P[D | Akc · H · Rc · E] = P[D | Akc · Rc · E] for k = 1, 2. Then:

(1) If D is more likely according to (A1c ·Rc ·E) than according to (A2c ·Rc ·E)

(as represented by P), then (D · E) must defeat one of the direct inferences
based on (H · Rc)—i.e. (D ·E) falls outside the resiliency sphere of (H · Rc)
for P .

(2) If , given (Rc · E), either A1c is positively supported by D and A2c is not
positively supported by it, or A2c is negatively supported by D and A1c is
not negatively supported by it, then (D · E) must defeat one of the direct
inferences based on (H · Rc)—i.e. (D · E) falls outside the resiliency sphere
of (H · Rc) for P .

Here is the formal statement of this result.

Theorem 8 Sufficient Condition for Inadmissible Evidence.
We assume throughout that P[D ·H · Rc · E] > 0 (so that all conditional probabilities
are well-defined).
Let A1c and A2c be any two outcomes of initial state Rc such that, for admissible E,
the following direct inferences hold:

P[Akc | H · Rc · E] = P[Akc | H · Rc] = rk, where 1 > rk > 0, for k = 1, 2.

Suppose, for k = 1, 2: P[D | Akc · H · Rc · E] = P[D | Akc · Rc · E].
It follows that:
(1) If P[D | A2c · Rc · E] �= P[D | A1c · Rc · E],

then (D · E) falls outside the resiliency sphere of (H · Rc) for P
(since either P[A1c | D · H · Rc · E] �= P[A1c | H · Rc · E]

or P[A2c | D · H · Rc · E] �= P[A2c | H · Rc · E]).
(2) If either P[A1c | D · Rc · E] > P[A1c | Rc · E] and P[A2c | D · Rc · E] ≤
P[A1c | Rc · E],

or P[A1c|D·Rc·E] ≥ P[A1c|Rc·E] and P[A2c|D·Rc·E] < P[A1c|Rc·E],
then (D · E) falls outside the resiliency sphere of (H · Rc) for P

(since either P[A1c | D · H · Rc · E] �= P[A1c | H · Rc · E]
or P[A2c | D · H · Rc · E] �= P[A2c | H · Rc · E]).

Whereas thefirst theoremapplies for any two chance outcomes of chance hypothesis
H , the next theorem relies on outcomes that form a partition. The payoff for this
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stronger supposition is a biconditional connection between support for (or by) D and
the failure of direct inferences.

The first part of this theorem shows that whenever, for each Bjc in a partition
of outcomes of Rc, the support for D by chance hypothesis H is overridden by the
support afforded to D by (Rc · Bjc), according to P , the following result holds:

D falls outside the resiliency sphere for the direct inferences based on (H ·Rc·E)

if and only if D is supported more (or less) by Bic than by Bjc, given (Rc · E),
for some Bic and Bjc in the partition.

The second part of this theorem shows that under the same conditions stated above
for the first part, the following result holds:

D falls outside the resiliency sphere for the direct inferences based on (H ·Rc·E)

if and only if Bkc is either positively or negatively supported by D, given (Rc·E),
for at least one of the Bkc in the partition.

Theorem 9 Necessary and Sufficient Condition for Inadmissible Evidence.
We assume throughout that P[D ·H · Rc · E] > 0 (so that all conditional probabilities
are well-defined).
Let �R(c) = {B1c, B2c, . . . } be some partition of outcomes of initial state Rc for
P[ | H · Rc · E] such that, for each Bkc in �R(c), the following direct inferences hold
for admissible E:

P[Bkc | H · Rc · E] = P[Bkc | H · Rc] = rk, for rk > 0.

Suppose, for each Bkc in �R(c), P[D | Bkc · H · Rc · E] = P[D | Bkc · Rc · E].
Then we have the following result:
(1) For some pair Bi c, B j c in �R(c), P[D | Bjc · Rc · E] �= P[D | Bic · Rc · E]

if and only if (D · E) falls outside the resiliency sphere of (H · Rc) for P
(since, for some Bkc in �R(c), P[Bkc | D · H · Rc · E] �= P[Bkc | H · Rc · E]).

Furthermore, when �R(c) is a partition for P[ | Rc · E], from the same suppositions
we get the following result:
(2) For some B jc in �(c), P[Bjc | D · Rc · E] �= P[Bjc | Rc · E]

if and only if (D · E) falls outside the resiliency sphere of (H · Rc) for P
(since, for some Bkc in �(c), P[Bkc | D · H · Rc · E] �= P[Bkc | H · Rc · E]).

4 “Inappropriate” Credence Functions

It should be pretty clear that, given a specific account of admissibility, not all credence
functions are “appropriate” in the way required by G-DIP and GG-DIP. Our next result
shows that the axioms of classical probability put tight constraints on precisely which
credence functions can get direct inference right. Let P be any “appropriate” initial
credence function, which gets direct inferences from (H · Rc · E) to chance outcomes
A jc right, where E is admissible. Let Q be any credence function that varies from P
by even a small shift in the non-direct inference credence for a chance outcome—i.e.,
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such that Q[A jc | Rc · E] �= P[A jc | Rc · E]. Then, provided that Q satisfies an
additional weak condition, it cannot get all the direct inferences right.

One example of the additional weak condition is that P and Q agree on the amount
of evidential support that (Rc ·Akc ·E)would provide to H , for each Akc in a partition.
Another example is where Q comes from P via certain instances of Jeffrey Condition-
alization (see Jeffrey 1990). Thus, some rather minor variants of credence functions
that satisfy GG-DIP (including some that come about via the kinematics of Jeffrey
updating) must fail to satisfy GG-DIP—they fail to count among the “appropriate”
credence functions for direct inferences.

For the sake of clarity, we first present our results for binary chance outcomes, Ac
and ¬Ac. We generalize these results in a later subsection.

4.1 Examples of “Inappropriate” Credence Functions

Consider theAlzheimer’s example described in Sect. 3. Chance hypothesis H says that
the chance of an individual in reference class R getting Alzheimer’s by age 70 is r ; Rc
says that Chuck is in reference class R; and Ac says that Chuck will get Alzheimer’s
by age 70. Suppose that Maria and John agree on the amount of evidential support
that (Rc · Ac), were it true, would supply to chance hypothesis H , given all their other
relevant evidence E (on which they completely agree): Q[H |Rc · Ac ·E] = P[H |Rc ·
Ac · E], where P is Maria’s credence function and Q is John’s credence function. And
also suppose they agree on the amount of evidential support that (Rc · ¬Ac), were
it true, would supply to chance hypothesis H , given all their other relevant evidence
E : Q[H | Rc · ¬Ac · E] = P[H | Rc · ¬Ac · E]. However, Maria is somewhat more
optimistic than John about Chuck’s future health, particularly his prospects of getting
Alzheimer’s by age 70; thus, Q[Ac | Rc · E] < P[Ac | Rc · E].

Although neither Maria nor John is confident that chance hypothesis H is true,
both want to draw the correct direct inference value, r , when H is added to their total
admissible evidence (Rc · E): P[Ac | H · Rc · E] = r and Q[Ac | H · Rc · E] = r .
However, it turns out that at least one of them must get the direct inference wrong,
since: P[Ac | H · Rc · E] �= Q[Ac | H · Rc · E]. That is, if Maria gets the direct
inference right, then John must get it wrong.

Corollary of Theorem 10 “Inappropriate” Credence Functions.
Suppose, for admissible E, P[Ac | H · Rc · E] = r > 0 is a direct inference. (We
assume P[H · Rc · Ac ·E] > 0 and P[H · Rc ·¬Ac ·E] > 0, so that all the conditional
probabilities are well-defined.)
Suppose that probability function Q is related to P in the following way (where
Q[Rc · Ac · E] > 0 and Q[Rc · ¬Ac · E] > 0):

Q[H |Rc·Ac·E] = P[H |Rc·Ac·E] and Q[H |Rc·¬Ac·E] = P[H |Rc·¬Ac·E].
Then, Q[Ac|Rc·E] �= P[Ac|Rc·E] if andonly if Q[Ac|H ·Rc·E] �= P[Ac|H ·Rc·E].
And, if Q[H | Rc · E] �= P[H | Rc · E], then Q[Ac | H · Rc · E] �= P[Ac | H · Rc · E].
Proof Follows immediately from setting �(c) = {Ac,¬Ac} in the more general
Theorem 10 below. 
�
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Jeffrey Conditionalization is the best known approach to the representation of learn-
ing based on uncertain new evidence. It deals with cases where, rather than learning by
becoming certain of new information F , the agent has an experience or an insight that
directly changes her confidence in the truth of each alternative among some range of
possibilities, {F1, F2, . . . , Fn}. Formally, when P is the agent’s initial credence func-
tion, her new information induces a new credence function Q that directly assigns new
credence values to the directly affected alternative possibilities in {F1, F2, . . . , Fn} as
follows: Q[Fi ·Fk] = 0 (they are alternative possibilities),

∑n
j=1 Q[Fj ] = 1 (they are

a complete collection of alternative possibilities). The relationship between the old cre-
dence function P and the new credence function Q is this: Q[G | Fj ] = P[G | Fj ],
for all statements G, for each Fj in {F1, F2, . . . , Fn}. That is, were the agent to
become certain of any one of the statements Fj , her new credence value, Q[G | Fj ]
should be identical to the old credence value, P[G | Fj ] (for each statement G). It
follows immediately that, for each statement G, the new credence value is given by
Q[G] = ∑n

j=1 P[G | Fj ] × Q[Fj ].26 We now consider a case where Jeffrey Condi-
tionalization (or a similar update method) induces a new credence function that must
get direct inferences wrong.

Consider once again the Alzheimer’s example from Sect. 3. As before, chance
hypothesis H says that the chance of an individual in reference class R getting
Alzheimer’s by age 70 is r ; Rc says that Chuck is in reference class R; and Ac
says that Chuck will get Alzheimer’s by age 70; statement D says that Chuck’s brain
scan at age 50 shows a “moderate accumulation” of plaque. Suppose (this time) that
Maria considers the relevance of the chance claim H to brain imaging result D be
overridden by the claim, “Chuck gets Alzheimer’s by age 70” (if added as a premise):
P[D | H · Rc · Ac · E] = P[D | Rc · Ac · E]. Similarly, suppose Maria consid-
ers the relevance of the chance claim H to brain imaging result D be overridden
by the claim, “Chuck does not get Alzheimer’s by age 70” (if added as a premise):
P[D |H ·Rc ·¬Ac ·E] = P[D |Rc ·¬Ac ·E]. Furthermore, supposeMaria isn’t privy
to the result of Chuck’s brain scan, but she overhears two technicians talking about it.
What she hears is vague (mostly tone of voice), but her impression changes her cre-
dence from P[Ac |Rc ·E] = s to Q[Ac |Rc ·E] = t > s. Maria updates her credences
via Jeffrey Conditionalization, according to (1) and (2) below. Thus, her new credence
function must get the direct inference (concerning Chuck having Alzheimer’s by age
70) wrong: Q[Ac | H · Rc · E] �= r = P[Ac | H · Rc · E], for admissible E .

Corollary of Theorem 11 “Inappropriate” Credence Functions, Extended.
Suppose, for admissible E, P[Ac|H ·Rc·E] = r > 0 is a direct inference. (We assume
P[D · H · Rc · Ac · E] > 0, P[¬D · H · Rc · Ac · E] > 0, P[D · H · Rc ·¬Ac · E] > 0,
P[¬D ·H ·Rc·¬Ac·E] > 0, so that all the conditional probabilities are well-defined.)
Suppose P[D | H · Rc · Ac · E] = P[D | Rc · Ac · E]

and P[D | H · Rc · ¬Ac · E] = P[D | Rc · ¬Ac · E].
Let probability function Q be related to P in the following way,
where 1 > Q[D | E] > 0:
(1) Q[Rc · Ac |E] = P[Rc · Ac |D ·E]×Q[D |E]+P[Rc · Ac |¬D ·E]×Q[¬D |E],
26 Substituting P[G | Fj ] = Q[G | Fj ] into the following equation, which comes from the axioms for
probability theory: Q[G] = ∑n

j=1 Q[G | Fj ] × Q[Fj ].
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Q[Rc·¬Ac|E] = P[Rc·¬Ac|D·E]×Q[D|E]+P[Rc·¬Ac|¬D·E]×Q[¬D|E],
(2) Q[H · Rc · Ac | E] = P[H · Rc · Ac | D · E] × Q[D | E] + P[H · Rc · Ac | ¬D ·
E] × Q[¬D | E],

Q[H · Rc ·¬Ac | E] = P[H · Rc ·¬Ac |D · E]×Q[D | E]+ P[H · Rc ·¬Ac |¬D ·
E] × Q[¬D | E].
Then, Q[Ac|Rc·E] �= P[Ac|Rc·E] if andonly if Q[Ac|H ·Rc·E] �= P[Ac|H ·Rc·E].
And, if Q[H | Rc · E] �= P[H | Rc · E], then Q[Ac | H · Rc · E] �= P[Ac | H · Rc · E].
Proof Follows immediately from setting�(c) = {Ac,¬Ac} and � = {D,¬D} in the
more general Theorem 11 below. 
�

Our result here fits the pattern of Jeffrey Conditionalization, but our result is more
general. For, the result itself doesn’t assume that every statement is updated via the
Jeffrey update formula; it only supposes that the update formula applies to (Rc · Ac),
(Rc · ¬Ac), (H · Rc · Ac), and (H · Rc · ¬Ac). Furthermore, the result itself says
nothing about updating, and need not be interpreted that way. Rather, the result applies
to any pair of credence functions, Q and P , whatever their origins. The result says that
for any credence function P that satisfies the initial suppositions, and for any credence
function Q related to P as specified by conditions (1) and (2), when they disagree on
the credence values for chance outcome Ac based on (Rc · E) alone, then (and only
then) at least one of them must get the direct inference wrong; so at least one of them
must be an “inappropriate” credence function according to GG-DIP.

4.2 Generalization to Algebras of Outcomes

We now state the main results of this section in a more general form. The corollaries
stated earlier follow directly from these.

Theorem 10 “Inappropriate” Credence Functions.
Let �(c) = {B1c, B2c, . . . } be a partition for P[ | Rc · E], where according to H
the members of � = {B1, B2, . . . } are chance outcome attributes for systems in state
R, and where, for admissible E, P[Bkc | H · Rc · E] = rk > 0 are direct inferences.
(We assume P[H · Rc · Bkc · E] > 0 for each Bkc in �(c), so that all the conditional
probabilities are well-defined.)
Suppose probability function Q is related to P in the following way, where Q[Rc ·
Bkc · E] > 0 for each Bkc in �(c):
(1) �(c) is a partition for Q[ | Rc · E];
(2) Q[H | Rc · Bjc · E] = P[H | Rc · Bjc · E] for each B j c in �(c).
Then, Q[Bkc | Rc · E] �= P[Bkc | Rc · E] for some Bkc in �(c) if and only if

Q[Bkc | H · Rc · E] �= P[Bkc | H · Rc · E] = rk for some Bkc in �(c).
And, if Q[H | Rc · E] �= P[H | Rc · E], then

Q[Bkc | H · Rc · E] �= P[Bkc | H · Rc · E] = rk for some Bkc in �(c).

The next theorem applies to all cases where probability function Q comes from
function P via Jeffrey Conditionalization, but it applies to lots of other Q functions as
well. Conditions (3.1) and (3.2) of the theorem only require the weaker claim that the
Q[ | E] values for expressions (Rc · Bjc) and (H · Rc · Bjc) (for each Bjc in �(c))
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are related to their P[ |E] values by Jeffrey’s formula on partition � = {D1, D2, . . . }.
Full Jeffrey Conditionalizationwould require the stronger claim that the Q[ |E] values
for all expressions are related to their P[ | E] values via Jeffrey’s formula on partition
� = {D1, D2, . . . }. When full Jeffrey Conditionalization applies, the supposition that
�(c) is a partition for Q[ |Rc ·E] (supposition (2)) is derivable from Jeffrey’s formula,
since �(c) is a partition for P[ | Rc · E].

Theorem 11 “Inappropriate” Credence Functions, Extended.
Let �(c) = {B1c, B2c, . . . } be a partition for P[ | Rc · E], where according to H
the members of � = {B1, B2, . . . } are chance outcome attributes for systems in state
R, and where, for admissible E, P[Bkc | H · Rc · E] = rk > 0 are direct inferences.
(We assume P[H · Rc · Bkc · E] > 0 for each Bkc in �(c), so that all the conditional
probabilities are well-defined.)
Suppose probability function Q is related to P in the following way, where Q[Rc ·
Bkc · E] > 0 for each Bkc in �(c), and where � = {D1, D2, . . . } is a partition for
Q[ | E], with each Q[Di | E] > 0:
(1) P[Di | H · Rc · Bjc · E] = P[Di | Rc · Bjc · E]

for each B j c in �(c) and Di in �;
(2) �(c) is a partition for Q[ | Rc · E];
(3.1) Q[Rc · Bjc | E] = ∑

Di ∈� P[Rc · Bjc | Di · E] × Q[Di | E],
for each B j c in �(c);

(3.2) Q[H · Rc · Bjc | E] = ∑
Di ∈� P[H · Rc · Bjc | Di · E] × Q[Di | E],

for each B j c in �(c).
Then, Q[Bkc | Rc · E] �= P[Bkc | Rc · E] for some Bkc in �(c) if and only if

Q[Bkc | H · Rc · E] �= P[Bkc | H · Rc · E] = rk for some Bkc in �(c).
And, if Q[H | Rc · E] �= P[H | Rc · E], then

Q[Bkc | H · Rc · E] �= P[Bkc | H · Rc · E] = rk for some Bkc in �(c).

5 Reference Class Problems

Accounts of direct inference, Bayesian or not, often encounter troubles in dealing
with overlapping reference classes or initial chance states. Lots of ink has been spilt
trying to sort out these problems.27 In this section we raise some troubles for Bayesian
accounts. We focus on issues that arise when the object language notion, ch, is some
kind of objective chance. (Frequency accounts have distinct troubles of there own.)
We will suggest some ways a Bayesian account may deal with these troubles.

5.1 Defeat by Outcome Attributes

Consider the case where an extensive chance hypothesis H entails chances for at least
two distinct outcome attributes, Ax and Bx , for initial state R—i.e. Ax and Bx are
members of the algebra of outcome attributes �R . Then it will usually be the case that

27 For instance, Kyburg’s account is plagued by reference class troubles. (See Harper (1981)).
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possible outcome Bc for system c defeats the direct inference from (H · Rc · E) to
outcome Ac, for admissible E :28

P[Ac | H · Rc · Bc · E] �= P[Ac | H · Rc · E] = r .

Defeat of this kind turns out to be easy to finesse. Indeed,when H is an extensive chance
hypothesis, as defined earlier, defeat of this kind turns into a direct inference success.
For, whenever an extensive chance hypothesis H entails ch(Ax, Rx) = r , and Bx is
a chance attribute for Rx according to H , then H must also entail ch(Bx, Rx) = s
and ch(Ax · Bx, Rx) = t , where s and t are standard terms for real numbers. Thus,
for admissible E , the following two direct inferences result:

P[Bc | H · Rc · E] = s and P[Ac · Bc | H · Rc · E] = t .

So, although Bc defeats the simple direct inference to Ac, we still obtain the direct
inference we should want, but we get it via the following “complex direct inference”:

P[Ac | H · Rc · Bc · E] = P[Ac · Bc | H · Rc · E]/P[Bc | H · Rc · E] = t/s.

This is exactly the value we should want for P[Ac |H · Rc · Bc · E]. And we’ve got-
ten it without complicating the account of chance by taking on a notion of conditional
chance. That is, when Bx is an outcome attribute for Rx , the Bayesian machinery
yields the desired direct inference value for Ax without needing to draw on chance
expressions of form ch(Ax, Rx · Bx) = q.29 This approach avoids drawing on the
notion of conditional chance, and the attendant difficulties identified by Humphreys
(1985). It also benefits by not requiring the account of chance tomake sense of expres-
sions that conditionalize on outcome attributes: when Bx is an outcome attribute for
Rx , what does an expression of form ch(Ax, Rx · Bx) = q say?30

One more point before moving on. The treatment described above works well for
extensive chance hypotheses. But what about cases where H is not extensive, say,
where H only entails one of ch(Bx, Rx) = s or ch(Ax · Bx, Rx) = t . In that case,
although Bc should defeat the direct inference to Ac,

P[Ac | H · Rc · Bc · E] �= P[Ac | H · Rc · E] = r

The Bayesian direct inference approach doesn’t produce a chance-based value for
P[Ac | H · Rc · Bc · E]. Is this a problem for the Bayesian account?

By Bayesian lights, not at all. The incomplete, non-extensive chance hypothesis
cannot supply the desired direct inference, but this is just as it should be! First, recall
that the present account of direct inference doesn’t suppose that the agent is certain of

28 A direct inference from (H · Rc ·Bc ·E) to Ac is applicable when Bc is part of the agent’s total evidence,
(Rc · Bc · E).
29 Where, in the previous example q = t/s.
30 Presumably this expression makes some sort of future-possible conditional claim. It says something like
this: “the chance that a system in initial chance state Rx , if it comes to acquire outcome attribute Bx , will
also come to acquire outcome attribute Ax , is q”.
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the chance hypothesis involved. Application of the Bayesian direct inference principle
(GG-DIP or G-DIP) only supposes that the agent’s total evidence is expressed by
(Rc · E), or by (Rc · Bc · E) in this case, and contemplates the appropriate credence
value when a chance hypothesis is added (as an additional premise) to this evidence.
It does not suppose that the agent’s total evidence contains the chance hypotheses on
which the direct inferences depend. The main issue for the theory of direct inference is
to determine the conditions under which the addition of a chance hypothesis (however
well confirmed) to an agent’s total evidence specifies appropriate direct inferences to
possible outcomes. In this regard, the direct inference principle does not privilege any
one chance hypothesis over another.

So, one plausible Bayesian line goes like this. It is not at all surprising that an
incomplete chance hypothesis may fail to produce a direct inference when it fails to
specify appropriate chance claims. The failure of the Bayesian account to produce
direct inferences in such cases is not a fault of the account. Indeed, when hypothesis
H doesn’t include the chance claim ch(Ax, Rx) = r , it is no fault of the Bayesian
account that it fails to produce the direct inference P[Ac | H · Rc · E] = r . Similarly,
when an incomplete chance hypothesis H fails to supply one of the chance claims
ch(Bx, Rx) = s or ch(Ax · Bx, Rx) = t , it is no fault of the Bayesian account that it
fails to produce one of the direct inferences P[Bc|H ·Rc·E] = s or P[Ac·Bc|H ·Rc·
E] = t , and so fails to produce the appropriate direct inference P[Ac|H ·Rc·Bc·E] =
t/s. In such a case, amorefilled-out extensionof H hypothesizes specific chancevalues
for ch(Bx, Rx) and ch(Ax · Bx, Rx), and can thereby supply the appropriate direct
inferences. If an agent lacks confidence in any of the filled-out extensions of H , then
she simply needs to acquire more evidence for (or against) them, in the usual Bayesian
way.

5.2 Competing Chance Claims

We now turn to cases where two chance claims may compete for direct inference
priority. This can only happen when two chance claims about the same outcome
attribute have “overlapping reference classes”—i.e. when some chance systems can
be in two distinct initial chance states, R and S, at the same time, and where both
initial chance states provide chances for the same outcome attribute, A. Bayesian
direct inference runs into some trouble in trying to accommodate this situation. We’ll
suggest some ways that the Bayesian account may deal with these troubles.

Let P[Ac | ch(Ax, Rx) = r · Rc · E] = r be a perfectly good direct inference
(for admissible E). Then, presumably, P[Ac | ch(Ax, Rx) = r · Rc · ch(Ax, Sx) =
s · E] = r , where s �= r , should also be a perfectly good direct inference. The
addition of some chance claim ch(Ax, Sx) = s should not be problematic for such
straightforward direct inferences. Otherwise, extended chance hypotheses, involving
multiple chance claims, would be unable to ground direct inferences. Now, the usual
way to raise “multiple reference class problems” for direct inference goes like this.
Suppose we add Sc as a premise to this direct inference. This clearly must defeat the
direct inference, since we have two equally good but incompatible direct inferences:
P[Ac | ch(Ax, Rx) = r · Rc · ch(Ax, Sx) = s · Sc · E] = r �= s =
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P[Ac | ch(Ax, Rx) = r · Rc · ch(Ax, Sx) = s · Sc · E]. Thus, we must have
P[Ac | ch(Ax, Rx) = r · Rc · ch(Ax, Sx) = s · Sc · E] �= r (or �= s).31

What happens when ¬Sc, instead of Sc, is added as a premise? Since Sc
defeats the direct inference, it’s negation must also defeat it (see Theorem 2), so:
P[Ac | ch(Ax, Rx) = r · Rc · ch(Ax, Sx) = s · ¬Sc · E] �= r .

Now, on the usual story, this kind of defeat may be averted when state Sx is a
sub-state of Rx—when every possible system in state Sx must also be in state Rx . We
may express this as ∀x(Sx ⊃ Rx) if the quantifier is taken to range over all possible
systems, or modally as �∀x(Sx ⊃ Rx) when the quantifier is more restricted. The
sub-state claim can then be expressed by adding this statement to the premise of the
the direct inference. However, for our purposes the same idea can be expressed by
replacing the chance claim ch(Ax, Sx) = s in the above example with the claim
ch(Ax, Rx · Sx) = s. With this replacement, the following should be a perfectly good
direct inference: P[Ac | ch(Ax, Rx) = r · Rc · ch(Ax, Rx · Sx) = s · Sc · E] = s.32

That’s the usual idea. But it presents problems in a Bayesian context. Here is why.
Let H be (ch(Ax, Rx) = r ·ch(Ax, Rx ·Sx) = s). Let’s suppose (as seems reasonable)
that s can be quite far away from r .33 Consider the following equation, which follows
from the axioms of probability theory, assuming that 0 < P[H · Rc · Sc · E] < 1 and
0 < P[H · Rc · ¬Sc · E] < 1:

r = P[Ac | H · Rc · E]
= P[Ac | H · Rc · Sc · E] × P[Sc | H · Rc · E] + P[Ac | H · Rc · ¬Sc · E]

× (1 − P[Sc | H · Rc · E])
= s × P[Sc | H · Rc · E] + P[Ac | H · Rc · ¬Sc · E]

× (1 − P[Sc | H · Rc · E]),

provided that (Rc · E) and (Rc · Sc · E), respectively, are admissible for the two
direct inferences P[Ac | H · Rc · E] = r and P[Ac | H · Rc · Sc · E] = s.
However, in the normal course of events an agent’s total evidence may push the value
of her credence, P[Sc | H · Rc · E], close to 1. When that happens, the value
of P[Ac | H · Rc · E] must approach s.34 This contradicts the supposition that
P[Ac | ch(Ax, Rx) = r · Rc · ch(Ax, Rx · Sx) = s · E] equals r , the value the direct
inference should apparently have.

Notice that this analysis doesn’t really depend onwhether E itself provides evidence
for or against Sc. Even in cases where the evidence E says nothing about Sc, the value
an agent assigns to P[Sc | H · Rc · E] (perhaps only due to her gut feeling) may force

31 The credence value might happen to be r or s, but not due to direct inference. If the credence value is
r , then the following argument should be run with Rc and Sc exchanged throughout. So, without loss, we
assume the credence value is not equal to r .
32 ¬S must still be a defeater: P[Ac | ch(Ax, Rx) = r · Rc · ch(Ax, Rx · Sx) = s · ¬Sc · E] �= r .
33 In that case, the value of P[Ac | H · Rc · ¬Sc · E] must also be quite far away from r , provided that r
is not too close to 0 or 1.
34 Similarly, total evidence may push the value of her credence, P[Sc | H · Rc · E], close to 0. In that case
the value of P[Ac | H · Rc · E] must approach the value of P[Ac | H · Rc · ¬Sc · E], which we already
saw, cannot equal r .
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her credence value for Ac to significantly depart from the direct inference value based
on ch(Ax, Rx) = r .

One Bayesian response to this problem is to restrict the agent’s possible credence
values for Sc so as not to permit the defeat of the direct inference unless E contains
explicit evidence for or against Sc. Direct inference restricts other credence values,
including the value for Sc. That should not be at all surprising. Any axiom or constraint
added to the usual axioms for conditional probabilities is bound to result in the prop-
agation of constrains on credence values throughout the system. Given the way that
the credence value for Sc depends on the recommended direct inference value for Ac,
one may simply maintain that the direct inference rule provides a kind of objectivist
Bayesian constraint on what credence values Sc may take.35

However, Bayesians are also free to reject this kind of constraint on credence values
for Sc, provided they can find some other way to accommodate the above analysis.
For instance, they may adopt a more straightforward response to this problem: simply
void (or invalidate) the direct inference P[Ac | H · Rc · E] = r in all cases where H
contains a chance claim, ch(Ax, Rx · Sx) = s, based on a more specific initial chance
state than Rx . This may be a more coherent view than the “objectivist” approach
described above. For, clearly in some cases the credence for Sc may be near 1 based
on good evidence, stated within E . In such cases the agent’s credence for Ac should
be close to s rather than r . But then, precisely how much evidence, and of what kind,
must occur within E to warrant a value of P[Sc | H · Rc · E] that can break the direct
inference based on ch(Ax, Rx) = r? Rather than try to parse this tricky issue (which
may have no clear solution), it may make better sense to simply let the presence of the
more specific chance claim override the weaker chance claim, as the above analysis
seemed to initially suggest.

One of the authors (Wallmann) takes the overall thrust of this analysis to show that
Bayesian direct inference cannot work properly—that it should be rejected in favor of
somemore lenient, more intuitively plausible account of direct inference. The idea that
a direct inference based on (ch(Ax, Rx) = r · Rc) should be defeated simply by the
presence of some additional chance claim that draws on a more specific chance state,
ch(Ax, Rx · Sx) = s, absent an assertion of the applicability of that chance claim,
(Rc · Sc), just seems too implausible. The other author finds the above Bayesian
response both acceptable and reasonable, although he finds it somewhat surprising
that the Bayesian account of direct inference leads to this view.

A further move in the spirit of the “straightforward approach” suggested above is
a Bayesian approach that rules out the very possibility of overlapping initial chance-

35 Here is one reason a Bayesian may want to reject this particular “objectivist” approach. Suppose that
along with ch(Ax, Rx) = r , H contains both ch(Ax, Rx · Sx) = s and ch(Ax, Rx · ¬Sx) = t . Then the
objectivist commitment to P[Ac | H ·Rc ·E] = r implies that the credence value for Sc is fixed once and for
all. For, it follows from the direct inferences with values r , s, and t , that P[Sc | H · Rc ·E] = (r− t)/(s− t).
So, no amount of evidence E can change this value for P[Sc | H · Rc · E], unless E breaks one of the
direct inferences by being inadmissible for it.

123

984



Admissibility Troubles for Bayesian Direct Inference Principles

states that have outcome attributes in common.36 This chance-state overlap restriction
has an important precedent. Our best indeterministic scientific theory, quantum theory,
does not draw on overlapping initial quantum states. Each quantum system is in pre-
cisely one basic quantum state at any given time, and that state completely accounts
for chances of quantum outcomes (upon system collapse, or upon “measurement”).
To make good on this view, we need an account of how the usual kinds of chance
models of macro-systems can be accommodated within the Bayesian direct inference
framework without drawing on overlapping initial states that have outcome attributes
in common.

When a chance hypothesis asserts that the chance of Ax (dying by age 75) for
systems in chance state Rx (male in good health at age 50), the applicability of the
chance claim, ch(Ax, Rx) = r , is of little import if it fails to account for impor-
tant risk factors. For instance, if it hasn’t taken into account whether (and how
much) an individual smokes, Sx , then it doesn’t tell you much of anything about
anyone’s individual chances. So, perhaps ch(Ax, Rx · Sx) = s is the more rele-
vant chance claim for Chuck. And if state Sx is relevant, so is state ¬Sx , which
yields some chance claim ch(Ax, Rx · ¬Sx) = t . Indeed, the amount an individual
smokes is relevant, so instead of Sx and¬Sx , perhaps a range of alternatives, describ-
ing amount smoked, and for how many years, is in order: ch(Ax, Rx · S j x) = s j
for a range of categories S j x . So, supposing Chuck is a 50 year old male in good
health who has never smoked, does ch(Ax, Rx · S0x) = s0 capture his chances of
dying by age 75? How much does Chuck drink? Is he engaged in a particularly haz-
ardous occupation? The point is that Chuck’s chances depend on the most specific
relevant chance state to which he belongs, according to the most specific, accurate
chance hypothesis we can develop (and evidentially support) about people in vari-
ous initial states of health. Anything less is at best an approximation of Chuck’s real
chances.37

A Bayesian approach that excludes overlapping initial chance states will need to
draw on hypotheses about approximate chance models, where these chance models
rely onmost basic initial chance states—chance states that aremost basic according to
the model. Associated with any given chance model is a chance hypothesis that asserts
that the model fits the real world to some specified degree of approximation. Fitting
the world means capturing the most significant causal factors and their associated
chances for producing various kinds of outcomes. Evidence for such hypotheses con-
firms those that do the best job of capturing the most significant causal factors. Such
approximations of chance mechanisms is the best we can hope for within the special
sciences. So, the fact that a Bayesian approach to direct inference needs to draw on
hypotheses about chancemodels for macroscopic systems (and the basic initial chance

36 A Bayesian account of objective chance relies on a collection of axioms for the theory of chance. All
credence functions “appropriate” for direct inference should give these axioms credence value 1. These
include axioms that make the function ch( , Rx), for each initial state R, satisfy the axioms of probability
theory, as described in an earlier footnote. One way to get the theory of chance to rule out overlapping
initial chance states is to add the following axiom schema: (∃uch(Ax, Rx) = u · ∃vch(Ax, Sx) = v) ⊃
¬∃x(Rx · Sx), where u and v are variables restricted to real numbers, and where ∃uch(Ax, Rx) = u is a
way to express the claim that Rx is an initial chance state (for at least one attribute Ax).
37 Fetzer (1982), for instance, argues for a view that relativizes single-case chances to all causally relevant
factors.
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states posited by such models) is no defect. Any theory of direct inference, Bayesian
or not, will need to accommodate hypotheses about approximate chance models, since
that’s the best the special sciences can offer. And each such model will have chance
states that are most basic for that model.

6 Conclusion

In this paper we’ve identified a variety of different kinds statements that are logically
inadmissible for Bayesian direct inference. Such statements must defeat direct infer-
ences on any coherent Bayesian account. In particular, whenever such information is
available to the Bayesian agent, it supplies credence values for chance outcomes that
significantly depart from the fair betting odds represented by objective chance state-
ments. One of the authors (Wallmann) finds these results so counter-intuitive that he
advocates giving up Bayesian direct inference.38 He favors some alternative account
on which direct inferences remain intact when faced with such information. The other
author thinks that whenever an agent is in possession of such information, those devia-
tions from objective chance values required by the Bayesian account make good sense.
We agree that the Bayesian account places severe constraints on the theory of chance.
Whether the costs imposed by these constraints are paid for by the avowed Bayesian
benefits remains unresolved, for now.

Acknowledgements Open access funding provided by University of Applied Sciences Upper Austria. We
want to thank Jon Williamson for his stimulating, insightful and very supportive discussions on various
versions of the manuscript. We also want to thank Jan Willem Romeijn for valuable feedback on earlier
drafts of this paper. We also want to thank Richard Pettigrew, Gregory Wheeler and Mike Titelbaum for
very stimulating discussions. Finally, we thank two anonymous reviewers for their very helpful and detailed
comments.

Funding Christian Wallmann is grateful to Arts and Humanities Research Council (AHRC) for support-
ing this research as a part of the Project Evaluating Evidence in Medicine (AH/M005917/1). Christian
Wallmann was also supported by the Federal Ministry of Science, Research and Economy of the Republic
Austria (BMWFW) in cooperation with the Austrian Agency for International Mobility and Cooperation
in Education, Science and Research (OeAD-GmbH) (Grant: Marietta Blau).

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 Interna-
tional License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
and reproduction in any medium, provided you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license, and indicate if changes were made.

38 Other authors have been claiming that Bayesianism and direct inference may be incompatible (Kyburg
1977; Thorn 2014). However, these authors argue that it is the updating rule Bayesian Conditionalisation
that is problematic for direct inference. The troubles start already with the axioms of conditional probability,
however—no particular rule of updating is needed as explained in the Introduction.

123

986

http://creativecommons.org/licenses/by/4.0/


Admissibility Troubles for Bayesian Direct Inference Principles

7 Appendix

Proof of Theorem 1

Proof Suppose P[Ac | H · Rc · E] = r and 1 > P[(F ≡ Ac) | H · Rc · E] > 0.
Then P[Ac | H · Rc · E] = r > 0, so P[F | H · Rc · E · Ac] =
P[F · Ac |H · Rc ·E]/P[Ac |H · Rc ·E] is well-defined—let it have value s. Similarly,
P[¬Ac | H · Rc · E] = 1 − r > 0, so P[¬F | H · Rc · E · ¬Ac] =
P[¬F · ¬Ac | H · Rc · E]/P[¬Ac | H · Rc · E] is well-defined—let it have value t .
Notice that P[(F ≡ Ac) | H · Rc · E] = P[(F · Ac) ∨ (¬F · ¬Ac) | H · Rc · E] =
P[(F · Ac) | H · Rc · E] + P[(¬F · ¬Ac) | H · Rc · E] =
P[F |H ·Rc·E ·Ac]×P[Ac|H ·Rc·E]+ P[¬F |H ·Rc·E ·¬Ac]×P[¬Ac|H ·Rc·E] =
s× r + t × (1− r); so P[(F ≡ Ac) | H · Rc · E] = s× r + t × (1− r). Now, if both
s = 0 and t = 0, then 0 = P[(F ≡ Ac) | H · Rc · E] > 0, contradiction; and if both
s = 1 and t = 1, then 1 = P[(F ≡ Ac) | H · Rc · E] < 1, contradiction; so, either
s > 0 or t > 0, and either s < 1 or t < 1. Then, P[Ac | H · Rc · E · (F ≡ Ac)] =
P[Ac · (F ≡ Ac) | H · Rc · E]/P[(F ≡ Ac) | H · Rc · E] =
P[Ac · F | H · Rc · E]/[s × r + t × (1 − r)] =
P[F |H ·Rc·E ·A]×P[Ac|H ·Rc·E]/[s×r + t×(1−r)] = (s×r)/[s×r + t×(1−r)].
By supposition, r > 0; and notice that (since either s > 0 or t > 0 and either s < 1
or t < 1) we have: s = t iff 0 < s = t < 1. Then,
(r×s)/[r×s + (1−r)× t] = r iff s = [r×s + (1−r)× t] iff s−r×s = (1−r)× t
iff (1− r)× s = (1− r)× t iff s = t . Similarly, (r × s)/[r × s + (1− r)× t] > r iff
s > t . Similarly, (r × s)/[r × s + (1− r) × t] < r iff s < t . That covers everything
but the final claim.
Now suppose, in addition, that P[Ac | H · Rc · E · F] = P[Ac | H · Rc · E]. Then,
s = P[F | H · Rc · E · Ac] = P[F · Ac | H · Rc · E]/P[Ac | H · Rc · E] =
P[Ac | H · Rc · E · F] × P[F | H · Rc · E]/P[Ac | H · Rc · E] = P[F | H · Rc · E]
(since P[Ac | H · Rc · E · F] = P[Ac | H · Rc · E] > 0); thus P[F | H · Rc · E] = s.
Similarly, t = P[¬F | H · Rc · E · ¬Ac] = 1 − P[F | H · Rc · E · ¬Ac] =
1 − (P[F · ¬Ac | H · Rc · E]/P[¬Ac | H · Rc · E]) =
1 − (P[¬Ac | H · Rc · E · F] × P[F | H · Rc · E]/P[¬Ac | H · Rc · E]) = 1 −
P[F | H · Rc · E] = P[¬F | H · Rc · E] (since P[¬Ac | H · Rc · E · F] = 1 −
P[Ac | H · Rc · E · F] = 1 − P[Ac | H · Rc · E] = P[¬Ac | H · Rc · E]); thus
t = P[¬F | H · Rc · E] = 1 − P[F | H · Rc · E] = 1 − s. Then, given what we’ve
already established above, P[Ac | H · Rc · E · (F ≡ A)] = r if and only if s = t
if and only if s = 1 − s if and only if s + s = 1 if and only if s = 1/2 if and only if
P[F | H · Rc · E] = 1/2. 
�

Proof of Theorem 2

Proof We show the left to right direction of the biconditional. The proof of the other
direction is similar, but with the ‘¬D’ interchanged with ‘D’.
Suppose throughout that P[D | H · Rc · E] > 0 and
P[Ac | H · Rc · E · D] �= P[Ac | H · Rc · E].
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To establish that P[¬D |H ·Rc·E] > 0, suppose (for reductio) P[¬D |H ·Rc·E] = 0.
Then P[D |H ·Rc ·E] = 1 and 0 = P[¬D |H ·Rc ·E] ≥ P[Ac ·¬D |H ·Rc ·E] ≥ 0,
so P[Ac ·¬D |H ·Rc ·E] = 0; then P[Ac |H ·Rc ·E] = P[Ac ·D |H ·Rc ·E]+P[Ac ·
¬D |H · Rc ·E] = P[Ac ·D |H · Rc ·E] = P[Ac ·D |H · Rc ·E]/P[D |H · Rc ·E] =
P[Ac | H · Rc · E · D]—contradiction!
Thus, P[¬D | H · Rc · E] > 0.
In addition, P[D | H · Rc · E] = 1 − P[¬D | H · Rc · E] < 1. So we have 0 <

P[D | H · Rc · E] < 1; then also, 0 < P[¬D | H · Rc · E] < 1.
To establish that P[Ac | H · Rc · E · ¬D] �= P[Ac | H · Rc · E], suppose (for
reductio) P[Ac | H · Rc · E · ¬D] = P[Ac | H · Rc · E]. Then P[Ac | H · Rc · E] =
P[Ac|H ·Rc·E ·D]×P[D |H ·Rc·E]+P[Ac|H ·Rc·E ·¬D]×P[¬D |H ·Rc·E] =
P[Ac|H ·Rc·E ·D]×(1−P[¬D|H ·Rc·E])+P[Ac|H ·Rc·E]×P[¬D|H ·Rc·E] =
P[Ac |H ·Rc ·E ·D]+(P[Ac |H ·Rc ·E]−P[Ac |H ·Rc ·E ·D])×P[¬D |H ·Rc ·E];
so P[Ac | H · Rc · E] − P[Ac | H · Rc · E · D] = (P[Ac | H · Rc · E] − P[Ac | H ·
Rc · E · D]) × P[¬D | H · Rc · E]; then, because 0 < P[¬D | H · Rc · E] < 1, we
must have
P[Ac | H · Rc · E] − P[Ac | H · Rc · E · D] = 0; thus P[Ac | H · Rc · E] =
P[Ac|H ·Rc·E ·D]—contradiction! Thus, P[Ac|H ·Rc·E ·¬D] �= P[Ac|H ·Rc·E].


�

Proof of Theorem 3

Proof Suppose P[Ac|H ·Rc ·E] = r , for 0 < r < 1, and P[(F∨Ac)|H ·Rc ·E] < 1.
Then P[¬Ac | H · Rc · E] = 1 − r > 0, so P[F | H · Rc · E · ¬Ac] =
P[F ·¬Ac |H · Rc · E]/P[¬Ac |H · Rc · E] is well-defined—let it have some value s.
Notice that P[(F∨Ac)|H ·Rc ·E] = P[(F ·¬Ac)∨Ac |H ·Rc ·E] = P[F ·¬Ac |H ·
Rc · E]+ P[Ac | H · Rc · E] = P[F | H · Rc · E · ¬Ac]× P[¬Ac | H · Rc · E]+ r =
s × (1− r)+ r ; so P[(F ∨ Ac) | H · Rc · E] = s × (1− r)+ r . Now, if s = 1 we have
s×(1−r)+r = 1 = P[(F∨Ac)|H ·Rc·E] < 1, contradiction; sowemust have s < 1.
Then, P[Ac|H ·Rc·E ·(F∨Ac)] = P[Ac·(F∨Ac)|H ·Rc·E]/P[F∨Ac|H ·Rc·E]
= P[Ac | H · Rc · E]/[s × (1 − r) + r ] = r/[r + (1 − r) × s] > r (i.e. since s < 1,
we must have [r + (1 − r) × s] < 1). 
�

Proof of Corollary 4

Proof Part 1 and Part 2 follow by substituting logical equivalences into Theorem 3.
For Part 3, observe that P[(Ac ⊃ F) |H · Rc ·E] = P[(Ac∧F)∨¬Ac |H · Rc ·E] =
P[F · Ac | H · Rc · E] + P[¬Ac | H · Rc · E]; The rest of the proof is then similar to
the proof of Theorem 3. 
�

Proof of Theorem 5

Proof Suppose 1 > P[G | H · Rc · E · D] > 0 and P[Ac | H · Rc · E · D] �=
P[Ac | H · Rc · E] = P[Ac | H · Rc · E · D · G].
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Clearly, 1 > P[¬G | H · Rc · E · D] > 0.
To establish that P[Ac | H · Rc · E · D · ¬G] �= P[Ac | H · Rc · E], suppose (for
reductio) that P[Ac | H · Rc · E · D · ¬G] = P[Ac | H · Rc · E].
Then P[Ac |H · Rc ·E ·D] = P[Ac ·G |H · Rc ·E ·D]+ P[Ac ·¬G |H · Rc ·E ·D] =
P[Ac | H · Rc · E · D · G] × P[G | H · Rc · E · D] + P[Ac | H · Rc · E · D · ¬G] ×
P[¬G | H · Rc · E · D] =
P[Ac |H ·Rc ·E]×P[G |H ·Rc ·E ·D])+P[Ac |H ·Rc ·E]×P[¬G |H ·Rc ·E ·D] =
P[Ac |H ·Rc ·E]×(P[G |H ·Rc ·E ·D]+P[¬G |H ·Rc ·E ·D] = P[Ac |H ·Rc ·E]).
So, P[Ac | H · Rc · E · D] = P[Ac | H · Rc · E]—contradiction!
Thus, P[Ac | H · Rc · E · D · ¬G] �= P[Ac | H · Rc · E]. 
�

Proof of Theorem 8

Proof Assume all the antecedent conditions for the theorem.
(1) Suppose that P[D | A2c · Rc · E] �= P[D | A1c · Rc · E]. Then P[D | A2c ·
H · Rc · E] �= P[D | A1c · H · Rc · E]; so, P[D | A2c · H · Rc · E]/P[D | H ·
Rc · E] �= P[D | A1c · H · Rc · E]/P[D | H · Rc · E]. Then P[A2c | H · Rc ·
E · D]/P[A2c | H · Rc · E] �= P[A2c | H · Rc · E · D]/P[A2c | H · Rc · E] (since
P[Akc |H ·Rc ·E ·D] = P[D |Akc ·H ·Rc ·E]×P[Akc |H ·Rc ·E]/P[D |H ·Rc ·E],
by Bayes’ theorem). Thus, either P[A2c | H · Rc · E · D] �= P[A2c | H · Rc · E] or
P[A2c | H · Rc · E · D] �= P[A2c | H · Rc · E].
(2) Suppose P[A1c|D ·Rc·E] > P[A1c|Rc·E] and P[A2c|D ·Rc·E] ≤ P[A1c|Rc·
E]. Then P[D | A1c · Rc ·E] > P[D | Rc ·E] and P[D | Rc ·E] > P[D | A2c · Rc ·E];
so P[D | A1c · Rc · E] > P[D | A2c · Rc · E]. It follows from part (1) that either
P[A2c|H ·Rc·E ·D] �= P[A2c|H ·Rc·E]or P[A2c|H ·Rc·E ·D] �= P[A2c|H ·Rc·E].


�

Proof of Theorem 9

Proof Assume the antecedent conditions for the theorem. Notice that �(c) must also
be a partition for P[ | H · Rc · E · D].39
We show:
[1] if , for some pair Bic, Bjc in �(c), P[D | Bjc · Rc · E] �= P[D | Bic · Rc · E]

then, for some Bkc in �(c), P[Bkc | H · Rc · E · D] �= P[Bkc | H · Rc · E].
[2] if , for some Bkc in �(c), P[Bkc | H · Rc · E · D] �= P[Bkc | H · Rc · E]

then, for some pair Bic, Bjc in �(c), P[D | Bjc · Rc · E] �= P[D | Bic · Rc · E].
The theorem’s first biconditional claim follows immediately from [1] and [2].
[1] This follows immediately from Theorem 8.
[2] We prove the contrapositive: if for every pair Bic, Bjc in �(c),

39 Whenever a set of sentences � = {Z1, Z2, . . . } is a partition for a probability function P[ | X ] and
P[Y | X ] > 0, then � must also be a partition for the probability function P[ | Y · X ]. Proof: First note
that 0 < P[Y | X ] = ∑

{Zk∈�} P[Zk · Y | X ], so for at least one Z j in �, P[Z j · Y | X ] > 0—and
when P[Z j · Y | X ] > 0, then P[Z j | Y · X ] > 0; furthermore, for any Z j in � such that P[Y | X ] �=
P[Z j · Y | X ] > 0, 1 > P[Z j | Y · X ] > 0; (i) if Z j and Zk are in � and P[Z j · Zk | X ] = 0,
then P[Z j · Zk · Y | X ] = 0, so P[Z j · Zk | Y · X ] = 0; (ii) P[Y | X ] = ∑

{Zk∈�} P[Zk · Y | X ], so
1 = ∑

{Zk∈�} P[Zk · Y | X ]/P[Y | X ] = ∑
{Zk∈�} P[Zk | Y · X ].
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P[D | Bjc · Rc · E] = P[D | Bic · Rc · E], then for every Bkc in �(c),
P[Bkc | H · Rc · E · D] = P[Bkc | H · Rc · E].

Suppose, for every pair Bic, Bjc in �(c), P[D | Bjc · Rc · E] = P[D | Bic · Rc · E].
Then, for every such pair, P[D | Bjc · H · Rc · E] = P[D | Bic · H · Rc · E]; so (by
Bayes’ theorem) P[Bjc | H · Rc · E · D] × P[D | H · Rc · E]/P[Bjc | H · Rc · E] =
P[Bic | H · Rc · E · D] × P[D | H · Rc · E]/P[Bic | H · Rc · E];
so P[Bjc|H ·Rc·E ·D]×P[Bic|H ·Rc·E] = P[Bic|H ·Rc·E ·D]×P[Bjc|H ·Rc·E],
for each pair Bic, Bjc in �(c). Then, summing over all the Bic in �(c),∑

Bi c ∈�(c) P[Bjc | H · Rc · E · D] × P[Bic | H · Rc · E] =∑
Bi c ∈�(c) P[Bic | H · Rc · E · D] × P[Bjc | H · Rc · E], for each Bjc in �(c).

Thus, P[Bjc | H · Rc · E · D] = P[Bjc | H · Rc · E], for each Bjc in �(c).
[3] The theorem’s second biconditional claim is established by supposing (in addition
to the theorem’s other suppositions) that �(c) is a partition for P[ | Rc · E], and
showing that:

for some pair Bic, Bjc in �(c), P[D | Bjc · Rc · E] �= P[D | Bic · Rc · E]
if and only if for some Bjc in �(c), P[Bjc | Rc · E · D] �= P[Bjc | Rc · E].

The second biconditional follows from this together with the first (previously estab-
lished) biconditional.
So, in addition to the other suppositions of the theorem, suppose �(c) is a partition
for P[ | Rc · E].
[3.1] Suppose, for each pair Bic, Bjc in�(c), P[D |Bjc ·Rc ·E] = P[D |Bic ·Rc ·E].
Then for each pair Bic, Bjc in�(c), P[Bjc|Rc·E ·D]×P[D|Rc·E]/P[Bjc|Rc·E] =
P[Bic | Rc · E · D] × P[D | Rc · E]/P[Bic | Rc · E]; then for each pair Bic, Bjc in
�(c), P[Bjc | Rc · E · D]× P[Bic | Rc · E] = P[Bic | Rc · E · D]× P[Bjc | Rc · E];
then for each Bjc in �(c),

∑
Bi c ∈�(c) P[Bjc | Rc · E · D] × P[Bic | Rc · E] =∑

Bi c ∈�(c) P[Bic | Rc · E · D] × P[Bjc | Rc · E]; so, for each Bjc in �(c),
P[Bjc | Rc · E · D] = P[Bjc | Rc · E].
Thus, if each pair Bic, Bjc in �(c), P[D | Bjc · Rc · E] = P[D | Bic · Rc · E], then
for each Bjc in �(c), P[Bjc | Rc · E · D] = P[Bjc | Rc · E].
[3.2] Suppose, for each Bjc in �(c), P[Bjc | Rc · E · D] = P[Bjc | Rc · E].
Then, for each Bjc in �(c), P[D | Bjc · Rc · E] × P[Bjc | Rc · E]/P[D | Rc · E] =
P[Bjc | Rc · E]; so, for each Bjc in �(c), P[D | Bjc · Rc · E] = P[D | Rc · E]; then
for each Bic B j c in �(c), P[D | Bjc · Rc · E] = P[D | Rc · E] = P[D | Bic · Rc · E].
Thus, if for each Bjc in �(c), P[Bjc | Rc · E · D] = P[Bjc | Rc · E], then for each
Bic, Bjc in �(c), P[D | Bjc · Rc · E] = P[D | Rc · E] = P[D | Bic · Rc · E].
From [3.1] and [3.2] the desired result follows directly. 
�

Proof of Theorem 10

Proof Suppose the antecedent conditions of the theorem. We show:
[1] if , for each Bkc in �(c), Q[Bkc | H · Rc · E] = P[Bkc | H · Rc · E] = rk

then, for each Bkc in �(c), Q[Bkc | Rc · E] = P[Bkc | Rc · E]
and Q[H | Rc · E] = P[H | Rc · E].

[2] if , for each Bkc in �(c), Q[Bkc | Rc · E] = P[Bkc | Rc · E]
then, for each Bkc in �(c), Q[Bkc | H · Rc · E] = P[Bkc | H · Rc · E] = rk .
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Proving these two claims will suffice, since the theorem’s biconditional claim follows
immediately from [1] and [2], and its simple conditional claim follows immediately
from [1].
[1] Suppose Q[Bkc | H · Rc · E] = P[Bkc | H · Rc · E] = rk for each Bk in �(c).
Then, for each Bjc in �(c),
Q[Bjc | H · Rc · E] × Q[H | Rc · E]/Q[Bc j | Rc · E] = Q[H | Rc · Bjc · E] =
P[H | Rc · Bjc · E] = P[Bjc | H · Rc · E] × P[H | Rc · E]/P[Bc j | Rc · E] > 0.
So, for each Bjc in �(c),

Q[H | Rc · E]/Q[Bc j | Rc · E] = P[H | Rc · E]/P[Bc j | Rc · E] > 0.
So, (*) for each Bjc in �(c),

P[Bc j | Rc · E] × Q[H | Rc · E] = Q[Bc j | Rc · E] × P[H | Rc · E] > 0.
Then, Q[H | Rc · E] = ∑

j P[Bc j | Rc · E] × Q[H | Rc · E] =∑
j Q[Bc j | Rc · E] × P[H | Rc · E] = P[H | Rc · E] > 0.

So, Q[H | Rc · E] = P[H | Rc · E] > 0
(which is part of what we wanted to prove).

Applying this equality to (*) yields:
for each Bjc in �(c), P[Bc j | Rc · E] = Q[Bc j | Rc · E].
[2] Suppose Q[Bkc | Rc · E] = P[Bkc | Rc · E] for each Bk in �(c).
Then, for each Bjc in �(c),
Q[Bjc | H · Rc · E] × Q[H | Rc · E]/Q[Bc j | Rc · E] = Q[H | Rc · Bjc · E] =
P[H | Rc · Bjc · E] = P[Bjc | H · Rc · E] × P[H | Rc · E]/P[Bc j | Rc · E] > 0.
So, (**) for each Bjc in �(c),

Q[Bc j | H · Rc · E] × Q[H | Rc · E] = P[Bc j | H · Rc · E] × P[H | Rc · E] > 0.
Then, Q[H | Rc · E] = ∑

j Q[Bc j | H · Rc · E] × Q[H | Rc · E] =∑
j P[Bc j | H · Rc · E] × P[H | Rc · E] = P[H | Rc · E] > 0,

so Q[H | Rc · E] = P[H | Rc · E] > 0. Applying this equality to (**) yields:
for each Bjc in �(c), Q[Bc j | H · Rc · E] = P[Bc j | H · Rc · E]. 
�

Proof of Theorem 11

Proof Suppose the antecedent conditions of the theorem.
We first prove an intermediate result, which we will label (*).
From, supposition (3.2), then (2), then (3.1), we have, for each Bjc in �(c),
Q[H · Rc · Bjc | E] = ∑

i P[H · Rc · Bjc | Di · E] × Q[Di | E] =∑
i P[Di · H · Rc · Bjc | E] × Q[Di | E]/P[Di | E] =∑
i P[Di |H ·Rc·Bjc·E]×P[Bjc|H ·Rc·E]×P[H ·Rc|E]×Q[Di |E]/P[Di |E] =

P[Bjc |H ·Rc ·E]×P[H ·Rc |E]×∑
i P[Di |Rc ·Bjc ·E]×Q[Di |E]/P[Di |E] =

P[Bjc | H · Rc · E] × P[H · Rc | E]×∑
i (P[Di · Rc · Bjc | E]/P[Rc · Bjc | E]) × Q[Di | E]/P[Di | E] =

P[Bjc | H · Rc · E]× P[H · Rc | E]× (
∑

i P[Rc · Bjc | Di · E]× Q[Di | E])/P[Rc ·
Bjc | E] =
P[Bjc | H · Rc · E] × P[H · Rc | E] × Q[Rc · Bjc | E]/P[Rc · Bjc | E].
So, for each Bjc in�(c), Q[Bjc |H · Rc ·E]×Q[H · Rc |E] = Q[H · Rc · Bjc |E] =

P[Bjc | H · Rc · E] × P[H · Rc | E] × Q[Rc · Bjc | E]/P[Rc · Bjc | E].
So, for each Bjc in �(c),
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Q[Bjc | H · Rc · E] × Q[H · Rc | E] × P[Rc · Bjc | E] =
P[Bjc | H · Rc · E] × P[H · Rc | E] × Q[Rc · Bjc | E].

So, for each Bjc in �(c),
Q[Bjc | H · Rc · E]× Q[H | Rc · E]× Q[Rc | E]× P[Bjc | Rc · E]× P[Rc | E] =

P[Bjc |H · Rc · E]× P[H | Rc · E]× P[Rc | E]×Q[Bjc | Rc · E]×Q[Rc | E].
Thus, (*): for each Bjc in �(c),

Q[Bjc | H · Rc · E] × Q[H | Rc · E] × P[Bjc | Rc · E] =
P[Bjc | H · Rc · E] × P[H | Rc · E] × Q[Bjc | Rc · E],

where Q[H | Rc · E] > 0, P[Bjc | Rc · E] > 0, P[Bjc | H · Rc · E] > 0,
P[H | Rc · E] > 0.
We now use (*) to prove the following two claims:
[1] if , for each Bkc in �(c), Q[Bkc | H · Rc · E] = P[Bkc | H · Rc · E] = rk

then, for each Bkc in �(c), Q[Bkc | Rc · E] = P[Bkc | Rc · E]
and Q[H | Rc · E] = P[H | Rc · E].

[2] if , for each Bkc in �(c), Q[Bkc | Rc · E] = P[Bkc | Rc · E]
then, for each Bkc in �(c), Q[Bkc | H · Rc · E] = P[Bkc | H · Rc · E] = rk .

Proving these two claims will suffice, since the theorem’s biconditional claim follows
immediately from [1] and [2], and its simple conditional claim follows immediately
from [1].
[1] Suppose Q[Bkc | H · Rc · E] = P[Bkc | H · Rc · E] = rk for each Bk in �(c).
Then, from (*) (since P[Bjc | H · Rc · E] > 0), for each Bjc in �(c),

Q[H | Rc · E] × P[Bjc | Rc · E] = P[H | Rc · E] × Q[Bjc | Rc · E],
where Q[H | Rc · E] > 0, P[Bjc | Rc · E] > 0, P[H | Rc · E] > 0.

So, 0 <
∑

j Q[H | Rc · E]× P[Bjc | Rc · E] = ∑
j P[H | Rc · E]× Q[Bjc | Rc · E].

So, Q[H | Rc · E] = P[H | Rc · E] > 0 (which is part of what we wanted to prove).
Then, from the line before last, for each Bjc in �(c),

P[Bjc | Rc · E] = Q[Bjc | Rc · E].
[2] Suppose, for each Bkc in �(c), Q[Bkc | Rc · E] = P[Bkc | Rc · E].
Then, from (*) (since P[Bkc | Rc · E] > 0), for each Bjc in �(c),

Q[Bjc | H · Rc · E] × Q[H | Rc · E] = P[Bjc | H · Rc · E] × P[H | Rc · E],
where Q[H | Rc · E] > 0, P[Bjc | H · Rc · E] > 0, and P[H | Rc · E] > 0.

So,
∑

j Q[Bjc|H ·Rc·E]×Q[H |Rc·E] = ∑
j P[Bjc|H ·Rc·E]×P[H |Rc·E] > 0.

So, Q[H | Rc · E] = P[H | Rc · E] > 0.
Then, from the line before last, for each Bjc in �(c),

Q[Bjc | H · Rc · E] = P[Bjc | H · Rc · E]. 
�
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