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Abstract
In this paper, we analyzed the association among trends in COVID-19 cases, climate, air quality, and mobility changes 
during the first and second waves of the pandemic in five major metropolitan counties in the United States: Maricopa in 
Arizona, Cook in Illinois, Los Angeles in California, Suffolk in Massachusetts, and New York County in New York. These 
areas represent a range of climate conditions, geographies, economies, and state-mandated social distancing restrictions. 
In the first wave of the pandemic, cases were correlated with humidity in Maricopa, and temperature in Maricopa and Los 
Angeles. In Suffolk and New York, cases were correlated with mobility changes in recreation, grocery, parks, and transit 
stations. Neither cases nor death counts were strongly correlated with air quality. Periodic fluctuations in mobility were 
observed for residential areas during weekends, resulting in stronger correlation coefficients when only weekday datasets 
were included in the analysis. We also analyzed case-mobility correlations when mobility days were lagged, and found that 
the strongest correlation in the first wave occurred between 12 and 14 lag days (optimal at 13 days). There was stronger but 
greater variability in correlation coefficients across metropolitan areas in the first pandemic wave than in the second wave, 
notably in recreation areas and parks. In the second wave, there was less variability in correlations over lagged time and 
geographic locations. Overall, we did not find conclusive evidence to support associations between lower cases and climate 
in all areas. Furthermore, the differences in cases-mobility correlation trends during the two pandemic waves are indicative 
of the effects of travel restrictions in the early phase of the pandemic and gradual return to travel routines in the later phase. 
This study highlights the utility of mobility data in understanding the dynamics of disease transmission. It also emphasizes 
the criticality of timeline and local context in interpreting transmission trends. Mobility data can capture community response 
to local travel restrictions at different phases of their implementation and provide insights on how these responses evolve 
over time alongside disease trends.
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1 Introduction

The COVID-19 pandemic has caused tremendous health and 
socio-economic burdens since the disease was first reported 
in December 2019 and subsequently declared a global pan-
demic by the World Health Organization (Sohrabi et al. 
2020). As of October 6, 2021, 237 million cases and 4.84 
million deaths have been attributed to COVID-19 world-
wide (Worldometer 2021). When the outbreak began, coun-
tries implemented different strategies to slow the spread of 
the disease. Historically, disease outbreaks are contained 
through a combination of pharmaceutical and non-pharma-
ceutical interventions (NPIs). Where vaccines are available, 
combining patient containment with population vaccination 
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is highly effective for dense urban areas (Eubank et  al. 
2004). But for the novel SARS-CoV-2, the virus that causes 
COVID-19, vaccines were not initially available. Thus, 
initial mitigation efforts mostly focused on NPIs that are 
broadly categorized into containment, suppression, or miti-
gation. Containment is the measure associated with isolating 
individual infections and can only be implemented prior to 
community spread. Suppression encompasses measures that 
aim to reduce the effective reproduction number Rt at time 
t to values lower than 1 (e.g., school and business closures, 
lockdowns, and travel bans). Finally, mitigation is the set 
of measures most closely associated with the “flatten the 
curve” concept, which includes the 3Ws (wear your mask, 
watch your distance, and wash your hand). Generally speak-
ing, suppression measures are stricter than mitigation but 
both aim to reduce infection rates and ease the burden on 
healthcare systems (Santos and Pagsuyoin 2021). Notably 
in the United States, when the federal government declared 
the COVID-19 pandemic a national emergency, states imple-
mented control strategies to varying degrees of severity and 
included measures such as business closures, travel bans, 
stay-at-home orders, remote work, and mask mandates.

The impacts of austere measures such as lockdowns and 
travel bans during outbreaks are complex and have been 
the subject of much interest. By using scenario simula-
tions, Poletto et al. (2014) concluded that travel restrictions 
in West Africa would delay the global spread of the 2013 
Ebola outbreak by a few weeks but also compromise the 
delivery of needed health services and humanitarian aid to 
affected countries. In the early months of the 2003 severe 
acute respiratory syndrome (SARS) epidemic, travel to Asia 
Pacific countries dropped dramatically as a result of travel 
advisories and aggressive media attention (Abdullah et al. 
2004). The disease would eventually lead to some 8000 
cases and 700 deaths (WHO 2020) during its cycle, but the 
economic losses due to travel and tourism disruptions were 
disproportionately high (~ $30 billion; Peiris et al. 2008). 
Travel quarantine measures implemented in Wuhan have 
also been shown to delay the COVID-19 progression within 
China by only 3–5 days, though the effect on international 
transmission was more pronounced (Chinazzi et al. 2020). 
Collectively, these findings emphasize that the timing and 
scale of travel restrictions during disease outbreaks can alter 
the trajectory of disease transmission and also disrupt socio-
economic activities.

The transmission dynamics of infectious diseases is 
driven by several factors including population density and 
mobility, hygiene practices, patient predispositions, nature 
of pathogens and vectors, and environmental and climato-
logical conditions (Hales et al. 1999; Kroumpouzos 2020), 
among others. Densely populated urban areas are vulner-
able disease hotspots due to greater population mobility 
and interactions with potentially infected individuals. Many 

infectious diseases such as the influenza exhibit seasonal pat-
terns (Martinez 2018). For COVID-19, a pertinent question 
at the beginning of the pandemic was whether infections 
would decline in the summer season following laboratory 
evidence of lower SARS-CoV-2 viability at higher tempera-
tures and humidity (Chan et al. 2011). Early reports have 
been mixed; higher cases have been associated with low 
humidity (Ward et al. 2020) and low temperature (Sajadi 
et al. 2020), while others found no evidence of relationships 
between cases and climatological conditions (Briz-Redón 
and Serrano-Aroca 2020; Juni et al. 2020). Hence, there is a 
need for further studies exploring how different factors influ-
ence the dynamics and seasonality of COVID-19 to improve 
surveillance and mitigation measures.

In this paper, we analyzed the association among trends 
in COVID-19 cases, climate, air quality, and mobility dur-
ing the first and second waves of the pandemic in five major 
metropolitan counties in the United States: Maricopa in Ari-
zona, Cook in Illinois, Los Angeles in California, Suffolk in 
Massachusetts, and New York County in New York. These 
areas represent a range of climate conditions, geographies, 
economies, and state-mandated social distancing restric-
tions. This study combined local epidemiological data with 
Google mobility data and climate and air data from different 
sources to examine the strength of associations among these 
variables across the five counties, and how these associations 
varied over the two pandemic waves.

2  Methodology

2.1  Case study areas

The five metropolitan areas (Fig. 1) were selected on the 
basis of their ranking in COVID-19 cases in the United 
States, and to encompass a range of geographic, economic, 
climatic, and non-pharmaceutical interventions imple-
mented by the states during the pandemic period. Maricopa 
County in Arizona is the 4th most populous (CDC 2021) 
and has the 9th highest Gross Domestic Product (GDP) 
(BEA 2019) among U.S. counties. Its climate is semi-arid, 
with an average (24-h mean) temperature of 12 °C during 
winter and 32 °C in the summer (NOAA 2021) (climate 
baseline derived from years 1991–2020). Arizona mandated 
a state-wide school closures on March 15, 2020, followed 
by orders for closure of non-essential businesses, increased 
social distancing, and stay-at-home (OGSA 2021) Phased 
re-opening of businesses begun on May 12, 2020 (OGSA 
2021). The state did not impose a mask order, though Mari-
copa County mandated the use of face coverings in public 
places beginning June 19, 2020 (Maricopa County 2020). 
Los Angeles County in California has the top population 
(US Census 2021) and GDP (BEA 2019) among all U.S. 
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counties. Its climate is dry subtropical with an average 
temperature of 10 °C in the winter and 24 °C in the sum-
mer (NOAA 2021). On March 19, 2020, California issued 
statewide stay-at-home and social distancing orders, and on 
June 18, 2020 issued a statewide order requiring use of face 
masks in public places (OGCA 2021). Phased re-opening 
of businesses begun on June 12, 2020 (OGCA 2021). Cook 
County in Illinois is the 2nd most populous (US Census 
2021) with the 4th highest GDP (BEA 2019) among U.S. 
counties. Its climate is humid continental, with an average 
temperature of − 3 °C in the winter and 22 °C in the summer 
(NOAA 2021). A statewide stay-at home order in Illinois 
took effect on March 21, 2020, with phased re-opening of 
businesses beginning on May 1, 2020 (IL 2021). A statewide 
mask order was put in place on May 1, 2020 (State of Illinois 
2021). Suffolk County in Massachusetts has the 79th highest 
population (US Census 2021) and 19th highest GDP (BEA 
2019) among U.S. counties. Its climate is humid continen-
tal, with an average temperature of − 1 °C in the winter and 
21 °C in the summer (NOAA 2021). Suffolk was among 
the early COVID-19 hotspots of the first pandemic wave. 
Its first statewide stay-at-home and social distancing orders 
took effect on March 24, 2020 (MA 2021), with phased 

re-opening of businesses beginning on June 8, 2020. A sec-
ond statewide and modified stay-at-home order was issued 
on November 6, 2020 (MA 2021) following a resurgence 
of COVID cases. Masks were required to be worn in public 
places in the state beginning May 6, 2020, (MA 2021). New 
York County in the state of New York is the 21st most popu-
lous (US Census 2021) and has the 2nd highest GDP (BEA 
2019) among all U.S. counties. Its climate is humid subtropi-
cal, with an average temperature of 2 °C in the winter and 
24 °C in the summer (NOAA 2021). On March 22, 2020, 
New York issued statewide stay-at-home and social distanc-
ing orders (NYDEP 2020); phased re-opening of businesses 
begun on June 22, 2020 (NYDEP 2020). New York had a 
statewide mask mandate that took effect on April 17, 2020 
(NYDEP 2020).

2.2  Data sources and statistical analyses

This study utilized datasets that were obtained from vari-
ous sources and covering the period starting from Febru-
ary 15, 2020 to December 15, 2020. An extended analy-
sis of the COVID case waves was carried with mobility 
and epidemiological data covering the period until April 

SUFFOLK, MA
Pop/Den: 797,936 (79th) / 13722.0p/mi2
GDP: US$ 114,696,871 (19th)
Demog.: 61.7% (W); 24.3% (B); 9.3% (A)
Total Cases: 93,011 (06/16/21)
Total Deaths: 1,845 (06/16/21)
COVID-19 CVI: 0.31

NEW YORK, NY
Pop/Den: 1,694,251 (21st) / 71874.14 p/m2

GDP: US$ 635,274,518 (2nd)
Demog.: 64.6% (W); 17.8% (B); 12.8% (A)
Total Cases: 138,272 (06/16/21)
Total Deaths: 4,500 (13th, 06/16/21)
COVID-19 CVI: 0.32

MARICOPA, AZ
Pop/Den: 4,420,568 (4th) / 480.5p/mi2
GDP: US$229,821,077 (9th)
Demog.: 82.8% (W); 6.4% (B); 4.6% (A)
Total Cases: 555,223 (3rd, 06/16/21)
Total Deaths: 10,162 (4th, 06/16/21)
COVID-19 CVI: 0.22

LOS ANGELES, CA
Pop/Den: 10,014,009 (1st) / 2467.8 p/mi2
GDP: US$726,943,301(1st )
Demog.: 70.7% (W); 9.0% (B); 15.4% (A)
Total Cases: 1,246,640 (1st 06/16/21)
Total Deaths: 24,434 (1st 06/16/21)
COVID-19 CVI: 0.49

COOK, IL
Pop/Den: 5,275,541 (2nd) / 5580.6 p/mi2
GDP: US$366,932,993 (4th)
Demog.: 65.4% (W); 23.8% (B); 7.9% (A)
Total Cases: 555,976 (2nd, 06/16/21)
Total Deaths: 10,438 (3rd, 06/16/21)
COVID-19 CVI: 0.73

Fig. 1  United States map indicating COVID-19 rates and socio-eco-
nomic profile of Metropolitan areas included in this study. Popula-
tion and demographic data (2020) from (US Census 2021); GDP data 
(2019) from (BEA 2019); COVID case counts and death data from 

(JHU 2021); COVID-19 community vulnerability indices (CCVI) 
from (CDC 2021b) and indicate neighborhood-level vulnerability 
based on aggregated indicators spanning health, economic, and social 
metrics (Surgo Ventures 2021)
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15, 2021 (to include the second wave of COVID cases). 
Daily COVID case and death counts were obtained from 
the U.S. Center for Disease Control (CDC 2021b; JHU 
2021) and were converted to 7-day moving averages. 
Daily climate data were obtained from the Parameter-
elevation Regressions on Independent Slopes Model 
(PRISM) and the Gridded Surface Meteorological Dataset 
(gridMET) (Daly et al. 2008; Abatzoglou 2013). PRISM 
is a gridded dataset created with observational in situ 
point measurements and a weighted regression scheme 
to account for variations in elevation, topographic facet 
orientation, rain shadows, and coastal proximity, among 
other influential physiographic features. The gridMET 
data combine PRISM data with regional reanalysis data 
from the National Land Data Assimilation System ver-
sion 2 (NLDAS-2) (Xia et al. 2012), providing a broader 
set of gridded climate variables (in our analysis, specific 
humidity and wind speed are selected from gridMET). 
The PRISM and gridMET datasets are archived at a 4 km 
resolution and then spatially averaged at the county level 
using the cloud computing Climate Engine tool (Hun-
tington et al. 2017). Air quality index (AQI) data were 
obtained from (USEPA 2021); AQI indicates overall 
air quality and is based on pollutant measurements in a 
local area for six parameters (where sensors are avail-
able): CO,  NO2,  O3,  SO2,  PM2.5, and  PM10. Daily index 
values are calculated for each pollutant; the daily AQI is 
the highest pollutant index value for that day. Mobility 
data were obtained from Google’s Community Mobility 
Report (2021) and are represented as percentage change 
in community mobility relative to a pre-pandemic base-
line (average visitor counts within the 5-week period from 
January 3-February 6, 2020) for 6 categorical locations: 
recreation and retail, parks and outdoor spaces, groceries 
and pharmacies, transit stations, workplaces, and residen-
tial. Pearson correlation analyses of datasets for the two 
pandemic waves (Table 1) were carried out in MatLab 
(ver. 9.9 R2020b).

3  Results

3.1  Temporal trends in epidemiological, climate, air 
quality, and mobility datasets

Figure 2 shows the plots of the epi curves (normalized case 
and death counts), climatic data, air quality, and mobility 
data for the five metropolitan areas (2/15/20–12/15/20). 
Within the study period, all areas experienced 2 waves of 
COVID infections to varying degrees and periods of occur-
rence. In temperate counties (Cook, Suffolk, and New York), 
the first wave occurred from April to June 2020, followed 
by a period of relatively low cases, and then a second wave 
that began around October 2020 that was still ongoing by 
December 2020. Among the three temperate counties, case 
numbers during the first wave were lowest in Cook County, 
but were highest during the plateau period and the second 
wave. Death cases in New York and Suffolk tracked the first 
wave of infections and were highest among the five met-
ropolitan areas, but no such uptick in deaths was observed 
during the second wave of infections. In warmer Maricopa 
County, the first wave began relatively later but was almost 
immediately followed by the onset of the second wave. In 
Los Angeles County, the first wave period was prolonged 
but saw fewer cases; however, this period was followed 
almost immediately by a significant uptick in cases during 
the second wave. Nonetheless, death counts in the county 
were comparatively lower than in other counties throughout 
the two waves of infections.

As indicated by the temporal AQI values, overall air qual-
ity in Suffolk and New York was the best among the five 
metropolitan areas, and poorest in Los Angeles. We note that 
daily AQI values are determined by the poorest air quality 
parameter index calculated for that day, and therefore may 
not track the same air quality parameter throughout the year. 
Except for Massachusetts where AQI values remained rela-
tively stable throughout the study period, AQI values in the 
metropolitan areas were highest during late Spring to Fall. 
In the case of Los Angeles, the AQI values were mostly due 
to ozone (68% of the time) and PM2.5 (29% of the time).

Table 1  Pandemic wave periods 
and NPI timelines

Metropolitan area Timeline

Wave 1 Wave 2 Stay at home order Phased 
re-opening 
start

Mask mandate

Start End Start End

Maricopa, AZ 3/5/20 8/30/20 10/1/20 3/20/21 3/15/20 5/12/20 6/19/20
Los Angles, CA 3/5/20 9/30/20 10/1/20 3/30/21 3/19/20 6/12/20 6/18/20
Cook, IL 3/5/20 6/20/20 10/1/20 2/22/21 3/21/20 5/1/20 5/1/20
Suffolk, MA 3/5/20 6/30/20 10/1/20 3/7/21 3/24/20 6/8/20 5/6/20
New York, NY 3/5/20 6/20/20 10/1/20 4/15/21 3/22/20 6/22/20 4/17/20
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With respect to mobility patterns, similar and distinct 
trends were observed in different location categories among 
the five metropolitan areas. Increased weekday mobility 
in residences was observed among all metropolitan areas 
beginning March 2020, coinciding with statewide man-
dates for social distancing, and indicative of the onset of 
increased workforce teleworking from home. Weekend resi-
dential mobility data in all metropolitan areas differ from 
the weekday data; initially, there was increased presence in 
residences up until late Spring 2020, followed by a return 
to near baseline levels for the remainder of the year. Con-
versely, as weekday mobility in residences increased, week-
day mobility in workplaces and transit stations decreased 
significantly, and by the end of 2020 had not yet returned to 
pre-pandemic levels. The greatest decline in weekday work-
place mobility (> 50% reduction) was observed in Suffolk 
and New York. Across the board, mobility in groceries and 
pharmacies decreased initially in March 2020; but with the 
exception of New York, mobility in these locations increased 
to near pre-pandemic levels by summertime (May 2020), 
most notably in Los Angeles and Cook counties. Mobility in 
parks and outdoor spaces is distinctly different among coun-
ties. In warmer Maricopa and Los Angeles, mobility in parks 
declined significantly in the initial phase of the pandemic, 
returned to near baseline in the summer months, and reduced 
once more thereafter. In Cook and Suffolk counties, mobility 
in parks rose substantially (~ 100–150% of baseline) over 
summer and into early fall 2020. Large day-to-day variabil-
ity in summer park mobility in Cook and Suffolk counties 
compared with Maricopa and Los Angeles counties likely, 
in part, reflects greater variability in weather conditions 
common to the colder northern counties. Warmer summer 
temperatures are an incentive for increased outdoor activi-
ties at parks and trails among locals after the long and cold 
winter months, especially in the absence of canceled tradi-
tional local summer events (e.g., cultural festivals). Anecdo-
tal stories from hikers at our local trails echo similar plans 
for increased visits to parks as a safer alternative for social 
interactions given strict advisories on social distancing. Of 
note is that although mobility in parks and outdoor spaces 
in New York County has increased on weekends since late 
spring 2020, it has not yet returned to pre-pandemic levels 
nor did it increase significantly during the summer or fall 
season. It is noted that 10-hectare Central Park, which is a 
famous landmark to both locals and visitors, is located in 
New York County. When stay-at-home orders were declared 
in NY state, all parks were inaccessible to the public but 
have since been reopened since June 2020 (JHUCRC 2021). 
Lastly, several weekends coinciding with federal holidays 
occurred during the pandemic period, including Memo-
rial Day (5/25/2020), Independence Day (7/3/2020), Labor 
Day (9/7/2020), and Thanksgiving (11/26–27/2020). These 
events marked notable decreases in workplace and transit 

mobility alongside increases in residential and grocery 
mobility.

3.2  Distinctions between weekly and weekday 
trends

Given the observed differences in mobility patterns between 
weekdays and weekends, separate analyses were carried 
out to contrast correlation outcomes when using datasets 
for all days of the week (week-long) and weekdays only 
(Monday–Friday). Figure 3 shows the corresponding cor-
relation heatmaps for the five metropolitan areas covering 
the first wave of the pandemic. For the week-long dataset, 
COVID case and death counts in Maricopa were correlated 
with temperature (R = 0.60 and 0.75, respectively) and death 
count was also correlated with humidity (R = 0.69), all at 
α = 0.01 level. No similar strong correlations (i.e., R < 0.5) 
were found for cases or death counts with mobility change in 
any location category. In Los Angeles, case and death counts 
were correlated with temperature (R = 0.63 and 0.58, respec-
tively, α = 0.01); in addition, case count was correlated with 
park mobility change (R = 0.66). In Cook, no strong cor-
relations were found for either COVID case or death counts 
with climate, air quality, and mobility changes. For the 
colder counties of Suffolk and New York, similar correlation 
trends were noted. Specifically, case counts were strongly 
negatively correlated with mobility changes in recreation, 
grocery, parks, and transit stations (− 0.75 < R < − 0.57; 
α = 0.01) and only moderately positively correlated with 
residential mobility change (0.44 < R < 0.47; α = 0.01). 
We note that the duration of the first COVID case wave is 
shorter in these counties, and that the gap between the two 
case waves (i.e., period of lower new infections) was wider 
compared to the other counties. Generally, the strong cor-
relations found in the week-long datasets were even stronger 
in the weekday datasets (Fig. 3, bottom heatmaps). Most 
notably, in Suffolk and New York, the COVID case counts 
were strongly positively correlated with residential mobil-
ity change (0.72 < R < 0.82; α = 0.01) when using only the 
weekday data.

3.3  Distinctions between metropolitan and rural 
areas in Massachusetts

We also conducted a subset analysis in Massachusetts to 
contrast week-long trends between metropolitan and rural 
areas (i.e., in the context of population density) in the 
same climate zone. Representative urban counties were 
Middlesex and Suffolk, both located in the Greater Boston 
Region. Representative rural counties were Barnstable in 
Southeastern Massachusetts and Franklin in Western Mas-
sachusetts. Their socio-economic profiles are summarized 
in Fig. 4, and the corresponding correlation heatmaps are 
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shown in Fig. 5. Barnstable and Franklin have compara-
ble population density and total case counts per capita 
(as of 6/16/2021). Middlesex and Suffolk, respectively, 
have a population density 20 and 135 times higher than 
Franklin’s. Both urban counties were among the national 
COVID-19 hotspots in the early stages of the pandemic 
(JHU 2021).

Case and death counts were weakly correlated in Barn-
stable (R = 0.20, α = 0.05) but strongly correlated in the 
other counties (R > 0.7, α = 0.01). A similar geographic 
trend was also noted between case counts and mobility 
change in recreation areas. Case counts were strongly cor-
related with mobility change in transit areas only in Suf-
folk (R = − 0.67, α = 0.01) but strongly correlated with 
mobility change in groceries in all counties. Except for 
residential areas, mobility changes in categorical locations 
in Barnstable were positively correlated with each other 
and follow more closely those of Suffolk. In Franklin, 
mobility changes were only positively correlated between 
recreation and grocery, and between transit and workplace. 
It is worth noting that compared to Barnstable, Franklin is 
located farther from the state capital and has lower access 
to public transit. Barnstable has access to more frequent 
public transit into Boston; however, it also has a relatively 
higher percentage of older age population (31% > 65 y.o.; 
US Census 2021).

3.4  COVID cases and lagged mobility 
during pandemic waves

The incubation period for SARS-CoV-2 is estimated to be 
between 2 and 14 days (Lauer et al. 2020; McAloon et al. 
2020; Qin et al. 2020), with a median of 5 days (McA-
loon et al. 2020). Infected patients may present symptoms 
1–14 days after exposure (CDC 2021), thus it may be 
possible for reported infections to lag behind changes in 
population mobility. In this study we performed an analy-
sis of variations in coefficients with lagged days to exam-
ine how temporal mobility changes (i.e., lagged mobility 
data) relate to infection cases in the two pandemic waves. 
Among location categories, there was stronger but greater 
variability in correlation coefficients across metropolitan 
areas in the first pandemic wave than in the second wave 
(indicated by height of vertical bars in Fig. 6), most nota-
bly in recreation and parks. Except for grocery, the strong-
est correlation in the first wave occurred between 12 and 
14 days (optimal at 13 days). This period is slightly higher 
than the optimal lag days reported by Badr et al. (2020) 
(11 days) for U.S. counties, though their methodology 
(mobility data and correlation analyses) differed from the 
one we implemented in this study. In the second wave, 
there was less variability in correlations over lagged time 

MIDDLESEX, MA
Pop/Den: 1,632,002 / 1995.6p/mi2
GDP: US$163,489,036
Demog.: 78.2% (W); 5.9% (B); 13.1% (A)
Total Cases: 135,218 (06/16/21)
Total Deaths: 3,770 (1st 06/16/21)

FRANKLIN, MA
Pop/Den: 71,029 / 101.6p/mi2
GDP: US$ 2,890,056
Demog.: 93.8% (W); 1.6% (B); 1.7% (A)
Total Cases: 2,579 (06/16/21)
Total Deaths: 113 (06/16/21)

BARNSTABLE, MA
Pop/Den: 228,996 / 581.6p/mi2
GDP: US$ 13,587,539
Demog.: 92.2% (W); 3.5% (B); 1.6% (A)
Total Cases: 13,923 (06/16/21)
Total Deaths: 469 (06/16/21)

SUFFOLK, MA
Pop/Den: 797,936 (79th) / 13722.0p/mi2
GDP: US$ 114,696,871
Demog.: 61.7% (W); 24.3% (B); 9.3% (A)
Total Cases: 93,019 (06/16/21)
Total Deaths: 1,845 (06/16/21)

Fig. 4  Map of the Commonwealth of Massachusetts indicating 
COVID-19 rates (as of 6/16/2021) and socio-economic profile of the 
four rural and metropolitan areas included in this study. Population 

and demographic data (2020) from (Census 2021); GDP data (2019) 
from (BEA 2019); COVID case counts and death data from (JHU 
2021)
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and geographic locations, as indicated by the vertical bars 
with near constant height along the x-axis (lagged days).

4  Discussion

Our results indicate site-specific differences in the associa-
tions of cases (infections) with temperature and humidity. 
Though both Maricopa and Los Angeles have lower humid-
ity year-round compared to the other counties, cases were 
only strongly correlated with humidity in Maricopa. Among 
all counties, cases were strongly associated with temperature 
only in Maricopa and Los Angeles, and that these are posi-
tive association despite their temperatures being generally 
higher than the other counties. Strong correlations between 
cases and windspeed and precipitation were not found. Nei-
ther cases nor death counts were strongly correlated with 
air quality. Overall, we found no conclusive evidence that 
suggests higher temperatures and humidity were associated 
with lower cases. This observation is consistent with find-
ings reported for several cities in China (Yao et al. 2020) 
and globally (Juni et al. 2020). Other studies found contrast-
ing results, for example, Sajadi et al. (2020) concluded that 
initial outbreaks worldwide occurred in communities with 
lower temperature and humidity, while Ward et al. (2020) 
found strong negative correlations between cases and lower 
humidity in Australia. While we reference these earlier stud-
ies to compare findings, we also acknowledge differences in 
our statistical and modeling methodologies. Recent literature 
reviews highlight these inconsistencies in modeling method-
ologies (Briz-Redón and Serrano-Aroca 2020) and findings 
(Zaitchik et al. 2020), but also emphasized that the impact 
of high temperature on diseases transmission is insufficient 
as a control measure (Briz-Redón and Serrano-Aroca 2020). 
Kubota et al. (2020) further notes that climate, mobility, 
and region-specific susceptibility drive the case numbers in 
studied sites, and that case dependencies on these parameters 
changed over time with pandemic progression.

Our study noted distinct and periodic differences in 
weekend and weekday mobility trends in residences and 
workplaces in all metropolitan areas. Throughout the study 
period, mobility in transit stations was still below base-
line levels, but there was a pronounced difference between 
weekday and weekend trends in Cook County, and to a 
lesser extent in Suffolk and New York beginning around 
July 2020. Note that these three counties are among the 
top 5 metropolitan areas with the highest public trans-
port ridership in the U.S. (Burrows et al. 2021), indicating 
heavy reliance on public transport to commute to work and 
for other travels. Public transport functions as congrega-
tion nodes where social distancing may be challenging to 
enforce. Evidently, shifting to remote work affects popula-
tion densities and mobility patterns in cities, and these can 

have implications on social distancing policies. Remote 
work and hard lockdowns can drastically alter movement 
patterns in metropolitan areas as was observed in this 
study and in Spain (Perez-Arnal et al. 2021) and Japan 
(Arimura et al. 2020), where weekends and holidays saw 
markedly lower densities in business districts as people 
tended to stay-at-home. Adherence to stringent movement 
restrictions may be high at the beginning of lockdowns but 
over time people will naturally seek to return to normal 
travel routines. Furthermore, we noted in this study the 
stronger correlation between cases and mobility during 
the first pandemic wave than in the second wave. There 
was also a high variability in correlations among counties 
during the first pandemic wave but significantly less in the 
second wave. These could be indicative of, among other 
things: (1) a new mobility normal that is below pre-pan-
demic baseline but is nonetheless plateau and is less use-
ful in analyzing disease transmission, and (2) the higher 
prevalence of COVID-19 everywhere regardless of local 
geographies.

Mobility has often been used as a surrogate for social 
distancing but there is a need to contextualize its use 
within local conditions to better interpret the effect of 
NPIs on disease transmission. For example, the trends in 
normalized case epi curves during the first pandemic wave 
(Fig. 2) are similar for Maricopa, Suffolk, and New York. 
When viewed from the lens of mobility values alone, Mar-
icopa has the least deviation from baseline mobility pat-
terns, while Suffolk and New York have the highest change 
in mobility. One may misinterpret this as low social dis-
tancing effort in Maricopa compared to other counties. 
However, population-wise, Maricopa has 28 times lesser 
density than Suffolk, and 147 times lesser density than 
New York (based on pre-pandemic population, see Meth-
ods section and data in Fig. 1). Thus, when the context 
of population density is factored in, Maricopa is already 
relatively more socially distant to begin with. Conversely, 
the large reductions in mobility in densely populated Suf-
folk and New York imply that people in these counties 
drastically reduced travel during the first wave of the pan-
demic and following statewide stay-at-home orders. This 
behavior may have contributed to the rapid decline of the 
first wave, and the delayed onset, and lower peaks of the 
second wave surge. We also note that while the Google 
mobility data we used in this study are extensive and have 
high granularity, they should be interpreted within context, 
namely, that the data represent percentage change from 
the baseline period (1/3/20–2/6/20) rather than the actual 
number of people in the categorical locations. Simple cor-
relations of mobility with cases may be a good initial step 
to screen for effectiveness of mitigation measures, though 
more comprehensive analysis of compounding factors is 
needed.
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4.1  Study limitations and areas for future work

The case studies presented in this paper have several limi-
tations that may be explored further in future research. 
Firstly, the five counties included in this paper are only a 
subset of over three thousand counties in the United States, 
each with distinct economic, geographic, and demographic 
profiles. The five counties were selected to investigate 
regions with differing characteristics such as weather pat-
terns, mobility, as well as GDP and population attributes. 
The selection also considered representative areas from 
the various census regions in the U.S., namely West (Mari-
copa, AZ and Los Angeles, CA), Midwest (Cook, IL), and 
Northeast (New York, NY and Suffolk, MA). Although the 
current study provided insights on the potential impacts of 
variables like weather and mobility patterns on infection 
and death counts, the approach utilized in this paper can 
be extended in the analysis of other U.S. counties as well 
as other factors (e.g., race, age, gender, and political lean-
ing, among others), which were not directly investigated 
in the current study.

Secondly, the correlation analysis in this paper utilized 
Google Mobility Index data to assess the extent to which 
people’s activities in various location categories have 
changed relative to pre-pandemic levels. The Google mobil-
ity data are publicly available at no cost and are collected 
via mobile phones. However, Google could only collect 
mobility data from devices where the “Location History” 
feature is enabled in any Google app (i.e., it is currently 
turned off by default) (Google 2021). Future analysis may 
use alternative measures of mobility from other public (e.g., 
Facebook (2021) and proprietary databases (e.g., as in (Badr 
et al. 2020).

Thirdly, the analytical methods employed in this study 
differ from other studies and may have contributed to differ-
ences in results. Previous papers found positive correlations 
between mobility and number of cases (see, for examples, 
(Badr et al. 2020), Wang et al. 2020), and concluded that 
reduced mobility outside of residential locations appears to 
be positively correlated with the decline in cases. In con-
trast, this paper did not definitively confirm that decreased 
mobility levels would lead to the reduction in case and death 
counts. Furthermore, several correlation values in this paper 
appear counterintuitive; for example, reduced mobility in 
locations such as recreation, grocery, parks, and transit sta-
tions has been associated with an increased number of cases 
and deaths, even when time lags are imposed. One possible 
explanation to this is that the viral transmission rates espe-
cially near the peak of the epi curves are aberrantly high 
that reduced mobility levels would not necessarily lead to an 
immediate flattening of the curve. Hence, a future analysis 
can be conducted to measure the true efficacy of reduced 
mobility by comparing the difference of actual recorded case 

counts against model projections that assume absence of 
stay-at-home mandates.

Finally, this study did not directly examine the effect of 
vaccination on the decline of cases particularly near the tail 
end of the second wave scenarios. The first vaccine dose was 
given on December 14, 2020 (BBC 2021) to a limited popu-
lation sector, and a discussion of the subsequent vaccine 
rollout is documented in the American Journal of Managed 
Care (AJMC 2021). A future study could perform a multi-
ple regression analysis to determine the combined effects 
of mobility, vaccination rates, and seasonal factors on the 
number of cases and deaths.
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