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Abstract

Recent intergovernmental panel on climate change reports have once again emphasised
the effective measures to reduce greenhouse gas emissions and the importance of the built
environment. Historically, passive and active solutions are known for their potential to
make the built environment more environmentally friendly. Recently, a significant num-
ber of studies covered the effectiveness of such solutions under distinct current and differ-
ent future climate and emission predictions. Through the PRISMA framework, this paper
presents a comprehensive state-of-the-art review of such studies within the last 10 years
(2013-2023) to understand their impact, their tangible applications, and their empirical
evidence. Local ecosystems, weather patterns, geographical and cultural challenges dic-
tate the solutions for a warmer future. Among the solutions, as expected, passive solutions
remain most effective even though a combination with active ones is necessary regardless
of the context. The review in this paper is expandable beyond the effective reported solu-
tions and it highlights the most effective solutions under different climate zones.
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1 Introduction
1.1 Review of intergovernmental panel on climate change (IPCC) reports

Once again, the significant impacts of anthropogenic activities in warming up the
climate have been captured in the IPCC’s Sixth Assessment Report (IPCC, 2021).
CC is posing an increased frequency and intensity of heat waves, with irrevocable
changes in dehydration, heat stroke and heat exhaustion, as well as mortality (IPCC,
2021; WMO & WHO, 2015). Inherently, humans will find all possible measures to
mitigate these adverse effects, leading to an unprecedented increase in cooling demand
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and consequently greenhouse gas (GHG) emissions which further promote the CC
(Mehmood et al., 2022). The increase of the GHG is responsible for an above-average
surface temperature within the span of 1951-2010 (Climate Change, 2014: Synthesis,
2014). Thus, the IPCC has emphasised that more and more reduction in GHG is needed
to avoid global temperature going beyond the 1.5 °C warming limit. In the Working
Group III contribution to the Sixth Assessment Report, under the Summary for Policy
Makers (SPM), section C.7.3, the IPCC asserts that bottom-up studies have shown
that by 2050, up to 61% (8.2 Gt C0,) of global building emissions can be alleviated
(Shukla et al., 2022). Under the same section, the IPCC mentioned that sufficiency
policies that avoid the demand for energy and materials contribute about 10% to this
potential, while energy efficiency policies contribute about 42%, and renewable energy
policies contribute about 9%. The report went on by saying that the largest portion of
the mitigation potential of new buildings is available in developing countries while in
developed countries the biggest mitigation potential lies within the retrofit of existing
buildings. The 2020-2030 decade is critical for expediting the development of skills
needed to fully capture the mitigation potential of buildings (IEA, 2018).

Even though peculiar mitigation potentials to the built environment are being devel-
oped, to stress the impact of CC, some scientific studies among numerous ones related
to the science of the total environment in the literature have pointed out the solutions to
mitigate the trend of environmental degradation arising from CC. For example, mitigations
concerning the reduction in the loss of natural resources, like precipitation (Meshram et al.,
2018) and reduction in the loss of potentials for sustainable rural and urban land usage,
as well as wetland use (Aslam et al., 2023; Wagqar et al., 2023, 2024a, 2024b; Zhao et al.,
2023). Some studies also try to understand the effects of pollution on the environment
arising from human behaviours affecting the climate, like black carbon aerosol contami-
nated air mass (Hussain et al., 2023); concentrations of polycyclic aromatic hydrocarbons
(Ambade et al., 2021a, 2021b); concentrated particles matter (PM,, and PM, 5) (Ambade,
2016; Ambade et al., 2022); and microbiological contamination (Naz et al., 2024). In all of
these studies, the main objectives are to set aside measures in preparedness to combat CC
in the near future.

Furthermore, in order to set a specific goal to widen the recognition of measures to
combat CC, the IPCC in its Fifth Assessment Report (AR5) (Edenhofer et al., 2014),
created Representative Concentration Pathways (RCP) scenarios to assess future possible
risks and debate how decisions may influence the coming future. The RCP contain
approximately thirty candidate scenarios, however, predominantly, four primary scenarios
were reported by researchers (Bass & New, 2023; Vuuren et al., 2011). These four scenarios
modelled by different climate groups across the globe are the RCP 8.5 RCP 6, RCP 4.5
and RCP 2.6 (Fig. 1). Each RCP defines a specific emissions pattern, the projected energy
consumption and the subsequent radiative forcing (Moss et al., 2010). The radiative forcing
in W/m? is the influence a factor has in tempering the balance of incoming and outgoing
energy in the Earth-atmosphere system (Moss et al., 2010). The RCP 8.5 was developed
in Austria, using the MESSAGE model and the Integrated Assessment Framework by
the International Institute for Applied Systems Analysis (ITASA). It is characterised by
increasing GHG over time and radiative forcing (> 8.5 W/m?), representative of scenarios
in the literature that lead to high GHG concentration levels (Riahi et al., 2007). The RCP
6 was developed by the AIM modelling group at the National Institute for Environmental
Studies (NIES) in Japan. It is known as a stabilisation scenario where total radiative
forcing (W/m?) is stabilised shortly after 2100, without further going beyond, through the
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Fig. 1 Future emission, radiative forcing and primary energy consumption under different scenarios (Waqar
et al., 2024b)

application of technologies and strategies for reducing GHG (Fujino et al., 2006; Hijioka
et al., 2008).

The RCP 4.5 was developed by the GCM modelling group at the Pacific Northwest
National Laboratory’s Joint Global Change Research Institute (JGCRI) in the United
States. It is also a stabilisation scenario, where the total radiative forcing (>4.5 W/m?)
stabilises just after 2100, and also not going beyond the future radiative target level (Clarke
et al., 2007; Smith & Wigley, 2006; Wise et al., 2009). The RCP 2.5 was developed by the
IMAGE modelling group in the Netherlands. The emission pathway is representative of
scenarios in the literature that lead to very low GHG concentration levels. It is a scenario
which peaked and declined, having the highest radiative forcing level of (>3.1 W/m?) by
2050, and returns to 2.6 W/m? by 2100 (Vuuren et al., 2006, 2011).

The IPCC focus and evidences are essential to this paper to rigorously emphasize the
potential of the foreseeable CC impacts to the built environment, and to understand the
corresponding mitigation measures. Several studies have widely reported different pas-
sive, active and renewable measures used in the built environment (Cardinale et al., 2013;
Herrera-Gomez & Quevedo-Nolasco, 2017; Pierangioli et al., 2017; Rafieses et al., 2021;
Toe & Kubota, 2015). Only recently have some studies (due to the emerging global urge
towards climate mitigations) focused on reviews of some past investigations which analyse
the role of passive, active and renewable solutions in the built environment, and having
practical applications in mitigating the effect of CC in the current and different future cli-
mate scenarios (Andric et al., 2019; Bass & New, 2023; Diaz-Lopez et al., 2022; Fereidani
et al., 2021; Nair et al., 2022; Ozarisoy & Altan, 2021; Perez-Andreu et al., 2018; Soaresa
et al., 2017; Zhou et al., 2020a, 2020b). This paper aims to provide a comprehensive evalu-
ation of viable passive and active solutions that have demonstrated efficacy in CC mitiga-
tion and adaption.

1.2 Gap and contribution of this paper

Previous analyses on active and passive investigations to mitigating CC for either current
or future scenarios, collated in past literature reviews have raised questions regarding the
completeness of their analysis. For example, in a review paper by Andric et al., (2019),
some investigations on passive and active strategies as well as their favourable impacts on
renovation measures were reported under future climate scenarios. However, among the
investigations on the strategies reviewed, the most recent was published in 2018 (Andric
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et al., 2018). Although, the review in Andric et al. (2019) summarily reported the impacts
of some of the investigated passive strategies targeted toward future climate scenarios, the
reported investigations were few (n=13). Similarly, Fereidani et al., (2021) comprehen-
sively reviewed a wide range of different passive and active strategies, but the review ended
with a summary of a few reports (5 in number) where energy consumption on heating/
cooling was included under future climate scenarios. In fact, among these reports, only
one (Andric et al., 2020), published in 2020, explicitly discussed passive strategies (green
roof, green wall, insulation and efficient window glazing) to address the impacts of future
climate scenarios. Perez-Andreu et al., (2018) reported an in-exhaustive summary of CC’s
impact on heating and cooling demand, with some investigations amongst involved cor-
responding passive strategies to mitigate such impact. Comparable to the aforementioned
reports in the reviews (Andric et al., 2019; Fereidani et al., 2021), the most recent of these
investigations was published in 2017 (Pierangioli et al., 2017). Considering the period
between 2017 and 2023, more investigations on passive and active strategies under future
climate scenarios have been published and therefore a need for an update is necessary.

There are a limited number of studies that cover recent research on effective active and
passive measures for CC mitigation. To the best of our knowledge, this is the first compre-
hensive update that includes the latest strategies specifically effective for warmer condi-
tions. The specific contribution of this paper is an expandable, comprehensive and up-to-
date review of CC mitigation measures.

2 Methodology

Initially, five combinations of keywords were used to retrieve records from the Scopus
database the largest scientific database covering most of the peer-reviewed (Q1 and
Q2) journals published by Elsevier, Springer, MDPI, SAGE, Wiley and Sons, Taylor
& Francis. The searches were limited to a 10-year window period, covering all articles
(journals and conference proceedings) published between 2013 and January 2023, in the
English Language. The keyword combinations are climate change, built environment
(2764 records); climate change, building operation, impact (395 records); climate change,
building operation, built environment (83); climate change, buildings, passive solutions,
active solutions (44); climate change, IPCC, built environment (17). These five keyword
combinations were coined to reflect the specific goal and the filtering method proposed in
this paper (Fig. 2).

A total of 3299 records were found and all records were exported to an Excel
Package, where initial screening of duplicates and no Author(s) was conducted. All
screenings were done using the method of the Preferred Reporting Items for Systematic
Reviews and Meta-Analysis (PRISMA) (Fig. 3). To justify the choice of PRISMA
in this paper, a recent review study (Cui et al., 2022) on the effect of CC on critical
infrastructure proved the PRISMA review system to be efficient in a systematic review
where records of studies of interest are screened and deliberately categorised under
different sections for in-depth analysis. Therefore, a total of 156 records were screened
out for duplicates and no Author(s), and 3143 were the remainder. Studies which do not
fall within the scope of the built environment (2700 records) were directly screened out
right from the initial title screening stage, and a total number of 443 were remaining.
These remainders were further meticulously and rigorously screened out in the abstract
screening stage, with the target to extract the full-text studies which contain reports on
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Fig. 3 PRISMA framework adopted in this study

passive, renewable active solutions, and 62 studies were recorded as new studies and
reports. These new studies were considered for full eligibility as detailed in Fig. 3 by
the PRISMA chart. This paper was only limited to passive and active solutions which
reported only empirical investigations, and those without such were rather not retrieved.
Because this paper is a systematic update, a further 12 reviews were separately screened
and included as previous studies. These studies are termed as the previous version of
the review (see Fig. 3). Some 79 reports from the previous version of the review were
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included as parts of the total reports of included studies. Other relevant 4 sources from
citation searching were included. In all, a total number of 78 studies and 145 reports
were recorded.

3 Results

This section encompasses the reports of the effective passive solutions and empirical find-
ings cover the impacts of these effective solutions on both energy demand for cooling/heat-
ing and thermal comfort of occupants for current and future climate scenarios. A summary
of key studies is provided in Table 1.

3.1 Category 1: effective passive solutions
3.1.1 Ventilation-related measures

Cui et al., (2022) used the Bayesian bootstrap as a promising technique to quantitatively
evaluate the robustness of thermal comfort against uncertain future climate scenarios (the
2030s, 2050s and 2080s). However, the results concluded that adaptive night ventilation is
potentially the key effective solution in all scenarios. Mehmood et al., (2022) conducted
a study by using a two-story multi-family building as the baseline archetype in southern
Asia, Pakistan. In order of importance, ventilative cooling, reflective and ventilated roofs,
shading in windows, and roof insulation were the effective solutions for energy savings
and reduction in discomfort hours, for 2020, 2050, and 2080 climate scenarios. The study
reported that the passive solutions can improve energy demands from 13.1 to 7.1 kWh/
m? and indoor discomfort from 320 to 131 h. In view of future higher temperatures (2050,
2080), Nunes and Giglio (2022) used Morris sensitivity analysis for a current and future
climate and concluded that natural ventilation (Natural vent), solar absorptance of the
envelope (Envelope ;) and thermal transmittance of the walls (Wallsy,, ) respectively, are
the most important parameters for the Degree Hour for Cooling (DHC); while Envelope i,
and Wallsy,., in a respective order, are the most important parameters for energy savings
with regards to cooling for all the climate scenarios. The Morris’ elementary effect used by
the author is summarised in the equations below to determine the indices u, u*ando:

w=§24@) (1)

J=

u; = % z:, |di(xj)‘ 2
£

1 r
%=\ Z [di(xj) - ”z‘]2 3
j=1

where i is variable; r is the number of samples path; j is each path in the sample space of
each variable i; u; is the mean of the elementary effects of the variable i; u* is the mean, in
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absolute value, of the elementary effects of the variable i; o; is the standard deviation of the
elementary effect of the variable i; d; (xj) is the elementary effect of the ith variable in path
J-

A comparison of u allows the identification of parameters which have more influence
on the model response. The higher the u, the greater the influence, u* being more
comprehensive. Moreover, the o; allows the identification of parameters with nonlinear
behaviour or those that interact with other parameters, and the higher o, the greater the
interaction with other parameters, or more elaborate nonlinear behaviour.

For a current climate (2016), Costanzoa et al., (2018) compared the result of the
overheating hour of an existing Passivhaus and found using a hybrid ventilation strategy
instead of mechanical ventilation with heat recovery, lowering the insulating materials
thickness (up to a third) applied to the roof and to the walls, as well as using double-
glazed low-emissive windows in place of triple-glazed ones, is the best scenario analy-
sis, and reduce the overheating hour to less than 20% compared to the existing building.
In the study by Laouadi et al., (2020), indoor overheating guidelines of the Chartered
Institute of Building Services Engineers (CIBSE) and the Passive House Institute (PHI)
were used to compare the effect of natural ventilation (Natural vent) and exterior shade
on overheating risk. With neutral nighttime temperature between 25 °C and 26 °C,
according to CIBSE and PHI, the authors found that the natural ventilation significantly
reduced the minimum nighttime temperature to 26 °C (close to neutral temperature
for sleep) compared to exterior shade having nighttime temperature above 28 °C (This
study only considers the current climate). Botti and Ramos (2017) used environmental
solutions-virtual environment (IES-VE) simulation and sensitivity analysis to rank the
effective measures of a care home. The findings show that solar shading, natural ventila-
tion and thermal mass, respectively, are the most effective for current and future climate
scenarios. Similar to Botti and Ramos (2017), Heracleous et al., (2021), also used IES-
VE simulation to assess the potential of heat recovery ventilation and all other passive
measures (e.g. cross ventilation; insulation on floor, wall, and roof; e-low glazing and
shading devices), on the degree hour for cooling. The authors noted the combination of
these measures could lead to a reduction in degree hour for cooling by 51% in the cur-
rent climate, 60% in the 2050 period and 66.4% in the 2090 period. Hamdy et al., (2017)
considered a current and future climate to test different ventilation rates in alleviating
the risk of overheating in Dutch house stocks. A ventilative cooling rate of 5 Air change
rate (ACH) on average, could reduce the overheating risk by 90% for the current cli-
mate, and 65% on average, for the future outdoor rising temperature (5.4 °C higher). For
the climate scenario, A2 for 2030, Roetzel et al., (2013) identified typical patterns and
key parameter optimisation for three climate zones across the world. Among the occu-
pants’ scenarios optimised, using an office cellular room, the result depicts that natural
night ventilation of at least 6 h is optimum, and WWR above 70% could enhance the
thermal comfort condition indoors for a future warmer climate. Although, Hooff et al.,
(2014), considered a future climate in a study which investigated a range of climate
change adaption measures, but the future climate being considered was a representative
one (2006 period). The authors claimed that the heat waves across this period could be
similar to those of the possible future climate scenarios (e.g. [IPCC A2 scenario). The
results of the investigated adaption measures in the study showed that exterior solar
shading followed by natural ventilation could significantly mitigate overheating. Solgi
et al., (2017) conducted experiments on the benefits of night ventilation at 15 ACH with
Phase Change Materials (PCM), and the peak temperature for two summer months, July
and September, were reduced by 6.54 °C and 4.38 °C respectively. The study claimed
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that in the month of September, the peak temperature was reduced to 26.79 °C and also
noted that this fell below the maximum threshold comfort temperature (28 °C). For
a climate model CESM RCP 8.5, Wang et al., (2017) compared mixed-mode ventila-
tion and adaptive active measures (the combination of adjustment of room temperature
setpoint, HVAC operation hours and minimum airflow fractions of VAV boxes). The
mixed-mode ventilation effective solution can reach a reduction of 7.4% (728.4 GJ) in
whole building source energy use in 2080s in Washington DC, while the adaptive meas-
ures can reach a reduction of 2.5% (246.1 GJ) in whole building source energy use in
2080s in Washington DC.

Lapisa et al., (2020) identified parameter sensitivity for different passive cool-
ing solutions using the Non-dominated Sorting Genetic Algorithm II (NDGA-II). The
results emphasised that, for the southern regions of France, the optimum set point tem-
perature considering natural night ventilation is 18-26 °C. Also, for a trade-off between
energy demand and thermal discomfort for current and 2080, the authors suggested that
the albedo value of the solar reflectance of the cool roof could be 0.46-0.74. For the
minimised building primary energy consumption for heating and lighting (EP [kWh/m?
/yr]) and degree-hours of summer thermal discomfort (DH [°Ch]) through the passive
measures for the future climate scenario, the authors described the formulation of the
objective function of the NDGA-II based on the number of objectives (DH and EP) in
the following equations as:

Jop; (%) = min (EP(x), DH(x)) )

By the above objective function, the Pareto optimal solution was achieved through
the trade-off of the objectives (DH and EP), normalized between the minimum and
maximum values of the arbitrary coefficient (Rgp, Rpy,) with respect to A,B with C as
the possible optimal solution (Fig. 4).

A= (REP = 0)§ (RDH = 1) ®)
B = (Rpy =0); (Rgp = 1) (6)
Fig.4 Pareto optimal solutions /\ DH [1000 °Ch]
and trade-off solution (A, B, C) 6.4 T Z
(Andric et al., 2020) DHpg = 9 - Solutions
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4.8 : i
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@ Springer



|. Tajuddeen, S. M. Sajjadian

C = the trade - off between A and B = {f(¥)¢ = Rpp.EP(Rzp,,) + Rpy-DHGpp g, )}
(7

For Rpp and Rp, in A and B: Rgp = 0 (most energy efficient), R, = 1 (most sum-
mer discomfort hour), R, = 0 (least summer discomfort hour), Rgp = 1 (least energy
efficient).

The trade-off solution C which is the Pareto optimal solution, C is represented in the
study by a minimum value of R given as:

B — 2 2
R=\/R,+R}, ®)

where Ryp and R, are weighing factors which define the trade-off and were given in the
study as:

R.. = EP(}EP,REP)EPmin (9)
B EPmax—EPmin
R _ DH(}DH,RDH )—DHmin (10)
b= DH,,._DH

max— min

Yildiz (2015) adopted Givoni’s bioclimatic chart to assess the potential impacts of passive
strategies on energy demand and thermal comfort level for different regions in Turkey. For
the region of Istanbul, the potential use of evaporative cooling together with thermal mass
and ventilation have been shown to have good promise to thermal comfort, with 1-4% for
current typical meteorological year (TMY2), 3-97% for 2020s, 4-75% for 2050s and 5-95%
for 2080.

Miri and Babakhani (2021) explored the potential of a vernacular windcatcher in a
mountainous region, in the specific Mediterranean-to-cold climate in Western Iran to pro-
vide energy-efficient cooling and ventilation. By considering data from the current climate
scenario, the authors explored the natural forces of wind and buoyancy using computa-
tional fluid dynamics (CFD), and the results of the investigation proved that in fact, the
traditional windcatcher is more effective than the natural ventilation and cooling systems
which are provided only through the openings of windows and doors by 101%, and its per-
formance is comparable to modern wind catchers. Likewise, Pelletier and Calautit (2021)
compared the performance of a windcatcher with a heat transfer device (HTD) to a wind-
catcher with a novel helical coil heat transfer device (HCHTD), however, under the current
hot climate scenario in Sydney, Australia. After the analyses using a CFD simulation, the
results showed that the windcatcher model with the HCHTD led to an increase of 4% air-
flow than the HTD model, which can achieve a comfortable level of cooling ranging from
14.25 K to 8.6 K for wind speeds of 1-4 m/s. It is also capable of meeting fresh air ventila-
tion requirements in low wind speed scenarios. The authors further emphasised that, while
the 4% increase in airflow might seem insignificant, it corresponds to a clear increase of
18 L/s of fresh air. This quantity of fresh air could double the required fresh air ventilation
for a single occupant, the authors concluded.
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3.1.2 Phase change materials (PCM) related measures

According to the summary of the overall passive measures in Table 1, from 1b to 1c, one
can notice how PCM out-numbered the remaining passive measures. This stresses the
importance that authors had given to the application of PCM on energy savings and ther-
mal comfort. However, one limitation is that most investigations on PCM or PCM plus
other measures are only based on the current or unspecified climate scenario (see Sect. 4
for more details). For example, without specifying any climate scenario (Chernousov &
Chan, 2016; Meng et al., 2015; Rahimpoura, 2017; Saffari et al., 2016; Ur Rehman et al.,
2021; Vega et al., 2022; Wu et al., 2018; Zeinelabdein et al., 2020; Zhao et al., 2019). Ur
Rehman (Ur Rehman et al., 2021) compared corn husk composite material embedded with
PCM, with standard brick construction, using a double-story school building located in
Islamabad, Pakistan. The study found that 27 °C indoor comfort temperature was achieved
without the need for mechanical cooling, and 31 °C was achieved for the standard brick
construction. Meng et al., (2015) compared the fluctuation in indoor temperature for two
identical hypothetical small rooms in China. One room without PCM and a new room with
PCM (SP29 & RT18), and found that the new room with PCM can decrease the tempera-
ture fluctuation by 6.7 °C in summer and 12.7 °C in winter. Wu et al., (2018) used a cou-
ple of heat and moisture transfer (HAMT) models to test the energy-saving potentials of
a phase change humidity control material (PCHCM) for different climate locations, but
without specifying any climate period for the locations. After experimental validations of
the base-case set-up, the study found that the maximal energy-saving potential rate of the
PCHCM could be 19.57% for the Paris climate. Saffari et al., (2016) compared different
PCM melting points (27 °C, 25 °C and 23 °C) against different HVAC operation schedules
using a single zone base-case and also using the Madrid climate zone. For the 24 h HVAC
operation schedule, the PCM with 27 °C melting point was found to achieve the highest
annual energy savings of 10-15%, the 25 °C PCM melting point achieved 10-13% annual
energy savings and the 23 °C PCM melting point achieved 8—-10% annual energy savings.
Considering the positioning of PCM in an office building in a generic climate of Hong
Kong, Chernousov and Chan (Chernousov & Chan, 2016) considered its placement at the
inner building envelope. This allows the PCM to reduce the morning peak power by up to
about 5%. Rahimpour et al. (2017) devised the use of a 24 mm thick PCM in the roof, walls
and floor as a demand response mechanism to reducing or shifting cooling and heating
loads using three models; lightweight, brick-wall and PCM-enhanced lightweight build-
ings.. By using the CondFD algorithm, in the EnergyPlus platform, the results showed that
the annual energy savings in Hobart and Melbourne (among the five cities analysed) are
21.8 and 16.7% respectively. Zeinelabdein (2020) investigates the potential of integrating
PCM, as a Thermal Energy Storage (TES) with night cooling using computational fluid
dynamics (CFD), and found the cooling system to meet 42% of the cooling load while also
saving 67% of energy for the cooling requirement. By considering the parts of the works
in the life cycle assessment of the integration of PCM in lightweight buildings conducted
by Vega et al., (2022) in Chile, by also using the CondFD algorithm similar to (Rahim-
poura, 2017), the findings showed that PCM integration in walls and roof decreases elec-
tric energy by 52.8% in Antofagasta and 36.3% in Calama. Zhao et al., (2019) investigated
the integration of PCM with a solar heating system in a public building after studying the
generic meteorological climate of Tibet. The study compared three schemes (‘A’, ‘B’ and
‘C’) of the solar heating system, and the results of the study concluded that the solar heat-
ing system, scheme ‘A’, integrated with the PCM led to 92% energy savings for a building
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requiring daytime (09.00 h-04.00 h) heating, and 64% energy savings for a building requir-
ing 24 h full-time heating.

Contrary to the above studies, other studies only specified the current climate periods (
Thantonga, 2018; Al-Yasiri & Szabd, 2022; Gallardo & Berardi, 2022; Soudian & Berard,
2019; Zhou, 2022), for example, in a study by Gallardo and Berardi (Gallardo & Berardi,
2022), using an experimental base-case set-up, an experimental procedure was used to
test the energy savings of a Radiant Panel Ceiling PCM (RCP-PCM) in Toronto, Canada.
The study concluded that the RCP-PCM can shift cooling load to off-peak hours, and can
absorb heat gain between 180 and 230 wh/m?. The study only compares the energy-saving
potentials of the system for the current climate (September 2021). In the study by Zhou
(2022), a dynamic transient dynamic platform was developed, integrating PCM walls with
Building Integrated Photovoltaics (BIPVs). The results showed that due to solar shading,
the vertical BIPVs may reduce building cooling load by 7.6% and peak power by 7.2%.
The synergy of PCM walls and BIPVs could resist heat flux for a shorter period during
summer time and provide heat for a longer period during winter time, with a higher mag-
nitude in both cases when considering the current climate period. Al-Yasiri and Szabd
(2022) investigated and compared the indoor temperature and heat gain reduction of two
experimental setups (with and without PCM)), in the current climate. The set-up with PCM
proved to enhance the indoor temperature by 2 °C and reduce heat gain by 56W, compared
to the set-up without PCM.

Similar to the night ventilation effect on PCM (Solgi et al., 2017; Zeinelabdein et al.,
2020), and PCM integration with other measures ( Rahimpoura, 2017; Gallardo & Berardi,
2022; Zhao et al., 2019; Zhou, 2022); Soudian and Berard (2019), compared different ven-
tilation flow rates (0, 2, 5 and 10 ACH) for night ventilation to test the effect of PCM
integrated in walls and ceiling for the current climates of Toronto and New York in the
summer. For the ventilation flow rate of 10 ACH, the cooling energy use intensity (EUI)
was reduced by 19.7% and 7% in both Toronto and New York respectively, compared to the
baseline without PCM. The results also claimed that the 10 AHC ventilation flow rate per-
formed better. Thantong (2018) also compared the energy-saving potentials of two house
models. One with a solar chimney PCM (SC-PCM), and the other with a simple concrete
wall. The result showed that ventilation reduced the heat gain by 57.2% through the south
wall with SC-PCM compared to the simple concrete wall.

Again, contrary to all the studies above on PCM which only considered current or
generic climates, Sajjadian et al., (2015) assessed the potential of PCM on energy sav-
ings and thermal comfort of a near Passivhaus standard building in the UK, for current
and future climate scenarios (2020, 2050, 2080). The results indicated that in the summer
month of August 2080, cooling load savings of up to 128.1 kWh could be attained.

3.1.3 Insulation-related measures

Although, while investigations of some studies showed how insulations performed better
as a passive solution than other passive strategies, others showed a contrast. For exam-
ple, considering the current climate scenario, Calama-Gonzélez et al., (2022) compared the
performance of an externally insulated facade with a double skin fagade (DSF) on the south
and north facades of a building. The authors found that the double skin facade provides
67-85% comfort condition compared to the externally insulated facade with a comfort con-
dition of 36-39%. However, since this study only considered the current climate, other dif-
ferent possibilities may arise for other future climate scenarios. Conversely, by considering
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the current and future climate scenarios, Guarda et al., (2019) compared the performances
of typologies with rock wool, glass wool and Expanded Polystyrene (EPS) insulations
against a base typology without any insulation. For the 2080 scenario, the authors con-
firmed that the base case typology can only achieve 17.9% comfort hours, while the rock
wool, glass wool, and EPS typologies achieved 27.2%, 27.2% and 24.9%, respectively. The
authors also noted that in all the climate scenarios, the glass wool and rock wool present
the same performances. Again, without specifically relating to any climate scenario, Lin-
gard (2021) confirmed the performance of solid wall insulation with low U-value glazing
as a retrofitting option for the UK housing stock. The study found that retrofitting could
reduce heat pump heating demand by 65%.

In a study on the impact of environment and energy of a net zero energy residential
building, Cusenza et al., (2022) compared the performances of four design scenarios. The
main outcome of the study showed that cellulose fibre insulation with BIPVs (with battery
storage) has the lowest global energy requirement (GER), which is 18% lower than the
expanded polystyrene (XPS) insulation with BIPVs (without battery storage). Contrary to
the above study where integration of well insulation-based model designs gave rise to bet-
ter energy savings, remarkable unprecedented results documented by Hugo et al., (2021)
on the performance of a highly insulated model shows that, while there was about 0.73 °C
decrease in average indoor temperature in the highly insulated model, the energy consump-
tion increases by 3.5% when retrofitted with a roof top greenhouse (RTG) in the current
climate scenario. In fact, the study further documented that by 2100, the energy consump-
tion in the highly insulated model with the retrofit measure will rise up by 11% for the
climate scenario of 2100. For a more continuous favourable performance of highly insu-
lated buildings, the authors finally recommended an appropriate choice of RTG for any
retrofit measure for the peculiar climate scenarios of Southern African cities. On further
arguments on the performance of insulation-based measures against other passive measure,
i.e., double-skin facade, contrary to the study in Sajjadian et al. (2015), Pierangioli et al.,
(2017) argued that an externally insulated system plus a high resistance window performed
better in terms of energy savings than other passive measures in all cases including office
buildings and two residential buildings. The results of the study showed a reduction of
64%, 67% and 70% energy savings for the two residential buildings and the office buildings
respectively, for the future climate scenario of 2066—2095. In each case, the results demon-
strated the comparison of the externally-insulated systems integrated in the buildings with
the un-insulated base cases. Although this study considered the current and future climate
contrary to Calama-Gonzélez et al., 2022, the reference climate is Central Italian and also
does not consider a double skin facade as part of the compared passive measures.

3.1.4 Fenestration, roof and other related measures

Mahdy and Nikolopoulou (2014) compared the performances of combining different win-
dow to wall ratios (WWR) and glass types of window openings, in different climate zones
in Egypt, under current and three future climate scenarios (2020, 2050, 2080). According
to the findings of the investigation, by considering all the climate scenarios, < 10% WWR
with a 6.4 mm glass reflective glass (having 8% stainless steel glass) could provide the best
energy consumption (minimum) while maintaining better thermal comfort condition for all
the climate scenarios. Similarly, Mahmoud et al., (2022) also investigated the performances
of different glass types on energy consumption, although, in the cold climate of Canada
and future climate scenarios were not considered. The results of the investigation showed
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that Double glass low E 6/6 mm Air gap is 18.63% better than the single clear reflective
glass of the base-case yearly, in terms of energy consumption. Using a statistical Multiple
Linear Regression model and a least-square estimate, Pajek et al., (2022), conducted a test
of several passive design parameters to assess their relevance on energy consumption on
heating, cooling and total energy consumption, across five countries in Europe (Ljubljana,
Athens, Porto, Milan, Moscow) and under three future climate scenarios (2020, 2050,
2080). The assessments concluded that the U-value of the opaque envelope (thermal trans-
mittance) was the most relevant parameter influencing the total energy consumption and
the energy demand on heating, while the window-to-floor area (WFR) was the most rel-
evant parameter for the cooling load. More so, in an earlier study, Pajek and KoSir (2021)
compared the performances of three building models with the same usable floor areas on
energy savings and overheating for current and future climate scenarios, according to the
Slovenian Energy Performance Certificate classification. According to the results of the
study, the model with the best overall performance especially in view of the future climate
scenario, meets the recommendation of the passive design parameters (Table 1), with the
WER at 15%.

Cirrincion et al., (2021) compared the effect of green roofs (GRs) installed on build-
ings and standard buildings without GRs, with respect to climate change and demographic
growth, in the cities of Italy and Luxembourg. The effects of the GRs showed a 20-50%
and 3-15% reduction in energy savings in Esch-sur-Alzette and Palermo respectively.
For indoor comfort, the results of the study further showed that, with the presence of the
GRs, there was a shift in the thermal sensation of PMV from an acceptable-moderate level
(PMV >0.5) to a moderate-normal level (PMV <0.5). In contrast, Cascone (2022) only
consider the current climate by comparing the performance of a bio-based GR (recycled
polyethene granules) with a commercially traditional one in the Mediterranean climate in
Italy. By using experimental set-up and measurements with sensors, the author detailed
that the bio-based GR led to a reduction of 2 °C in the indoor surface temperature as com-
pared to the traditional roof, as well as a corresponding reduction in energy consumption.
Similarly, Sabati et al., (2020) also considered the current climate scenario and used an
experimental set-up involving heat flux sensors and thermocouples, to compare the per-
formance of rooftop greenery systems (RTGS) with non-green rooftops in a sub-tropical
climate in Australia. Based on the comparison, the cooling load result using the Design-
Builder simulation showed that a reduction of 13.5% in energy could be saved with RTGS.
By considering the integration of GR with other passive measures as retrofitting interven-
tion, Sartor and Calmon (2019), in a generic climate in Brazil, have shown that the overall
performance of all the measures on a neighbourhood building achieved a 15% reduction in
energy consumption. However, in this case, the impact of the GR is very minute, contrib-
uting to only a 0.2% reduction, while the ventilated facade had the highest significance,
contributing to about 10%. Andric et al., (2020) were the first and only authors to study
the energy performance of green systems (on roofs and walls) for the current and future
climate in Qatar. The authors modelled a two-story residential building to serve as a rep-
resentative building stock of Qatar (2020, 2050, 2080). After documenting the projected
energy consumption of the building without mitigation measures (increase by up to 9%,
17%, and 30% in 2020, 2050, and 2080, respectively), the study concluded that integrat-
ing a 50 mm XPS and the installation of energy-efficient windows (30% energy savings)
proved more energy efficient than the addition of green systems on walls and roofs (3%
energy savings) under the climate condition. Although, this study contradicts others on the
performance of green systems.
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Away from green roof systems, cool roofs, based on their albedo parameter, have also
shown promise in reducing energy consumption and enhancing comfort. For example, Pokhrel
et al., (2019) explored the combination of active and passive building energy sustainability
and mitigating options, using the weather research and forecast (WRF) model, with the
building effect parameterization and building energy model (BEP-BEM) schemes, under the
current climate. Based on the mitigating options explored, the findings showed that the cool
roof, control of indoor temperature set-point and the use of efficient air-conditioning (AC)
equipment reduced the total energy demand by 6.9%, 9.9% and 16.15%, respectively. When
simultaneously considering all options, the result also showed that the total energy could be
reduced by 40%. Again, in the study conducted by Kolokotroni et al., (2013), on the impacts of
different albedo values for the cool roof, and under the current climate scenario, the simulation
results showed that the realistic optimum albedo value to achieve about 3—-6% overall heating
and cooling reduction is 0.6-0.7. Together with this value, the authors also recommended
an air change rate of 2ACH. On the contrary, Ortiz et al., (2022), instead suggested that a
reflective roof with an albedo of 0.89 combined with AC set-point adjustment could lead to
a 20% reduction in cooling energy demand in the highest-burden neighbourhoods in New
York, under a warming climate. The results of this study were based on the current and future
climate scenarios, using the Weather Research and Forcast (WRF) model.

In a study on the impact of air infiltration rate on heating demand, Liu et al., (2021) first
conducted a comprehensive field investigation into the space heating performance of airport
terminals across various cities in China. Through the potential of the adaptive passive strategy
of adjusting air tightness, the study concluded that adjusting the air tightness at the top and
bottom openings against severe infiltration rate, as well as using radiant floor heating could
jointly lead to 84% energy savings on heating. Because the investigation in this study was
conducted between 2012 and 2019, it is important to note that this study only focused on the
current situation of the higher energy consumption for space heating in airport terminals.

Among some studies which used emerging control systems, Lucchino and Goia (2023)
most recently used a multi-domain model-based control (MBC) algorithm for an adaptive
facade based on a flexible double skin facade (DSF). Although, the study only considered
the current climate for three seasonal periods (winter, summer and mid-summer). By using
a Building energy simulation tool (BES) to co-simulate with the MBC to select the best
DSF, the findings showed that the MBC could save 70% of energy while simultaneously
maintaining occupied comfort hours >80% (falling within the selected comfort criteria for
all the domains). The authors claimed that these results are when comparing the MBC with
other traditional control systems, i.e., schedule and rule-based controls. One can say the
outcome of this study could not have been better emphasized if any future climate scenario
had been adopted to test the performance of the MBC on the DFS. In the study, the authors
considered four domain priorities (illuminance on the working plane, Ep,ane; CO2 concen-
tration in the room, A CO2; operative temperature in the room,Top; as well as the heating
and cooling demand,|Qjeq;| + |Qcoor]) to check the performance of the adaptive DSF. Based
on the domains, the controlled MBC optimisation problem on the performance of the DSF
coupled with the HVAC system was formulated by the authors in Egs. (11) and (12) thus:

min (|Qpeat| + |Qcoot| ) [OCC, AFP, OP, F, SH, ¢] an

where: | Q0| + | Q00| i the sum of heating and cooling demand; OCC is the presence of
the occupants; AFP is the possible airflow paths; OP is the position of the openings; F': is
the fan settings (operation and flow); SH is the shading position; ¢ is the angle of the slats
of the DSF.
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Table 2 Threshold values for the MBC scheme: table adapted from (Hugo et al., 2021)

E jne (Lux) ACO,[PPM] Typl°Cl

1LEVEL 2" EVEL 1LEVEL 2" EVEL 1LEVEL 2" EVEL

Office space Circulation II Class III Class II Class III Class

500 300 800 1350 20-24 19-25
23-26 22-27
20-26 19-27

The threshold value of the T}, vary based on the seasons (winter, summer and mid-summer)

Additionally, the four domains were subject to the following constraints:

-

Epjane > 1"LEVEL,,, elseE,,, > 2" LEVELy,,:
ACO,(1"LEVELy,,elseACO, ) 2" LEVELy,,,.:

§ V'LEVEL s _jimis < Top < V'LEVELy; g jiis (12)

lane

else

2"LEVEL gy, yimic < Top < 2"'LEVELyigh yimic

Threshold values of 1st and 2nd LEVEL in Eq. (12) are presented in Table 2 based on
the authors’ assumptions:

For studies on building layout and form as effective passive measures, Ahmadian et al.,
(2022) developed an optimisation framework to identify the most energy-efficient built
form and urban geometry for the future built environment which can adapt to the changing
climate scenarios. Among the four built forms optimised, compared to the pavilion built
form (least efficient), the tunnel-court form (most efficient) could lead to an energy demand
of 45KWh/m? by 2050, and the pavilion could lead to an energy demand of 100WKh/m?
by 2050.

Although the authors did not recommend any effective passive or active solution, Lei
et al., (2022) projected the effect of climate change on thermal comfort in heritage apart-
ments in both hot summer and cold climate zones in China, under the current (TMY) and
future (2050) climate scenario. The authors found that an increase of 58-60% in the pre-
dicted average overheating hours is likely by 2050, compared to 4-44% overheating hours
under the current climate scenario. They concluded that some climate change adaptation
measures like solar shading, passive cooling and insulation, are currently studied in an
ongoing study to mitigate the impact of overeating in view of any future climate scenario.

3.2 Category 2: effective active solutions

For PV-related active measures, Hyung An et al., (2018) compared the performances
of heating and cooling loads of amorphous-Si (a-Si) building-integrated photovoltaic
(BIPV) window (a-Si BIPV) and clear glass double-layer used in an office building in
Korea for the current climate and concluded that the a-Si BIPV windows could reduce
18.2% energy demand on both cooling and heating compared to the double-layer win-
dows. Italos et al., (2022) similarly conducted an energy performance analysis of an

@ Springer



Climate change and the built environment - a systematic review

existing residential apartment by comparing two models. One with the integration of
a double skin facade containing an effective active solar energy system (BIPVs), glaz-
ing system as well as rambling planting, and another model without. While this study
focused on an unspecified climate scenario in Cyprus, parts of the results proved that
the active solar energy system could cover the proposed energy consumption of the
building by up to 63%. For the current and future climate, Kimiya Aram et al., (2022)
also proved that the use of active PV solar systems in combination with other effective
passive and active (efficient ACs) solutions, 65.14% and 86.18% energy consumption
could be reduced in the current climate and future climate scenario of Iran. Also, the
PV solar system could produce 90% of the building’s energy demand by 2080. Further-
more, for an existing mixed-mode building in Cyprus, and also without a specified cli-
mate scenario, Efthymiou et al., (2020), saw the possibility of using active solar BIPVs
(along with their effective operation) as passive shading devices, as part of a double
shell. While the other passive measures (80 mm polystyrene insulation, PVC double
glazing) account for 85% and 50% reduction in heating and cooling load, the energy
output from the BIPVs could cover the remaining 50% of the cooling load. Stockholm
Chiu et al., (2013) investigated whether the design of a renewable energy system (RES)
based on present-day data could lead to efficient energy performance in a future cli-
mate scenario, using a passive representative building in Tehran, Iran. Firstly, part of
the study showed that the design of a RES with present energy data is vulnerable to the
impact of CC. Secondly, using an optimisation technique concerning the influence of
future CC scenario (2038), the summarily of the authors’ findings showed that the opti-
mal RES (fit for the future climate scenario), decreased the annual electricity demand
of the building by 2.29% between 2019 and 2038. The optimised RES share was also
shown to cover the annual electricity demand shifts from 95.4% in 2019 to 102% in
2038, due to the growth of about 4.5% power generated by the PV systems, showing the
reliability of the PV system over the long-term.

Perez-Andreu et al., (2018) conducted a comprehensive study for the current cli-
mate scenario (TMY2) and four temperature projections of two periods (2048-2052 and
2096-2100) under the following four climate-change scenarios: CNRM-CM5 RCP4.5,
CNRM-CMS5 RCPS8.5, MPI-ESM-LR RCP4.5, and MPI-ESM-LR RCPS8.5, in Valencia,
Spain. The authors developed eight models based on a typical Mediterranean residen-
tial building to reflect a combination of different passive and active measures. Among
all the models (including the base model), ‘model 8’, where all combinations of pas-
sive measures plus heat recovery system, as well as extra mechanical ventilation, were
implemented, irrespective of climate scenario, the energy savings of at least 80% could
be achieved in 2048-2052. Again, the authors’ results showed that, in model 8, at least
65% energy savings could be achieved in the 20962100 period. The study also sepa-
rately mentioned the contribution of adding the heat recovery system and the mechani-
cal ventilation in model 8 to have 19% energy savings in the (MPI-ESM-LR RCP 8.5
scenario) in the 2096-2100 period, compared to ‘model 7’ (with no extra mechanical
ventilation).

Sobhani et al., (2020) considered the potential of active free cooling Latent heat
thermal energy storage (LHTES) to mitigate the cooling requirement of the passive
house which may be subject to overheating in summer. LHTES systems use night
cooling to provide solutions for sustainable cooling with the use of renewable cooling
sources (Stockholm Chiu et al., 2013). Under the climate of Stockholm for which the
scenario was not specified by the author, and through a multi-objective optimisation
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on cooling supply for various LHTES, the authors concluded that 75% of the cooling
requirement could be met with the optimised LHTES.

Similar to the optimisation technique using NSGA-II (Andric et al., 2020), Mosta-
fazadeh et al., (2023) introduce a novel simulation-based multi-objective optimisation
approach by modifying the NSGA-III algorithm. This is the first proposed novel mod-
ified algorithm (prNSGA-III) to optimise active and passive energy retrofit measures
under future climate change scenarios. Based on the optimised implemented retrofit
measures (see Table 1f) of a residential building in Tehran, Iran, about up to 46% ther-
mal discomfort can be reduced in the future climate scenario. The authors also empha-
sised the promising potential of the prNSGA-III in optimisation techniques for retrofit
measures in other various future climate zones and scenarios. The multi-objective opti-
misation function of the prNSGA-III was formulated by the authors through the thermal
comfort objective function as follows:

DOH
TDH = —— x 100
OH (13)

where TDH = thermal discomfort hours; DOH=annual discomfort hours; OH=occupied
hours.
The multi-objective optimisation is thus:

[Maximise]F,(x) = EP (14)
[Maximise]F,(x) = LCC (15)
[Minimise]F;(x) = TDH (16)
Subject to:
xeX
F,(x) > EP, (17)
F;(x) < TDH, (18)

where EP, and TDH,, are environmental performance and thermal discomfort hours of the
baseline building (representing the two core constraints of the multi-objective optimiza-
tion); LCC is the life cycle cost; x is the vector of decision variables representing a specific
retrofit strategy; and X is the feasible set of decision vectors.

For the above multi-objective pareto optimisation, the prNSGA-III developed by the
authors operates such the best retrofit measures are selected to maximise the EP and LCC
and to minimise the TDH.

Likewise, Luo and Oyedele (2022) deployed a novel hybrid-genetic algorithm and arti-
ficial neural network (GA-ANN) for optimisation purposes to select the optimal retrofit
measures under changing future climate scenarios, implemented on two campus buildings
(Northavon house and Q building) in Bristol, UK. The authors found that selected retrofit
measures from current climate conditions may no longer work under future climate change
scenarios, with at most 4.7% over estimation or 54.7% underestimation of energy, lifetime
cost and carbon. Using the hybrid novel optimisation technique (GA-ANN), the authors
recommended effective retrofit active and passive measures (see Table 1f).
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Some studies reported the effectiveness of heat pumps, and the performance of some
other active measures depending on the climate scenarios, for example, Rahif et al., (2022),
conducted a time-integrated discomfort assessment for a base case of nearly zero energy
dwelling, with no active free cooling in Brussels under current and future climate sce-
nario. The authors first found that up to a 528% increase in overheating risk and about a
32% decrease in undercooling risk are projected by the end of the century. By comparing
the performances of active systems, a reversible air-to-water heat pump (S02) could save
HVAC energy consumption to about 6-13% compared to a gas-fired boiler+an air con-
ditioner (SO1). Secondly, the sensitivity analysis of the study showed that HVAC strategy,
heating set-point, and cooling set-point are among the most influential parameters deter-
mining the HVAC primary energy use.

For the performance of active measure emission scenarios, Masi et al., (2021) con-
ducted a sensitivity analysis by the use of modified weather files based on the representa-
tive concentration pathways (RCP) of the fifth assessment of the IPCC report, to determine
the influence of climate change on photovoltaic productivity. The findings showed that cli-
mate change may bring an increase in the productivity of the photovoltaic from 3.3 KWp
to 6.9 KWp peak power for the worst scenario emission, leading to a decrease in elec-
tricity demand from 28 to 17%. Similarly, Kharseh et al., (2015) investigated the impact
of global climate change on the performance of GSHP systems in different climate zones
(Stockholm, Doha, Istanbul). From the findings of the study, for a building with a stand-
ard thermal quality of building envelope (TQBE) as classified by the author, the GSHP
annual energy consumption is projected to decrease by 5% (Stockholm) in cold climate
and increase by 17.7% (Doha) in hot climate in 2050 compared to 2014. Equivalently, for
a building with a low TQBE, the GSHP is projected to decrease by 8.5% in cold climates
and increase by 18% in hot climates. Evidently, it can be said that the GCC has a signifi-
cant impact on the performance of GSHP. This was also corroborated in the study by Shen
and Lukes (2015), where the increase in global warming by 2-3 °C reduces the annual
performance of GSHP in future climate scenarios for residential buildings, in the four USA
cities under consideration. In fact, the study concluded that for this reason, there may be
less competitiveness in the choice of GSHP in the future warming in the climate context of
the USA.

4 Discussion
4.1 Analysis of studies and critique

From the previous section, it can be noticed that the number of studies dealing with effec-
tive climate adaptive or retrofitting or passive and active as well as renewable measures
to the built environment, especially under different future climate scenarios, has increased
from the past 5 years until 2023 compared to years that preceded. However, based on the
summary in Table 1, one can notice that some studies only consider any effective measure
under the Current Scenario (herein onward referred to as TMY), and even more studies
failed to clearly specify whether any investigation was under TMY/Future Climate Sce-
nario. TMY/Future Climate Scenario is herein onward referred to as TMY/FCS. Therefore,
based on intuition, they are considered in such studies as ‘Generic’ in this paper.

It would be worthwhile to compare studies strictly on all effective active and passive
measures based on reckoning (see Table 3) and currency (see Fig. 5). Although, other
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Fig.5 Boxplot showing effective solutions against the year of publication
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Fig. 6 Boxplot showing studies based on climate scenarios against the year of publication

studies were a combination of any active and passive measures. Again, with reference to
Fig. 5, it is important to clarify that ventilation means it was the most sensitive passive
measure against any other passive measure combined with it in the papers, thereby, the
category was simply termed ventilation in the figure. This was a similar case with PCM,
insulation, fenestration and GRs/cool roofs in the same figure. For simplicity, the Generic
climate studies are merged with the MTY studies in Fig. 6. By comparison of these studies
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to similar ones, impacts of climate adaptive measures could be very much extended under
the TMY/FCS but were not. For example, while some studies relating to measures on
ventilation effectiveness and overheating comprehensively projected the impacts and
sensitivity of these measures under the TMY/FCS (Andric et al., 2018, 2019, 2020; Cui
et al., 2022; Diaz-Lopez & Serrano-Jiménez et al., 2022; Fereidani et al., 2021; Mehmood
et al., 2022; Nair et al., 2022; Ozarisoy & Altan, 2021; Perez-Andreu et al., 2018; Rafieses
et al., 2021; Soaresa et al., 2017; Zhou et al., 2020a, 2020b), others were only restricted to
the TMY or the Generic climate (Andric et al., 2018, 2020; Cui et al., 2022; Diaz-Lopez
& Serrano-Jiménez et al., xxxx; Fereidani et al., 2021; Nunes & Giglio, 2022; Perez-
Andreu et al., 2018; Zhou et al., 2020a). Similarly, for studies relating to PCM (or PCM
in combination with other measures) and their impacts on energy savings, only one study
(Meng et al., 2015) comprehensively considered the TMY/FCS, although, the year of the
study was in 2015 (the study clearly shown in the boxplot in Fig. 5), while the remaining
PCM related studies reported, only considered the TMY or any Generic climate (Botti &
Ramos, 2017; Costanzoa et al., 2018; Hamdy et al., 2017; Heracleous et al., 2021; Hooff
et al., 2014; Laouadi et al., 2020; Lapisa et al., 2018; Miri & Babakhani, 2021; Pelletier &
Calautit, 2021; Roetzel et al., 2013; Sandaruwan et al., 2022; Solgi et al., 2017; Ur Rehman
etal., 2021; Wang et al., 2017; Yildiz, 2015).

This means that more comprehensive studies on the impacts of PCM under future emis-
sion scenarios are lacking and could be explored. Again, among studies relating to insula-
tions plus other climate adaptive measures, only (Edenhofer et al., 2014; Saffari et al., 2016;
Zeinelabdein et al., 2020) considered the TMY/FCS while their Counterpart (Chernousov
& Chan, 2016; Faccani et al., 2017; Wu et al., 2018) only considered the TMY or any
Generic climate. Other studies combined effective measures as either ventilation through
fenestrations (windows) plus any other measure(s), thermal transmittance of fenestrations
plus any other measure(s), or shading devices of fenestrations plus any other measure(s).
Three of these studies (Gallardo & Berardi, 2022; Vega et al., 2022; Zhou, 2022), con-
sidered the TMY/FCS while only a study (Zhao et al., 2019) was based on the TMY. On
effective measures pertaining GRs or albedos of cool roofs, only three studies (Al-Yasiri
& Szabd, 2022; Lingard, 2021; Toe & Kubota, 2015) were done under TMY/FCS, and the
others ( Thantonga et al., 2018; Calama-Gonzalez et al., 2022; Guarda et al., 2019; Saj-
jadian et al., 2015; Soudian & Berard, 2019) under just the TMY. Some most recent studies
have shown rewards of emerging optimisation techniques (Bayesian Bootstrap, NSGA-II,
prNSGA-III, GA-ANN, MBC) to optimising adaptive passive/actives under TMY/FCS
(Andric et al., 2020; Cirrincion et al., 2021; Kolokotroni et al., 2013; Pokhrel et al., 2019;
Raiieses et al., 2021), although one study only considered the TMY (Hugo et al., 2021).
To the best of our knowledge, there is yet any study on the robustness of Model Predictive
Control (MPC) in optimising any climate adaptive measures (for example, innovative invo-
lutions and PCM) based on future climate scenarios. This emerging field of optimisation
techniques could be explored further.
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5 Conclusion and area of future study

This paper started by re-emphasising the glaring threats of the future warming climate
scenarios through evidence from the recent IPCC reports. After, it reviewed up-to-date
reports on effective active and passive solutions to mitigate such threats from past studies.
The following are the key conclusions of this paper:

i. By geography, there is a paucity of studies in Africa within the scope of this paper,
with only three reports recorded (Hooff et al., 2014; Vega et al., 2022; Zeinelabdein
et al., 2020). This could potentially be an area to look into in future research.

ii. Among the EU and UK papers with Mediterranean to oceanic and temperate climates,
for both housing dwellings and commercial buildings, the most effective solutions are
natural ventilation/ventilative cooling. In almost all cases of these instances, future
climate scenarios were considered.

iii. In subtropical to hot regions in Asia, the most effective solution is the PCM in public
buildings. However, not all the papers fully considered the future climate scenarios.

iv. In most of the Middle-East regions with semi-arid to arid climates, ventilation/wind-
catchers and PV are the most effective solutions. While some considered the future
climate scenarios, others do not.

v. In different regions across the US and Canada for both public buildings and house-
holds, the most effective solutions are any exterior shading, low E double glass, PCM
and reflective roof. Only future climate scenarios are discussed in these regions.

vi. In South American regions, the notable effective solutions are Insulation, envelope
thermal capacity and ventilation and PCM, with few studies having focused on future
climate scenarios.

vii. Among the papers on Australia having a sub-tropical to hot-humid climate, the notable
most effective solutions are green roofs for office buildings and PCM for residential
buildings. However, none considered the future climate scenario.

This paper only utilizes data from the Scopus database, future research could expand the
database using the same method.
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