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Abstract
Adopting genome editing with the trait of pest resistance contributes to sustainable devel-
opment by reducing pesticide use. Developed by Clustered Regularly Interspaced Short 
Palindromic Repeats (CRISPR) technology, CRISPR rice is resistant to two of its most 
destructive insect pests. However, there exists a trade-off between pest resistance and lower 
potential yield. In the presence of uncertainty of pest severity, adopting CRISPR rice dem-
onstrates positive environmental benefits at its optimal planting ratio, estimated based on 
a microeconomic model extended with environmental externalities of rice cultivation. We 
estimate the optimal planting ratio to be 37%, with the environmental benefit of co-planting 
CRISPR rice to be 560 million US dollars annually in China. The environmental benefit 
accounts for 4–22% of the total value of co-planting CRISPR rice in the Monte Carlo simu-
lations. Regional heterogeneity regarding optimal planting ratio and environmental benefit 
is studied for 12 major rice-cultivating provinces in China. We conclude with policy impli-
cations that policymakers need to consider the vast environmental benefit of CRISPR rice 
adoption to have a more comprehensive view of its economic and environmental market 
potential, contributing to the heated debate on regulating CRISPR technology in China and 
worldwide.
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1 Introduction

The world is facing challenges in sustainable development. To achieve sustainable develop-
ment, it is essential to harmonize economic growth, social inclusion, and environmental 
protection (Allen et  al., 2018). The United Nations Member States in 2015 set 17 Sus-
tainable Development Goals (SDGs) for sustainable development, including Zero Hunger, 
Good Health and Wellbeing, Clean Water and Sanitation, Climate Action, etc.. Fighting 
climate change, China targets sustainable development, as indicated by China’s 14th Five-
Year Plan, China’s most crucial policy guideline since 1953. For the first time, the latest 
Five-Year Plan mentions that the economic growth should be within a reasonable inter-
val but without mentioning an explicit growth target, which enables the flexibility to pur-
sue the environmental goals and drive towards sustainable development (Guo et al., 2022; 
Sekar et al., 2021).

Agricultural production is critical in reaching sustainable development targets 
(Maroušek et al., 2022, 2023; Tanumihardjo et al., 2020; Viana et al., 2022). Reducing pes-
ticide use in agricultural production has become a goal many countries share. In the United 
States, pesticides have been shown to pose a chronic threat to aquatic life in rivers (Stack-
poole et al., 2021). Overuse of pesticides is one of the sources of emerging contaminants in 
agroecosystems and is linked to human health hazards, such as headaches, nausea, repro-
ductive disorders, and even cancer (Poudel et al., 2020; Thakur et al., 2008). Bees, birds, 
and other non-targeted plants are affected by the contamination of air, water, and soil due 
to the overuse of pesticides (Mishra et al., 2021). 77% of farmers in Southeast Asia overuse 
pesticides and 77% of expenditures in pesticides are found to be overused (Schreinemach-
ers et al., 2020). Overusing pesticides challenges developing countries without the institu-
tional framework to manage potential risks efficiently. However, reducing pesticide use is 
complicated because most agri-food sectors still depend on it to control pests and reduce 
yield loss.

For more than half of the world’s population, rice is the staple food (Fukagawa & Ziska, 
2019); China consumes more rice than any other country, with 155 million metric tons in 
2021 (NBSC, 2021). The world rice acreage has 165 million hectares, but rice production 
suffers from pest damage, with an estimated annual loss of 30 billion US dollars (Chin-
talapati et al., 2023). Thirty million hectares of rice are cultivated in China, and the pest 
damage is estimated to reach an annual loss of 1.8 billion US dollars (Li et  al., 2020). 
Pesticides are applied to reduce pest damage; however, Chinese rice farmers overuse pes-
ticides by 57% above the recommended amount (Huang et al., 2021; Zhang et al., 2015). 
One solution to the overuse of pesticides and the negative externalities of pesticide use is 
insect-resistant rice.

By suppressing the biosynthesis of serotonin (a neurotransmitter in mammals) 
induced by insect infestation, the recently developed CRISPR-Cas technology for rice—
CRISPR rice—is resistant to stem borers and planthoppers, the two most destructive 
insect pests of rice (Lu et al., 2018). With the trait of pest resistance, farmers adopting 
CRISPR rice can reduce pesticide use and, meanwhile, reduce the level of yield loss, 
which has both economic and environmental benefits. CRISPR rice is an alternative to 
genetically modified (GM) insect-resistant rice. The classic GM rice variety is Bacil-
lus thuringiensis (Bt) rice, developed in the 1990s. In 2009, Bt rice received biosafety 
certificates in China, indicating that it is not more dangerous than conventional rice. 
In 2018, Bt rice was approved by the United States Food and Drug Administration and 
Environmental Protection Agency for consumption and importation to the United States 
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(but not being cultivated). However, GM rice has not been commercialized in any coun-
try worldwide (Jin et  al., 2019a). Compared to GM rice, CRISPR rice has a greater 
chance of being commercialized because it is indistinguishable from the rice developed 
by traditional breeding techniques. Not only is no new gene added, but a mutation pro-
ducing a gene structure similar to that of CRISPR rice can also occur in nature (Carlin, 
2011; Lu et al., 2018), which has implications for regulation.

At this moment, the United States and Canada do not consider products developed 
by CRISPR-Cas technology as GM products, regulate them in the same limited way as 
conventional products, and therefore, no segregation or labeling in the supply chain will 
be compulsory once commercialization is permitted (US Department of Agriculture 
[USDA], 2018; Government of Canada, 2022). Research has shown that consumers’ 
willingness to pay for CRISPR products is more than for GM products (Hu et al., 2022; 
McFadden et al., 2021; Muringai et al., 2020; Wang et al., 2023). China, however, has 
not yet issued specific regulations on genome editing, including CRISPR-Cas technol-
ogy. Therefore, there is the possibility that CRISPR rice may be regulated as non-GM 
rice.

Different from GM rice without significant difference in yield compared to conventional 
rice (Huang et al., 2005), CRISPR rice, however, due to its trade-off between pest resist-
ance and lower potential yield, there exists an optimal planting share. When there are few 
pests, in the extreme case, CRISPR rice with no pests in the lab produces over 30% lower 
yield; when there is a severe pest outbreak, pest-resistant CRISPR rice outperforms con-
ventional rice (Lu et al., 2018). The relative yield between these two extreme pest scenarios 
is ambiguous, indicating that co-planting CRISPR rice would be advisable only if CRISPR 
rice could outperform conventional rice. This trade-off implies an optimal planting share 
for CRISPR rice with economic consequences (Jin & Drabik, 2022).

The external costs of pesticide use will also affect the optimal planting share. External 
costs are reflected in various forms, such as pesticide resistance, acute or chronic health 
problems for consumers taking in pesticide residues, water pollution, etc. (Thambhitaks 
& Kitchaicharoen, 2021; Prannetvatakul et  al., 2013). External costs are not included in 
the price of pesticides that farmers pay for, nor in the food that consumers pay for. Due 
to the trait of pest resistance of CRISPR rice, its external costs are supposed to be less 
due to less pesticide application than conventional rice (Shew et al., 2018), and therefore, 
co-planting CRISPR rice may generate a positive environmental contribution. Although 
studies cover the environmental aspects of adopting insect-resistant GM crops (Brookes, 
2019; Jin et al., 2019b), we are unaware of any study analyzing CRISPR rice from an envi-
ronmental perspective.

To fill in the knowledge gap, we first extend the microeconomic model of CRISPR rice 
developed by Jin and Drabik (2022) by including the environmental externalities under 
uncertainty of pest severity. Our objective is to examine the environmental contribution of 
co-planting CRISPR rice of a representative farmer compared to cultivating conventional 
rice alone, considering the external costs of pesticide use and the uncertainty of pest sever-
ity. We hypothesize that adopting CRISPR rice under pest uncertainty has positive environ-
mental benefits. This hypothesis is vital for policymakers to make informed decisions on 
the adoption of genome editing in general and the adoption of CRISPR rice in particular.

This study contributes to the literature by (i) investigating the optimal planting share 
of CRISPR rice considering the external cost of pesticide use and the uncertainty of 
pest severity; (ii) exploring the relationship between the environmental benefit and opti-
mal planting share of CRISPR rice; and (iii) capturing the regional heterogeneity of the 
CRISPR rice adoption in China.



 Y. Jin, J. M. Gil 

1 3

2  Model

Our model adopts the microeconomic framework of CRISPR rice (Jin & Drabik, 2022) and 
further extends the framework to analyze its environmental contribution. Following Jin and 
Drabik (2022), we define that a representative farmer cultivates both CRISPR rice (indexed 
by i = C) and conventional rice (i = V) on separate fields. Hence, the application of inputs 
is possible to distinguish. There is uncertainty over pest severity, so there are two states of 
nature: a severe state (indexed by j = S) indicating a pest outbreak and a less severe state 
(j = N) where the pest occurrence is weak. We define the uncertainty of pest severity with 
the probability of the severe state as q and the probability of the less severe state as (1−q). 
The acreage of CRISPR rice and conventional rice is LC and LV , respectively. The total rice 
acreage ( L ) is fixed in a given year, that is LC + LV = L . The uncertainty of pest severity 
is revealed in the middle/late stage of the year. We assume that the representative farmer 
decides the pesticide quantity to use at the beginning of the year, similar to land allocation. 
The farmer will, therefore, choose the optimal pesticide application rate ( Xi , in kilograms 
per hectare). Xi is the total amount of pesticide applied per hectare per year. Due to the trait 
of pest resistance for CRISPR rice, its intensity of pesticide use is lower than that of con-
ventional rice ( XC < XV ). Yi denotes the yield of rice type i in the absence of pest damage. 
The market experts we contacted argued that the farmers would only accept a maximum 
difference of 10% yield; therefore, in the baseline model, YV = 0.9 YC.

After we introduce the yield of two rice types, the production function of rice type i in 
state j can be written as

We follow Lichtenberg and Zilberman (1986) to denote Gj

(

Xi

)

 as the abatement func-
tion for rice type i in state j, which measures the percentage of the potential loss that 
can be averted. We denote �i ∈ (0, 1) as the proportion of the maximum yield left after 
the severe pest damage if no damage abatement actions exist. Therefore, the yield loss 
equals to 

(

1 − �i
)

Yi . CRISPR rice has a higher percentage of yield left than conventional 
rice because it is insect-resistant, that is 0 < 𝛼V < 𝛼C < 1 . Therefore, the actual yield of 
rice type i in state j can be written as �iYi + Gj

(

Xi

)(

1 − �i
)

Yi where for example, when 
Gj

(

Xi

)

= 1 , it denotes the complete eradication of the destructive capacity, and when 
Gj

(

Xi

)

= 0 , it represents zero elimination of the loss.
The total production cost in state j ( cj ) can then be expressed as

Following the case of GM crops, we assume seed companies of CRISPR rice have the 
market power to decide the price. We model the monopolistic power for CRISPR seeds fol-
lowing Dillen et al. (2009). sV is the cost of conventional seed per hectare and � is a price 
premium (%) by which the monopolist charges more for CRISPR seed than the market 
price of conventional seed. The cost per hectare of CRISPR seed is sC = (1 + �)sV . This 
representation of monopolistic pricing of CRISPR seed is consistent with the price-taking 
behavior of the representative farmer.

m denotes the price of an aggregated pesticide (dollars per kilogram). The pesticide cost for 
CRISPR and conventional rice is proportional to the cultivated area: mXCLC and mXVLV . The 
aggregated non-linear term AL�

C
 denotes other costs involved in the production of CRISPR 

rice, which can be desegregated into two parts: first, the cost of fertilizer, machinery, and other 

(1)Qij =
[

�iYi + Gj

(

Xi

)(

1 − �i
)

Yi
]

Li.

(2)cj = mXCLC + sCLC + AjL
�

C
+
(

mXV + sV + �j
)

LV .
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linear costs; second, strictly convex (in land) segregation cost. The latter part represents the 
strictness of regulation based on how the Chinese government regulates CRISPR rice. The 
strict convexity of the non-linear part of the CRISPR rice cost is represented by the param-
eter 𝜀 > 1 , representing the elasticity of other costs with respect to the acreage of CRISPR 
rice (e.g., the more significant the acreage of CRISPR rice, the more efforts the farmer has 
to spend to disaggregate two rice varieties). The positive parameter A is determined at the 
calibration stage. The farmer does not incur segregation costs for conventional rice; therefore, 
all other costs are captured in the constant cost per hectare, � . The values of parameters A and 
� depend on the state of nature (e.g., more labor and energy costs are likely necessary in the 
severe pest state).

To include the external cost (EC) in the microeconomic framework summarized above (Jin 
& Drabik, 2022), we define EC =

(

LCXC + LVXV

)

� , where � denotes the external cost of rice 
cultivation (dollars per kilogram). As the pest intensities XC and XV are predetermined before 
the pest severity of a given year is revealed, the external cost is assumed to be the same for 
each unit of pest intensity (kilogram per hectare). However, the external cost for CRISPR and 
conventional rice varies due to the land allocation for the two rice types. After constructing 
the external cost, we can calculate the environmental benefit (EB) (environmental value) of 
adopting CRISPR rice as the difference between the external cost of planting conventional 
rice alone (where total land is allocated to the cultivation of conventional rice) and external 
cost of co-planting two rice types.

Denoting the market price of rice type i as pi , together with Eq. (1) denoting the production 
quantity and Eq. (2) denoting the production cost, the farmer’s profit in state j is

We follow previous empirical studies (e.g., Chen et al., 2018; Jin et al., 2017; Liu, 2013) 
and consider the representative farmer a risk-averter. The expected utility (EU) is

The Bernoulli utility function is assumed to take the exponential form, u
(

�j
)

= −e−r�j , 
which is a popular functional form in the empirical literature (e.g., Jin & Drabik, 2022; Bod-
nar et al., 2018; Zuhair et al., 1992) with r indicating constant absolute risk aversion (Chen 
et al., 2018). The farmer maximizes the expected utility (EU) by choosing the optimal acreage 
for CRISPR rice LC and pesticide intensity XC and XV.

The optimal values for LC , XC , and XV satisfy the first-order conditions

(3)EB = LXV� − (LCXC + LVXV )�

(4)�j = pCQCj + pVQVj − cj − EC

(5)max
{LC ,XC ,XV}

EU = qu
(

�S
)

+ (1 − q)u
(

�N
)

.

(6)
�EU

�LC
= q

du

d�S

��S

�LC
+ (1 − q)

du

d�N

��N

�LC
= 0

(7)
�EU

�XC

= q
du

d�S

��S

�XC

+ (1 − q)
du

d�N

��N

�XC

= 0

(8)
�EU

�XV

= q
du

d�S

��S

�XV

+ (1 − q)
du

d�N

��N

�XV

= 0.
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The necessary condition for a maximum problem is that the first-order partial deriva-
tives are equal to zero. Therefore, we set the first-order conditions of the expected utility 
from Eq. (5) with respect to LC , XC , and XV to be zero listed in Eqs. (6)–(8), and solve the 
equation system to obtain the optimal values for LC , XC , and XV (Please see the specific 
equivalents presented by 13–15 in “Appendix 1” for details). Finally, based on the results 
of the first-order conditions, the optimal planting share of CRISPR rice ( � ) equals the opti-
mal acreage of CRISPR rice divided by the total rice acreage, that is � = LC

/

L.

3  Data and model calibration

The data in this study are based on the literature on CRISPR and conventional rice. Where 
the data on CRISPR rice are not available (e.g., pesticide application rate and cost because 
the field trial of CRISPR rice has not started yet), we use the data from the GM rice field 
trials (Huang et al., 2005) as an approximation, because both rice types are pest-resistant. 
Table 1 summarises the data together with the sources.

Previous literature (e.g., Brookes et al., 2010; Pray et al., 2001) has argued that farmers 
growing GM crops can afford to accept lower market prices because the cost of cultivating 
pest-resistant GM crops is lower compared to the conventional ones due to fewer inputs 
(e.g., pesticides or labor) and the benefit of reduced inputs outweighs the higher seed cost. 
Therefore, we set the price of CRISPR rice equal to 90% of the price of conventional rice 
in the baseline model. Later, in the Monte Carlo simulations, we relaxed this assump-
tion and set the price of CRISPR rice below that of conventional rice (i.e., pC ≤ pV ). We 
assume other costs per hectare of conventional rice are equal under both weak and severe 
pest damage in the baseline model ( �N = �S ), but we relax this assumption in the Monte 
Carlo simulations.

Based on Chen et al. (2018), we set the parameter r to be 0.09 in the exponential Ber-
noulli utility function in the baseline. The higher r, the more risk-averse the farmer is, cet-
eris paribus. Due to a lack of data, we simplify the model by reducing the number of cali-
brated parameters and set equal the calibrating constants AS and AN for other costs of rice 
cultivation. We assume that they do not depend on the state of nature to make the segrega-
tion cost of CRISPR rice less sensitive to pest severity. With these parameters, we calibrate 
four unknown parameters ( �S , �N , A, and � ) and one variable ( LC ) in the baseline model.

The first-order conditions (6–8) calculate �S , �N , and LC . To calculate the parameters A 
and � , we need two more equations. According to Eq. (2), the cost of cultivating CRISPR 
rice is

from which we calculate the corresponding marginal cost by dividing Eq. (9) by LC . There-
fore, MCC = mXC + sC + �AL�−1

C
.

Let � be the elasticity of land use with respect to the marginal cost of CRISPR rice:

We use Eq. (9) to calculate the production cost per hectare of CRISPR rice ( UCC ) as 
UCC = CC

/

LC = mXC + sC + AL�−1
C

 , from which AL�−1
C

= UCC − mXC − sC . Substituting 
the right-hand side of the previous equation into (10) and rearranging, we obtain

(9)CC = mXCLC + sCLC + AL�
C
,

(10)� =
�LC

�MCC

MCC

LC
=

mXC + sC + �AL�−1
C

�(� − 1)AL�−1
C

.
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which is a quadratic equation in � . Finally, we calibrate the constant A by rearranging the 
unit cost function as

CRISPR rice is not yet approved for commercialization, so its production cost per hec-
tare is unknown. However, the production cost is essential for technology adoption from 
the perspectives of both farmers and seed developers (Akbari et al., 2021; Pavolova et al., 
2021). To overcome this information gap, we use the cost of GM rice in the field trial as an 
approximation and set UCC = 521.3 US dollars per hectare (Private Communication, 2018).

The parameter ζ (US dollars per kilogram) captures the external cost of rice cultivation. 
According to Thambhitaks and Kitchaicharoen (2021), the external cost equals 0.608 US 
dollars per kilogram based on a life cycle analysis, quantifying five environmental impacts 
from the cradle-to-farm gate, which include climate change, terrestrial acidification, water 
depletion, eutrophication, and human health damage.

Finally, we determine the baseline value of the parameter � via an iterative process. The 
price of conventional rice seed ( sV ) is known. We keep adjusting the value of � until the 
calculated value of CRISPR rice seed ( sC ) (for which there are no historical observations 
yet) equals the price of GM rice seed, an approximation for the price of CRISPR rice seed.

To sum up, we obtain the four unknown parameters and one variable by simultaneously 
solving Eqs. (13), (14), (15) (“Appendix 1”), (11), and (12). Numerically solving the five 
equations, we can obtain �S = 0.004, �N = 0.855, A = 0.155, � = 1.500, and LC = 9.5 million 
hectares.

4  Baseline model results

For a given probability of pest outbreak, would the farmer be better off planting both rice 
types or sticking to CRISPR or conventional rice from an economic and environmental per-
spective? The optimal planting share of CRISPR rice in the baseline is 33% (= 9.5/28.5). 
The difference in the expected profit values between co-planting CRISPR rice and cultivat-
ing conventional rice alone is 2.9 billion US dollars—the economic value of co-planting 
CRISPR rice. Similarly, 115 million US dollars of negative externalities could have been 
reduced if CRISPR rice were co-planted—the environmental value of co-planting CRISPR 
rice.

Table 2 presents the results decomposed by pest severity and rice type with the baseline 
data. The fourth and sixth rows present profits and external costs in billions of US dollars, 
respectively. By dividing the corresponding acreage, the second and fourth rows quantify 
the profit per hectare and the external cost per hectare, respectively.

The profits in the severe pest case are lower than those in the weak one. The rela-
tive difference in the co-planting scenario shows that the gap for CRISPR rice is 
-26% (8.74/11.83–1) but is much more pronounced for conventional rice by − 56% 
(10.71/24.48–1). This suggests that conventional rice is more sensitive to the uncertainty 
of pest outbreaks than pest-resistant CRISPR rice. The conclusion applies to all scenarios 
since the difference between the profits in the severe and weak pest cases for conventional 
rice alone is − 56% (16.05/36.70–1), decreases to − 46% [(8.74 + 10.71)/(11.83 + 24.48)–1] 

(11)�2 −
1 + �

�
� −

mXC + sC

�
(

UCC − mXC − sC
) = 0,

(12)A =
(

UCC − mXC − sC
)/

L�−1
C

.
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when both types are grown, and further decreases to -26% (26.24/35.53–1) when CRISPR 
rice is cultivated alone. When both rice types are co-planted, the external cost is lower than 
that of planting conventional rice alone, with a gap of − 24% ((0.04 + 0.33)/0.49–1). This 
suggests that adopting CRISPR rice can reduce the external cost. Therefore, from the per-
spective of profit and external cost, co-planting CRISPR rice benefits the farmer economi-
cally and environmentally.

Based on profits per hectare, we expect the farmer to favor CRISPR rice, as it can gen-
erate 3% more profit per hectare in the weak pest scenario (1246.32/1287.67–1) and 1.6 
times more in the severe pest scenario (920.64/563.21). Based on the external cost per hec-
tare, we also expect the farmer to favor CRISPR rice, as it generates 75% less external cost 
per hectare in both weak and severe pest scenarios (4.34/17.36–1). Therefore, from the per-
spective of unit profit and unit external cost, co-planting CRISPR rice benefits the farmer 
economically and environmentally.

Table 3  Results of the Monte Carlo simulations (N = 13,076) (billion US dollars)

This table shows that the research hypothesis is confirmed that adopting CRISPR rice under pest uncer-
tainty has positive environmental benefits

Co-planting CRISPR 
rice and conventional 
rice

Min 1st quartile Median Mean 3rd quartile Max SD

Optimal share (%) 0 20 34 37 52 100 0.22
Economic value − 0.27 0.69 1.71 2.29 3.38 12.41 2.05
Environmental value − 0.01 0.19 0.45 0.56 0.81 3.52 0.49
Total value − 0.28 0.88 2.16 2.85 4.19 15.93 N.A
Share of environmental 

value in total value 
(%)

4 22 21 20 19 22 N.A

Fig. 1  Kernel density function of the economic value of co-planting CRISPR rice. Note The horizontal axis 
represents the economic value of co-planting CRISPR rice. The median, mean, and mode are 1.7, 2.3, and 
0.4 billion US dollars, respectively; the standard deviation is 2.05
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The baseline results depend on the chosen parameters. To check their robustness, we 
run Monte Carlo simulations with relaxed assumptions in the following section.

5  Sensitivity analysis of the baseline results

Based on a Project Evaluation and Review Technique (PERT) distribution for each param-
eter of interest (Table 1), we randomly draw the parameter values 100,000 times, and each 
time we run the model and record the results. We choose the PERT distribution because 
of its minimum prior information requirements: maximum, minimum, and mode. PERT 
distribution has advantages compared to other distributions, such as triangular distribution, 
because it constructs a smooth curve with the expectation that the resulting value will be 
around the most likely value.

Table  1 summarizes the baseline values of the parameters used as the mode of the 
PERT distribution and their confidence intervals. We use parameters with natural limits 
(e.g., probability of pest severity) for minimum and maximum. In the remaining cases, we 
depend on the previous literature (e.g., percentage of conventional yield left after severe 
pest damage), historical data (e.g., the market price of conventional rice per hectare), or in 
the absence of sources we set the lower (upper) bound to be 30% below (above) the base-
line value (e.g., the parameter of the external cost ζ). We perform Monte Carlo simulations 
with the ‘nleqslv’ package in R × 64 4.0.5 (Fletcher, 2012; Hasselman, 2018; R Core Team, 
2024).

Table 3 shows the results of Monte Carlo simulations for the optimal planting share, the 
total (economic and environmental) value of co-planting CRISPR rice, and the share of 
environmental value in the total value. We distinguish between cases where both rice types 
are cultivated and where the farmer cultivates conventional rice alone. Both scenarios are 

Fig. 2  Kernel density function of the environmental value of co-planting CRISPR rice. Note 1 The horizon-
tal axis represents the environmental value of co-planting CRISPR rice. The median, mean, and mode are 
0.45, 0.56, and 0.07 billion US dollars, respectively; the standard deviation is 0.49. This figure shows that 
the research hypothesis is confirmed that adopting CRISPR rice under pest uncertainty has positive envi-
ronmental benefits
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run in one iteration, and the process is repeated 100,000 times. In each iteration, we ran-
domly draw from the distributions of individual parameters. With those parameters, we 
calculate the variables of interest for both types of rice and conventional rice alone. It is 
essential to mention that not all results of the 100,000 model runs were considered. First, 
we excluded the infeasible solutions, those where the planting share was either negative 
or more significant than one. These solutions occur in numerical simulations due to some 

Fig. 3  Relationship between the external cost (1000 million US dollars) and the optimal planting share (%)

Fig. 4  Relationship between the optimal planting share (%) and the environmental benefit (1000 million US 
dollars). Note The red dot indicates the baseline with the optimal planting share and the environmental ben-
efit equal to 33% and 115 million US dollars, respectively
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assemblages of model parameters. Second, for other constellations of exogenous param-
eters, the model could not converge due to the model’s non-linearities and starting values 
that might not be close enough to the solution. In the end, we included the results of 13,076 
model runs in the Monte Carlo simulation.

The last four rows in Table  3 estimate the economic, environmental, and total value 
of co-planting CRISPR rice and the share of environmental value in the total value of 
CRISPR rice adoption, respectively. The median of the economic value of co-planting 
CRISPR rice is 1.7 billion US dollars, and the mean is 2.3 billion US dollars, suggesting a 
distribution of the values skewed to the right. Overall, in 99% of the cases, we find a posi-
tive economic value in co-planting CRISPR rice. Our results are consistent with Jin and 
Drabik (2022) regarding the economic value of co-planting CRISPR rice with a mean of 
2.3 billion US dollars, although the distribution is slightly different because our model also 
considers the external costs of pesticide use. Figure 1 depicts the kernel density function of 
the economic value of co-planting CRISPR rice.

For the environmental value of co-planting CRISPR rice, the median is 450 million US 
dollars, and the mean is 560 million US dollars. Overall, in 99% of the cases, we find a pos-
itive environmental value of co-planting CRISPR rice. Therefore, the research hypothesis 
is confirmed that adopting CRISPR rice under pest uncertainty has positive environmen-
tal benefits. The environmental value accounts for 4–22% of the total value of co-planting 
CRISPR rice. This is a moderate share of the total value not considered in previous stud-
ies. Figure 2 depicts the kernel density function of the environmental value of co-planting 
CRISPR rice.

6  Relationship between external cost, environmental benefit, 
potential yield and optimal planting share of crispr rice

It is consistent with the theoretical expectation that increasing the external cost of rice cul-
tivation increases the optimal planting share. Maintaining all other parameters, we vary 
the parameter of external cost between 0 and 1.3 US dollars per kilogram, around a 50% 

Fig. 5  Relationship between the yield of CRISPR rice (ton per hectare) and the environmental benefit 
(1000 million US dollars)
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increase from its baseline (0.868 US dollars per kilogram). The optimal planting share of 
CRISPR rice varies between 27 and 34% (baseline = 33%), and the external cost varies 
between 0 and 537 million US dollars (baseline = 371 million US dollars). In Fig. 3, the 
slope of the curve shows a positive relationship between the external cost and the optimal 
planting share of CRISPR rice. The increasing slope indicates that when the external cost 
increases, the optimal planting share not only increases but also increases with accelera-
tion. This reflects the scale effect of environmental potential regarding adopting CRISPR 
rice. An inflection exists when the external cost equals 537 million US dollars, and the 
optimal planting ratio equals 31% because we manually set a range of the external cost in 
the simulation.

Figure 4 depicts a quadratic relationship between the optimal planting share and the envi-
ronmental benefit. The red dot represents the baseline value. It is essential to notice that when 
the optimal planting share of CRISPR rice is chosen by maximizing the expected utility, it 
differs from the maximal environmental benefit as the baseline value is away from the vertex 
of the parabola. The maximal environmental benefit equals 209 million US dollars when the 
optimal planting share is 31%. This indicates a trade-off between maximizing the expected 
utility and the environmental benefit.

Figure  5 depicts a non-linear relationship between the yield of CRISPR rice and the 
environmental benefit. As expected, the higher the yield of CRISPR rice, the higher the 
environmental benefit of adopting CRISPR rice. This information is essential for the seed 
developers and other industrial stakeholders because increasing the potential yield of 
CRISPR rice can increase not only the profit of farmers but also its environmental contri-
butions to society.

Table 4  Regional heterogeneity

Source: The data on pesticide cost and market price of japonica rice are from the China National Develop-
ment and Reform Commission (2021). Other data are calculated by the authors
1 USD = 7 RMB

Province Hebei Inner Mongolia Liaoning Jilin Heilongjiang Jiangsu

Pesticide intensity (kg/ha) 223 279 218 220 217 218
Pesticide cost (USD/ha) 295 369 289 291 288 289
Market price of japonica rice 

(USD/kg)
0.2 0.1 0.2 0.1 0.1 0.3

Environmental benefit (million $) 10 47 61 120 543 391
Optimal ratio (%) 69 100 66 81 80 100
Province Zhejiang Anhui Shandong Henan Yunnan Ningxia
Pesticide intensity (kg/ha) 219 207 207 231 252 208
Pesticide cost (USD/ha) 290 275 274 305 334 275
Market price of japonica rice 

(USD/kg)
0.4 0.2 0.3 0.3 0.2 0.2

Environmental benefit (million $) 92 251 15 75 119 5
Optimal ratio (%) 82 60 79 66 77 60
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7  Regional heterogeneity

The pesticide application of japonica rice in China is used to analyze the regional heteroge-
neity as a case study because more data are available compared to other rice varieties. The 
pesticide intensity (kilogram per hectare) for each province is estimated based on the pes-
ticide cost (US dollar per hectare) divided by the market price of the pesticide (US dollar 
per kilogram) in 2021. Table 4 shows the estimated environmental benefit and the optimal 
planting share of CRISPR rice for 12 major rice-planting provinces in China.

Our model suggests adopting 100% CRISPR rice in Inner Mongolia and Jiangsu prov-
ince so that the expected utility is maximized under the uncertainty of pest severity due 
to the relatively high pesticide costs and high market price of japonica rice, respectively. 
However, the optimal planting share of CRISPR rice for Ningxia and Anhui province is 
60%, the lowest among those 12 provinces. Heilongjiang, Jiangsu, and Anhui province 
should gain the most environmental benefits, 543 million US dollars, 391 million US 

Fig. 6  a. Regional heterogene-
ity of the optimal planting share 
of CRISPR rice (%). Note We 
have the data on provincial 
pesticide usage for 12 major rice-
cultivating provinces to study 
the heterogeneity of the optimal 
planting share of CRISPR 
rice. They are Anhui, Hebei, 
Heilongjiang, Henan, Inner 
Mongolia, Jiangsu, Jilin, Liaon-
ing, Ningxia, Shandong, Yunnan, 
and Zhejiang. b. Regional het-
erogeneity of the environmental 
benefit of co-planting CRISPR 
rice (million US dollars). Note 
We have the data on provincial 
pesticide usage for 12 major rice-
cultivating provinces to study the 
heterogeneity of the environ-
mental benefit of co-planting 
CRISPR rice. They are Anhui, 
Hebei, Heilongjiang, Henan, 
Inner Mongolia, Jiangsu, Jilin, 
Liaoning, Ningxia, Shandong, 
Yunnan, and Zhejiang
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dollars, and 251 million US dollars, respectively. Although full adoption of CRISPR rice 
in Inner Mongolia is suggested, there does not seem to be an advantage in terms of envi-
ronmental benefit due to the small acreage of rice cultivation (around 1% of the total rice 
acreage in China). For other provinces, their environmental benefits range between 5 and 
120 million US dollars.

Figure 6a shows the regional difference in the optimal planting share. The pattern is that 
provinces in the northeast and major provinces of japonica rice cultivation and consump-
tion are recommended to adopt a higher share of CRISPR rice. A different pattern is shown 
in Fig. 6b for the regional difference in the environmental benefit of co-planting CRISPR 
rice. Heilongjiang province will gain the most significant environmental benefit of 543 mil-
lion US dollars due to its high optimal planting share and intensive rice cultivation.

It has been shown that regional heterogeneity exists regarding the optimal planting share of 
CRISPR rice and its environmental benefits. They would also likely differ depending on other 
factors not considered in our model, such as farmers’ socioeconomic characteristics (Li & He, 
2021) and their willingness to adopt CRISPR rice. Therefore, “one-size-fits-all” policies should 
be avoided.

8  Conclusion

Overusing pesticides and the external cost of pesticide use pose challenges to sustainable devel-
opment. Insect-resistant rice developed with the CRISPR-Cas technology is a promising solu-
tion. The hypothesis that adopting CRISPR rice under pest uncertainty has positive environmen-
tal benefits is confirmed by this study. The environmental benefit of co-planting CRISPR rice is 
estimated to be 560 million US dollars annually. The study shows that it is essential to include 
the environmental contribution of CRISPR rice for a more comprehensive assessment as the 
environmental value accounts for 4–22% of the total value of co-planting CRISPR rice resulting 
from the Monte Carlo simulations. Results also show the regional heterogeneity regarding the 
optimal co-planting share of CRISPR rice and its environmental benefit.

The study has policy implications for various stakeholders. At the country level, considering 
the negative environmental externalities of pesticide use in the microeconomic framework can 
provide policymakers with a more comprehensive overview of CRISPR rice, which is essen-
tial for policymakers to make informed decisions on regulating genome editing. For public and 
private research institutions and plant-breeding companies focusing on advancing CRISPR-Cas 
technology, apart from the economic market potential of CRISPR rice, it is essential to empha-
size and promote its environmental contribution, which is currently ignored. The study also 
sheds more light on individual farmers to better understand this new rice variety, which can pro-
vide economic and environmental value for them under the uncertainty of pest severity.

The results should be interpreted with caution because of the assumptions made in the model, 
including no spatial spillovers of pest outbreaks and fixed pesticide use of a given year without 
adjustment according to pest infestation. Limitations include lacking market data on CRISPR 
rice as it has not been commercialized. When the technical parameters for pest-resistant CRISPR 
rice are unavailable, those from pest-resistant GM rice are used as an approximation. That said, 
once more market data and parameters for CRISPR rice become available, the microeconomic 
model introduced in this article can be updated and used to generate more precise results. Future 
research is encouraged in the direction of a circular economy combining genome editing (e.g., 
Maroušek & Gavurová, 2022; Schilling & Weiss, 2021) and more consideration of the impact of 
soil fertility, water usage, and other essential input conditions (e.g., Maroušek et al., 2022; Qaim, 
2020) for the potential adoption of CRISPR rice in various parts of the world.
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Appendix 1: First‑order conditions corresponding to the specific 
functional forms of the model

Using the functional forms specified earlier, first-order conditions (6)–(8) can be written as

where

Notice that the term LC can be canceled out in (14), as LV = L − LC can be in (15), such 
that the first-order conditions for XC and XV do not directly depend on land areas, which 
makes intuitive sense because X represents the application of pesticide per hectare. How-
ever, there is also an indirect effect via the profits �S and �N (in the exponents of 14 and 15) 
that depend on the allocation of the total land area to LC and LV.

See Table 5.

Acknowledgements We acknowledge Dr. Dušan Drabik from Wageningen University for assistance in 
microeconomic modelling, and Dr. Rico Ihle from Wageningen University for assistance in R coding for 
this study.

Funding The authors received no financial support for the research.

Data availability Data is available on request from the authors.

Declarations 

Conflict of interest We have no conflicts of interest to disclose.

(13)

�EU
�LC

= qre−r�S
⎧

⎪

⎨

⎪

⎩

pC
[

�CYC +
(

1 − e−�SXC
)(

1 − �C
)

YC
]

− pV
[

�VYV +
(

1 − e−�SXV
)(

1 − �V
)

YV
]

−
[

mXC + sC + �AL�−1C −
(

mXV + sV + �S)] −
(

XC − XV
)

�

⎫

⎪

⎬

⎪

⎭

+ (1 − q)re−r�N
⎧

⎪

⎨

⎪

⎩

pC
[

�CYC +
(

1 − e−�NXC
)(

1 − �C
)

YC
]

− pV
[

�VYV +
(

1 − e−�NXV
)(

1 − �V
)

YV
]

−
[

mXC + sC + �AL�−1C −
(

mXV + sV + �N)] −
(

XC − XV
)

�

⎫

⎪

⎬

⎪

⎭

= 0

�S = pCQCS + pVQVS − mXCLC − sCLC − AL�C −
(

mXV + sV + �S)
(

L − LC
)

−
[

XCLC + XV

(

L − LC
)]

�

�N = pCQCN + pVQVN − mXCLC − sCLC − AL�C −
(

mXV + sV + �N)
(

L − LC
)

−
[

XCLC + XV

(

L − LC
)]

�

(14)
�EU

�XC

= qre−r�S
{

pC
(

1 − �C
)

YCLC�Se
−�SXC − mLC − �LC

}

+ (1 − q)re−r�N
{

pC
(

1 − �C
)

YCLC�Ne
−�NXC − mLC − �LC

}

= 0

(15)

�EU

�XV

= qre−r�S
{

pV
(

1 − �V
)

YV

(

L − LC

)

�Se
−�SXV − m

(

L − LC

)

− �

(

L − LC

)}

+ (1 − q)re−r�N
{

pV
(

1 − �V
)

YV

(

L − LC

)

�Ne
−�NXV − m

(

L − LC

)

− �

(

L − LC

)}

= 0
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