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Abstract
Nigeria’s agricultural sector relies heavily on rainfall, but insecurity in various regions 
poses significant challenges. This study aims to address this issue by identifying secure, 
rain-rich areas in northern Nigeria to support sustainable agriculture. Two models, one 
integrating classical statistical methods (polynomial and Fourier series fittings) and another 
using a hybrid approach (artificial neural networks, polynomial, and Fourier series fittings), 
were employed to analyze historical rainfall data from 1981 to 2021 in the selected districts 
(Kano, Zaria, Bida, Nguru, and Yelwa) known for their rainfall levels and security stabil-
ity. The study demonstrates that the machine learning-classical hybrid model outperforms 
existing models, including the classical-classical hybrid and benchmark models like Iwok’s 
(2016) model, Fourier series, and SARIMA models. Multi-step ahead forecasting with this 
hybrid model reveals potential changes in rainfall patterns. Notably, Kano, Zaria, Bida, 
and Yelwa are expected to experience increased rainfall from 2022 to 2026, while Nguru 
may initially witness decreased rainfall, with improvement in the final year (2026). In 
conclusion, this study introduces an effective approach for rainfall modeling and forecast-
ing, facilitating the identification of secure agricultural regions in northern Nigeria. These 
findings carry implications for crop production and agricultural development, contribut-
ing to climate resilience efforts and assisting stakeholders in strategic decision-making for 
regional agricultural investments.

Keywords  Hybrid modeling · Agricultural sustainability · Rainfall forecasting · Climate 
resilience

1  Introduction

The National Population Commission (NPC) of Nigeria recently announced plans to con-
duct a national census in 2023 (NPC, 2021). This marks a significant milestone for the 
country, as it will be the first time that Nigeria will conduct a census using digital tech-
nology (NPC, 2021). The census is expected to provide more accurate and reliable data 
that can be used for planning and decision-making at the national, state, and local levels 
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(National Bureau of Statistics, 2021). However, security concerns may prevent data collec-
tion in some areas, resulting in population projections instead.

In parallel to responses to global crises like the COVID-19 pandemic, which have 
prompted investigations into sustainable supply chains and recovery networks (2023a; 
Abbasi & Erdebilli, 2023; Abbasi et al., 2022b, 2023b; Abbasiet al., 2022a), the NPC cau-
tioned that insecurity could hinder access to certain areas during the 2023 census. This 
early information availability has led to researchers using population projection models, 
such as Iyanda (2019) who projected Nigeria’s population from 2006 to 2031 using the 
Malthus model.

Oluwole et  al. (2022) found Nigeria’s urban population growing exponentially, while 
Olanrewaju et al. (2020) identified rapid overall population growth, suggesting the need for 
government intervention. Other studies, including Nwogu and Okoro (2017), Clementina 
et al. (2018), and Effiong and Ekpe (2022), concentrate on Nigeria’s projected population 
growth. Onyeoma and Omotsefeodejimi (2021) highlighted the impact of internal migra-
tion on instability, and Effiong et al. (2022) discussed the adverse effects of rural-to-urban 
migration on food security.

According to projections and the country’s population, Nigeria must produce sufficient 
food for its population. However, as noted by Dickson (2020), there are issues with popula-
tion displacement and instability in the nation’s primary agricultural regions, particularly 
in the northern part of the nation. According to Ayinde et al. (2020), some important agri-
cultural districts in the northern region of the country are deemed unreachable because of 
insecurity issues. Security challenges in northern Nigeria have become a major concern in 
recent years. The region has been plagued by various forms of insecurity, including insur-
gency (Peace, 2022), banditry (Egwu, 2021), and communal clashes (Solomon, 2020).

In Nigeria, especially in the northern region, the majority of crop production is pre-
dominantly rain-fed (Xie et al., 2017), implying that it relies on natural precipitation rather 
than irrigation. Perhaps this is one of the factors contributing to Nigerian farmers’ willing-
ness to pay for rainfall-based forecasts (Awolala et al., 2023). The rainy season in Nigeria 
typically lasts from April to September, with a peak in rainfall occurring in June and July 
(Ayinde et al., 2020). During this period, crops are planted and rely on rainfall for growth 
and development (FAO, 2020). Modeling and predicting rainfall for Nigeria is one tech-
nique that can help the nation’s agricultural stakeholders and policymakers make better 
agricultural decisions because the country’s crop production is primarily rain-fed. This is 
crucial if modeling and forecasting methods are used to analyze rainfall data from districts 
with stable security that have an equal amount of rainfall precipitation as unstable agricul-
turally productive districts in the northern region.

This study focuses on identifying alternative, secure districts that receive similar 
amounts of rainfall to agriculturally prosperous but insecure districts, as opposed to the 
above-mentioned studies and many other studies that focus on population estimates and 
dynamics in the northern region’s inaccessible districts due to security concerns. Rainfall 
data in Nigeria are seasonal, implying that they usually adhere to a foreseeable cycle of 
wet and dry seasons (FAO, 2020). Given the predictable pattern of wet and dry seasons in 
Nigeria’s rainfall data, the majority of studies that utilize these data employ models that are 
specifically tailored to handle seasonal data.

As an example, Akinbobola (2018) employed the SARIMA model to examine Nige-
ria’s rainfall data gathered from 14 stations located in the country’s forest and savanna 
eco-climatic regions. Additionally, the SARIMA model has been applied to rainfall data 
from different regions and districts, such as Osun state (Adams et al., 2019), Abuja (Adams 
& Bamanga, 2020), Umuahia (Nwokike et al., 2020), and Warri (Eni & Adeyeye, 2015). 
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Some studies, such as Iwok (2016), Onwukwe and Ikpang (2015), and Umeh Constance 
Nnenna et al. (2023), implemented models that, in part, might explain some trends in the 
data.

A research gap exists as there are no models that we could find in the literature that 
simultaneously consider the trend, seasonality, and residual components in Nigerian rain-
fall data, encompassing elements like seasonality, linearity, and residuals in its analysis. 
To identify alternative, secure regions in northern Nigeria that receive ample rainfall to 
support increased or rehabilitated agricultural practices, we introduce two innovative mod-
eling approaches designed to capture both trend and seasonality patterns in Nigeria’s rain-
fall data. These techniques seamlessly integrate classical and machine learning methods. 
The classical modeling technique combines polynomial and Fourier series fittings, while 
the machine learning-based approach incorporates artificial neural networks (ANN), pol-
ynomials, and Fourier series fittings. This method can be seen as a fusion of the mod-
eling approach proposed by Shabri et al. (2020) involving Fourier-ANN. The key distinc-
tion from the approach of Shabri et al. (2020) lies in our utilization of the ANN model to 
accommodate the residuals derived from the polynomial-Fourier series model.

We utilized the models to analyze Nigeria’s monthly rainfall data spanning from 1981 to 
2021. Our study involved modeling and predicting monthly rainfall in five specific districts 
in northern Nigeria: Kano, Zaria, Bida, Yelwa, and Nguru, as indicated in Fig. 1.

We chose these districts because of their secure conditions and varying rainfall levels, 
as discussed in our previous conversations and also highlighted in Ayinde et  al. (2020). 
The results from SARIMA, the most widely used model to analyze data in several studies, 
are compared to those from our proposed models to assess their effectiveness in capturing 
and forecasting rainfall data. The results of the proposed models were benchmarked using 
the Fourier series model and Iwok’s (2016) model. To account for the uncertainty in the 
rainfall estimates, a Monte Carlo simulation scheme was applied to the forecasts of the pro-
posed models. The goal is to simulate a variety of potential values that can produce various 

Fig. 1   The selected districts (Kano, Zaria, Bida, Nguru, Yelwa) of the northern Nigeria region
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results for a specific prediction period (Danbatta & Varol, 2022). The fundamental concept 
behind the Monte Carlo simulation is that the accuracy of the findings increases with the 
number of simulations conducted (Külahcı et al., 2020; Muhammad et al., 2020).

In pursuit of our study’s objective, we conducted five-year multi-step ahead forecasting 
for all chosen districts by utilizing the obtained results of the machine learning-classical 
model. The multi-step ahead forecasting results are presented in three cases: the worst-case 
scenario (simulation path 30), best-case scenario (simulation path 65), and most-probable 
scenario (Monte Carlo mean). Rainfall forecasts for Kano, Zaria, Bida, Yelwa, and Nguru 
in Nigeria suggest an increase in rainfall for the next five years, starting in 2022, under both 
the best-case and most-probable scenarios. However, Nguru is expected to experience a 
decrease in rainfall for the first four years, with only the best-case scenario predicting an 
increase in the last year. These forecasts are valuable for the Nigerian government, agri-
cultural communities, and policymakers, as they can help them make informed decisions 
about water management, crop planting, and other important matters.

2 � Methodology

This study analyzed monthly rainfall data for the northern Nigerian districts of Kano, 
Zaria, Bida, Yelwa, and Nguru from 1981 to 2021. The data were sourced from the Central 
Bank of Nigeria’s (CBN) statistical database and collected using rain gauges. This time-
series dataset, which can be accessed at http://​stati​stics.​cbn.​gov.​ng/​cbn-​onlin​estats/​DataB​
rowser.​aspx on the CBN statistics section’s website, has three attributes: month, rainfall 
(in millimeters), and year. The dataset includes a total of 372 recorded observations, each 
representing the rainfall measurement for a specific month. According to the weather and 
climate website (Climate, 2023), Kano district normally receives 49.8 mm of precipitation 
annually, and there are 62.99 wet days (17.26% of the time). Zaria experiences 128.23 wet 
days (35.13% of the time) each year and averages about 89.92 mm of precipitation. While 
Yelwa normally receives about 153.16  mm of precipitation and experiences 178.81 wet 
days (48.99% of the time) annually, Bida receives 121.81 mm of precipitation and experi-
ences 141.56 rainy days (38.78% of the time) yearly. Nguru usually experiences 67.45 wet 
days per year, or about 48.46 mm of precipitation, for a percentage of 18.48%.

Rainfall data for Nigeria have been shown to be seasonal based on studies such as 
Chibuike et al. (2014), Sawa and Ibrahim (2011), and Agogbuo et al. (2017). This matches 
the selected northern Nigerian district data plots shown in Fig. 2. However, just because 
the time-series data do not show a clear trend does not mean that there is no trend compo-
nent. Time series typically exhibit a dominant pattern, such as the seasonal component in 
this case.

2.1 � Polynomial fitting

Polynomial fitting is a time-series data modeling and forecasting technique that uses poly-
nomial functions to approximate the underlying trend of a time series. By fitting a pol-
ynomial function to the data, we can create a model that can be used to predict future 
values of the time series. The polynomial function is mathematically represented as the 
sum of the powers of the independent variable (time), each with a different coefficient. The 
idea behind polynomial fitting is to find the combination of coefficients that best approxi-
mates the time-series data. This is done by finding the polynomial function that best fits the 

http://statistics.cbn.gov.ng/cbn-onlinestats/DataBrowser.aspx
http://statistics.cbn.gov.ng/cbn-onlinestats/DataBrowser.aspx
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observed time-series data, as measured by the smallest possible difference between the two 
(Chatfield, 2003).

If yn is a set of observations and xn  is count lag, where n represents the number of 
observations, then  x and y relationship is expressed as yr(x) (r < n);

where i = 1,… , n , and the regression coefficients a0, a1,… , ar are calculated using least 
squares error fitting (Gao et al., 2020; Liu & Wang, 2014). The residual epi = |yi − yr

(xi)
| is 

the difference between the fitted value  yr
(xi)

 and the observed value yi . The sum of squared 
errors for all predicted values is calculated using the following equation: ep =

∑n

i−1
epi 

(Danbatta & Varol, 2021), when n is the number of observations.

2.2 � Fourier series fitting

Fourier series fitting is a technique used in time-series data modeling and forecasting 
(Wang et  al., 2022). This is based on the idea that any periodic time-series data can be 
represented as a sum of sine and cosine functions (Hippenstiel, 2017). The technique has 
several advantages, including its ability to capture and model the underlying periodicity of 
time-series data and its versatility to handle nonlinear and nonstationary time-series data. 
It can be implemented using various techniques, and once fitted, it can be used to generate 

(1)yr(xi ) = a0 + aixi + a2x
2
i
+⋯ + ar−1x

r−1
i

+ arx
r
i

Fig. 2   Data plot for the selected districts of the northern Nigeria region, on the x-axis are months, and on 
the y-axis are the rain indices (in mm)
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forecasts for future values of the time series (Wang et al., 2022). The Fourier series fitting 
is given by (Talbot et al. (2020) and Wilson et al. (2018) as follows:

where the number of terms of the series is denoted by n, and � represents the data fre-
quency, while a0 , an, and bn  are the coefficients of the parameters of the Fourier series 
determined using the least squares error method. The Fourier fit error is represented as 
efi = |yi − yr

(xi)
| , and the sum of Fourier errors is represented as ef =

∑n

i=1
efi.

2.3 �  The artificial neural networks (ANN) models

Artificial neural networks (ANNs) belong to a category of machine learning models fre-
quently applied in time-series modeling and forecasting. These networks draw inspiration 
from the structure and function of the human brain, consisting of artificial neurons in the 
form of interconnected nodes that can be trained to accomplish various tasks (Haykin & 
Elektroingenieur, 2012). ANNs are powerful tools for time-series modeling and forecast-
ing. They can model relationships that are nonlinear in data, which is particularly useful for 
time-series data that exhibit complex patterns (Bengio, 2009).

A variety of ANN architectures are commonly used for time-series modeling and fore-
casting, including feedforward neural networks (FNNs), recurrent neural networks (RNNs), 
and long short-term memory networks (LSTMs). FNNs are the simplest ANN architecture, 
and they are often used for supervised learning and pattern recognition tasks (Haykin & 
Elektroingenieur, 2012). Typical ANN networks have three layers: an input layer, hidden 
layers (optional), and an output layer (Shabri et al., 2020). This study used a feedforward 
single-layer perceptron ANN model, which has three layers, as shown in Fig. 3.

The feedforward ANN is mathematically represented as:

(2)f(x) = a0 +

∞∑

n=1

ancos(nωx) +

∞∑

n=1

bnsin(nωx)

Fig. 3   Three-layered feedforward 
ANN model (Palmer et al., 2006)
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where the number of input observations at a time is represented as p, and the model obser-
vation inputs are denoted as yt−1,yt−2, … yt−p , while yt is the output for the given set of 
inputs.

2.4 � The proposed classical‑classical model (polynomial‑Fourier series)

The classical-classical polynomial-Fourier series model fits the trend of the time series 
using the first term of a polynomial ( a1X ) and captures seasonality using the Fourier series 
terms, specifically the 11th expansion. To balance the trend and seasonal components, a 
second polynomial term ( a2X2 ) is incorporated as a weighting function. This hybrid model, 
which is the first proposed in the classical-classical category, is defined as follows:

where the polynomial coefficients are a0,a1, anda2, and the Fourier series coefficients are 
anandbn, while nand� represent the number of the Fourier series terms and the data fre-
quency, respectively.

2.5 � The proposed machine learning‑classical model (ANN‑polynomial‑Fourier 
series)

Classical-classical polynomial-Fourier series hybrid model in Eq.  4 is applied to fit 
the data. The residual Re of the model in Eq.  4 is then modeled using the ANN model 
described in Eq. 3. The modeled residue, represented as Re (ANN), is incorporated into 
Eq. 4 to formulate the proposed machine learning-classical model, denoted as the ANN-
polynomial-Fourier series model, as shown in Eq. 5.

where Re (ANN) is the ANN modeled residue, and e is the model error.

2.6 � Monte Carlo simulation scheme

To anticipate, improve, and identify potential unusual rainfall events in the forecast, we 
conducted 100 Monte Carlo simulations for each projected model curve, within a ± 2σ 
(95%) range. We used Monte Carlo simulations to account for forecast uncertainties and 
simulate all possible future rainfall scenarios. In the design of this study’s Monte Carlo 
simulation scheme, we randomly picked the training residual and incorporated it into the 
model prediction or forecast trajectory, generating a distinct outcome for every simulation 
run. Any Monte Carlo-generated paths that surpass the prediction boundaries were disre-
garded in the analysis. This method allowed us to explore a wide range of potential rainfall 
outcomes, considering the inherent uncertainties in weather predictions.

(3)yt = g(w0 +

q∑

j=1

w◦

j
f (

p∑

i=1

wijyt−i + woj))

(4)f (x) = a0 + a1X + a2X
2 +

11∑

n=1

ancos(n�X) +

11∑

n=1

bnsin(n�X)

(5)f (x) = a0 + a1X + a2X
2 +

11∑

n=1

ancos(n�X) +

11∑

n=1

bnsin(n�X) + Re(ANN) + e
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The mechanism is straightforward: The Monte Carlo simulation begins by assembling 
the model prediction and the residual into separate datasets. Next, the mean and standard 
deviation of the residuals are calculated. The data, model prediction, and index are then 
fed into a function that calculates and returns the residual upper and lower bounds. Before 
simulating the model residual, we used a distribution filter to identify the distribution that 
best fits the residual in cases where the residual is not normally distributed. After determin-
ing the data distribution, we run a Monte Carlo simulation, which returns all Monte Carlo 
simulation paths and the mean of the simulation paths.

3 � Findings and limitation

3.1 � Models and Monte Carlo forecast results

To assess the effectiveness of the models introduced in this study, we utilized two key 
performance metrics: the root mean square error (RMSE) and the R-square (R2) estimate. 
These measures were employed to gauge the accuracy and reliability of the proposed 
models, providing a comprehensive evaluation of their performance. According to Pierce 
(1979), when working with time-series data, R2 is a reliable estimator despite the potential 
for overfitting. We also compared the results of the proposed model to those of the model 
of Iwok (2016), the Fourier series, and the SARIMA models as a benchmark. For brevity 
and to make it simpler and more concise, we will use the following shorthand notation in 
the rest of the study: M1 for the proposed machine learning-classical model (ANN-poly-
nomial-Fourier series), M2 for the proposed classical-classical model (polynomial-Fourier 
series), M3 for the model proposed by Iwok (2016), M4 for the Fourier series model, and 
M5 for the SARIMA model.

To provide a comprehensive and clear understanding of the study’s findings, the results 
of the proposed models and the benchmark models have been systematically tabulated and 
presented in Table 1. This allows for easy comparison and analysis of the results and ena-
bles the reader to gain a thorough understanding of the performance of the various models 
examined in the study (see Table 1).

The models were trained and evaluated using the historical rainfall data collected 
from the five districts of the northern Nigeria region between 1981 and 2021. The 
benchmark models (M3, M4, and M5) were also applied to the same dataset for com-
parison. The M1 model, as proposed in this study, demonstrated superior performance 
across all five districts in the northern region, surpassing both the M2 method and 

Table 1   Models forecast results

Models Kano Zaria Nguru Bida Yelwa

RMSE R2 RMSE R2 RMSE R2 RMSE R2 RMSE R2

M1 3.22 0.93 2.54 0.94 2.51 0.94 3.81 0.92 2.08 0.96
M2 4.01 0.89 3.33 0.91 3.88 0.90 4.65 0.88 2.99 0.94
M3 7.93 0.70 7.45 0.72 9.76 0.65 10.34 0.61 5.05 0.84
M4 16.87 0.49 14.09 0.53 15.07 0.50 17.38 0.45 7.33 0.71
M5 10.31 0.60 9.81 0.64 9.11 0.66 11.71 0.58 5.51 0.79
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benchmark models. Specifically, in Kano, the M1 model accurately captured 93% of the 
variation in rainfall data, with a low RMSE of 3.22 mm. Similarly, in Zaria and Nguru, 
the model achieved remarkable R2 estimate values of 94%, coupled with precise RMSE 
values of 2.54 and 2.51 mm, respectively. Additionally, the M1 model accounted for up 
to 92% of the variation in Bida’s rainfall data and achieved an impressive R2 estimate 
value of 96% in Yelwa. The forecasting errors were notably low, with 3.81 and 2.08 mm 
for Bida and Zaria, respectively (refer to Table 1). These results underline the effective-
ness of the M1 model in accurately predicting rainfall patterns in the studied regions.

To account for uncertainty in the rainfall estimates, 100 Monte Carlo simulations 
are applied to the proposed M1 and M2 models’ forecasts. Specifically, the mean of the 
100 Monte Carlo simulations was used to report the most-probable amount of expected 
rainfall. This value is considered the best estimate of the expected rainfall, as it takes 
into account the uncertainty associated with the M1 and M2 models’ forecasts. Addi-
tionally, the best-case and worst-case scenarios of the expected amount of rainfall were 
also reported. Simulation path 65 produced the best output among the 100 Monte Carlo 
simulation paths generated; hence, it is used for reporting the best-case scenario of the 
expected amount of rainfall. On the other hand, simulation path 30 showed the least per-
formance among the 100 simulation paths generated, and thus, it is used for reporting 
the worst-case scenario of the expected amount of rainfall.

The numerical values in Table 2 when compared to the models’ results reported in 
Table 1 showed that for both models, M1 and M2, the Monte Carlo simulations were 
able to capture more uncertainty in the model’s predictions. This was evident by the 
decrease in forecast error (RMSE) and increase in R2 estimate values in the case of 
the simulation mean and simulation path 65 (see Table 2). On the other hand, simula-
tion path 30 could not reach the models’ performances with increasing forecast errors 
and decreasing R2 estimate values in both models (see Table 2). It can be inferred that 
simulation path 30 has a lower level of accuracy when compared to the other simulation 
paths, and therefore, it is not an optimal representation of the predictions. Nevertheless, 
if it were to occur, it can serve as a valuable source of information for understanding the 
worst-case scenario in terms of the expected amount of rainfall.

The forecast results provide a nuanced perspective on expected rainfall across dis-
tricts, emphasizing the trade-off between accuracy and uncertainty. Monte Carlo simu-
lations enhance our understanding of uncertainty, with simulation path 30 serving as a 
reference for the potential worst-case scenario. These findings provide crucial informa-
tion for understanding and planning for various rainfall scenarios in the studied districts.

Upon evaluating the performance of both the proposed and benchmarked models, as 
detailed in Tables 1 and 2, it has been concluded that the Monte Carlo simulation fore-
cast results for the M1 model stand out as the most appropriate for in-depth analysis and 
multi-step ahead forecasting. This choice is driven by its superior performance com-
pared to all benchmarked models. It is crucial to emphasize, however, that this does not 
imply the lack of statistical significance in the performance of the M2 model.

The selection of the M1 Monte Carlo forecast results is based on the recommenda-
tions outlined in the study conducted by Makridakis et al. (2018). The research system-
atically assessed and contrasted the efficiency of both regression and machine learn-
ing models across various forecasting periods, encompassing a substantial subset of 
1045 monthly time-series forecasting challenges. Significantly, the study underscored 
the significance of employing outcomes from traditional methods as a benchmark while 
assessing any machine learning-based time-series forecasting model. This comparative 



	 S. J. Danbatta et al.

1 3

Ta
bl

e 
2  

T
he

 1
00

 M
on

te
 C

ar
lo

 si
m

ul
at

io
ns

 fo
re

ca
st 

re
su

lts
 fo

r m
et

ho
ds

 M
1 

an
d 
M
2 

M
od

el
s

Si
m

ul
at

io
n 

pa
th

Sc
en

ar
io

K
an

o 
di

str
ic

t
Za

ria
 d

ist
ric

t
N

gu
ru

 d
ist

ric
t

B
id

a 
di

str
ic

t
Ye

lw
a 

di
str

ic
t

R
M

SE
R2

R
M

SE
R2

R
M

SE
R2

R
M

SE
R2

R
M

SE
R2

M
1

M
ea

n
M

os
t-p

ro
ba

bl
e

2.
62

0.
95

2.
04

0.
95

1.
91

0.
97

2.
81

0.
94

1.
98

0.
97

Pa
th

 6
5

B
es

t-c
as

e
1.

09
0.

96
0.

90
0.

97
0.

97
0.

98
1.

14
0.

95
0.

88
0.

99
Pa

th
 3

0
W

or
st-

ca
se

17
.2

9
0.

65
13

.7
1

0.
76

13
.0

4
0.

78
18

.6
4

0.
61

12
.4

5
0.

80
M

2
M

ea
n

M
os

t-p
ro

ba
bl

e
4.

01
0.

89
3.

33
0.

91
3.

88
0.

90
4.

65
0.

88
2.

99
0.

94
Pa

th
 6

5
B

es
t-c

as
e

1.
57

0.
93

1.
29

0.
95

1.
71

0.
94

2.
46

0.
92

1.
18

0.
97

Pa
th

 3
0

W
or

st-
ca

se
20

.7
6

0.
60

18
.1

4
0.

66
19

.3
8

0.
62

13
.5

3
0.

71
10

.6
1

0.
75



Forecasting monthly rainfall using hybrid time‑series models…

1 3

approach enables a clear determination of whether the increased intricacy of machine 
learning models indeed contributes to enhancing forecasting accuracy.

In the context of our study, the hybrid classical and machine learning-based model M1 
yielded better performance than the hybrid classical and classical-based M2 model. This 
further emphasizes the importance of utilizing classical methods as a baseline when evalu-
ating the performance of any time-series forecasting model.

Figure 4 showcases the outcomes derived from the mean of the Monte Carlo simula-
tion scheme and the 100 simulation paths generated by employing the M1 model for the 
entire dataset encompassing the five districts of northern Nigeria. The visual representa-
tion in the figure delineates the forecast results of the 100 Monte Carlo simulation paths, 
where each slender line signifies an individual simulation trajectory. In contrast, the bold 
line signifies the mean of these simulation paths. This method was employed to enhance 
the model’s performance across all five districts, as evident from the detailed findings pre-
sented in Table 2.

In addition to evaluating the proposed M1 model, an in-depth examination of the mod-
el’s forecast residue distribution was carried out for all five selected districts in the northern 
Nigeria region. This analysis is visually represented in the form of a histogram, depicted in 
Fig. 5. The histogram demonstrates the favorable fit of the M1 model with the collected 
rainfall data from the chosen districts.

The model’s forecast residue distribution, illustrated in Fig. 5, offers valuable insights 
into the error distribution. It reveals that the majority of errors cluster around the mean, 
with only a small number of data points deviating slightly from this central tendency. This 
observation is indicative of the M1 model’s accuracy in representing the data. Moreover, 

Fig. 4   M1 model’s mean and 100 Monte Carlo simulation paths for the districts of Kano, Zaria, Bida, 
Nguru, and Yelwa of northern Nigeria



	 S. J. Danbatta et al.

1 3

the presence of random errors and the absence of systematic patterns signify the model’s 
reliability in providing an authentic representation of the rainfall data for these districts.

3.2 � Multi‑step ahead forecasting

The forecast results, despite some prediction errors, provide a solid foundation for informed 
decision-making across the five regions in northern Nigeria. Agriculture, a vital sector in 
this region, can optimize crop planting and harvesting times, ultimately enhancing food 
security. Water resource managers can allocate water resources more efficiently, consid-
ering forecasted rainfall patterns. Disaster preparedness agencies can use the forecasts to 
anticipate and mitigate flood or drought risks. The M1 model’s rainfall forecast results for 
Kano, Zaria, Bida, Nguru, and Yelwa regions offer a valuable tool for regional planning 
and resource management. These forecasts contribute to increased resilience in the face of 
varying weather conditions, benefitting both local communities and the broader northern 
Nigeria region.

Since the M1 model outperformed all other benchmarks in this study, it was selected 
for further in-depth analysis and multi-step ahead forecasting. To predict rainfall patterns 
in the selected districts of northern Nigeria for the next five years (2022–2026), a monthly 
multi-step ahead forecasting approach was deployed on the existing rainfall dataset. It is 
important to note that we used the multi-step ahead direct algorithm to predict monthly 
expected rainfall amounts for the next five years, as this algorithm does not assume any 

Fig. 5   M1 model’s forecast residual distribution for all selected districts of the northern Nigeria region
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dependency between future and past steps in the series, ensuring a robust and accurate 
forecasting process.

In addition, Monte Carlo simulations were used to generate best-case (path 65), worst-
case (path 30), and most-probable (mean) scenarios for rainfall amounts in the next five 
years for each of the five districts. Table  3 shows that the best- and most-probable-case 
scenarios predict a significant increase in rainfall in Kano district from 2022 to 2026. This 
is positive news for the region, as adequate rainfall is essential for crop growth and overall 
agricultural productivity. However, it is important to note that the worst-case scenario also 
predicts a slight decrease in rainfall (see Table 3).

According to the best-case scenario forecast for Kano, a significant surge in yearly rain-
fall is anticipated within the next five years when compared to the THY. Specifically, the 
forecast predicts a total annual rainfall of 1876.7 mm for 2025, surpassing the THY total 
of 1689.50 mm. This represents an impressive increase of about 11.09% in the percentage 
rate of change (%ROC) for the year 2025. This is a significant and noteworthy increase in 
the amount of rainfall for the district, and it is crucial that necessary measures are taken to 
utilize this increase in the best possible way.

On the other hand, the worst-case scenario presents a different story, showing that the 
year 2026 having a %ROC of − 2.29 mm is the year to see the most decreased amount of 
rainfall within the next five years when compared to the THY. This decrease, although 
slight, paints a mixed picture for the Kano district over the next five years, with both posi-
tive and negative outcomes. Necessary steps must be taken to make the most of the positive 
outcomes and to minimize the negative impacts of the negative outcomes.

Based on the best-case and most-probable multi-step ahead forecasting values detailed 
in Table 4, it is evident that the Zaria district can anticipate a substantial rise in rainfall over 
the next five years. The data show a noteworthy increase, with the highest expected rainfall 
of 1222.3 mm in 2026, marking a significant 87.42% increase compared to the threshold 
year (THY). Furthermore, the two forecasting scenarios also indicate an increased rainfall 
for the next five years in the Zaria region. On the other hand, the worst-case scenario when 
compared to the THY paints a very slight decrease in the amount of the expected rainfall 
spanning from 2022 to 2025. However, even in the worst-case scenario, there is a predicted 
increase in the amount of the expected rainfall for the last year of the multi-step ahead fore-
casting period, which is 2026, as presented in Table 4.

For the Yelwa district, all forecasting scenarios predict a consistent increase in rainfall 
over the next five years, compared to the THY (see Table 5). Similar to Zaria district, the 
best-case scenario forecast for Yelwa predicts that 2026 will have the highest amount of 
rainfall, at 718.5 mm, which is a significant 29.66% increase from the THY. This can be 
observed in Table 5, which provides a comprehensive breakdown of the rainfall projections 
for each year. This steady increase in expected rainfall is a positive sign for the region, as 
it has the potential to improve agricultural yields and boost economic activity in the area. 
Additionally, it may also have a positive impact on the local ecosystem, helping to sus-
tain the biodiversity of the region. Furthermore, the forecast results for Yelwa district are 
encouraging and suggest that the region is on track to experience a significant improvement 
in rainfall over the next five years.

Likewise, for the Bida district, the multi-step ahead forecasting outcomes outlined in 
Table 6 depict a continuous and stable rise in the anticipated rainfall levels over the entire 
five-year duration. This trend is evident across all forecasting scenarios, with the best-case 
scenario showing the highest increase in rainfall. The best-case scenario of the multi-step 
ahead forecasting results in Table 6 predicts a consistent increase in total rainfall each year: 
1154.04 mm in 2022, 1115.34 mm in 2023, 1139.29 mm in 2024, 1164.51 mm in 2025, 
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and 1101.6 mm in 2026. These figures signify a significant surge in rainfall compared to 
the THY total of 1095.4 mm. The forecast results indicate that the next five years will be 
characterized by an overall increase in the amount of rainfall, with 2025 having the highest 
expected amount of rainfall.

The multi-step ahead forecasts for the Nguru district, as presented in Table 7, show a 
consistent decrease in the expected amount of rainfall for the next five years when com-
pared to the THY. This trend is evident across all forecasting scenarios, including the best-
case, most-probable, and worst-case scenarios. The best-case scenario, however, does show 
an increase of 3.57% expected in 2026. The numerical data presented in Table 7 offer addi-
tional clarity regarding this pattern. In the most favorable scenario, there is an anticipated 
decline of − 4.19% in 2022, − 7.26% in 2023, − 1.56% in 2024, and − 18.82% in 2025 in 
the projected rainfall levels.

A representation of the multi-step ahead forecasting results of the chosen districts dur-
ing the peak rainfall occurring in June and July (Ayinde et al., 2020) spanning the years 
2023, 2024, and 2025 is shown in Fig. 6. This visually engaging color map provides view-
ers with a glimpse into the expected trends, patterns, and variations within these districts 
in these months over the three years. It not only serves as a sample but also as a valuable 
analytical resource for stakeholders, equipping them with the ability to discern and inter-
pret the forecasted data showcased in the map, facilitating informed decision-making and 
strategic planning.

4 � Conclusion and limitation

This study is dedicated to identifying secure and rainfall-rich regions in northern Nigeria, 
crucial for supporting and revitalizing agricultural practices. Accurate rainfall prediction 
is of paramount importance in various sectors, including agriculture, water resource man-
agement, and disaster preparedness. To achieve this, we have proposed a hybrid machine 
learning-classical rainfall prediction model (M1) and compared its performance against a 
classical-classical model (M2) and benchmark models (M3, M4, and M5). The study con-
centrates on five key districts in northern Nigeria: Kano, Zaria, Nguru, Yelwa, and Bida. 
These districts are pivotal in terms of agriculture, contributing significantly to the region’s 
economy and employing a substantial portion of the population.

One notable feature of this study is the incorporation of Monte Carlo simulations to 
address the inherent uncertainty in rainfall estimates. We subjected the forecasts gener-
ated by the M1 and M2 models to 100 Monte Carlo simulations, using the mean of these 
simulations to determine the most-probable expected rainfall. Additionally, we have pre-
sented both best-case and worst-case scenarios, with simulation path 65 yielding the most 
favorable outcome and simulation path 30 reflecting the least favorable result among the 
generated simulations. The results obtained are highly encouraging. In both the best-case 
and most-probable scenarios, we anticipate a substantial increase in rainfall levels across 
the Kano, Zaria, Yelwa, and Bida districts over the next five years, spanning from 2022 
to 2026. Conversely, the Nguru district is expected to experience a consistent decrease 
in rainfall throughout this period, with only the best-case scenario showing a potential 
increase in rainfall in 2026. These findings indicate that, except for the Nguru region, the 
selected districts could serve as promising alternatives for stakeholders seeking to bolster 
agricultural practices. This is especially relevant as various critical agricultural regions are 
grappling with issues related to insurgency and instability.
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The study offers a comprehensive approach to rainfall prediction in northern Nigeria, 
emphasizing the significance of integrating both machine learning and classical methods 
in rainfall prediction models. The implications of these results extend beyond the scope of 
this study, as they can guide future planning and decision-making processes in the agricul-
tural sector, water resource management, and disaster preparedness not only within Nigeria 
but also in other regions facing similar challenges. In light of these findings, we recom-
mend that agricultural organizations, stakeholders, and policymakers consider the insights 
provided by these models when making decisions related to rainfall forecasting. We believe 
that the methodologies and results presented here can serve as valuable tools to inform and 
guide strategic decisions, not only within Nigeria but also in other countries facing similar 
issues. Additionally, it is essential to acknowledge the limitations of this study, including 
data constraints and the inherent uncertainties in weather predictions, which should be con-
sidered when interpreting and applying the results.
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