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Abstract
Recently, solar energy has emerged as the most promising renewable energy source to meet 
the world’s energy demands. However, to harness the potential of solar energy, accurate 
data on solar radiation are crucial. It is considered the first step in assessing solar resources 
for various applications and achieving energy sustainability goals. Due to the unavailabil-
ity of solar radiation measurements in many parts of the world, several models have been 
developed to predict global solar radiation (GSR) at these locations. Thus, this study aims 
to evaluate the proficiency of several GSR models at five new locations and determine 
the most suitable one for GSR prediction. The study has further developed solar radiation 
models for these new locations, as well as general ones for the entire region, which does 
not have any GSR models despite the existence of many planned solar energy facilities 
in this area. Additionally, the study investigates the effect of changing the length of the 
validation dataset on models’ performance and accuracy, as well as assesses the introduced 
models’ generalization capability. To achieve these objectives, the observed data of GSR 
for approximately 37 years at studied locations are used to develop and validate the pro-
posed models. The study’s findings reveal that Model 1 provides the best performance at all 
locations, with accuracy, coefficient of determination ( R2 ), ranging from 95 to 98%, except 
for the coastal location, where it is from 91 to 95%. The remaining performance indica-
tors of the best models, such as RMSE, MABE, MAPE, and r , are good, and their values 
range from 0.7863 to 1.9097 (MJ  m−2  day−1), from 0.6430 to 1.7060 (MJ  m−2  day−1), from 
3.4319 to 10.0890 (%), and from 0.9914 to 0.9981, respectively. The length of the valida-
tion dataset has a slight effect on the models’ performance, ranging from about 1% to 2%. 
Therefore, Model 1 is the recommended solar radiation model, which can provide precise 
and rapid estimates of global solar radiation. This approach could be used in the design and 
performance evaluation of many solar applications. The primary benefit of this approach in 
the current investigation is that temperature data are continuously and effortlessly recorded 
for various purposes.
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1 Introduction

1.1  Overview and related work

In recent years, renewable energy sources have become increasingly important. The pro-
duction of clean energy is essential for preventing climate change and mitigating its most 
severe consequences. The use of these clean energy sources can also promote sustainability 
goals, as well as support other sustainable concerns such as human resource development 
(Eesley, 2016; Piwowar-Sulej et al., 2023; Rao et al., 2023; Zhao et al., 2022). As the world 
grows more reliant on oil (Dagher & El Hariri, 2013), concerns about climate change and 
the concentration of mitigation actions on the energy sector have led to the implementation 
of energy conservation programs in many nations (Dagher & Yacoubian, 2012). Environ-
mental pollution is one of the most significant barriers and hazards to sustainable develop-
ment. Due to the conflicting effects of economic activity, overuse of natural resources, and 
environmental sustainability, environmental pollution has gained international attention 
(Alvarado et al., 2022; Chen & Dagestani, 2023a; Chen et al., 2023; Cihan et al., 2021; 
Dagestani et al., 2022, 2023; Shen et al., 2023; Su et al., 2023; Zhang et al., 2023). The use 
of sustainable energy sources, such as solar energy, can contribute to sustainable develop-
ment and the reduction of the carbon footprint (Chen & Dagestani, 2023b; Kumar et al., 
2023). Furthermore, the utilization of renewable energy sources may help improve the 
economy, which has suffered significantly in recent years due to various factors, including 
the spread of certain diseases (Dagestani, 2022; Guru et al., 2023; You et al., 2022), among 
other ways (Agarwal et al., 2023; Cheng et al., 2023; Dagar & Malik, 2023; Dagestani & 
Qing, 2022; Dagher, 2012; Tao et al., 2023; Zhou et al., 2023).

Currently, solar energy is regarded as one of  the most potential renewable energy 
sources for meeting a significant portion of the world’s energy needs (Ali et al., 2022; 
Chanchangi et al., 2022; Dagher & Ruble, 2010, 2011; Eroğlu, 2022; Feng et al., 2019; 
Tlili, 2015). Thus, accurate solar radiation information is considered the initial step in 
determining the availability of solar energy (Doorga et al., 2019; Guermoui et al., 2020; 
Hassan et al., 2016a, 2016b; Karaman et al., 2021; Makade et al., 2021; Mawire et al., 
2021; Saleh et  al., 2021; Yıldırım et  al., 2018; Zaaoumi et  al., 2021). Also, it is the 
fundamental input for many solar energy applications (Chand et al., 2021; Chaudhary 
& Yadav, 2021; He et al., 2020; Quej et al., 2016). Because solar radiation data are not 
available in many regions, many solar radiation models have been presented to forecast 
the global solar radiation (Nwokolo & Ogbulezie, 2018; Tao et al., 2021; Yorukoglu & 
Celik, 2006; Youssef et al., 2016). Much research has been conducted to investigate the 
usefulness of various solar radiation models in measuring solar radiation availability 
at various places worldwide. The most regularly validated and widely used solar radia-
tion models are those based on meteorological factors (Besharat et al., 2013; Bounoua 
et al., 2021; Samuel Chukwujindu, 2017). These models rely on empirical correlations 
and meteorological data, such as sunlight duration, temperature, cloud cover, and rela-
tive humidity, which are the most often employed meteorological variables to predict 
Global Solar Radiation (GSR). The fundamental sunshine-based model was provided 
by A ͦngström (1924). Prescott (1940) adapted A ͦngström (1924) model that has become 
the most extensively used one to estimate solar radiation at various sites throughout the 
world (Almorox et  al., 2005; Besharat et  al., 2013). Al-Mostafa et  al. (2014) studied 
the efficacy of fifty-two solar radiation models based on sunshine data to predict the 
monthly mean GSR on a horizontal plane in Jouf region, KSA. The finding demonstrated 



Evaluation and performance comparison of different models…

1 3

that certain models are completely unsuited for usage in this region (Jouf), while others 
perform differently. Similarly, the best solar model for evaluating the monthly GSR on a 
horizontal ground at six sites in Algeria was presented by Mecibah et al. (2014). Despo-
tovic et al. (2015) reviewed and analyzed different GSR models depending on sunshine 
data. They sought to analyze several models on a worldwide scale, which may be useful 
in selecting the most appropriate sunshine-based model. Barbaro et  al. (1978) model 
was modified by Robaa (2009) to calculate GSR in Egypt. Hassan et al. (2018) investi-
gated the effectiveness of several sunshine-based GSR models in the case study of New 
Borg El-Arab city, Egypt. The collected findings demonstrated that the general form 
of Robaa model (Robaa, 2009) performs well in calculating GSR. Ajayi et  al. (2014) 
introduced a solar radiation model to predict daily values of GSR in Nigeria, which pro-
vided high agreement between estimated values and observed data. El-Metwally (2005) 
conducted a research on sunshine and GSR forecasting in several Egyptian sites, and 
he sought to create a simple nonlinear method to evaluate relative sunshine period and 
GSR.

Similarly, Hargreaves and Samani (1982) devised a simple model for predicting solar 
radiation that relied just on the lowest and maximum temperatures. Annandale et al. (2002) 
adapted Hargreaves and Samani (1982) model to calculate the effects of decreasing altitude 
and air thickness on GSR. As well, Allen (1997) provided a self-calibrated model based 
on Hargreaves and Samani model (1982) to predict monthly mean GSR. El-Metwally also 
suggested three simple new models for calculating GSR horizontally in Egypt depending 
on the lowest and maximum temperature and cloud cover (El-Metwally, 2004). Quej et al. 
(2016) investigated the accuracy and application of thirteen empirical-based models  for 
calculating GSR in the Yucatan Peninsula, Mexico. The findings illustrate that the new 
model that was developed based on temperature and other meteorological variables pro-
vides the best forecast of GSR at all sites. Mghouchi et al. (2016) studied the proficiency 
of three models under all sky conditions in Tetuan, Morocco, to assess various parts of 
solar radiation flux on a horizontal plane. Youssef et al. (2016) evaluated the efficacy of 
more than thirty models, which do not depend on sunshine data, for calculating the GSR 
on horizontal ground. Their findings indicated that the models which are depend on solar 
declination angle and extra-terrestrial radiation, Türk Togrul and Onat (1999) and Ertekin 
& Yaldiz (1999) models, gave the most accurate prediction. Almorox et al. (2011) inves-
tigated the challenge of calibrating seven current solar radiation models and establishing 
a new model to predict GSR using temperature obtained from seven stations in Madrid, 
Spain. The collected findings demonstrated that empirical models that rely on tempera-
ture provide good predictions at any location if their coefficients are properly adapted. Fur-
thermore, for all sites, the newly proposed model delivers the highest accurate forecast. 
Besharat et al. (2013) assessed the proficiency and application of existing empirical models 
for evaluating the monthly average daily GSR on a horizontal plane in Yazd, Iran. The 
findings illustrate that all developed correlations yield good predictions, with El-Metwally 
model (2005) providing the highest accurate prediction.

Generally, regression-based approaches to solar radiation estimation often have the 
benefit of having readily available equipment for measuring the climatic variables that 
are utilized as model input variables. As a result, most sites’ data are often available. 
These regression models have demonstrated the ability to construct a strong and positive 
relationship between observed meteorological variables and solar radiation over a wide 
range of locations. They are also quite straightforward to perform and fairly precise. The 
equipment needed to measure sunshine and cloud data is frequently more expensive and 
not usually available at meteorological stations, in contrast to the equipment needed to 
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monitor temperature. This presumption suggests that knowledge about clouds or sun-
shine is typically unattainable (Babatunde et al., 2023).

1.2  Contribution statement

In general, sunshine-based models outperform other meteorological parameter-based 
models (Al-Mostafa et al., 2014). Sunshine data, on the other hand, is not as publicly 
available as other weather variables such as air temperature that are gathered at conven-
tional weather stations (Li et  al., 2014). As a result, sunshine-based  solar models  are 
challenging to apply in locations where sunshine information is absent (El-Metwally, 
2005; Kumar et  al., 2015). Owing to the absence of sunshine data  at the majority of 
stations throughout the world, Hassan et al. (2016a, 2016b) proposed many new temper-
ature-based models to forecast GSR as a substitute to the frequently employed sunshine-
based models. To estimate the monthly average daily GSR horizontally, these new mod-
els are built, evaluated, and compared with three additional temperature-based models 
obtained from the literature. The findings display that the local model of the best model 
from these newly suggested temperature-based models (Hassan et  al., 2016a, 2016b 
Model 6) provides accurate GSR  forecasts  at different sites. As well, they concluded 
that an accurate and quick prediction of global solar radiation can be provided using this 
newly suggested model.

In this sense, the goal of this work is to study  the proficiency of several empirical 
models at five new locations to evaluate the strengths and weaknesses of these models 
and determine which one is the most suitable for GSR prediction. Furthermore, solar 
radiation models are developed for these new locations as well as general ones for the 
whole region, the Suez Canal Zone, which does not have any GSR models even though 
there are several proposed solar energy projects in this area. The Egyptian Ministry of 
Electricity, NREA, suggests a number of sites with solar energy potential for photo-
voltaic installations around Egypt. One such site is “ZAAFRANA Solar Park,” which 
is situated in the investigated region (the Suez Canal’s Zone). An essential first step in 
evaluating the feasibility and effectiveness of such solar energy application operations 
is evaluating estimates of solar radiation. Thus, Global Solar Radiation, GSR, observed 
data over 37 years at the studied locations are utilized, as a case study, to construct and 
evaluate the developed models in this article. The following points can be regarded as 
some of the novelties and contributions of this study:

• Development of exact GSR  models for the researched areas as well as the entire 
region, which currently lacks GSR models despite the existence of many planned 
solar energy facilities.

• Investigate performance for three models at five new locations, especially at coastal 
ones, for accurate GSR forecasting on a horizontal surface.

• Study the effect of changing the length of the validation data set on models’ perfor-
mance and accuracy.

• Assessing performance for one of the best Temp-Based Models, Model 1 (Hassan 
et al., 2016a, 2016b), which has been presented recently, to estimate GSR at these 
new sites and after a period of years.

• Evaluation and performance comparison for these selected GSR models in evaluat-
ing Monthly Average Daily GSR on a horizontal plane (MADGSR).
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• Present local formulas for estimating MADGSR at these cities, as well as general ones 
for the whole region (Suez Canal’s Zone) due to its importance and the existence of dif-
ferent solar energy projects such as Zaafrana Solar Park.

• Perform a comparative study of the GSR models that have been identified as the most 
effective based on the results obtained from two recently proposed research studies, to 
evaluate the strengths and weaknesses of these models and determine which one is the 
most suitable for GSR prediction.

This comprehensive research provides important information for designers, engi-
neers, and others interested in solar energy usage at the study sites. As mentioned above, 
these studied region has been planned to have several proposed solar energy projects 
such as “ZAAFRANA Solar Park.” In addition, providing this essential information for 
different solar energy projects in this region will help in promoting sustainable develop-
ment and economy, as well as the reduction of the carbon footprint.

1.3  Paper organization

To provide more explanation, Fig.  1 depicts the overall flowchart of the work and all 
of its phases, including data processing, model construction, performance evaluation, 
performance comparison, and, at the end, the major findings of the work. The remain-
der of the paper is arranged as follows: the global solar radiation models are described 
in Sect.  2.1. Then, Sect.  2.2 presents more information about the used indicators for 
evaluating models’ performance and accuracy. Data collection and extra-terrestrial solar 
radiation calculation method are explained in Sect. 2.3. Section 3 introduces both exper-
imental results and discussions for the studied models, including performance compari-
son for these developed models using different validation data sets. Finally, the conclu-
sion and future work are presented in Sect. 4.

Fig. 1  General flowchart of the present study with a clarification for its various stages
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2  Materials and methods

2.1  Solar radiation modeling

In general, the developed solar radiation models rely on linear and nonlinear relations. 
They present a correlation between incident solar radiation and other climatic parameters 
like cloud cover, relative humidity, temperature (minimum, ambient, or maximum), and 
sunshine period (Khalil & Shaffie, 2013a). Generally, the GSR models which depend on 
temperature can be considered one of the best models because temperature data are readily 
available compared with the other meteorological parameters, and it is already recorded 
very easily and continuously for other purposes (Li et al., 2014).

Hassan et  al. (2016a, 2016b) proposed novel temperature-based  models as another 
option  to the frequently utilized ones,  sunshine-based methods. The results showed that 
the local formula for the most accurate model, from these novel temperature-based mod-
els, provided excellent prediction for GSR at various sites. Also, this best model outper-
forms the two best models which depend on the sunshine parameter in the literature. In 
another paper (Youssef et al., 2016), they studied how thirty-one non-sunshine-based solar 
models perform in GSR prediction on a horizontal plane. These models are classified into 
six categories (only based on temperature, only based on cloud cover, only based on rela-
tive humidity, only based on alien solar energy and solar declination angle, only based on 
temperature, and only based on relative humidity and air temperature). The most accurate 
models which showed excellent performance within temperature-based group and tempera-
ture-relative humidity-based group will be selected and compared with the former one, the 
novel temperature-based model which has been presented recently for estimating global 
solar radiation (Hassan et al., 2016a, 2016b). These models are defined as follows:

Model 1 (Hassan et al., 2016a, 2016b):

Model 2 (Youssef et al., 2016):

Model 3 (Youssef et al., 2016):

where a, b, c, and d represent the coefficients, and T  , TMax , TMin , RH , G , and G0 are the 
monthly mean values of daily air temperature (°C), maximum and minimum temperature 
(°C), relative humidity (%), GSR on a horizontal ground (MJ/m2  day−1), and extra-terres-
trial solar radiation on a horizontal plane (MJ/m2  day−1), respectively.

For the sake of simplicity, temperature data are used in this study since, to a great extent, 
it is easier to get in most climate stations than other weather characteristics. Concerning its 
dependence on solar radiation, it is evident that the behavior of the surface of the earth in 
response to solar radiation obtained from the sun can shed light on the tight link between solar 
radiation and the surrounding temperature (Dincer et al., 1996). Shortwave electromagnetic 
radiation from the sun is absorbed by the earth’s surface, warming the atmosphere as a result. 
Some of the absorbed energy is released as longwave radiation by the heated earth, warming 
the nearby ambient air. Rather than being heated directly by sunlight, the ambient air is heated 
indirectly through contact with the  planet’s surface. There is a phase delay in this process 

(1)G
/
G0

= aT
b
G0 + c

(2)G = a + bG0 + cT

(3)G =
(
aTMax + bTMin + cRH

)
× G0 + d
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between the cycles of temperature and solar radiation (Atkins, n.d.). In general, radiation bal-
ance and air mass advection can have an impact on variations in air temperature. The local air 
temperature and radiation balance are affected by the kind of surface cover, the percentage of 
clouds, the time of day, and the season. The annual temperature cycle, which demonstrates a 
strong correlation between solar radiation and surrounding temperature, would be a good way 
to track the regular variations in solar radiation that occur during the course of a year (Dincer 
et al., 1996). Thus, the primary focus of this study is to develop unique correlations between 
temperature and solar radiation, which is considered a major claim in the present study.

In fact, the main concept for developing the new economic zones is to create new societies 
providing new jobs to attract young people to this newly developing area. Moreover, develop-
ing these new generations of cities based on renewable energy resources such as solar energy 
creates more extra jobs in the field of renewable energy, which enhances the job market related 
to renewable and green energy. Furthermore, evaluating the solar energy resources in this 
new region using the developed numerical model increases the utilization of solar energy as 
a renewable source of energy reducing the carbon footprint for any economic activities in the 
region supporting the concept of environmentally friendly societies. This motivates the cul-
tural shift of society toward the new concept of sustainable green cities for future development 
trends for new cities and societies. Thus, the current study attempts to develop an accurate 
model, which can be considered as a simple tool to evaluate solar energy resources based on 
temperature data available in a certain location. The predictions from this simple tool can be 
used as input to the feasibility studies related to any future development plans for solar energy 
projects at these locations. This enables the decision-makers to evaluate the economic feasibil-
ity and payback period for any future project related to solar energy.

2.2  Evaluating Models’ Performance

The developed models’ performance in this study is examined and evaluated using the 
most frequently applied indicators such as the coefficient of determination ( R2 ), mean per-
centage error (MPE), mean absolute percentage error (MAPE), mean bias error (MBE), 
root-mean-square error (RMSE), correlation coefficient ( r ), and mean absolute bias error 
(MABE) (Besharat et al., 2013; Cihan et al., 2021; Hassan et al., 2016a, 2016b; Youssef et al., 
2016). The accepted values of these errors, MPE, MAPE, RMSE, MBE, and MABE, are 
between ± 10%, and the values of R2 and r are between 0 and 1 (0 ≤ R2 , r ≤ 1), where their 
ideal values which close to the unity (Ajayi et al., 2014; Hai et al., 2020; Khorasanizadeh & 
Mohammadi, 2013a). The equations for these indicators are defined as:

(4)MBE =
1

n

n∑

i = 1

(
Gi. c − Gi.m

)

(5)MPE =
1

n

n∑

i=1

(
Gi.c − Gi.m

Gi.m

)

× 100

(6)RMSE =

[
1

n

n∑

i=1

(
Gi.c − Gi.m

)2
]1∕2
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where n is the observation number,Gi.c and Gi.m are the i th predicted and calculated values, 
and Gm and Gc are the average values of the observed and predicted values.

Coefficient of determination values, R2 , donate knowledge about the goodness of fit 
between the predicted and the measured values. Coefficient of determination and corre-
lation coefficient values range from 0 to 1, with the greatest number being the intended 
value. Mean bias error (MBE) statistics provide info about the long-term model’s profi-
ciency. While the MBE’s negative values point to underestimation, the positive values 
refer to overestimation, and the small values consider the desired ones. RMSE’s value is 
always positive and gives feedback about the short-term model’s efficacy. Smaller RMSE 
values imply a high model’s accuracy, whereas zero values represent the optimum value. 
The agreement between the value of the measured and the calculated G for each month 
can be expressed by relative percentage error ( e ), and its preferable values lie between −10 
and + 10 (%).

2.3  Data collection

The study utilized weather data collected over a period of 37 years, from January 1, 1984 to 
December 31, 2020, to develop and test models that predict monthly average daily GSR on 
a horizontal plane. The data include temperature (minimum, ambient, and maximum), rela-
tive humidity, and GSR, and was obtained from NASA’s Surface Meteorology and Solar 
Energy power data access, a source that has been used in several other studies (M. A. Ali 
et al., 2016; Fadare, 2009; Hassan et al., 2018; Hassan et al., 2016a, 2016b; Hassan et al., 
2016a, 2016b; NASA Surface Meteorology and Solar Energy, n.d.; Youssef et al., 2016). 
As mentioned above, the study aims to verify the applicability of the established models 
for predicting the monthly average daily GSR for selected cities and the Suez Canal zone as 
a whole. Thus, the developed models’ performance is evaluated and compared to observed 

(7)MABE =
1

n

n∑

i = 1

|||
(
Gi. c − Gi. m

)|||

(8)MAPE =
1

n

n∑

i =1

|||||

(
Gi. c − Gi.m

Gi. m

)

× 100

|||||

(9)r =

∑n

i=1

�
Gi. m − Gm

��
Gi.c − Gc

�

�
∑n

i= 1

�
Gi.m − Gm

�2 ∑n

i=1

�
Gi. c − Gc

�2
�1∕2

(10)R
2 = 1 −

∑n

i=1

�
Gi. m − Gi. c

�2

∑n

i=1

�
Gi. m − Gm

�2

(11)e =

(
Gi, c − Gi, m

Gi, m

)

× 100
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data of GSR at the five selected sites. Furthermore, the suggested models’ generalizability 
is investigated for the Suez Canal’s zone and examined at the five studied locations too, 
namely Port Said, El Kantara, Ismailia, Fayid, and Suez. These selected cities are distrib-
uted over the Suez Canal’s zone as demonstrated in Fig. 2, as well as their geographical 
information is illustrated in Table 1.

Concerning the NASA weather dataset, in general, it facilitates the study of climate and 
climatic phenomena by acting as an extensive and ongoing record of climatic data obtained 
from satellite observations. The NASA database is noteworthy due to its worldwide breadth 
and chronological consistency. It is a trustworthy source of data since it has been shown to 
be accurate enough in comparison with traditional observations made on the ground. As 
such, the NASA record may be used with effectiveness in situations when there are insuf-
ficient or no ground records. Despite the widespread belief that observations taken on land 
are more accurate than those taken from space, the necessary meteorological variables for 

Fig. 2  Distribution of the 
selected locations in the Suez 
Canal’s zone, Egypt (I-cias, n.d.)

Table 1  Geographical 
information for the five studied 
cities

# Location Latitude. N Longitude. E

1 Port Said 31˚ 15 ˋ 32˚ 18 ˋ
2 El Kantara 30˚ 51 ˋ 32˚ 18ˋ
3 Ismailia 30˚ 35 ˋ 32˚ 16 ˋ
4 Fayid 30˚ 18 ˋ 32˚ 18 ˋ
5 Suez 29˚ 58 ˋ 32˚ 33 ˋ
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this investigation were derived using NASA data. There were two key considerations in 
this choice. First of all, the NASA collection contains all of the pertinent weather param-
eters for the regions that are being studied. Second, there are issues with the precision of 
on-site observations, which are frequently brought on by procedural mistakes, deficiencies 
in the collected datasets, or calibration problems that might result in inaccurate data collec-
tion (Abdo & El-Shimy, 2013; Fadare, 2009). On the other side, numerous measures made 
on the ground have been used to assess the accuracy of NASA data, which comes from 
satellite observations. NASA calculates that the Mean Bias Error (MBE) ranges from −2% 
to + 0.7%, despite the fact that the validity of these ground-based observations themselves 
is not usually carefully evaluated (NASA, n.d.)

Besides, a custom program developed in C# programming language is used to calculate 
the values of declination angle and extra-terrestrial solar radiation, as well as the monthly 
average daily values for all the mentioned parameters. Extra-terrestrial solar radiation, G0 , 
is the solar radiation that originates outside the earth’s atmosphere, and it is defined as 
(Ayodele & Ogunjuyigbe, 2015; Jiang, 2009):

Gsc donates the solar constant ( Gsc = 1367 W/m2) (Camacho et al., 2012; Khalil & Shaf-
fie, 2013b), k refers to the earth’s orbit eccentricity correlation factor, � points to the hour 
angle at sunset (degree), L indicates to the latitude angle (degree), and δ is the declination 
angle (degree). k, δ, and � are defined as (Karakoti et al., 2012):

N refers to the year-day number beginning from January 1.

3  Results and Discussion

The observed data of GSR, temperature (minimum, ambient, and maximum), and relative 
humidity are separated into three subgroups and averaged to provide the monthly average 
daily values. The first subset (January 1, 1984–December 31, 2017) is utilized for building 
models using regression analysis (Ajayi et al., 2014; Besharat et al., 2013; Khorasanizadeh 
& Mohammadi, 2013b). The coefficients’ values matching the observed data in selected 
locations are acquired and summarized in Table 2. Similarly, the general empirical coef-
ficients for the whole region of the Suez Canal’s zone for three models are calculated and 
represented in Table 2.

On the other hand, the validation process is performed using two different validation 
data sets. The first one, from January 2018 to December 2020, is the average data of three 
years. The second validation data set, from January 2018 to December 2018, is the aver-
age data for one year, 2018. These two validation data sets will be utilized to assess and 

(12)Go =
24 × 3600Gsc

�
k

[(
��

180

)
sin (L) sin (�) + cos (L) cos (�)sin(�)

]

(13)k =
[
1 + 0.033 cos

(
360N

365

)]

(14)� = 23.45 sin

[
360

365
(284 + N)

]

(15)� = cos−1 [− tan (L)tan(�)]
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validate the established models in this study. Also, they will be used to investigate the effect 
of changing the length/period of the validation data set on models’ performance and accu-
racy, using these long and short period of validation data set (average data of three years 
and average data of one year). The prediction of the three proposed models, Eqs. (1–3), are 
compared with the measured values of the monthly average daily global solar radiation, 
and the most common statistical indicators, named RMSE, MBE, MPE, MAPE, MABE, e , 
r , and R2, are computed using equations Eqs. (4–11).

The following sections introduce the obtained results from the validation process using 
each validation data set (Validation Data Set 1: three-year data average, Validation Data 
Set 2: one-year data average) and their discussion. For each validation data set, firstly, 
the obtained results of the local formulas are discussed followed by the general formulas’ 
results discussion, and hence a comparison between both formulas (Local and General) is 
presented. Besides, a performance comparison between these developed models (Model 
1, Model 2, and Model 3) at each city is explained. Finally, the revealed results from these 
two validation data sets (Data Set 1 and Data Set 2) are compared and discussed, too.

3.1  Validation using Data Set 1 (2018–2020)

This validating data set employed the average data of three years, from January 1, 2018 
to December 31, 2020. The measured data for all used parameters as well as the extra-ter-
restrial solar radiation data at each city are averaged to get the monthly mean values. The 
models’ prediction is compared to the observed data at each city, where all statistical indi-
cators (MBE, RMSE, MPE, MAPE, e , MABE, R2 and r ) are computed using Eqs. (4)–(11) 
for the developed models and summarized in Table 3. Based on the received results, the 
best model at each city is recognized after comparing the obtained statistical indicators 

Table 2  Empirical coefficients 
for the selected five cities and for 
the Suez Canal’s Zone, Egypt

City Model a b c d

Port Said Model 1 0.00034 0.84062 0.50640 −2.52989
Model 2 −7.66733 0.76573 0.20876
Model 3 0.02120 −0.01367 0.00708

El Kantara Model 1 0.00101 0.51049 0.47280 0.32544
Model 2 −6.48772 0.76239 0.12309
Model 3 0.02966 −0.02460 0.00298

Ismailia Model 1 0.00101 0.51062 0.47281 0.32544
Model 2 −6.48772 0.76239 0.12309
Model 3 0.02966 −0.02460 0.00298

Fayid Model 1 0.00089 0.53876 0.48038 1.36865
Model 2 −6.22812 0.75362 0.12586
Model 3 0.03081 −0.02667 0.00178

Suez Model 1 0.00099 0.49708 0.50472 −0.07195
Model 2 −6.09726 0.76975 0.12687
Model 3 0.03567 −0.03248 0.00321

Suez Canal’s 
zone for-
mula

Model 1 0.00076 0.58719 0.48948 −0.05853
Model 2 −6.51256 0.76026 0.14161
Model 3 0.03186 −0.02671 0.00338
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together, and it will have the largest R2 value (Ajayi et  al., 2014; Hassan et  al., 2016a, 
2016b; Hassan et  al., 2016a, 2016b; Khorasanizadeh & Mohammadi, 2013a; Li et  al., 
2010). The greatest models are highlighted in bold as illustrated in Table 3.

Based on the comparison with the observed data of GSR, the developed models at the 
selected sites showed good performance, with the coefficient of determination (R2) ranging 
from 94 to 97% at all locations except for Port Said city, it is larger than 91%. This fall in 
R2 value can be justified by different climatic variables, particularly at coastal sites, like 
Port Said city, which is located very close to the Mediterranean Sea as displayed in Fig. 1 
(El-Metwally, 2004; Khorasanizadeh & Mohammadi, 2013a). While the models’ predic-
tion is considerably declined at Port Said city, their prediction is very good at the four 
remaining cities. Despite this low performance at Port Said city, the values for all statistical 
errors (MBE, MPE, RMSE, MABE, and MAPE) are within the accepted limit of ± 10%, 
and R2 values are greater than 91%, which refers to good fitting between predicted and 
measured values.

Overall, it can be noted that all models have excellent RMSE and MBE values which 
range from 0.9 to 1.8 (MJ  m−2  day−1) and from 0.7 to 1.7 (MJ  m−2  day−1), successively. 
Also, Model 1, Eq.  (1), provides the best performance among all developed models. 
Despite Model 1 and Model 2 being based on the same input parameters, ambient tem-
perature and extra-terrestrial solar radiation, Model 1 has the most accurate estimation. 
Its  R2 values at the five selected cities, Port Said, El Kantara, Ismailia, Fayid, and Suez, 
are 0.9196%, 0.9664%, 0.9664%, 0.9664%, 0.9664%, and 0.9727%, respectively. Model 
2 ranked second, and its performance is significantly close to Model 1. Furthermore, 
although Model 3 depends on relative humidity as one of its input parameters, it does not 
improve its performance compared with the other models, even at coastal sites such as 
Port Said City. For more clarification, the best model’s estimations are compared with the 
observed data at the five selected cities as demonstrated in Fig. 3. Similarly, Fig. 4 shows 
the statistical indicators graph for the local models at the five selected locations using vali-
dation Data Set 1 (data of three years average, 2018–2020).

General formulas, on the other side, all measured data of used parameters ( T  , TMax , TMin , 
RH , G , and G0 ) at the five selected cities of the Suez Canal’s zone (as displayed in Fig. 1) 
are averaged and utilized to assess the generalizability capacity of the developed models 
throughout the whole Suez Canal zone in Egypt. The general coefficients are calculated 
from the averaged data using regression analysis (Ajayi et al., 2014; Besharat et al., 2013; 
Khorasanizadeh & Mohammadi, 2013b) and given in Table 2. The estimation of the devel-
oped models’ general formulae is compared to the observed data of the five cities. Table 4 
summarizes the obtained statistical errors for the general formulas’ prediction at each city.

According to the results, what stands out from Table 4 is that, whereas the performance 
for both Model 1 and Model 2 at Port Said city is improved considerably by about 4% 
(R2 values increased from about 91% to more than 95%), the performance of Model 3 is 
dramatically deteriorated (R2 values dropped from about 91% to about 78%) and its MPE 
values also exceeded the acceptable range ± 10%, equals 12.4784 (MJ   m−2   day−1). This 
decline may be returned to this model, Model 3, which depends on relative humidity as one 
of its input parameters, and when the five cities’ data were averaged, it led to a significant 
change in RH values especially at this coastal site.

Additionally, Model 1 still ranked first in three cities, Port Said, Fayid, and Suez, and 
second in the remaining two cities, El Kantara and Ismailia, with performance very close 
to the first one, Model 3, with about 0.003% difference in R2 values, 0.9801% and 0.9835%, 
respectively. Also, the models’ performance at Suez City is slightly decreased by about 
2% compared with the performance of the local formulas, and their R2 values larger than 
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94%. This marginal decline in models’ performance at Suez City usually occurs in general 
models which are adjusted to cover larger areas or zones in contrast to local models that are 
calibrated on the local data (Hassan et al., 2016a, 2016b; Hassan et al., 2016a, 2016b; Li 
et al., 2014).

In general, it is also clear from Table  4 that the models’ performance improved sig-
nificantly at all locations except for Suez City, performance of the three models slightly 
decreased, as well as for Model 3 at Port Said City where performance dramatically col-
lapsed. Additionally, Model 1 provides the best performance in comparison with the other 
models almost at all sites, especially at coastal ones. Moreover, its performance is approx-
imately stable and reliable and does not experience a significant unfavorable change. In 
contrast, its prediction accuracy is improved in all cities except for Suez, where it has mar-
ginally declined. The  R2 values for Model 1 are between 0.95% and 0.98%, which refers to 
a good fitting between the model’s estimation and measured values. Figure 5 displays the 
statistical error graph for the general models at the five selected sites using the validation 

Fig. 3  Overall performance for the best models of local formulas using validation Data Set 1 (2018–2020)
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Data Set 1 (2018–2020). In addition, the forecast of the best general models compared 
against the observed data at the five selected cities is illustrated in Fig. 6.

Fig. 4  Statistical errors graph for all models of the local formulas using validation Data Set 1 (2018–2020)
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Fig. 5  Statistical errors graph for all models of the general formulas using validation Data Set 1 (2018–
2020)
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Regarding comparison, the performance for both the local and the general formulas 
is compared based on the result of the validation process using Data Set 1 (2018–2020). 
The best models from both formulas are selected and compared together as presented in 
Table 5. The most accurate model at each location is identified and indicated in bold as 
seen in the table. It is worth noting that while the general formula of Model 3 provided the 
best performance at two cities, El Kantara and Ismailia, with R2 values > 98%, the formulas 
of Model 1, either the local one or the general one, showed the best performance at the 
remaining three cities, Port Said, Fayid, and Suez, and its R2 values are greater than 95%, 

Fig. 6  Prediction of the best local models and the best general models using validation Data Set 1 (2018–
2020)
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97%, and 97%, respectively. Also, its local formulae at the remaining two sites, El Kantara 
and Ismailia, have excellent prediction with  R2 > 96%, and its general formula at Port Said 
city improved the performance (R2 > 95%) with about 4% compared to its local formula.

For more clarification, the results of the performance comparison for the best local 
model and the best general model at the five locations are displayed in Fig. 6, and graphs 
of their statistical indicators are represented in Fig. 7. Furthermore, the relative percentage 
error ( e ) is calculated for these best models (local and general) through the twelve months 
and summarized in Table 6. Generally, what is clear from the table is that while local and 
general models performed lower at the coastal city, like Port Said, their values of relative 
error slightly exceeded the preferred range ± 10% for some months, they showed perfect 
performance at the remaining four cities almost for all months except for some Winter’s 
months, for example, the local formulas of Model 1 in November. The reason for this can 
be explained by different weather conditions particularly in Winter months such as clouds 
and rains (El-Metwally, 2004; Hassan et al., 2016a, 2016b; Hassan et al., 2016a, 2016b; 
Khorasanizadeh & Mohammadi, 2013a). Also, it is noted that the relative error values were 
reduced at Port Said (coastal city) in contrast with its values at Suez city. This may be 
interpolated by the averaging process for the measured data of the five selected cities lead-
ing to improved values of different parameters ( T  , TMax , TMin , RH , G , and G0 ) at Port Said 
city, and vice versa at Suez city. On the contrary, the relative error values for the general 
formulas of Model 3 at El Kantara and Ismailia are in the range. For more clarification, the 
relative errors graph for the best local and general models is shown in Fig. 8.

Table 5  Performance comparison for the best models (local and general) using validation Data Set 1 
(2018–2020)

Rows in bold refer to the most accurate model at each city

Site Model type MPE MBE RMSE MِAPE MABE r R2 Rank

Port Said Model 1-local 9.3092 1.6925 1.7998 9.3092 1.6925 0.9975 0.9196 2
Model 1-Canal’s 

zone
6.7562 1.1688 1.3253 6.7562 1.1688 0.9954 0.9564 1

El Kantara Model 1-local −5.6514 −1.0118 1.1207 5.6514 1.0118 0.9979 0.9664 2
Model 3-Canal’s 

zone
−0.6820 0.0126 0.7863 3.4319 0.6430 0.9949 0.9835 1

Ismailia Model 1-local −5.6512 −1.0118 1.1207 5.6512 1.0118 0.9979 0.9664 2
Model 3-Canal’s 

zone
−0.6820 0.0126 0.7863 3.4319 0.6430 0.9949 0.9835 1

Fayid Model 1-local −5.6506 −1.0151 1.1219 5.6506 1.0151 0.9979 0.9664 2
Model 1-Canal’s 

zone
−4.3326 −0.7279 0.8988 4.5357 0.7832 0.9981 0.9784 1

Suez Model 1-local −4.4699 −0.8082 0.9823 4.8015 0.8989 0.9971 0.9727 1
Model 1-Canal’s 

zone
−6.4860 −1.2122 1.3194 6.5500 1.2297 0.9976 0.9507 2
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Fig. 7  Errors comparison for the best local and general models using validation Data Set 1 (2018–2020)
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3.2  Validation using Data Set 2 (2018)

Looking at the second data set, Validation Data Set 2 (2018), the same manner that has 
been carried out with Validation Data Set 1 is conducted with Data Set 2. Firstly, the meas-
ured data of all parameters for only one year, from January 1, 2018 to December 31, 2018, 
at each city are averaged to get the monthly average values. Then, models’ predictions are 
compared against observed data, and all indicators are computed for both local and general 
formulas at each site as seen in Table 7. Also, the most accurate models are identified and 
pointed in bold as displayed in the table.

Focusing on the local formulas, the revealed results show that at the coastal city (Port 
Said), the three developed models showed low performance, and their MPE values slightly 
exceeded the range ± 10%, 10.5113, 10.3519, and 10.0890, respectively. Also, relative 
humidity, RH, which is an additional input parameter in Model 3 improves the model’s per-
formance by about 1% compared with the other models. This drop in models’ performance 
returns to bad weather conditions at the coastal sites as mentioned before (El-Metwally, 
2004; Khorasanizadeh & Mohammadi, 2013a). On the contrary, in the remaining four cit-
ies, while Model 3 provided moderate performance with R2 values between 92 and 94%, 
Model 1 and Model 2 showed perfect performance with R2 > 96% and their performance is 
almost identical. Generally, despite lower prediction at Port Said City, the models’ predic-
tion at the remaining cities was good especially Model 1 and Model 2, and their statistical 
indicators are in the acceptable ranges.

Regarding general formulas, it is very pertinent to note that at Port Said city, the per-
formance of Model 3 is significantly deteriorated with R2 equals 0.77% and MPE is larger 
than 12%, out of the range (± 10%). This decrease can be explained by Model 3 mainly 
based on RH as one of its input parameters, which changed a lot when it was averaged 
for the five selected locations compared with its local values, as well as taking into con-
sideration the difference within weather conditions at the coastal city (Port Said) and the 
other four cities. Model 1 gave the best prediction followed by Model 2 with R2 > 94%. 

Fig. 8  Relative errors for the best models (local and general) using validation Data Set 1 (2018–2020)
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Alternatively, at the remaining locations, the three models displayed excellent estimation 
at El Kantara, Ismailia, and Fayid, where their performance is approximately alike, with 
R2 values > 97%. Moreover, Model 1 was the best one in Fayid and Suez cities. Overall, it 
can be observed that whereas some of the general formulas at some locations weakened or 
slightly decreased the performance, others, almost the majority of them, improved it. For 
example, the general formulas of Model 1 and Model 2 at Port Said city amended the per-
formance significantly. Additionally, all models performed well except the general formula 
of Model 3 at Port Said city, and Model 1 has the most accurate prediction at three cities 
(Port Said, Faid, and Suez) and at the remaining two cities, its performance is approxi-
mately the same as the best model, Model 3. Of more interest, the statistical indicators for 
both local and general models at the five sites are graphed and demonstrated in Figs. 12 
and 13 (in the Appendix).

Local and general formulas one-year comparison (2018), on the other hand, shows that 
firstly, Model 1 has the most stable and reliable performance among all models with good 
 R2 values. Also, if it is not ranked the first one, its performance will approximately coincide 
with the performance of the best. Performance of the general formulas generally improves 
models’ performance with some exceptions, for instance, the general one of Model 3 at 
Port Said as well as the slight decrease in models’ performance at Suez compared with its 
local one. Also, the general formulae of Model 3 is not recommended for use at the coastal 
sites. The overall performance comparison for both the best models, both local and gen-
eral, at all cities and their statistical indicators are shown in Fig. 9, Fig. 10, respectively. 
Furthermore, the relative error values, ( e ), are calculated for these best models (local and 
general) through the year months and summarized in Table 8. It is worth mentioning that 
while relative error values for some months at the coastal city (Port Said) for both local 
and general formulas overstep the preferred range, the majority of its values at the other 
cities are in the range except for some winter’s months own to unwell weather conditions 
as mentioned previously, where its values rarely and slightly exceed the scope. Also, the 
relative error values of general formulas are slightly better than local ones. For more illu-
mination, the relative errors for the best local and general models are shown in Fig. 14 (in 
the Appendix).

3.3  Validation data sets comparison

Of more interest, the two validation data sets are compared together, Validation Data Set 
1 (Three years data average: 2018–2020) and Validation Data Set 2 (One-year data: 2018). 
The obtained results from this comparison can provide several valuable information; for 
example, knowing the effect of changing the length of the validation data set on models’ 
performance and accuracy, as well as determining the most accurate, stable, and reli-
able model at various sites that have different weather conditions. Therefore, the received 
results of statistical indicators from the two validation data sets, as previously shown in 
Table 3, 4, and 7, are compared together, as well as the revealed results of relative error in 
Table 6 and 8.

Looking at the local formulas of Validation Data Set 1 and 2, it can be marked that 
at the coastal city (Port Said city), while the performance of Model 1 and 2 marginally 
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declined by about 1% (from 91 to 90% for Validation Data Set 1 and Validation Data Set 
1, respectively), the performance of Model 3 is almost stable. Additionally, the MPE val-
ues for Validation Data Set 2 (2018) are just over 10%. For Kantara, Ismailia, and Fayid, 
although the performance of Model 3 decreased by about 2%, the performance of Model 1 

Fig. 9  Prediction of the best local models and the best general models using validation Data Set 2 (2018)
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Fig. 10  Errors comparison for the best local and general models using validation Data Set 2 (2018)
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and 2 is approximately the same, with R2 > 96%. As for Suez City, all models’ performance 
falls somewhat with about 1%, which is normal at the coastal places.

On the other side,  the general formulas of the two validation data sets, for Port Said 
city, Model 1 and 2 showed the best performance, which marginally slipped by about 1% 
from 95 to 94%. Conversely, the general formulas of Model 3, for both validation data sets, 
are dramatically collapsed with R2 values around 77%. At Kantara and Ismailia, whereas 
the performance of Model 2 was almost unchanged with R2 equals 97%, the performance 
of Model 1 and 3 had very little change with about 1%, from 98 to 97%. At Fayid City, 
the performance of Models 1 and 2 did not change (R2 is 97%) while the performance of 
Model 3 increased from 96 to 97%. For Suez City, Model 1 and Model 2 almost have the 
same performance, where R2 is 95% and 94% for the two validation data sets. Also, the 
performance of Model 3 slightly falls from 94 to 93%, about 1%.

Generally, according to the obtained results of the two validation data sets com-
parison (Data Set 1: 2018–2020, and Data Set 2: 2018) for both the local and general 

Table 9  Statistical error comparison for all best models (locals and the generals) using the Validation Data 
Set 1 (2018–2020) and Validation Data Set 2 (2018)

Site Model type MPE MBE RMSE MِAPE MABE r R2

Port Said Model 3-Local (1Y Vald) 10.0890 1.7060 1.9097 10.0890 1.7060 0.9915 0.9110
Model 1-Local (3Y Vald) 9.3092 1.6925 1.7998 9.309 1.6925 0.9975 0.9196
Model 1-General (1Y 

Vald)
7.8213 1.3000 1.4965 7.8213 1.3000 0.9935 0.9454

Model 1-General (3Y 
Vald)

6.7562 1.1688 1.3253 6.7562 1.1688 0.9954 0.9564

El Kantara Model 2-Local (1Y Vald) −5.4258 −0.9423 1.1675 6.0035 1.0939 0.9950 0.9629
Model 1-Local (3Y Vald) −5.6514 −1.0118 1.1207 5.6514 1.0118 0.9979 0.9664
Model 3-General (1Y 

Vald)
−1.2140 −0.1170 0.9155 3.7969 0.7451 0.9914 0.9772

Model 3-General (3Y 
Vald)

−0.6820 0.0126 0.7863 3.4319 0.6430 0.9949 0.9835

Ismailia Model 2-Local (1Y Vald) −5.4258 −0.9423 1.1675 6.0035 1.0939 0.9950 0.9629
Model 1-Local (3Y Vald) −5.6512 −1.0118 1.1207 5.6512 1.0118 0.9979 0.9664
Model 3-General (1Y 

Vald)
−1.2140 −0.1170 0.9155 3.7969 0.7451 0.9914 0.9772

Model 3-General (3Y 
Vald)

−0.6820 0.0126 0.7863 3.4319 0.6430 0.9949 0.9835

Fayid Model 2-Local (1Y Vald) −5.4382 −0.9472 1.1678 6.0051 1.0959 0.9951 0.9629
Model 1-Local (3Y Vald) −5.6506 −1.0151 1.1219 5.6506 1.0151 0.9979 0.9664
Model 1-General (1Y 

Vald)
−4.0157 −0.6582 1.0025 4.9762 0.9102 0.9951 0.9727

Model 1-General (3Y 
Vald)

−4.3326 −0.7279 0.8988 4.5357 0.7832 0.9981 0.9784

Suez Model 1-Local (1Y Vald) −3.6626 −0.6399 1.0303 4.8051 0.9390 0.9927 0.9698
Model 1-Local (3Y Vald) −4.4699 −0.8082 0.9823 4.8015 0.8989 0.9971 0.9727
Model 1-General (1Y 

Vald)
−5.6500 −1.0350 1.2984 6.3978 1.2324 0.9932 0.9520

Model 1-General (3Y 
Vald)

−6.4860 −1.2122 1.3194 6.5500 1.2297 0.9976 0.9507
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Fig. 11  a Statistical errors’ comparison for all best models, locals and generals, using both validation data 
sets, Data Set 1 (2018–2020) and Data Set 2 (2018). b Statistical errors’ comparison for all best models, 
locals and generals, using both validation data sets, Data Set 1 (2018–2020) and Data Set 2 (2018)
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models, it is worthwhile to note that firstly, the length of the validation data set does 
not have a big effect on models’ performance. Actually, the change in models’ accuracy 
is very slight, from about 1% to 2%. Furthermore, Model 1 can be considered the most 
stable, accurate, and reliable model at different sites, where its performance is located 
between 95 and 98% except for Port Said City, which is from 91 to 95%. Similarly, the 
relative error value is compared for the two validation data sets, and it is noticed that 
while it is increased for some months, especially winter ones, at some locations like 
Port Said city, it is also decreased at other places such as Suez city.

Of more interest, the best locals’ and generals’ formulas for the Validation Data Set 
1 (2018–2020) and the Validation Data Set 2 (2018) are compared together. Table  9 
shows the statistical indicators comparison, while Table  10 introduces the relative 

Fig. 11  (continued)
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errors comparison. The results show that all statistical errors are within the range 
of ± 10%, and the performance of the best models is very close to each other. The for-
mulae of Model 1 is approximately the most accurate one among all models, as noted 
in Table 9, as well as it is the most repeated one as the best formulae, with perfect R2 
values. Model 1 also is the most stable model and has the most accurate estimation at 
the majority of locations, even at coastal sites with a slight decline in its performance. 
Moreover, the length of the validation data set has a slight effect on the models’ per-
formance and accuracy. For more illustration, the statistical errors for all best models, 
locals and generals, using both validation data sets, Data Set 1 (2018–2020) and Data 
Set 2 (2018), are clarified in Fig.  11a and b. Based on the revealed results from the 
comparison of the two validation data sets together, as well as the locals’ and the gen-
erals’ formulas, Model 1 (Hassan Model (Hassan et al., 2016a, 2016b), Eq. 1) can be 
considered the most recommended one to estimate GSR on a horizontal plane at the 
study’s locations (five selected cities and the Suez Canal’s Zone).

Based on the predicted solar energy resources for the five cities located in the Suez 
Canal Economic Zone (SCZONE), the results show good average values of solar radia-
tion around the year. These results are consistent with the fact that SCZONE is located 
within the global solar belt (between the latitudes of ± 35˚) with high solar potential 
which has still not been effectively exploited. The proposed mathematical model that 
considered a simple accurate quantitative tool to prove the feasibility of solar energy 
utilization in this newly developed economic region. The results of this accurate tool 
support the suggested polices for green and sustainable development in this new eco-
nomic region. These policies attract a lot of green investments which aim to produce 
different products with low carbon foot print to satisfy the future and modern interna-
tional requirements of clean production and environmental-friendly products consist-
ent with global Sustainable Development Goals (SDGs).

In general, the issue of providing preliminary data for global solar radiation in an 
accurate manner has become easier, as the results indicate that the best models in this 
study performed well in the GSR forecast. These best models can anticipate GSR in 
the analyzed areas with high accuracy at any moment, and they can do so more quickly 
and with more applicability. Their  R2 ranges from 95 to 98% at all sites except for 
coastal one, which is from 91 to 95%. As a result, they are the ones that are advised 
to forecast GSR at the investigated areas in particular or throughout the Suez Canal 
Zone. Additionally, it is suitable for horizontal GSR forecasting at any location, and 
its empirical coefficients have to be calibrated using local data when it is used in other 
sites because it is site-dependent. Moreover, by using this developed model, Model 1, 
forecasting solar radiation may be readily achieved with adequate dependability at a 
variety of locations when no device for detecting solar radiation is available. Further-
more, the temperature parameter is being captured simply and constantly for other pur-
poses, which is seen to be the key advantage of this strategy in the current study. For 
more clarification, the graphical presentations of the study’s findings are presented in 
Fig. 15 (in the Appendix). In other words, the developed mathematical models in this 
study are considered an accurate and simple tool based on the available temperature 
data to evaluate the available solar energy resources for different locations. This can 
help the policymakers to identify different opportunities for solar energy utilization 
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as a part of the green sustainable plan reducing the carbon footprint toward the low or 
zero-carbon policies for a certain region such as the Suez Canal Economic Zone.

4  Conclusion and future work

Solar energy is believed to be the most promising renewable energy source globally, 
and as such, accurate data on solar radiation is essential in evaluating solar resources 
for various applications. These data are considered the first step in achieving energy 
sustainability goals and satisfying the world’s energy demand. However, the unavail-
ability of solar radiation measurements in many regions of the world has necessitated 
the development of several global solar radiation (GSR) models to predict solar radia-
tion in these locations. In this regard, the present work evaluated the proficiency of 
several GSR models at five new locations and determined the most suitable one for 
GSR prediction. The study has further developed solar radiation models for these new 
locations, as well as general ones for the entire region, which does not have any GSR 
models regardless of the existence of many proposed solar energy projects in this zone. 
These sites are Port Said, El Kantara, Ismailia, Fayid, and Suez. Additionally, the 
study investigates the effect of changing the length of the validation dataset on models’ 
performance and accuracy, as well as assesses the introduced models’ generalization 
capability. The study revealed that Model 1 (Hassan et al. Model), Eq. 1, outperformed 
other models in terms of stability, accuracy, and reliability at different locations. Its 
performance, measured by R2 value, was found to be between 95 and 98%, except for 
the coastal city (Port Said), where it ranged between 91 and 95%. The study also found 
that the length of the validation data set had a negligible effect on the models’ perfor-
mance, which ranged from about 1% to 2%. Furthermore, Model 1 showed consistent 
performance even after a prolonged period, and its accuracy was still highly accurate 
when compared to its 2016 results. Therefore, Model 1 is an excellent GSR estimation 
model on a flat plane with high precision, and it can be combined with other long- or 
short-term weather forecast methods to achieve high applicability. In particular, accu-
rate temperature predictions from these weather forecast methods can be used as inputs 
to Model 1 for precise GSR forecast. Consequently, Model 1 is the recommended solar 
radiation model for the studied locations and other sites globally, with an accepted 
error limit and high precision.

However, because of its slightly low performance at the coastal location, it is 
planned to investigate and study integrating effective weather parameters such as rela-
tive humidity into Model 1 (Eq. 1) and check its effects on the model’s prediction and 
accuracy. Additionally, the study aims to compare the performance of the best empiri-
cal model obtained from this study with other techniques such as machine learning 
methods, including artificial neural networks, at the same studied locations, especially 
the coastal ones.

Appendix

See Figs. 12, 13, 14 and 15.
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Fig. 12  Statistical errors graph for all models of the local formulas using validation Data Set 2 (2018)
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Fig. 13  Statistical errors graph for all models of the general formulas using validation Data Set 2 (2018)
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