Skip to main content

Advertisement

Log in

Analysis of macro and micronutrient contents and spatial distribution in Vushtrria region, Kosovo

  • Published:
Environment, Development and Sustainability Aims and scope Submit manuscript

Abstract

Macro- and micronutrients determine crops' growth and productivity and affect soil quality and sustainability. Intensive cultivation of potatoes and cereals was the reason to research the contents and spatial distribution of plant nutrients in the soil of the Vushtrria region. A total of 30 composite soil samples were collected (0–25 cm). In soil samples were analyzed physicochemical parameters, organic carbon (OC), humus (H), total nitrogen (TN), available phosphorus (AP), available potassium (AK), and micronutrients (Fe, Cu, Ni, Mo, Zn, B, and Se). The physicochemical parameters and macronutrients were measured with volumetric, potentiometric, and spectrometric methods, while the ICP-OES was used to measure micronutrients. The average levels were: pH 6.34, OC 1.31%, H 1.58%, Conductivity 0.4 dS/m, CaCO3 4.13%, SO42− 0.15%, Ca + Mg 201.5 mg/kg, HCO3 1441, Cl 214 mg/kg, AP 1.74 mg/kg, TN 0.08%, and AK 70.7 mg/kg. The average levels of micronutrients were: B 1 < mg/kg, Cu 47.1 mg/kg, Fe 1.02%, Mn 808.3 mg/kg, Mo 54.84 mg/kg, Ni 129.34 mg/kg, Se < 4 mg/kg, and Zn 480.2 mg/kg. The physicochemical parameters showed a uniform distribution. The kriging patterns for N, P, and K showed increased level distributions in cultivated soil, which also was shown with PCA analysis and dendrograms. B and Se showed low values in all samples. Mn, Mo, Ni, and Zn were at high values exceeding one to three times reference values. These high values suggest continuous monitoring of agricultural soil. Also, this study recommends Institutions and Farmers applying best practices and will be a base for young researchers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this published article.

References

  • Alloway, B. J. (2008). Micronutrients and Crop Production: An Introduction. Micronutrient Deficiencies in Global Crop Production (pp. 1–39). Dordrecht.

  • Anas, M., Liao, F., Verma, K. K., Muhammad, A. S., Aamir, M., Zong, LCh., Chiang, L., Xu, P. Z., Yang, L., & Yang, R. L. (2020). Fate of nitrogen in agriculture and environment: Agronomic, eco-physiological and molecular approaches to improve nitrogen use efficiency. Biological Research. https://doi.org/10.1186/s40659-020-00312-4

    Article  Google Scholar 

  • Axelson, U., Söderström, M., & Jonsson, A. (2018). Risk assessment of high concentrations of molybdenum in forage. Environmental Geochemistry and Health. https://doi.org/10.1007/s10653-018-0132-x

  • Bai, L. Q., Deng, H. H., Zhang, X. C., Yu, X. C., & Li, Y. S. (2016). Gibberellin is involved in inhibition of Cucumber growth and nitrogen uptake at Suboptimal root-Zone temperatures. PLoS ONE. https://doi.org/10.1371/journal.pone.0156188

    Article  Google Scholar 

  • Bani, Α, Imeri, Α, Echevarria, G., Pavlova, D., Reeves, R. D., Morel, J. L., & Sulçe, S. (2013). Nickel hyperaccumulation in serpentine Flora of Albania. Fresenius Environmental Bulletin, 22(6), 1792–1801.

    CAS  Google Scholar 

  • Baruah, R. (2018). Towards the Bioavailability of Zinc in Agricultural Soils. In Role of rhizospheric microbes in soil. (2nd ed., pp. 99–136). Singapore.

  • Brady, N. C., & Weil, R. R. (2017). The nature and properties of soils. Pearson Books

  • Bytyqi, V., Ramadani, I., & Agaj, T. (2019). Challenges of soil resource protection: A case study from Sitnica River Basin (Kosovo). Journal of Ecological Engineering. https://doi.org/10.12911/22998993/109457

    Article  Google Scholar 

  • Cambardella, C. A., Moorman, T. B., Novak, J. M., Parkin, T. B., Karlen, D. L., Turco, R. F., & Konopka, A. E. (1994). Fieldscale variability of soil properties in central Iowa soils. Soil Science Society of America Journal. https://doi.org/10.2136/sssaj03615995005800050033x

    Article  Google Scholar 

  • Canellas, L. P., & Olivares, F. L. (2014). Physiological responses to humic substances as plant growth promoter. Chemical and Biological Technologies in Agriculture. https://doi.org/10.1186/2196-5641-1-3

    Article  Google Scholar 

  • Colombo, C., Palumbo, G., Sellitto, V. M., Rizzardo, C., Tomasi, N., Pinton, R., & Cesco, S. (2012). Characteristics of Insoluble, High Molecular Weight Iron-Humic Substances used as Plant Iron Sources. Soil Science Society of America Journal. https://doi.org/10.2136/sssaj.0393

  • Corstanje, R., Grunwald, S., Reddy, K. R., Osborne, T. Z., & Newman, S. (2006). Assessment of the spatial distribution of soil properties in a Northern Everglades marsh. Journal of Environmental Quality. https://doi.org/10.2134/jeq0255

    Article  Google Scholar 

  • Corwin, D. L., & Lesch, S. M. (2005). Apparent soil electrical conductivity measurements in agriculture. Computers and Electronics in Agriculture. https://doi.org/10.1016/j.compag.2004.10.005

    Article  Google Scholar 

  • Coulibaly, B., & Shixiang L. (2020). Impact of agricultural land loss on rural livelihoods in peri-urban areas: Empirical evidence from Sebougou, Mali. Land. https://doi.org/10.3390/land9120470

  • Coulter, B. S., McDonald, E., MacNaeidhe, F. S., Blagden, P., & Gately, T. F. (1999). Nutrient and Trace Element Status in Grassland and Tillage Soils (p. 46). Teagasc.

  • Clarkson, D. (1996). Marschner H 1995 Mineral nutrition of higher plants (2nd ed.). Academic Press.

    Google Scholar 

  • Chen, G., Wang, L., Fabrice, M. R., Tian, Y., Qi, K., Chen, Q., Cao, P., Wang, P., Zhang, Sh., Wu, J., & Tao, Sh. (2018). Physiological and nutritional responses of pear seedlings to nitrate concentrations. Frontiers in Plant Science. https://doi.org/10.3389/fpls.01679

    Article  Google Scholar 

  • Chen, A., Huaxiang, H., Jin, W., Mu, L., Qingchun, G., & Jinmin. (2019). A study on the arable land demand for food security in China. Sustainability. https://doi.org/10.3390/su11174769

    Article  Google Scholar 

  • David, P., & Wall Mark, P. (2020). Major & micro nutrient advice for productive agricultural crops. Teagasc.

  • Dhaliwal, S. S., Naresh, R. K., Mandal, A., Singh, R., & Dhaliwal, M. K. (2019). Dynamics and transformations of micronutrients in agricultural soils as influenced by organic matter build-up: A review. Environmental and Sustainability Indicators. https://doi.org/10.1016/j.indic.100007

    Article  Google Scholar 

  • Dhaliwal, S. S., Sadana, U. S., Valia, S. S., & Sidhu, S. S. (2012). Long-term effects of manures and fertilizers on chemical fractions of Fe and Mn and their uptake under rice-wheat cropping system in North-west India. International Journal of Agricultural Sciences., 8(1), 98–107.

    Google Scholar 

  • Doran, J. W., & Jones, A. J. (1997). Methods for assessing soil quality analysis. SSSA Special Publication Number 49, Madison

  • Dutch target and intervention values. 2000. (the New Dutch list), 2000, http://www.esdat.net.

  • Echevarria, G. (2018). Genesis and behavior of ultramafic soils and consequences for nickel biogeochemistry. Agromining: Farming for Metals. https://doi.org/10.1007/978-3-319-61899-9_8

  • FAO. (2019). Standard operating procedure for soil organic carbon, Walkley-Black method Titration, and colorimetric method

  • Geilfus, C., & M. (2019). Chloride in soil: From nutrient to soil pollutant. Environmental and Experimental Botany. https://doi.org/10.1016/j.envexpbot.10.035

    Article  Google Scholar 

  • Gerke, J. (2022). The central role of soil organic matter in soil fertility and carbon storage. Soil Systems. https://doi.org/10.3390/soilsystems6020033

    Article  Google Scholar 

  • Grujcic, D., Drinic, M., Zivanovic, I., Cakmak, I., & Singh, B. R. (2018). Micronutrient availability in soils of Northwest Bosnia and Herzegovina in relation to silage maize production. Acta Agriculturae Scandinavica, Section B—Soil & Plant Science. https://doi.org/10.1080/09064710.2017.1398781

  • Gupta, U. C., Wu, K., & Liang, S. (2008). Micronutrients in Soils, Crops, and Livestock. Earth Science Frontiers. https://doi.org/10.1016/s1872-5791(09)60003-8

    Article  Google Scholar 

  • Hepler, P. K., Vidali, L., & Cheung, A. Y. (2001). Polarized cell growth in higher plants. Annual Reviews of Cell and Development Biology. https://doi.org/10.1146/annurev.cellbio.17.1.159

    Article  Google Scholar 

  • https://www.seerural.org/wp-content/uploads/2016/07/Kosovo-report.pdf

  • https://wwww.en.wikipedia.org/wiki/Vu%C4%8Ditrn

  • https://www.extension.purdue.edu/extmedia/AY/AY-368-w.pdf

  • https://www.teagasc.ie/crops/soil--soil-fertility/soil-analysis/soil-sampling

  • https://www.nrcs.usda.gov/wps/portal/nrcs/site/national/home/

  • Huang, B., Sun, W. X., Zhao, Y. C., Zhu, J., Yang, R. Q., Zou, Z., Ding, F., & Su, J. P. (2007). Temporal and Spatial Variability of Soil Organic Matter and Total Nitrogen in an Agricultural Ecosystem as Affected by Farming Practices. Geoderma, 139, 336–345.

    Article  CAS  Google Scholar 

  • Kabała, C., Musztyfaga, E., Gałka, B., Łabuńska, D., & Mańczyńska, P. (2016). Conversion of Soil pH 1:2.5 KCl and 1:2.5 H2O to 1:5 H2O: Conclusions for Soil Management, Environmental Monitoring, and International Soil Databases. Polish Journal of Environmental Studies. https://doi.org/10.15244/pjoes/61549

  • Kaiser B. N., Gridley, K.L., Ngaire, B.J., Phillips, T., & Tyerman, S.D. (2005). The Role of Molybdenum in Agricultural Plant Production. Annals of Botany. https://doi.org/10.1093/aob/mci226

  • Kastrati, G., Paçarizi, M., Sopaj, F., Tašev, K., Stafilov, T., & Mustafa, M. K. (2021). Investigation of concentration and distribution of elements in three environmental compartments in the Region of Mitrovica, Kosovo: Soil, Honey and Bee Pollen. International Journal of Environmental Research and Public Health. https://doi.org/10.3390/ijerph18052269

  • Keskinen, R., Nuambura, M., Heikikinen, J., Sila, A., Eurola, M., Towett, E., & Esala, M. (2019). Readily available concentrations of selected micronutrients and harmful metals in soils of Sub-Saharan Africa. Geoderma. https://doi.org/10.1016/j.geoderma.2019.04.014

    Article  Google Scholar 

  • Liu, L., Peng, F., & Wang, X. (2010). Effects of bag-controlled release fertilizer on nitrogen utilization rate, growth and fruiting of the ‘Fuji’ apple. Journal of Plant Nutrition. Doi, 10(1080/01904167), 512050.

    Google Scholar 

  • Malsiu, A., Shehu, I., Stafilov, T., & Faiku, F. (2020a). Assessment of heavy metal concentrations with fractionation method in sediments and waters of the Badovci Lake (Kosovo). Journal of Environmental and Public Health. https://doi.org/10.1155/2020/3098594

  • Malsiu, A., Shehu, I., Stafilov, T., & Faiku, F. (2020b). Water quality and sediment contamination assessment of the Batllava Lake in Kosovo using fractionation methods and pollution indicators. Arabian Journal of Geosciences. https://doi.org/10.1007/s12517-020-05408-5

    Article  Google Scholar 

  • Marschner, H. (1995). Mineral Nutrition of Higher Plants (p. 889p). Academic Press.

    Google Scholar 

  • Marschner, H. (2012). Marschner’s Mineral Nutrition of Higher Plants. Academic Press.

    Google Scholar 

  • McGrath, D., Fleming, G. A., & Culleton, N. (2006). Trace elements and heavy metals in Irish soils. Teagsc Wexford.

  • Nunes, R. S., de Sousa, D. M. G., Goedert, W. J., de Oliveira, L. E. Z., Pavinato, P. S., & Pinheiro, T. D. (2020). Distribution of soil phosphorus fractions as a function of long-term soil tillage and phosphate fertilization management. Frontiers in Earth Science. https://doi.org/10.3389/feart.00350

    Article  Google Scholar 

  • Olsen, S. R., & Sommers, L. E. (1982). Phosphorus. In A. L. Page (Ed.), Methods of soil analysis part 2 chemical and microbiological properties (pp. 403–430p). American Society of Agronomy, Soil Science Society of America.

    Google Scholar 

  • Oosterhuis, D., Loka, D., Kawakami, E., & Pettigrew, W. (2014). The physiology of potassium in crop production. Advances in Agronomy. https://doi.org/10.1016/B978-0-12-800132-5.00003-1

    Article  Google Scholar 

  • Page, A. L., Miller, R. H., & Kuner, D. R. (2002). Methods of Soil Analysis. Part II 2nd Ed. American Society of Agronomy, Madison.

  • Qu, M., Li, W., & Zhang, Ch. (2014). County-scale spatial variability of macronutrient availability ratios in paddy soils. Applied and Environmental Soil Science. https://doi.org/10.1155/2014/689482

    Article  Google Scholar 

  • Van Reeuwijk, L. P. (2002). Procedures for soil analysis. International Soil Reference and Information Centre (6th ed.). Wageningen.

    Google Scholar 

  • Salihaj, M., & Bani, A. (2018). Chemical Properties of Serpentine Soils from Kosovo. Albanian Journal of Agriculture Sciences, 1, 78–83.

    Google Scholar 

  • Salihaj, M., Bani, A., Shahu, E., Benizri, E., & Echevarria, G. (2018). Metal accumulation by the ultramafic flora of Kosovo. Ecological Research. https://doi.org/10.1007/s11284-018-1635-8

  • Salihaj, M., Bani, A., & Echevarria, G. (2016). Heavy metals uptake by hyperaccumulating flora in some serpentine soils of Kosovo. Global NEST Journal. https://doi.org/10.30955/gnj.001804

  • SEPA, https://www.sepa.org.uk/environment/land/soil/

  • Shehu, I. A. (2019). Water and Sediment Quality Status of the Toplluha River in Kosovo. Journal of Ecological Engineering. https://doi.org/10.12911/22998993/113149

  • Shehu, I., Malsiu, A., & Bajraktari, N. (2022). Assessment of potentially toxic element concentrations in soil and vegetables and impact on human health through TF, EDI, and HRI indicators: Case study Anadrinia Region (Kosovo). Biological Trace Element Research. https://doi.org/10.1007/s12011-022-03160-3

    Article  Google Scholar 

  • Tripathi, D. K., Singh, S., Mishra, S., Chauhan, D. K., & Dubey, N. K. (2015). Micronutrients and their diverse role in agricultural crops: advances and future prospective. Acta Physiologiae Plantarum. https://doi.org/10.1007/s11738-015-1870-3

  • USEPA. (1996). United States Environmental Protection Agency. Method 3050B: Acid digestion of sediments, sludges, and soils. Revision 2.

  • USEPA. (2007). United States Environmental Protection Agency. Method 6010C: Inductively coupled plasma—Atomic emission spectrometry.

  • Verheye, W. (2006). Management of agricultural land: Chemical and fertility aspects. Land use, land cover and soil sciences (Vol. 4). UNESCO-EOLSS Publishers.

  • Warncke, D., & Brown, J. R. (1998). Recommended Chemical Soil Test Procedures for the North Central Region. North Central Regional Publication no. 221 (revised 2011). Missouri.

  • Wersaw, R. (1993). Model for Humus in Soils and Sediments. Environmental Science & Technology. https://doi.org/10.1021/es00042a603

    Article  Google Scholar 

  • Wei, Sh., Wang, X., Shi, D., Li, Y., Zhang, J., Liu, P., Zhao, B., & Dong, Sh. (2016). The mechanisms of low nitrogen induced weakened photosynthesis in summer maize (Zea mays L.) under field conditions. Plant Physiology and Biochemistry. https://doi.org/10.1016/j.plaphy.04.007

  • Welch, R. M., & Graham, R. D. (2004). Breeding for micronutrients in staple food crops from a human nutrition perspective. Journal of Experimental Botany. https://doi.org/10.1093/jxb/erh064

    Article  Google Scholar 

  • Zanin, L., Tomasi, N., Cesco, S., Varanini, Z., & Pinton, R. (2019). Humic Substances Contribute to Plant Iron Nutrition Acting as Chelators and Biostimulants. Frontiers in Plant Science. https://doi.org/10.3389/fpls.2019.00675

    Article  Google Scholar 

Download references

Funding

No funds, grants, or other support was received.

Author information

Authors and Affiliations

Authors

Contributions

The author declares that conceived the work, corrected the data, designed, and processed the results.

Corresponding author

Correspondence to Ilir Shehu.

Ethics declarations

Conflict of interest

The author has no relevant financial or non-financial interests to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shehu, I. Analysis of macro and micronutrient contents and spatial distribution in Vushtrria region, Kosovo. Environ Dev Sustain (2023). https://doi.org/10.1007/s10668-023-04027-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10668-023-04027-w

Keywords

Navigation