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Abstract
Exploring the relationship between economic development and carbon emissions is a hot 
issue of concern to academia. Taking Chinese cities as the research object, this study con-
structed an allometric growth model of economic scale and carbon emissions to analyze 
the spatial–temporal evolution of their allometric growth from 2000 to 2017. Additionally, 
the geographical detector model was used to reveal the driving mechanism of allometric 
growth. The findings were as follows. (1) The spatial–temporal patterns of economic scale 
and carbon emissions were dominated by hot spots. Additionally, their size distribution 
was in an equilibrium stage. (2) The gap between the economic growth rate of Chinese cit-
ies and the growth rate of carbon emissions grew, reflecting the remarkable achievements 
in carbon emission reduction in Chinese cities as a whole. The scaling exponent declined 
from east to the west during 2000–2008, but showed the opposite trend during 2009–2017. 
The proportion of cities with negative allometric growth in the sample cities increased 
from 76.49 to 97.86%. (3) The influence of city investment intensity, energy utilization 
efficiency, technological development level, social consumption level, fiscal investment 
level and economic development level on allometric growth gradually decreases. These 
factors were also the main factors affecting the spatial–temporal heterogeneity of allomet-
ric growth. (4) The impact of various factors had a synergetic enhancement effect. These 
factors can be classified as economic factors, environmental factors and a combination of 
them. Under the nonlinear coupling of multiple factors, a spatially differentiated pattern of 
allometric growth was formed.
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1 Introduction

Since the beginning of the twenty-first century, China’s economy has been developing rap-
idly. By 2010, China overtook Japan to become the world’s second largest economy. As 
early as 2006, China’s carbon emissions surpassed the USA to become the world’s larg-
est carbon emitter (Yang et al., 2019; Zhang et al., 2020). In 2020, China’s gross domes-
tic product (GDP) accounted for approximately 17.4% of the world’s GDP, but its carbon 
emissions accounted for 30.7% of the world’s GDP (BP, 2021), reflecting that China’s car-
bon emissions per unit of GDP are much higher than the world average. At the Seventy-
Fifth Session of the United Nations General Assembly in September 2020, China proposed 
to have a  CO2 emissions peak before 2030 and achieve carbon neutrality before 2060 (The 
Chinese Foreign Ministry, 2020). Additionally, at the Global Climate Ambition Summit in 
December 2020, China set a goal of reducing  CO2 emissions per unit of GDP by more than 
65% in 2030 compared with 2005 (Jiang et al., 2022; Sun et al., 2022). As China’s econ-
omy enters a stage of high-quality development, how to reduce the growth rate of carbon 
emissions and even total carbon emissions while maintaining sustained economic growth is 
a serious issue facing the future. It may affect the sustainable economic and social develop-
ment of China during the 14th Five-Year Plan period and beyond. Therefore, clarifying the 
relationship between economic development and carbon emissions of Chinese cities can 
provide a basis for formulating scientific and reasonable emission reduction policies, as 
well as theoretical and practical guidance for achieving carbon peaks and carbon neutrality. 
Therefore, taking China’s city economic scale and carbon emissions as the research object, 
this study attempted to construct an allometric growth model and reveal the driving mecha-
nism of allometric growth. Scientifically and accurately analyzing the temporal and spatial 
changes in the relationship between economic development and carbon emissions in differ-
ent regions is the key to formulating carbon emission reduction regulation policies in line 
with the region’s own development stage and reasonably promoting the process of carbon 
emission reduction in each region to provide a reference for other countries and regions.

The relationship between economic development and environmental protection is an 
important focus of regional economics, environmental economics and economic geog-
raphy (Kube et  al., 2018; Moutinho et  al., 2017; Tang et  al., 2022; Wang et  al., 2022). 
International research on the relationship between economic growth and environmental 
pollution began in the 1990s. Investigating space pollutants and regional income levels, 
scholars find that economic growth and pollution levels exhibit an inverted U-shaped rela-
tionship (Grossman & Krueger, 1991, 1995). Panyotou (1993) defines such a relationship 
as the “environmental Kuznets curve” (EKC). Since then, the EKC has gradually become 
a classic theory to study the relationship between economic development and environmen-
tal quality, which has led many scholars to conduct a large number of empirical studies. 
With the intensification of global changes, greenhouse gas emissions represented by  CO2 
have gradually become a hot issue of global concern. The academic community has also 
turned the research on environmental pollution to carbon emissions. Relevant studies have 
focused on the estimation and accounting of total carbon emissions (Tuesta et al., 2020; 
Wegener et al., 2019), the spatial differentiation of carbon emission efficiency (Fan et al., 
2016; Gregg et al., 2009), the factors influencing carbon emissions and mechanisms (Bai 
et  al., 2020; Zhang & Zhao, 2018), and carbon emission reduction strategies and policy 
simulations (Eichner & Pethig, 2009; Khastar et al., 2020; Khan et al., 2022).

With sustained and rapid economic development, the world’s energy consumption 
has risen sharply, and carbon emissions have also exhibited a rapid upward trend. In this 
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context, many governments have signed the Kyoto Protocol, which aims to curb the global 
warming process through joint efforts of the world. The contradiction between rapid eco-
nomic development and the continuous growth of carbon emissions has become increas-
ingly prominent and the main bottleneck restricting the sustainable development of the 
economy and society. Current studies on economic growth and carbon emissions mainly 
focus on the following (Fig.  1). (1) The impact of economic growth on carbon emis-
sions (Alam et al., 2016; Lu, 2018). Several indicators need to be selected to measure the 
regional economic growth mode, then construct econometric models of the economic 
growth mode and carbon emissions, and finally analyze the impact of each indicator on 
regional carbon emissions. For example, Zhang et al. (2022) used panel quantile regression 
to reveal the impact of information and communication technology on carbon emissions 
in developing countries. (2) The impact of energy saving and emission reduction on eco-
nomic growth (Feichtinger et al., 2005; Dietz & Venmans, 2019). Most researchers recog-
nize that carbon emissions are an important factor affecting economic growth. Therefore, 
relevant studies often use general equilibrium models, regression models, data envelop-
ment analysis (DEA) and other methods to measure the impact of carbon emission reduc-
tion target constraints on economic growth. For example, Li and Wang (2022) use nonlin-
ear analysis methods such as the spatial Dubin model (SDM) and panel threshold model 
(PTM) to reveal the impact of China’s prefecture-level digital economy on carbon emission 
reduction. (3) The coupling and coordination relationship between economic development 
and carbon emissions (Song et al., 2018; Zhao et al., 2015). Regarding economic develop-
ment and carbon emissions as two relatively independent aspects and constructing the EKC 
model, logarithmic mean divisia index (LMDI) model, decoupling model and the coupling 
coordination degree model, researchers revealed the relationship and interaction mecha-
nism between economic development and carbon emissions. For example, Liu (2020) uses 
the EKC model to examine the relationship between carbon dioxide emissions and regional 
economic growth.

The above-mentioned studies provide rich viewpoints and diversified perspectives for 
the scientific understanding of the relationship between economic development and car-
bon emissions, but there are still some shortcomings that can be further expanded. For 
instance, (1) only the relationship between economic development and carbon emissions 
is analyzed by establishing models, ignoring the relationship between their growth rates 

Fig. 1  Main research contents of the relationship between economic growth and carbon emissions



272 S. Yin et al.

1 3

and rarely investigating the impact mechanism of the relationship between them; (2) the 
EKC, LMDI and other models are mainly used to examine the single effect of economic 
development on carbon emissions, focusing on analyzing the time series data, but lack-
ing the consideration of the impact of carbon emissions on economic development and 
ignoring the spatial characteristics of the relationship between them; and (3) in terms of 
research scale, most start from the levels of provinces, urban agglomerations and spe-
cific regions. However, research from the city scale is insufficient.

Allometric growth originated from biology and gradually expanded to other fields, 
such as physics, computer science, geography, economics and sociology (Batty et  al., 
2008; Lee, 1989). The allometric relationship is usually defined as the constant propor-
tional relationship between the local relative growth rate of the system and the whole 
system or another local relative growth rate of the system (Chen, 2016; Marshall, 2007). 
Allometric growth can integrate spatial distribution, hierarchical structure and dynamic 
evolution, providing new ideas and methods for urban and regional research. Based on 
the above analysis, we considered the economic scale and carbon emissions of Chinese 
cities as the research object. The relevant data of Chinese cities from 2000 to 2017 were 
used to construct an allometric growth model of economic scale and carbon emissions 
to analyze the spatial–temporal evolution characteristics of their allometric growth. We 
found that the economic scale–carbon emissions allometric growth of Chinese cities 
was generally in a stage in which the growth rate of carbon emissions was lower than 
the economic growth rate, and most cities are about to enter the stage of carbon emis-
sions contraction. Additionally, the geographical detector model is employed to examine 
the driving mechanism of allometric growth. We found that city investment intensity, 
energy utilization efficiency, technological development level, social consumption level, 
fiscal investment level and economic development level were the main factors that affect 
the spatial heterogeneity of allometric growth, and the effects of each factor have a syn-
ergistic enhancement effect.

The academic contributions of this article and the expansion of existing research were 
mainly reflected in the following. First, the law of allometric growth is one of the basic laws 
of city geography. The relative growth relationship between economic scale and carbon 
emissions is explored by constructing an allometric growth model herein, which organi-
cally links the spatial distribution, hierarchical structure and dynamic evolution, so that 
we make a deeper understanding of the growth relationship between economic scale and 
carbon emissions. This provides a new perspective for related research on the carbon emis-
sions of cities. Second, China, the country with the most carbon emissions in the world, 
is selected as the research area. The economic scale and carbon emissions of 285 cities in 
China from 2000 to 2017 are taken as the main research objects. This has a certain degree 
of representativeness and can more comprehensively explore the development relationship 
between economic scale and carbon emissions. Third, because there are many factors that 
affect the allometric growth relationship between economic scale and carbon emissions 
and there may be interactions between these factors, the geographical detector model was 
employed to analyze the influencing factors. It can detect not only the influence of a sin-
gle factor, but also the interactive influence of multiple factors, which greatly enriches the 
research content of the relationship between economic scale and carbon emissions.

The rest of the article is organized as follows. Section 2 describes the data sources and 
research methods. Section 3 analyzes the evolutionary distribution characteristics of eco-
nomic scale and carbon emissions. Section 4 investigates the allometric growth character-
istics of economic scale and carbon emissions. Section 5 explores the factors influencing 
the allometric growth of economic scale and carbon emissions. Section 6 summarizes the 
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influencing mechanism of allometric growth. Section 7 is the discussion, and Sect. 8 sum-
marizes the paper.

2  Data sources and research methods

2.1  Data sources

This article takes a city as a basic research unit and defines the scope of a city by the 
administrative boundaries of the city. The administrative division was based on 2017 (see 
“Appendix Fig. 7”), and then, the data are merged accordingly. Due to the lack of relevant 
data of some cities, 285 cities were selected, including 4 municipalities directly under the 
central government and 281 prefecture-level cities.1 The study period was 2000–2017. In 
2017, the 285 cities had a total population of 1.287 billion, accounting for 92.58% of the 
total population in mainland China. Among them, 13 cities had a population of over 10 
million, and 88 had a population of over 5 million. The economic scale of a city is rep-
resented by the GDP of the city. The carbon emission data are derived from the study by 
Chen et  al. (2020a). Cities’ socioeconomic data were derived from the 2001–2018 pro-
vincial and municipal statistical yearbooks, China City Statistical Yearbook (2001–2018) 
(NBSC, 2001–2018a), China Statistical Yearbook for Regional Economy (2001–2018) 
(NBSC, 2001–2018b) and China Urban Construction Statistical Yearbook (2001–2018) 
(MHURDC, 2001–2018).

2.2  Selection of driving factors

According to the relevant theories of regional economics and urban geography and com-
bined with the existing research on allometric growth and urbanization levels (Moussio-
poulos et al., 2010; Lang et al., 2019; Alix-Garcia & Sellars, 2020), this article selects 12 
indicators, i.e., the economic development level, industrial development level, fiscal invest-
ment level, city investment intensity, social consumption level, technological development 
level, urban development level, land use level, transportation development level, opening 
up level, urban greening level and energy utilization efficiency, to construct the driving 
factor system for the allometric growth coefficient of the economic scale and carbon emis-
sions of China’s cities (see Table 1).

2.3  Research methods

Starting from the distribution characteristics of economic scale and carbon emissions, this 
study used spatial–temporal hot spot analysis to reveal their local spatial characteristics 
and the rank-scale rule to analyze their overall distribution characteristics. Additionally, 
an allometric growth model was established to explore their allometric growth character-
istics, and finally, the driving factors affecting allometric growth are investigated with a 
geographical detector (Fig. 2).

1 12 prefecture-level cities established after 2000 are removed. Additionally, due to the lack of carbon 
emission data in Lhasa, it is also removed.
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2.3.1  Analysis of spatial–temporal hot spots

Space time pattern mining was introduced to identify the spatial–temporal evolution 
pattern of the economic scale and carbon emissions. It primarily included the creation 
of space–time cubes and the analysis of emerging spatial–temporal hot spots. The for-
mer was used to obtain point datasets and build a  multidimensional  cube  data struc-
ture (NetCDF) for analysis. The latter can calculate the Getis–Ord Gi* statistics of each 
cube bin through the neighborhood distance and time step parameter values. Then, the 
Mann–Kendall trend test was adopted to evaluate the trends of the hot and cold spots. 
Finally, the hot and cold spot patterns can be classified (Huang et al., 2015; Mo et al., 
2020).

2.3.2  Rank‑size rule

The rank-size rule was used to examine the rank-size distribution of specific factors in a 
region based on the factor scale and factor scale rank (Tan, 2017). It is the most exten-
sive and classic method of studying the rank system (Modica, 2017). Currently, it has been 
widely applied to research on the size structure and difference of the floating population, 
tourist flow, traffic flow and resource flow. Therefore, we introduced the rank-size rule and 
fractal theory to explore the rank-size distribution and fractal characteristics of the eco-
nomic scale and carbon emissions of China’s cities. The basic form of the rank-size distri-
bution and its logarithmic form are as follows (Reggiani & Nijkamp, 2015):

where Pi is the economic scale or carbon emissions of city i; P1 is the economic scale or 
carbon emissions of the largest city; Ri is the rank of city i; and q is the Zipf exponent. The 
Zipf exponent is the reciprocal of the Hausdorff exponent. When q = 1, the ratio of the 
economic scale or carbon emissions of the largest city to the smallest city is just the total 
number of cities in the region. Carroll (1982) calls this pattern a constrained sequence-
scale distribution. The Zipf exponent can reflect the spatial distribution and hierarchical 
structure changes of the regional economic scale and carbon emissions. When q = 1, q < 1 
and q > 1, the hierarchical distribution of regional economic scale and carbon emissions is 
in the optimal distribution, normal distribution (equalization) and Pareto distribution (cen-
tralization) pattern, respectively, under the natural state.

(1)Pi = P1 × R
−q

i

(2)lnPi = lnP1 − q lnRi

Fig. 2  Main research methods of the paper
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2.3.3  Allometric growth model

Allometric growth is the most classic scale concept in biology and ecology, reflecting 
the geometric measurement relationship between the part and the whole of the organism 
(Beckmann, 1958). In 1936, biologists Huxley and Tessier studied tide crabs and found 
that the size of their claws and body follow a power-law dependence relationship (Shi-
gleton, 2010); i.e., the original meaning of allometric growth is “differences in propor-
tions associated with changes in absolute size of the whole organism” (Gould, 1966). 
Similar to biological phenomena, this relationship also exists in urban geographical sys-
tems, which was introduced from the field of biology to the field of geography by Naroll 
and Bertalanffy in 1956 (Naroll et al., 1956). Beckmann (1958) proposed the allometric 
equation of the urban system to describe the relative ratio of the population of the larg-
est city to the total population of all cities in the urban system. In this paper, a city is 
regarded as a whole. Economic scale and carbon emissions are two important attributes 
of a city. They are also two subsystems of a city. This study explored the relative devel-
opment relationship between the two subsystems. Allometric growth can be divided into 
vertical allometric and horizontal allometric growth. The former explores the allometric 
growth relationship of different spatial units at a certain time, while the latter analyzes 
the allometric growth relationship of a certain spatial unit during a time period. The 
allometric growth model is as follows (Chen et al., 2020b):

Taking the logarithms of both sides of Formula (3), we can obtain:

where Ct is a city’s carbon emissions at time t; Et is a city’s economic scale at time t; a 
is the proportional coefficient; and b is the scaling exponent, also named the allometric 
growth coefficient. When b = 1, economy and carbon emissions are growing at the same 
rate; when b > 1, the growth rate of economy is slower than that of carbon emissions, i.e., 
positive allometric growth; when b < 1, the growth rate of economy is faster than that of 
carbon emissions, i.e., negative allometric growth. The positive allometric growth was 
divided into two levels, and the negative allometric growth is divided into four levels, for 
a total of six levels. Table 2 reports the classification criteria and characteristics of each 
allometric growth level.

2.3.4  Geographical detector

Geographical detector is a statistical analysis method used to identify geographical spa-
tial differentiation and reveal the driving factors behind it (Wang et  al., 2010). It can 
effectively and independently detect the spatial distribution consistency and causality 
of two variables (Wang et  al., 2017). Specifically, the relevant factors that affect the 
change in the allometric growth coefficient are spatially heterogeneous. If the strength 
of a certain factor and the allometric growth coefficient are significantly consistent or 
similar in spatial distribution, it can be explained that this factor has a decisive effect on 
the allometric growth coefficient. The geographical detector model is as follows (Song 
et al., 2020):

(3)Ct = aEb
t

(4)lnCt = ln a + b lnEt
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where qD,U denotes the explanatory power of the influencing factor D to the allometric 
growth coefficient; n is the number of cities in the study area; m is the number of types of 
influencing factors; nD,i is the number of cities within type i of the influencing factor D;�2

U
 

is the variance of the allometric growth coefficient of all cities in the study area; and �2

UD,i
 is 

the variance of the allometric growth coefficient of cities within type i. qD,U ranges from 0 
to 1. A larger qD,U means a higher explanatory power of the factor D to the spatial distribu-
tion of the allometric growth coefficient.

3  The evolution and distribution characteristics of the economic scale 
and carbon emissions from China’s cities

3.1  Spatiotemporal evolution characteristics

The ArcGIS spatiotemporal pattern mining tool was adopted to explore the spatial agglom-
eration evolution characteristics of the economic scale and carbon emissions for China’s 
cities from 2000 to 2017 (see Fig. 3). The cold and hot spot patterns of the economic scale 
and carbon emissions of cities have strong regional characteristics (see “Appendix Table 6” 
for details). In terms of economic scale, the study area was mainly classified into oscillat-
ing hot spots and new hot spot patterns. In terms of carbon emissions, the study areas were 
mainly classified into the following spatiotemporal patterns: oscillating hot spots, consecu-
tive hot spots, consecutive cold spots and diminishing cold spots.

In terms of the spatiotemporal evolution of the economic scale, a total of 184 cities 
showed a spatiotemporal trend of hot spots, accounting for 64.56% of the whole study 
area. Specifically, 129 oscillating hot spots are mainly distributed in the eastern coastal 
provinces, as well as Anhui, Hubei and Chongqing. Forty-five new hot spots are mainly 

(5)qD,U = 1 −
1

n�2

U

m
∑

i=1

nD,i�
2

UD,i

Fig. 3  Spatiotemporal hot spot analysis of the economic scale and carbon emissions of Chinese cities dur-
ing 2000–2018
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concentrated in the central region surrounding the oscillating hot spots, such as Henan, 
Hunan, Jiangxi and Shanxi; and 10 consecutive hot spots are distributed in Beijing–Tian-
jin–Hebei, the Yangtze River Delta and Shandong Peninsula. Additionally, the number of 
cold spots was relatively small. A total of 22 cities showed a trend of cold spots, account-
ing for 7.72% of the whole study area. Specifically, 14 persistent cold hots were mainly 
distributed in Gansu, southern Ningxia and northeastern Heilongjiang; 5 consecutive cold 
spots were distributed in central Gansu and southwestern Yunnan; and there were only 3 
historical cold spot cities, namely Tianshui, Yinchuan and Wuzhong. Additionally, 79 cit-
ies do not show a significant spatiotemporal trend, accounting for 27.72% of the whole 
study area. They are mainly distributed in Guangxi, Sichuan, Shaanxi, Inner Mongolia and 
other regions in the west.

In terms of the spatiotemporal evolution of carbon emissions, 148 cities showed a spati-
otemporal trend of hot spots, accounting for 51.93% of the whole study area. Specifically, 
the number of oscillating hot spots is the largest, 114 in total. They were mainly distrib-
uted in Zhejiang, Jiangsu, Anhui, Shandong, Henan, Liaoning, Jilin, southwestern Shanxi, 
central Inner Mongolia, etc.; 27 consecutive hot spots were mainly distributed in Bei-
jing–Tianjin–Hebei, the coast of the Yangtze River Delta, the coast of the Shandong Pen-
insula, northwestern Shanxi, etc.; and 7 new hot spots are scattered in Guangdong, Hubei, 
Henan and Gansu. Fifty-six cities show a trend of cold spots, accounting for 19.65% of the 
whole study area. Specifically, 26 persistent cold spots are mainly distributed in Hainan, 
southwestern Guangxi, southwestern Yunnan, Gansu, etc.; 23 diminishing cold spots were 
mainly distributed in eastern Jiangxi, central Sichuan, northeastern Guangxi, etc. Six his-
torical cold spots were distributed in Jiangxi, Hunan, Shaanxi and Gansu, and there is only 
1 consecutive cold spot city, namely Jiuquan. Finally, 81 cities did not show a significant 
spatiotemporal trend, accounting for 28.42% of the whole study area, and were mainly dis-
tributed in Fujian, Chongqing, central and eastern Guangdong, central and eastern Hubei, 
eastern Sichuan, eastern Hunan and other regions.

In general, the spatiotemporal evolution pattern of economic scale and carbon emissions 
is dominated by hot spots. The hot spots were distributed in a concentrated and contiguous 
manner, while cold spots were more scattered. The distribution of cold and hot spots in 
terms of economic scale and carbon emissions was somewhat similar in space. Compared 
with the economic scale, the evolution pattern of carbon emissions shows fewer hot spots 
and more cold spots, which reflects the continuous improvement of the economic develop-
ment of China’s cities. Although the carbon emissions pattern is dominated by hot spots 
as a whole, the growth rate of carbon emissions gradually declines, and cold spots may 
continue to increase.

3.2  Distribution characteristics of economic scale and carbon emissions

The rank-size rule is a common model used to study the distribution of scale levels, which 
lays the foundation for the following research on the allometric growth relationship. 
Through the double logarithmic linear fitting of the economic scale and carbon emission 
data of China’s cities versus their corresponding ranks, the relevant parameters of the fit-
ting equation are shown in Table 3. From 2000 to 2017, the R-squared values of the fitting 
equations for the economic scale were all above 0.87, and the R-squared values of the fit-
ting equations for the carbon emissions were all above 0.82, indicating that the goodness 
of fit of the fitting equations in each year was relatively high. That is, the rank-size rule can 
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better express the scale distribution characteristics of the economic scale and carbon emis-
sions of China’s cities.

In terms of economic scale, its Zipf exponent ranged from 0.8681 to 0.9158 during 
2000–2017, showing an overall "N"-shaped trend. That is, it showed an inverted "V"-
shaped trend from 2000 to 2008 and a "V"-shaped trend from 2009 to 2017. Specifically, 
from 2000 to 2003, it gradually increased from 0.8978 to 0.9158; from 2004 to 2006, it 
was relatively stable and remained at approximately 0.9122; from 2007 to 2012, it gradu-
ally declined from 0.9057 to 0.8681; and from 2013 to 2017, it increased from 0.8686 to 
0.9158. In summary, it exhibited a fluctuating trend of "increasing–declining–increasing," 
with a value below 1. This indicated that the economic scale during the study period was 
balanced. In other words, the primacy of Chinese cities is obviously insufficient, the mid-
dle-ranking cities occupy the dominant position, and the distribution of economic scale 
tends to be concentrated. Additionally, due to the rapid economic development of low- and 
middle-ranking cities, their economic scale grows faster than that of high-ranking cities.

In terms of carbon emissions, its Zipf exponent ranged from 0.6970 to 0.7535, showing 
an overall declining trend during 2000–2017. Specifically, from 2000 to 2007, it gradually 
increased from 0.7305 to 0.7535; from 2008 to 2013, it decreased from 0.7522 to 0.6995; 
and from 2014 to 2017, it showed an inverted U-shaped trend, i.e., it rose first and then 
fell. Overall, it was lower than 1 during 2000–2017, indicating that the carbon emissions in 
the study period were in a balanced distribution pattern. That is, the differences in carbon 
emissions among cities are relatively small, and the primacy ratio of carbon emissions in 
China’s cities was low with a downward trend.

In summary, the economic scale and carbon emissions of China’s cities were in 
a balanced distribution pattern during 2000–2017. The Zipf exponent of economic 
scale showed a fluctuating upward trend, while the Zipf exponent of carbon emissions 

Table 3  Scaling index of rank-
size distribution of economic 
scale and carbon emissions in 
Chinese cities during 2000–2017

Year Economic scale Carbon emissions

Zipf exponent R2 Zipf exponent R2

2000 0.8978 0.8737 0.7305 0.8314
2001 0.9051 0.8789 0.7397 0.8276
2002 0.9075 0.8838 0.7325 0.8344
2003 0.9158 0.8904 0.7353 0.8344
2004 0.9117 0.8925 0.7398 0.8319
2005 0.9122 0.9084 0.7510 0.8310
2006 0.9127 0.9101 0.7519 0.8320
2007 0.9057 0.9088 0.7535 0.8345
2008 0.8979 0.9040 0.7522 0.8355
2009 0.8962 0.9095 0.7455 0.8360
2010 0.8867 0.9053 0.7394 0.8386
2011 0.8756 0.9029 0.7236 0.8398
2012 0.8681 0.9059 0.7211 0.8415
2013 0.8686 0.9039 0.6995 0.8395
2014 0.8766 0.9011 0.6979 0.8383
2015 0.8883 0.8994 0.7052 0.8377
2016 0.9041 0.8977 0.7053 0.8373
2017 0.9158 0.8995 0.6970 0.8399
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showed a fluctuating downward trend. Additionally, the Zipf exponent of economic 
scale was far higher than that of carbon emissions, indicating that the primacy of eco-
nomic scale distribution has been improved or would change to a centralized distri-
bution pattern. The primacy ratio of carbon emissions was decreasing, which would 
maintain a balanced distribution pattern for a long time.

4  Allometric growth characteristics of the economic scale and carbon 
emissions in Chinese cities

4.1  Vertical allometric growth characteristics

An allometric growth model of economic scale and carbon emissions was constructed, 
and double logarithmic linear fitting is performed; therefore, a fitting model of the allo-
metric growth of economic scale and carbon emissions of Chinese cities was obtained 
(see Table 4). The R-squared of the fitting model in each year from 2000 to 2017 was 
above 0.58; i.e., the fitting effect was good. The scaling exponent of each year varied 
in the range of 0.6034 to 0.7377, basically showing an inverted U-shaped trend. Spe-
cifically, it increased from 0.6518 in 2000 to 0.7377 in 2008 and then decreased from 
0.7365 in 2009 to 0.6034 in 2017. The allometric growth of economic scale and carbon 

Table 4  Allometric growth fitting model of economic scale and carbon emissions in Chinese cities during 
2000–2017

Year Fitting model Scaling exponent R2 Allometric growth level

2000 lnC = − 2.8462 + 0.6518lnE 0.6518 0.6107 Negative allometric level 2
2001 lnC = − 3.1547 + 0.6691lnE 0.6691 0.6311 Negative allometric level 2
2002 lnC = − 3.1623 + 0.6707lnE 0.6707 0.6520 Negative allometric level 2
2003 lnC = − 3.2812 + 0.6835lnE 0.6835 0.6781 Negative allometric level 2
2004 lnC = − 3.5256 + 0.6981lnE 0.6981 0.6898 Negative allometric level 2
2005 lnC = − 3.8422 + 0.7224lnE 0.7224 0.7044 Negative allometric level 2
2006 lnC = − 3.9022 + 0.7266lnE 0.7266 0.7112 Negative allometric level 2
2007 lnC = − 4.0888 + 0.7341lnE 0.7341 0.7149 Negative allometric level 2
2008 lnC = − 4.2146 + 0.7377lnE 0.7377 0.7168 Negative allometric level 2
2009 lnC = − 4.1983 + 0.7365lnE 0.7365 0.7206 Negative allometric level 2
2010 lnC = − 4.1485 + 0.7307lnE 0.7307 0.7110 Negative allometric level 2
2011 lnC = − 3.9040 + 0.7142lnE 0.7142 0.6946 Negative allometric level 2
2012 lnC = − 4.0572 + 0.7198lnE 0.7198 0.6977 Negative allometric level 2
2013 lnC = − 3.5202 + 0.6842lnE 0.6842 0.6703 Negative allometric level 2
2014 lnC = − 3.2463 + 0.6662lnE 0.6662 0.6515 Negative allometric level 2
2015 lnC = − 3.1607 + 0.6557lnE 0.6557 0.6354 Negative allometric level 2
2016 lnC = − 2.7868 + 0.6330lnE 0.6330 0.6141 Negative allometric level 2
2017 lnC = − 2.3173 + 0.6034lnE 0.6034 0.5870 Negative allometric level 2
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emissions in China’s cities is all at an economic weak expansion stage where the eco-
nomic growth rate was relatively higher than that of carbon emissions. The growth 
rate of carbon emissions increased from 2000 to 2008 and then declined from 2009 to 
2017.

4.2  Horizontal allometric growth characteristics

Industry is an important emitter of carbon emissions. From 2000 to 2008, the proportion 
of China’s industrial added value in GDP showed an overall upward trend, but a downward 
trend from 2009 to 2017. That is, with the remarkable achievements in the green and low-
carbon transformation of China’s industrial structure and production methods, the growth 
rate of total carbon emissions slowed down, so the vertical allometric growth coefficient 
tended to decline after 2008. Therefore, to further explore the allometric growth relation-
ship between economic scale and carbon emissions in different regions, the study period 
was divided into 2000–2008 and 2009–2017. The allometric growth model was employed 
to construct the fitting model of the horizontal allometric growth of the economic scale and 
carbon emissions in different regions during the two periods. Figure 4 depicts the spatial 
distribution of the scaling exponent type.

From 2000 to 2008, the allometric growth type of the economic scale and carbon emis-
sions of China’s cities was dominated by negative allometric growth. There were 262 nega-
tive allometric growth cities, accounting for 91.93% of the study area. They are widely 
distributed. Among them, 44 cities were negative allometric level 1, mainly distributed 
in the Yangtze River Delta, Shandong, eastern Fujian, eastern Guangdong, eastern Hubei 
and western Hunan. A total of 187 cities were negative allometric level 2, accounting for 
71.37% of the negative allometric growth cities. They are also the largest in all types of 
allometric growth, mainly distributed in Jiangxi, Anhui and Henan in the central region, 
Chongqing, Sichuan, Guangxi and Shaanxi in the western region, and Liaoning and Hei-
longjiang in the northeastern region. Thirty-one cities were negative allometric level 3, 

Fig. 4  Distribution of allometric growth types of economic scale and carbon emissions in China’s cities 
during 2000–2017
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mainly distributed in Hainan, southern Guangdong, western Shanxi, Ningxia, Liaoning and 
Jilin. Additionally, there were 23 positive allometric growth cities, accounting for 8.07% 
of the study sample. They were all positive allometric level 1 and were mainly distributed 
in central Shandong, central Hebei, southern Anhui and western Guangdong. In terms of 
goodness of fit, the R-squared of each city was above 0.6, and the average R-squared is 
0.9470, which indicated that the fitting effect of each city in this stage was good.

From 2009 to 2017, the allometric growth type of the economic scale and carbon emis-
sions of China’s cities was still dominated by negative allometric growth. The number of 
negative allometric growth cities increases to 283, accounting for 99.30% of the study area. 
Among them, 4 cities are negative allometric level 1, specifically, Wuzhong, Guyuan and 
Zhongwei in Ningxia as well as Sanya in Hainan. Seventeen cities are negative allometric 
level 2, mainly distributed in western China, such as eastern Guangxi, northern Shaanxi, 
central and western Inner Mongolia; 249 cities are negative allometric level 3, accounting 
for 87.99% of the negative allometric growth cities. They were widely distributed in many 
areas of China, and 13 cities were negative allometric level 4, mainly distributed in Bei-
jing, Shanghai, northern Zhejiang and southern Guangdong. Furthermore, there are only 2 
positive allometric growth cities. They were positive allometric level 1, namely Haikou in 
Hainan and Shizuishan in Ningxia. Although the R-squared has a decline compared with 
the previous stage, the R-squared of each city was above 0.4, and the average R-squared 
was 0.6232, which means that the fitting effect of each city was also good at this stage.

In summary, the relative growth rate of carbon emissions was mostly lower than that of 
the economy between 2000–2008 and 2009–2017. Additionally, the growth gap between 
carbon emissions and the economy was growing. It can be predicted that with the continu-
ous reduction of carbon emissions and steady economic growth in China, most cities will 
be transformed into negative allometric level 4 in the future; i.e., most cities will realize 
carbon emission reduction after the carbon peak and sustained economic growth in the 
near future.

Table 5  Detection results of driving factors of the allometric growth coefficient

***, ** and * represent significance at the 1%, 5% and 10% levels, respectively

Driving factors 2000–2008 2009–2017

qD,U P value Sorting of qD,U qD,U P value Sorting of qD,U

X1 0.0407** 0.0252 6 0.0589*** 0.0031 6
X2 0.0742*** 0.0000 3 0.0157 0.3604 11
X3 0.0459** 0.0139 4 0.0582*** 0.0033 7
X4 0.0850*** 0.0000 2 0.0953*** 0.0000 2
X5 0.0263 0.1228 10 0.1049*** 0.0000 1
X6 0.0371** 0.0375 7 0.0941*** 0.0000 3
X7 0.0255 0.1338 11 0.0461** 0.0136 9
X8 0.0289* 0.0931 8 0.0499*** 0.0087 8
X9 0.0423** 0.0210 5 0.0156 0.3625 12
X10 0.0076 0.7105 12 0.0789*** 0.0000 5
X11 0.0272 0.1112 9 0.0265 0.1203 10
X12 0.0916*** 0.0000 1 0.0794*** 0.0000 4
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5  Analysis of the factors driving allometric growth

5.1  Factor detection results

On the basis of the two periods of 2000–2008 and 2009–2017 divided in the analysis of 
the horizontal allometric growth, the geographical detector model was used to analyze the 
impact of various factors on the spatial differentiation of the allometric growth of economic 
scale and carbon emissions of China’s cities in the two periods (see Table 5).

From 2000 to 2008, the explanatory power (qD,U) of energy utilization efficiency, city 
investment intensity, industrial development level, fiscal investment level, transportation 
development level, economic development level, technological development level and land 
use level to the allometric growth coefficient decreased successively, and all of them passed 
the significance tests. Additionally, from 2009 to 2017, the explanatory power (qD,U) of 
the social consumption level, city investment intensity, technological development level, 
energy utilization efficiency, opening up level, economic development level, fiscal invest-
ment level, land use level and urban development level to the allometric growth coeffi-
cient decreased successively, and all of them also passed the significance tests. Comparing 
the changes in the explanatory power of the driving factors in the two time periods, we 
found that the explanatory power of the social consumption level, opening up level and 
technological development level greatly increases, and the explanatory power of the land 
use level, urban development level, economic development level, fiscal investment level 
and city investment intensity slightly increases. However, the explanatory power of the 
industrial development level and transportation development level decreases significantly, 
and the explanatory power of the energy utilization efficiency and urban greening level 
decreases slightly.

In summary, city investment intensity, energy utilization efficiency, technological devel-
opment level, social consumption level, fiscal investment level and economic develop-
ment level were the dominant driving factors that affect the allometric growth relationship 
between economic scale and carbon emissions in Chinese cities.

5.2  Interactive detection results

The study period was divided into two periods, 2000–2008 and 2009–2017, in the hori-
zontal allometric growth analysis. Next, the interactive detector tool in the geographical 
detector was employed to measure the effect of the driving factors on the spatial differen-
tiation of the allometric growth coefficient during the two periods (see Fig. 5). During the 
two periods, the explanatory power of the interaction between driving factors was higher 
than the explanatory power of a single factor. The interaction types between driving factors 
were classified into nonlinear enhancement types and binary enhancement types. Addition-
ally, the former dominates. This indicated that the interaction between any two driving fac-
tors increased the explanatory power for the spatial differentiation of the allometric growth 
coefficient.

From 2000 to 2008, the interaction between driving factors has 65 items of nonlinear 
enhancement, accounting for 98.48% of the total, and only one item of two-factor enhance-
ment. The explanatory power of the interaction between the industrial development level 
and other factors is the strongest, with an average value of 0.1951. Additionally, the 
explanatory power of the interaction between city investment intensity, energy utilization 
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efficiency, fiscal investment level, economic development level and other factors is also 
high, with an average value above 0.15. The increase in the explanatory power of the inter-
action between the urban development level, opening up level and other factors ranks in 
the top two, and their interactive explanatory power increases by more than 115%. The 
explanatory power of the interaction between the social consumption level, urban greening 
level, fiscal investment level, technological development level, land use level, economic 
development level and other factors increases by more than 80%.

From 2009 to 2017, the interaction types of the driving factors were all nonlinear 
enhancement. The average explanatory power of the interaction between technological 
development level, social consumption level and other factors ranks among the top two, 
reaching 0.2076 and 0.2042, respectively. The average explanatory power of the interaction 
between city investment intensity, energy utilization efficiency, opening up level, urban 
development level, economic development, fiscal investment level and other factors is 
above 0.15, which is strong for the spatial differentiation of allometric growth. The increase 
in the explanatory power of the interaction between the transportation development level, 

X1 0.0407

X2 0.2004 0.0742

X3 0.1876 0.2157 0.0459

X4 0.1766 0.2085 0.1955 0.0850

X5 0.1408 0.2492 0.1486 0.1651 0.0263

X6 0.1338 0.2615 0.1280 0.1881 0.0839 0.0371

X7 0.1568 0.1423 0.1431 0.1440 0.1509 0.1911 0.0255

X8 0.1293 0.1721 0.1904 0.1534 0.1151 0.1198 0.1156 0.0289

X9 0.1126 0.1816 0.1435 0.2001 0.1237 0.1311 0.1700 0.1170 0.0423

X10 0.1083 0.1494 0.1233 0.1356 0.0693 0.1050 0.0891 0.0742 0.1352 0.0076

X11 0.1328 0.1827 0.1441 0.1514 0.1084 0.1223 0.1240 0.1086 0.1077 0.0897 0.0272

X12 0.1793 0.1830 0.1586 0.1611 0.1434 0.1564 0.1504 0.1566 0.1921 0.1523 0.1538 0.0916

X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 X11 X12

(a) 2000 -2008

X1 0.0589

X2 0.0937 0.0157

X3 0.1288 0.1030 0.0582

X4 0.1886 0.1756 0.2013 0.0953

X5 0.2084 0.1885 0.1749 0.2292 0.1049

X6 0.1675 0.1858 0.2376 0.2203 0.2633 0.0941

X7 0.1506 0.1217 0.1932 0.2122 0.2105 0.2162 0.0461

X8 0.1476 0.1060 0.1152 0.1846 0.1845 0.1468 0.1292 0.0499

X9 0.1034 0.0840 0.1169 0.1613 0.1901 0.1699 0.0791 0.1676 0.0156

X10 0.2416 0.1390 0.1518 0.2210 0.2152 0.2503 0.2189 0.1375 0.1872 0.0789

X11 0.1398 0.1429 0.1379 0.1650 0.1538 0.1772 0.1050 0.1257 0.1114 0.1729 0.0265

X12 0.2167 0.1552 0.1895 0.2310 0.2274 0.2485 0.2080 0.1666 0.1870 0.2223 0.1370 0.0794

X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 X11 X12

(b) 2009 -2017

Single factor Binary enhancement Nonlinear enhancement

Fig. 5  Interaction between driving factors of allometric growth coefficient
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industrial development level and other factors ranks among the top two. Their explanatory 
power increases by more than 80%. The explanatory power of the interaction between the 
urban greening level, urban development level, energy utilization efficiency, opening up 
level, land use level and other factors also increases significantly, with an increase rate of 
more than 40%.

Comparing the interactive detection results of the two periods, the explanatory power of 
the interaction between urban investment intensity, energy utilization efficiency, technolog-
ical development level, social consumption level, fiscal investment level, economic devel-
opment level and other factors has always been at the forefront. We know that they are the 
key driving factors that affect the allometric growth between economic scale and carbon 
emissions in China’s cities. The increase in the interaction between the urban development 
level, urban greening level, opening up level, transportation development level, industrial 
development level, land use level and other factors is more obvious. That is, the explana-
tory power of the interaction between these factors on the spatial differentiation of the allo-
metric growth coefficient is more significant than that of a single factor. After all factors 
interact with other factors, the average explanatory power has improved to varying degrees, 
indicating that the influence of the driving factors is not independent of each other, but syn-
ergistically enhances. That is, the allometric growth between economic scale and carbon 
emissions is the result of multifactor nonlinear coupling.

6  Driving mechanism of allometric growth

The evolution of the allometric growth between economic scale and carbon emissions in 
China’s cities is a relatively complex process involving the economy, the environment and 
their dual impact. Combined with the detection of changes in the influence of various fac-
tors by geographical detectors, the driving mechanism on allometric growth is explored as 
follows.

6.1  The impact of economy

Factors such as the economic development level, fiscal investment level, city investment 
intensity and opening up level mainly affect the economic scale. The explanatory power of 
these factors on allometric growth is on the rise. Among them, the economic development 
level, fiscal investment level and city investment intensity are the leading driving factors. 
The economic development level is an important indicator that reflects the state of regional 
economic development, and the increase in per capita GDP is self-evident to the economic 
scale. Local fiscal expenditures characterize the redistribution of fiscal funds by local gov-
ernments to meet the common needs of society. Its purpose is to promote the development 
of social productivity, maintain social stability and create a good social environment for 
economic development. Investment in fixed assets is the main means for the reproduction 
of social fixed assets. Through the construction and purchase of fixed assets, cities con-
tinue to adopt advanced technology and equipment, thereby further adjusting and optimiz-
ing the economic structure and enhancing the strength of city economic development. The 
proportion of total imports and exports to GDP represents a city’s dependence on foreign 
trade. It is an important indicator to measure the degree of openness to the outside world. 
As the opening up level continues to increase, the impact of economic globalization on 
China is getting deeper. The explanatory power of the four economic-dominant factors 
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for allometric growth increases to varying degrees, indicating that economic factors are 
becoming increasingly important for the allometric growth of economic scale and carbon 
emissions. Wang et al. (2019) investigated the impact mechanism of carbon emissions in 
Hebei Province, China. They found that economic level, population, industrial structure, 
urbanization level, energy structure and technology are important factors affecting carbon 
emissions, of which economic factors are the most important factors. This study also found 
that economic factors such as city investment intensity, fiscal investment level and eco-
nomic development level are important factors affecting the allometric growth of economic 
scale and carbon emissions.

6.2  The impact of environment

The urban greening level and energy utilization efficiency mainly affect the environment. 
The explanatory power of the two factors on the allometric growth is in a downward trend, 
and the latter is the dominant driving factor. The urban greening level can not only meet 
people’s needs for a beautiful ecological environment, but also have the functions of main-
taining ecological balance, regulating climate and preventing disasters and floods. A green 
area is an important carbon storage place and an important part of the construction of an 
ecological civilization and beautiful China. Currently, the development of China’s econ-
omy mainly relies on resource-consuming production, which consumes a large amount of 
energy such as electricity. A large amount of energy consumption also brings about seri-
ous environmental pollution (such as water pollution, air pollution, soil pollution, etc.) and 
a large amount of carbon emissions. Zhang et  al. (2021) studied the influencing factors 
of carbon emissions in China’s logistics industry and found that energy intensity, that is, 
energy consumption per unit of output, had a significant inhibitory effect on carbon emis-
sions, but its factor contribution rate was small. In this paper, the energy utilization effi-
ciency has a greater impact. The possible reason is that the logistics industry has large 
carbon emissions, its energy consumption per unit output is high, and the decline is small, 
so the impact of energy intensity on the carbon emissions of the logistics industry is small. 
The gradual increase in the urban greening level keeps its impact on allometric growth in 
a relatively stable state, and the gradual increase in energy efficiency (i.e., gradual decline 
in electricity consumption per unit of GDP) means a decline in carbon emission intensity. 
As the improvement of energy efficiency declines, its explanatory power for the allometric 
growth of economic scale and carbon emissions also shows a downward trend.

6.3  The dual impact of economy and environment

The industrial development level, social consumption level, technological development 
level, urban development level, land use level and transportation development level all 
have a certain impact on the economic scale and environmental pollution. Specifically, 
the explanatory power of the industrial development level and transportation development 
level for allometric growth shows a downward trend, while the explanatory power of the 
social consumption level, technological development level, urban development level and 
land use level shows an upward trend. Additionally, the former two are the leading driving 
factors.

The industrial development level is an important factor not only affecting economic growth, 
but also causing environmental pollution and carbon emissions. During the study period, the 
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proportion of China’s industrial added value in GDP showed an overall upward trend and then a 
downward trend. By 2012, the proportion of tertiary industry’s added value surpassed that of the 
secondary industry; i.e., the increase in economic scale gradually reduced its dependence on the 
secondary industry and turned to rely increasingly more on the tertiary industry. Therefore, the 
explanatory power of the industrial development level for allometric growth declines. As the main 
driving force of economic growth, the promotion of the social consumption level also means an 
increase in resource consumption, thereby intensifying environmental pollution and carbon emis-
sions. As the world economy continues to decline and trade tensions intensify, expanding domes-
tic demand has become the basic driving force for China’s economic development. The increase 
in the social consumption level and the expansion of its influence have significantly improved 
its explanatory power for allometric growth. The enhancement of the technological development 
level injects a new impetus into economic development, thereby promoting the transformation 
of the economic development mode, the transformation of economic growth momentum and 
the optimization of the economic structure, as well as innovating the development of low-car-
bon technologies. It can also better promote green development, protect and restore ecosystems, 
and reduce carbon emissions, thereby speeding up the construction of ecological civilization. 
Research on carbon emissions in China’s manufacturing industry by Liu et al. (2022) also showed 
that the innovation input carbon intensity is the main factor inhibiting the enhancement of carbon 
emissions, which is similar to the results of this paper.

Urbanization is another important driving force for China’s economic development. The urban 
development level and land use level are important indicators of population urbanization and land 
urbanization, respectively. Urbanization and industrialization are accompanied and developed 
together. The agglomeration effect produced by urbanization promotes industrial development, 
which in turn drives economic development. Additionally, the rapid progress of urbanization also 
increases the rigid demand for energy, resulting in an increase in carbon emissions. The increase 
in car ownership reflects the rapid development of the automobile industry and the increase in the 
income level of residents and explains the rapid development of China’s economy from the side. 
However, carbon emissions from automobile exhaust aggravate the deterioration of regional air 
quality and damage the ecological environment. With the increase in vehicle fuel utilization and 
the gradual promotion of new energy vehicles, the explanatory power of the transportation develop-
ment level on the allometric growth has gradually decreased.

In summary, the allometric growth of economic scale and carbon emissions in China’s cit-
ies is the result of a combination of multiple factors. Among them, the economic develop-
ment level, fiscal investment level, city investment intensity and opening up level mainly affect 
the economic scale. The urban greening level and energy utilization efficiency mainly affect 
carbon emissions. The industrial development level, social consumption level, technological 
development level, urban development level, land use level and transportation development 
level all affect the economic scale and carbon emissions (see Fig. 6).

Fig. 6  Driving mechanism of allometric growth between economic scale and carbon emissions
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7  Discussions

Under the severe situation of global carbon peaking and carbon neutrality, it is urgent to rea-
sonably evaluate the impact of economic growth on carbon emissions. As an effective method 
to identify the carbon emission pressure of economic growth, the allometric growth model can 
not only quantitatively measure the coupling coordination degree of economic scale and carbon 
emissions, but also capture the interactive response law of economic scale and carbon emissions 
to provide a reliable basis for implementing targeted carbon emission reduction strategies. Allo-
metric growth can also link urban studies such as regional development laws, regional coordi-
nation relationships, and scale and structure analysis to form a relatively complete theoretical 
and research framework, injecting new vitality into urban and regional related research. Under 
the background of profound changes in the spatial structure of global economic development, 
China’s economic development is facing new opportunities and challenges. By studying the allo-
metric growth relationship between economic scale and carbon emissions, we will explore new 
development models for urban and regional growth to further achieve higher-quality regional 
development.

The analysis results of the study are of great significance for realizing carbon emission 
reduction and carbon peaking. Specifically, the following suggestions are made: (1) Due to 
the impact of city investment intensity, energy utilization efficiency and technological devel-
opment level at the forefront, the investment structure should be adjusted and optimized, and 
the focus of investment should be tilted toward pollution control and ecological construc-
tion. Energy efficiency should be improved in all aspects, the energy consumption structure 
adjusted, and a diversified and clean energy supply system built. Additionally, governments 
should improve independent innovation capabilities, promote industrial technological pro-
gress, increase investment in energy science and technology, and encourage R&D and the 
application of energy-saving technologies. (2) Based on the overall economic and social devel-
opment, all provinces should speed up the formulation of carbon emission reduction plans 
and policies, thereby systematically coordinating the carbon emission reduction work of all 
regions and industries and establishing and improving carbon emission monitoring, report-
ing and accounting systems. Additionally, carbon emission policies and accounting systems 
should be linked up. (3) Since the relative growth rate of carbon emissions has already been 
lower than the relative growth rate of the economy, the relationship between economic devel-
opment and the carbon peak and carbon neutrality goals should be coordinated. In the context 
of the global pandemic of the new crown pneumonia (COVID-19), the world economy is fac-
ing huge uncertainty, and the possibility of economic recession is rising sharply. Achieving 
a carbon peak and carbon neutrality is of great significance and far-reaching impact, which 
requires the joint cooperation of the international community.

It is true that there are still some deficiencies in the research of this paper: First, the allo-
metric growth coefficient of economic scale and carbon emissions calculated in different 
time periods have large fluctuations; second, we comparatively analyzed all cities at differ-
ent administrative levels and do not separately consider the differences in the influencing 
factors of positive allometric and negative allometric cities; finally, due to the difficulty 
of data acquisition, this study only explored the allometric relationship between economic 
scale and carbon emissions from the municipal scale. With the development of big data 
technology and the improvement of analysis technology, it is possible to obtain data at the 
county level or even smaller scales. In the future, we can further reveal the spatiotempo-
ral evolution process of allometric growth at the county level or smaller scales to explore 
the allometric growth law in detail and provide a theoretical basis for coordinated regional 
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development. In addition, we can also predict the future development trend of allometric 
growth between the economic scale and carbon emissions with the help of the gray predic-
tion model, neural network model, system dynamics model and other methods and make 
timely adjustments to the development of regional economic and environmental systems.

8  Conclusions

Taking China’s 285 cities as the research object, this study explored the allometric growth 
of economic scale and carbon emissions in these cities from 2000 to 2017. Then, the geo-
graphical detector model was employed to analyze the driving mechanism of allometric 
growth. We obtained the following conclusions:

(1) The spatiotemporal evolution pattern of the economic scale and carbon emissions of 
Chinese cities was dominated by hot spots. The hot spots tended to weaken from the 
eastern coastal regions to the western inland regions as a whole. They were concen-
trated and contiguous. Cold spots were relatively scattered in space. The economic 
scale and carbon emission system are relatively well developed in a stage of balanced 
distribution. Among them, the primacy ratio of economic scale increased. Alterna-
tively, the economic scale was transformed into a centralized mode. The primacy ratio 
of carbon emissions continued to decrease.

(2) The allometric growth of economic scale and carbon emissions in China’s cities is 
generally in a stage of economic expansion, where the relative growth rate of carbon 
emissions is lower than the relative growth rate of the economy. In terms of vertical 
allometric growth, the gap between the growth rate of carbon emissions and the growth 
rate of the economy showed a trend of narrowing first and then widening. In terms of 
horizontal allometric growth, the scaling exponent decreased from east to the west as 
a whole from 2000 to 2008, but showed an opposite trend from 2009 to 2017.

(3) City investment intensity, energy utilization efficiency, technological development 
level, social consumption level, fiscal investment level and economic development 
level were the main factors affecting the spatiotemporal heterogeneity of the allometric 
growth of economic scale and carbon emissions in China’s cities. Additionally, the 
explanatory power of city investment intensity, technological development level, social 
consumption level, fiscal investment level and economic development level is on the 
rise, and the explanatory power of energy utilization efficiency was on the decline. 
The explanatory power of the two-factor interaction is higher than that of a single fac-
tor, and most of the interactions were nonlinear enhancement types. The influence of 
factors had a synergistic enhancement effect. Economic factors, environmental factors 
and the combined effect of the two have formed a spatially differentiated pattern of the 
allometric growth of economic scale and carbon emissions in China’s cities.

Appendix

See Fig. 7, Table 6.
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Fig. 7  Map of China with administrative divisions
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Table 6  Distribution of spatiotemporal hot spot types and allometric growth types in Chinese cities

Code Province City Spatiotemporal 
hot spot type

Allometric growth type

ES CE 2000–2008 2009–2017

1 Beijing Beijing 7 7 − 3 − 4
2 Tianjin Tianjin 8 7 − 2 − 3
3 Hebei Shijiazhuang 8 7 − 2 − 3
4 Hebei Tangshan 7 7 − 2 − 3
5 Hebei Qinhuangdao 8 7 − 1 − 3
6 Hebei Handan 8 8 − 2 − 4
7 Hebei Xingtai 8 8 − 2 − 3
8 Hebei Baoding 8 7  + 1 − 3
9 Hebei Zhangjiakou 7 7 − 2 − 3
10 Hebei Chengde 7 7 − 2 − 3
11 Hebei Cangzhou 8 7 − 2 − 3
12 Hebei Langfang 8 7 − 2 − 3
13 Hebei Hengshui 8 7  + 1 − 3
14 Shanxi Taiyuan 6 7 − 3 − 3
15 Shanxi Datong 8 7 − 2 − 3
16 Shanxi Yangquan 6 8 − 2 − 3
17 Shanxi Changzhi 8 8 − 2 − 3
18 Shanxi Jincheng 6 8 − 2 − 3
19 Shanxi Shuozhou 6 7 − 3 − 2
20 Shanxi Jinzhong 5 8 − 2 − 3
21 Shanxi Yuncheng 8 8 − 2 − 3
22 Shanxi Xinzhou 6 7 − 2 − 3
23 Shanxi Linfen 6 8 − 3 − 3
24 Shanxi Luliang 5 8 − 3 − 3
25 Inner Mongoria Hohhot 5 8 − 2 − 3
26 Inner Mongoria Baotou 6 8 − 2 − 3
27 Inner Mongoria Wuhai 5 8 − 2 − 3
28 Inner Mongoria Chifeng 5 8 − 2 − 3
29 Inner Mongoria Tongliao 5 8 − 1 − 3
30 Inner Mongoria Ordos 5 8 − 2 − 2
31 Inner Mongoria Hulunbuir 5 7 − 1 − 3
32 Inner Mongoria Baynnur 5 8  + 1 − 3
33 Inner Mongoria Ulaan Chab 5 8  + 1 − 2
34 Liaoning Shenyang 5 8 − 2 − 3
35 Liaoning Dalian 8 8 − 2 − 3
36 Liaoning Anshan 6 8 − 2 − 3
37 Liaoning Fushun 5 8 − 2 − 3
38 Liaoning Benxi 5 8 − 2 − 3
39 Liaoning Dandong 6 8 − 2 − 3
40 Liaoning Jinzhou 6 8 − 3 − 3
41 Liaoning Yingkou 6 8 − 2 − 3
42 Liaoning Fuxin 5 8 − 2 − 3
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Table 6  (continued)

Code Province City Spatiotemporal 
hot spot type

Allometric growth type

ES CE 2000–2008 2009–2017

43 Liaoning Liaoyang 5 8 − 2 − 3
44 Liaoning Panjin 6 8 − 2 − 3
45 Liaoning Tieling 5 8 − 3 − 3
46 Liaoning Chaoyang 8 8 − 3 − 3
47 Liaoning Huludao 8 7 − 2 − 3
48 Jilin Changchun 6 8 − 2 − 3
49 Jilin Jilin 6 8 − 2 − 3
50 Jilin Siping 5 8 − 3 − 3
51 Jilin Liaoyuan 5 8 − 3 − 3
52 Jilin Tonghua 6 8 − 2 − 3
53 Jilin Baishan 5 5 − 2 − 3
54 Jilin Songyuan 8 8 − 3 − 3
55 Jilin Baicheng 8 8 − 2 − 3
56 Heilongjiang Harbin 8 8 − 2 − 3
57 Heilongjiang Qiqihar 5 5 − 1 − 3
58 Heilongjiang Jixi 3 3 − 2 − 3
59 Heilongjiang Hegang 3 3 − 2 − 4
60 Heilongjiang Shuangyashan 3 3 − 2 − 3
61 Heilongjiang Daqing 8 8 − 2 − 4
62 Heilongjiang Yichun 5 5 − 2 − 3
63 Heilongjiang Jiamusi 3 3 − 2 − 3
64 Heilongjiang Qitaihe 5 2 − 2 − 4
65 Heilongjiang Mudanjiang 5 5 − 2 − 3
66 Heilongjiang Heihe 5 5 − 2 − 3
67 Heilongjiang Suihua 8 8  + 1 − 3
68 Shanghai Shanghai 7 7 − 2 − 4
69 Jiangsu Nanjing 8 8 − 2 − 3
70 Jiangsu Wuxi 8 8 − 1 − 3
71 Jiangsu Xuzhou 8 8 − 2 − 3
72 Jiangsu Changzhou 8 8 − 1 − 3
73 Jiangsu Suzhou 8 8 − 1 − 3
74 Jiangsu Nantong 8 7 − 2 − 3
75 Jiangsu Lianyungang 8 8  + 1 − 3
76 Jiangsu Huai’an 8 8 − 2 − 3
77 Jiangsu Yancheng 8 7 − 1 − 3
78 Jiangsu Yangzhou 8 8 − 2 − 3
79 Jiangsu Zhenjiang 8 8 − 1 − 3
80 Jiangsu Taizhou 8 8 − 2 − 3
81 Jiangsu Suqian 8 8 − 1 − 3
82 Zhejiang Hangzhou 8 8 − 2 − 4
83 Zhejiang Ningbo 7 7 − 2 − 4
84 Zhejiang Wenzhou 8 8 − 2 − 3
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Table 6  (continued)

Code Province City Spatiotemporal 
hot spot type

Allometric growth type

ES CE 2000–2008 2009–2017

85 Zhejiang Jiaxing 8 8 − 1 − 4
86 Zhejiang Huzhou 8 8 − 1 − 3
87 Zhejiang Shaoxing 8 8 − 1 − 4
88 Zhejiang Jinhua 8 8 − 1 − 3
89 Zhejiang Quzhou 8 5 − 2 − 3
90 Zhejiang Zhoushan 7 7 − 2 − 3
91 Zhejiang Taizhou 7 7 − 1 − 3
92 Zhejiang Lishui 8 8 − 2 − 3
93 Anhui Hefei 8 8 − 2 − 3
94 Anhui Wuhu 8 8 − 2 − 3
95 Anhui Bengbu 8 8 − 2 − 3
96 Anhui Huainan 8 8 − 2 − 3
97 Anhui Ma’anshan 8 8 − 3 − 3
98 Anhui Huaibei 8 8 − 2 − 3
99 Anhui Tongling 8 8 − 2 − 3
100 Anhui Anqing 8 5 − 2 − 3
101 Anhui Huangshan 8 8  + 1 − 3
102 Anhui Chuzhou 8 8  + 1 − 3
103 Anhui Fuyang 8 8 − 2 − 3
104 Anhui Suzhou 8 8 − 2 − 3
105 Anhui Lu’an 6 5 − 2 − 3
106 Anhui Bozhou 8 8 − 2 − 3
107 Anhui Chizhou 8 8  + 1 − 3
108 Anhui Xuancheng 8 8 − 1 − 3
109 Fujian Fuzhou 8 5 − 1 − 3
110 Fujian Xiamen 8 5 − 2 − 3
111 Fujian Putian 8 5 − 2 − 3
112 Fujian Sanming 8 5 − 2 − 3
113 Fujian Quanzhou 8 5 − 1 − 3
114 Fujian Zhangzhou 8 5  + 1 − 3
115 Fujian Nanping 8 5 − 2 − 3
116 Fujian Longyan 6 5 − 2 − 3
117 Fujian Ningde 8 5 − 2 − 3
118 Jiangxi Nanchang 6 1 − 2 − 3
119 Jiangxi Jingdezhen 6 2 − 2 − 3
120 Jiangxi Pingxiang 6 5 − 2 − 3
121 Jiangxi Jiujiang 6 5 − 2 − 2
122 Jiangxi Xinyu 6 1 − 3 − 3
123 Jiangxi Yingtan 5 2 − 3 − 3
124 Jiangxi Ganzhou 5 2 − 2 − 3
125 Jiangxi Ji’an 6 5 − 2 − 3
126 Jiangxi Yichun 8 5 − 2 − 3
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Table 6  (continued)

Code Province City Spatiotemporal 
hot spot type

Allometric growth type

ES CE 2000–2008 2009–2017

127 Jiangxi Fuzhou 5 2 − 2 − 3
128 Jiangxi Shangrao 5 2 − 2 − 3
129 Shandong Jinan 8 8  + 1 − 3
130 Shandong Qingdao 8 8 − 1 − 3
131 Shandong Zibo 8 8 − 1 − 4
132 Shandong Zaozhuang 8 8 − 2 − 3
133 Shandong Dongying 8 7 − 2 − 3
134 Shandong Yantai 7 7 − 1 − 3
135 Shandong Weifang 8 8  + 1 − 3
136 Shandong Jining 8 8 − 1 − 3
137 Shandong Tai’an 8 8 − 1 − 3
138 Shandong Weihai 7 7  + 1 − 3
139 Shandong Rizhao 8 8  + 1 − 3
140 Shandong Laiwu 8 8 − 2 − 4
141 Shandong Linyi 8 8  + 1 − 3
142 Shandong Dezhou 8 8 − 2 − 3
143 Shandong Liaocheng 8 8 − 2 − 3
144 Shandong Binzhou 8 7 − 1 − 3
145 Shandong Heze 8 8 − 2 − 3
146 Henan Zhengzhou 6 8 − 2 − 3
147 Henan Kaifeng 8 8 − 2 − 3
148 Henan Luoyang 8 8 − 2 − 3
149 Henan Pingdingshan 6 8 − 2 − 3
150 Henan Anyang 8 8 − 2 − 3
151 Henan Hebi 8 8 − 2 − 3
152 Henan Xinxiang 8 8 − 2 − 3
153 Henan Jiaozuo 6 8 − 3 − 3
154 Henan Puyang 8 8 − 2 − 3
155 Henan Xuchang 6 8 − 2 − 3
156 Henan Luohe 6 8 − 2 − 3
157 Henan Sanmenxia 8 8 − 2 − 3
158 Henan Nanyang 6 8 − 2 − 3
159 Henan Shangqiu 8 8 − 2 − 3
160 Henan Xinyang 6 6 − 2 − 3
161 Henan Zhoukou 6 8 − 2 − 3
162 Henan Zhumadian 8 8 − 1 − 3
163 Hubei Wuhan 8 6 − 2 − 3
164 Hubei Huangshi 6 5 − 2 − 3
165 Hubei Shiyan 6 5 − 2 − 3
166 Hubei Yichang 5 5 − 2 − 3
167 Hubei Xiangyang 8 8 − 2 − 3
168 Hubei Ezhou 8 5 − 2 − 3
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Table 6  (continued)

Code Province City Spatiotemporal 
hot spot type

Allometric growth type

ES CE 2000–2008 2009–2017

169 Hubei Jingmen 8 5 − 1 − 3
170 Hubei Xiaogan 8 6 − 1 − 3
171 Hubei Jingzhou 8 5 − 1 − 3
172 Hubei Huanggang 6 5 − 1 − 3
173 Hubei Xianning 8 5 − 2 − 3
174 Hubei Suizhou Shi 6 8 − 1 − 3
175 Hunan Changsha 8 5 − 2 − 3
176 Hunan Zhuzhou 6 5 − 2 − 3
177 Hunan Xiangtan 6 2 − 2 − 3
178 Hunan Hengyang 6 1 − 2 − 3
179 Hunan Shaoyang 6 5 − 1 − 3
180 Hunan Yueyang 8 5 − 2 − 3
181 Hunan Changde 6 5 − 2 − 3
182 Hunan Zhangjiajie 8 8 − 2 − 3
183 Hunan Yiyang 6 1 − 1 − 3
184 Hunan Chenzhou 8 5 − 2 − 3
185 Hunan Yongzhou 5 2  + 1 − 3
186 Hunan Huaihua 5 3 − 1 − 3
187 Hunan Loudi 6 5 − 2 − 3
188 Guangdong Guangzhou 8 5 − 2 − 3
189 Guangdong Shaoguan 8 5 − 2 − 3
190 Guangdong Shenzhen 8 5 − 3 − 4
191 Guangdong Zhuhai 8 5 − 2 − 3
192 Guangdong Shantou 8 5 − 1 − 3
193 Guangdong Foshan 8 5 − 2 − 3
194 Guangdong Jiangmen 8 5 − 1 − 3
195 Guangdong Zhanjiang 5 3 − 2 − 3
196 Guangdong Maoming 6 2 − 2 − 3
197 Guangdong Zhaoqing 8 5  + 1 − 3
198 Guangdong Huizhou 8 6 − 1 − 3
199 Guangdong Meizhou 8 8 − 2 − 3
200 Guangdong Shanwei 8 8 − 2 − 3
201 Guangdong Heyuan 8 8 − 2 − 3
202 Guangdong Yangjiang 8 5 − 2 − 3
203 Guangdong Qingyuan 8 6 − 2 − 3
204 Guangdong Dongguan 8 5 − 3 − 4
205 Guangdong Zhongshan 8 5 − 3 − 3
206 Guangdong Chaozhou 8 5 − 1 − 3
207 Guangdong Jieyang 8 6 − 1 − 3
208 Guangdong Yunfu 8 5  + 1 − 3
209 Guangxi Nanning 5 3 − 2 − 3
210 Guangxi Liuzhou 5 2 − 3 − 3
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Table 6  (continued)

Code Province City Spatiotemporal 
hot spot type

Allometric growth type

ES CE 2000–2008 2009–2017

211 Guangxi Guilin 5 2 − 2 − 2
212 Guangxi Wuzhou 8 5 − 2 − 3
213 Guangxi Beihai 5 3 − 2 − 3
214 Guangxi Fangchenggang 5 3 − 2 − 3
215 Guangxi Qinzhou 5 3 − 1 − 3
216 Guangxi Guigang 5 3 − 2 − 3
217 Guangxi Yulin 5 2 − 2 − 2
218 Guangxi Baise 5 5 − 2 − 3
219 Guangxi Hezhou 8 5 − 2 − 2
220 Guangxi Hechi 5 5 − 2 − 3
221 Guangxi Laibin 5 3  + 1 − 3
222 Guangxi Chongzuo 5 3 − 2 − 3
223 Hainan Haikou 5 3 − 3  + 1
224 Hainan Sanya 5 3 − 3 − 1
225 Chongqing Chongqing 8 5 − 2 − 3
226 Sichuan Chengdu 5 2 − 2 − 3
227 Sichuan Zigong 5 2 − 2 − 3
228 Sichuan Panzhihua 5 5 − 2 − 3
229 Sichuan Luzhou 6 5 − 2 − 3
230 Sichuan Deyang 5 2 − 2 − 3
231 Sichuan Mianyang 5 2 − 2 − 3
232 Sichuan Guangyuan 5 2 − 2 − 3
233 Sichuan Suining 8 5  + 1 − 3
234 Sichuan Neijiang 8 5 − 2 − 3
235 Sichuan Leshan 5 2 − 2 − 3
236 Sichuan Nanchong 8 5 − 2 − 3
237 Sichuan Meishan 5 2 − 2 − 3
238 Sichuan Yibin 5 5 − 2 − 3
239 Sichuan Guang’an 8 5 − 2 − 3
240 Sichuan Dazhou 6 5 − 2 − 3
241 Sichuan Ya’an 5 2 − 2 − 3
242 Sichuan Bazhong 8 5  + 1 − 2
243 Sichuan Ziyang 8 5 − 2 − 2
244 Guizhou Guiyang 5 5 − 2 − 3
245 Guizhou Liupanshui 5 5 − 3 − 3
246 Guizhou Zunyi 8 8 − 2 − 3
247 Guizhou Anshun 5 5 − 2 − 3
248 Yunnan Kunming 5 5 − 2 − 3
249 Yunnan Qujing 5 5 − 2 − 3
250 Yunnan Yuxi 5 5 − 1 − 3
251 Yunnan Baoshan 4 3 − 1 − 3
252 Yunnan Zhaotong 5 2  + 1 − 3
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Table 6  (continued)

Code Province City Spatiotemporal 
hot spot type

Allometric growth type

ES CE 2000–2008 2009–2017

253 Yunnan Lijiang 5 5 − 2 − 3
254 Yunnan Pu’er 4 3 − 2 − 3
255 Yunnan Lincang 4 3 − 1 − 3
256 Shaanxi Xi’an 5 5 − 2 − 3
257 Shaanxi Tongchuan 5 5 − 2 − 3
258 Shaanxi Baoji 3 2 − 2 − 3
259 Shaanxi Xianyang 5 5 − 2 − 3
260 Shaanxi Weinan 5 8 − 2 − 3
261 Shaanxi Yan’an 5 8 − 2 − 2
262 Shaanxi Hanzhong 5 3 − 1 − 3
263 Shaanxi Yulin 5 8 − 3 − 2
264 Shaanxi Ankang 5 1 − 2 − 3
265 Shaanxi Shangluo 5 5 − 1 − 3
266 Gansu Lanzhou 3 3 − 2 − 3
267 Gansu Jiayuguan 4 3 − 3 − 3
268 Gansu Jinchang 5 3 − 3 − 2
269 Gansu Baiyin 3 1 − 3 − 3
270 Gansu Tianshui 1 2 − 2 − 3
271 Gansu Wuwei 3 5 − 2 − 3
272 Gansu Zhangye 4 3 − 2 − 3
273 Gansu Pingliang 3 5 − 3 − 3
274 Gansu Jiuquan 5 4 − 2 − 3
275 Gansu Qingyang 5 6 − 2 − 2
276 Gansu Dingxi 3 3  + 1 − 3
277 Gansu Longnan 3 3 − 2 − 2
278 Qinghai Xining 3 3 − 3 − 2
279 Ningxia Yinchuan 1 8 − 3 − 2
280 Ningxia Shizuishan 5 8 − 3  + 1
281 Ningxia Wuzhong 1 8 − 2 − 1
282 Ningxia Guyuāan@@ 3 5 − 2 − 1
283 Ningxia Zhongwei 3 5 − 3 − 1
284 Xinjiang Urumqi 5 5 − 2 − 3
285 Xinjiang Karamay 5 5 − 2 − 2

In the spatiotemporal hot spot type, ES is the abbreviation for economic scale (Fig. 1a), CE is the abbrevia-
tion for carbon emissions (Fig. 1b); numbers 1, 2, 3, 4, 5, 6, 7 and 8 represent historical cold spots, dimin-
ishing cold spots, persistent cold spots, consecutive cold spots, no pattern detected, new hot spots, consecu-
tive hot spots and oscillating hot spots, respectively. In the allometric growth type, numbers − 4, − 3, − 2, 
− 1 and + 1 represent negative allometric level 4, negative allometric level 3, negative allometric level 2, 
negative allometric level 1 and positive allometric level 1, respectively
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