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Abstract
The government’s development of eco-environmental policies can have a scientific founda-
tion thanks to the fine particulate matter  (PM2.5) medium- and long-term change forecast. 
This study develops a STRIPAT-Scenario analysis framework employing panel data from 
11 cities in Zhejiang Province between 2006 and 2020 to predict the changing trend of 
 PM2.5 concentrations under five alternative scenarios. The results reveal that: (1) urbaniza-
tion development (P), economic development (A), technological innovation investment (T) 
and environmental regulation intensity have a significant inhibitory effect on  PM2.5 con-
centration in Zhejiang Province, while industrial structure, industrial energy consumption 
and the number of motor vehicles (TR) have a significant increase on  PM2.5 concentration. 
(2) Under any scenario, the  PM2.5 concentration of 11 cities in Zhejiang Province can reach 
the constraint target set in the 14th Five-Year plan. The improvement in urban  PM2.5 qual-
ity is most obviously impacted by the high-quality development scenario (S4). (3) Toward 
2035,  PM2.5 concentrations of 11 cities in Zhejiang Province can reach the National Class 
I level standard in most scenario models, among which Hangzhou, Jiaxing and Shaoxing 
are under high pressure to reduce emissions and are the key areas for  PM2.5 management 
in Zhejiang Province. However, most cities cannot reach the 10  μg/m3 limit of WHO’s 
AQG2005 version. Finally, this study makes recommendations for reducing  PM2.5 in terms 
of enhancing industrial structure and funding science and technology innovation.

Keywords PM2.5 · STRIPAT model · Scenario analysis · Ridge regression · Influencing 
factors

 * Lei Ding 
 dinglei3616028@163.com

1 Research Center of Industrial Economy Around Hangzhou Bay, Ningbo Polytechnic, 
Ningbo 315800, China

2 Ningxia Art Vocational College, Yinchuan 750021, China
3 Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy 

of Sciences, Xiamen 361021, China
4 Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China

http://orcid.org/0000-0001-6726-7808
http://crossmark.crossref.org/dialog/?doi=10.1007/s10668-022-02672-1&domain=pdf


14412 Q. Zhang et al.

1 3

1 Introduction

Fine particulate matter  (PM2.5) is an atmospheric environmental issue that academia takes 
extremely seriously and provides the basis for the strategy of socioeconomic development 
plans (Xu et  al., 2023; Yan et  al., 2022). Among them, long-term change prediction of 
 PM2.5 can provide scientific evidence and foundations for the development of government 
policies relating to energy conservation and emission reduction, industrial restructuring 
and ecological and environmental issues (Li et al., 2020; Xu et al., 2020). Since the State 
Council’s Action Plan for Prevention and Control of Air Pollution was published and put 
into effect in September 2013, the problem of  PM2.5 pollution in China has been signifi-
cantly alleviated (Xu et al., 2022). However, China’s industrial, energy, transportation and 
other structural adjustment has just begun, and the structural pollution problem is still seri-
ous. The heavy chemical sector’s industrial structure has not significantly changed over 
time, and the total consumption of coal remains high and continues to grow (He et  al., 
2022; Wu et al., 2021). In 2020, approximately 1/3 of the 337 cities with prefecture-level 
and above  PM2.5 concentrations still fall below the national Class II standard, and regional 
heavy pollution weather occurs occasionally. Therefore, it is crucial to investigate the soci-
oeconomic causes of  PM2.5 concentration and forecast the trajectory because it serves as a 
legally mandated indicator of economic and social growth in the 14th Five-Year Plan (Su 
et al., 2022; Yue et al., 2020).

The concentrations of  PM2.5 are affected by several elements. In addition to the influ-
ence of natural factors such as meteorological and topographic conditions on  PM2.5 con-
centrations (Wu et al., 2021; Xu et al., 2021), previous studies have revealed the extent to 
which different single categories of pollution sources (e.g., coal combustion, transportation 
or power plants) influence  PM2.5 concentrations in different regions. From the source anal-
ysis results, it includes mobile sources, domestic sources, dust sources, industrial sources 
and coal-fired sources, among which diesel and gasoline vehicles account for a large pro-
portion of mobile sources, solvent use and auto repair and other service industries contrib-
ute to domestic sources, dust sources are road dust and construction dust, and cement con-
struction materials industries make up a significant percentage of industrial sources (Chen 
et al., 2018; Li et al., 2018). The level and pattern of urban socioeconomic development 
are closely correlated with the sources mentioned above. It demonstrated how elements 
like population size, population density, level of urbanization, industrial structure, energy 
consumption, energy mix (coal consumption share), road density and foreign direct invest-
ment have significant effects on  PM2.5 pollution (Chen et al., 2018; Gupta et al., 2022; Wu 
et al., 2021; Xu et al., 2022). For example, Alameddine et al. (2016) concluded that factors 
such as traffic, vehicle type and road conditions have a significant impact on  PM2.5 pol-
lution. Meanwhile, factors that include technological innovation progress, environmental 
regulation and pollution control funding have a positive ameliorating effect on  PM2.5 pol-
lution (Chen et al., 2019; Xia et al., 2022; Xue et al., 2020). These studies have laid a solid 
foundation for deeper insight into the relationship between socioeconomic development 
and  PM2.5 and have provided a valuable scientific basis for regional environmental policy 
formulation (Su et al., 2022; Tao et al., 2020).

Total pollutant discharge control and mass concentration constraints are important 
top-level designs for current environmental management (Lu et  al., 2020; Yang et  al., 
2019). On the basis of clarifying the source of pollution, the trend prediction of  PM2.5 
concentration is favored by scholars. In terms of prediction modeling methods, the main 
ones are statistical regression models, numerical simulation prediction and machine 
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learning prediction. For statistical analysis and prediction studies of the researched con-
taminants, statistical models primarily rely on historical data. Several statistical models 
are employed as the research methods, such as linear regression (such as general panel 
regression and spatial econometric regression models) and nonlinear regression and so 
on (Chen et al., 2019; Gupta et al., 2022; Wu et al., 2021). Statistical models have the 
advantages of being easy to use, relatively easy access to necessary data and flexible 
output factors, specifically such as land use regression models and geographic and time-
weighted regression models (Gu et al., 2021; Xu et al., 2020). Based on the knowledge 
of atmospheric physics and atmospheric chemistry, the numerical prediction applies the 
knowledge of atmospheric dynamics to predict various substances in the air through the 
material conservation equation. The specific methods include CMAQ, CAMx, WRF-
Chem, etc. (Djalalova et al., 2015; Fang et al., 2022; Weagle et al., 2018; Zhang et al., 
2020). The numerical model can simulate the development of regional pollutants and 
predict air quality. Due to a large amount of calculation and lack of timeliness, it is not 
suitable for the prediction of monthly and annual average concentrations (Senthilkumar 
et al., 2022). Recent years have seen steady advancement in computer technology, arti-
ficial intelligence and machine learning theory. Consequently, some data mining and 
computing tools have been widely employed to estimate  PM2.5 mass concentration, such 
as various neural network models (Biancofiore et al., 2017; Zhao et al., 2019) and ran-
dom forest regression (Senthilkumar et al., 2022; Su et al., 2022).

In summary, existing studies have revealed the drivers of  PM2.5 concentration in a rela-
tively systematic and comprehensive way, but there are the following gaps to be further 
explored: (1) different econometric regression analysis and other models have been used 
to explore the socioeconomic drivers of  PM2.5 concentrations, but after the estimation 
of impact coefficients, there is no prediction and assessment for medium and long-term 
changes in  PM2.5 concentrations, which lacks scientific guidance for subsequent planning 
and policy formulation (Chen et  al., 2018; Xia et  al., 2022). (2) The existing prediction 
methods for  PM2.5 concentration are mainly time series models (daily scale), land use 
regression models and neural network models. These methods are useful for estimating 
accurate changes in  PM2.5 concentration numerically or spatially distributed, but they can-
not systematically reflect the government departments’ efforts and interventions to achieve 
realistic pollutant concentrations through target constraints and task decomposition of 
medium- and long-term national economic planning (Wang et al., 2021a). Thus, this study 
constructs the STRIPAT-Scenario analysis framework and sets up different scenario devel-
opment models to predict and estimate the  PM2.5 concentrations changes in the medium 
and long term, which integrated the variables, in terms of socioeconomic and environmen-
tal factors defined in the 14th Five-Year Plan of each city.

The main contributions of this study are (1) the use of ridge regression analysis to esti-
mate the results of the socioeconomically driven STRIPAT model of  PM2.5. It can over-
come the instability and the unreasonable regression coefficients of ordinary least squares 
regression (OLS), which can maintain the systematicity and integrity of the estimation of 
 PM2.5 pollution impact factors (Cheng et al., 2017; He et al., 2022). (2) Scenario analysis 
methods are employed to predict the changes in  PM2.5 concentrations in the medium and 
long term. One of the prevalent methods for conducting studies on the attainment of air 
quality is scenario analysis, where decision-makers make qualitative or quantitative predic-
tions of future air quality by setting up different development scenarios (Yue et al., 2020; 
Zhang et al., 2019). As a result, the predicted  PM2.5 concentration results are more in line 
with the actual conditions of urban development and facilitate environmental policymakers 
to constrain and manage environmental targets.
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The framework of this paper is designed as follows: Sect. 2 introduces the STRIPAT 
model, ridge regression model and the data sources of variables. Section 3 analyzes the 
regression results and predicts the  PM2.5 concentration changes in 11 cities in Zhejiang 
Province from 2021 to 2035 based on the scenario analysis. Section  4 discusses the 
 PM2.5 concentration conditions in 11 cities under high environmental standards and pro-
poses  PM2.5 environmental improvement recommendations.

2  Methodology and data

This section is organized with the following contents: the overview of the study area, 
the methodology (STRIPAT model and ridge regression analysis), variables and data 
source. The technical framework of the study is presented in Fig. 1.

Fig. 1  The technical framework of this study
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2.1  Study area

Although ranked one of China’s most developed areas, Zhejiang Province is under intense 
pressure to reconstruct industrial structure, economic growth and environmental conserva-
tion (Jiang et al., 2019; Xia et al., 2020). Meanwhile, the foundation for continued air qual-
ity improvement in Zhejiang, as one of the most critical sectors of national air pollution 
prevention and management, is not stable enough, because the proportion of traditional 
high energy consumption and high pollution emission industries is still large, which poses 
a challenge to the continuous improvement of  PM2.5 quality in the future.

During the 14th Five-Year Plan period, Zhejiang Province will enter a new era of high-
level socialist modernization and high-level construction, and a new journey of Beautiful 
Zhejiang. By 2035, the mission of Zhejiang is to create a high-quality leading demonstra-
tion area of Beautiful China and to essentially achieve the modernization of harmonious 
cohabitation between humans and nature (Ding & Fang, 2022). It also clarifies that the 
ambient air quality should be continuously improved, the “double control and double 
reduction” of  PM2.5 and ozone  (O3) should be realized, so the heavily polluted weather 
should be completely eliminated, and the moderately polluted weather should be basically 
eliminated. Among them,  PM2.5 concentration is one of the seven binding environmental 
indicators in the 14th Five-Year Plan of Zhejiang Province (Table 1). Reducing  PM2.5 con-
centration and improving ambient air quality is still a key task for each city. Figure 2 illus-
trates the map of urban regions in the study area.

2.2  STRIPAT model

The STRIPAT model is an extension of the IPAT model. Multiple independent variables 
related to population scale, structure and technology can be introduced into the model. 
The IPAT model has been widely used since it was proposed in the 1970s (Ehrlich & 

Table 1  Comparison of expected constraint values of relevant indicators in the 14th Five-Year Plan of 11 
cities in Zhejiang Province

Provincial target refers to the constraint index value determined by provincial government departments for 
the following cities, which is temporary to be determined

City P (%) A (yuan) T (%) PM2.5 (μg/m3)

2020 2025 2020 2025 2020 2025 2020 2025

Hangzhou 83.6 86 136,617 180,000 3.59 4.0 30 Provincial target
Ningbo 78.4 80 132,614 170,000 2.86 3.6 23  < 25
Wenzhou 72.8 75 71,766 100,000 2.29 3.0 25  < 27
Jiaxing 71.3 75 102,541 150,000 3.31 3.5 28  < 27
Huzhou 65.6 72 95,579 130,000 3.09 3.3 26 25
Shaoxing 71.5 75 113,746 150,000 2.58 3.3 28 30
Jinhua 68.7 74 95,431 130,000 2.01 2.8 28 Provincial target
Quzhou 58.1 70 72,192 100,000 1.79 2.8 26  < 26
Zhoushan 71.9 75 130,130 200,000 1.74 2.7 17  < 20
Taizhou 64.6 69 79,889 120,000 2.26 3.3 25 22
Lishui 61.8 70 61,811 100,000 1.83 3.0 21 23
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Holdren, 1971). The model can be used to study the impact of demographic, economic 
and technological factors on environmental pressure (Nosheen, 2021; Ma et al., 2017; 
Song et al., 2011; Wagoner et al., 2002). Its expression is as follows:

In the formula, I is the environmental pressure, including the consumption of 
resources and energy, greenhouse gas, pollutant emission and pollutant mass concentra-
tion, which refers to the annual average  PM2.5 concentration in the city in this study. P 
is generally the population size or population urbanization level, A is the regional afflu-
ence or economic development level, and T is the technical level.

However, the IPAT model has certain limitations. It defaults to those different factors 
that have the same impact on environmental pressure, contradicting the Environmental 
Kuznets Curve Hypothesis (Lin et al., 2009; York et al., 2003). To find the breakthrough 
of this model, Dietz and Rosa (1994) proposed the STIRPAT model based on the IPAT 
model, and its expression is as follows:

In the model, α is the model coefficient, β, γ and λ represent the elastic coefficients of 
variables P, A and T, respectively, and μ is a random error term.

To eliminate the numerical dimensional influence of different variables, it is common 
to take logarithms on both sides of the above formula in the empirical analysis (Diao 
et al., 2018; Wang et al., 2017), which is:

The STIRPAT model rejects the assumption of unit elasticity and increases the ran-
domness of model analysis, which is convenient for empirical analysis. Meanwhile, the 
STIRPAT model can also add a variety of factors affecting environmental pressure, such 
as environmental regulation, industrial structure and energy structure. Therefore, the 
STIRPAT model is the most commonly utilized in assessing the relationship between 
environmental pollution impact and numerous influencing factors, as evidenced by a 

(1)I = P × A × T

(2)I = �P�
A
�
T
��

(3)ln I = ln � + � lnP + � lnA + � lnT + ln�

Fig. 2  Map of urban locations in the study area in Zhejiang Province
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significant number of empirical studies in the disciplines of carbon emission, pollutant 
emission and air quality (Diao et al., 2018; Liu & Xiao, 2018).

Existing research show that elements such as population size, economic development 
level, industrial structure, energy consumption, technological innovation, environmental 
regulation and transportation are commonly used in the analysis of air quality impacting 
factors, which can significantly affect the concentration of  PM2.5. Therefore, this study 
selects these six factors as the socioeconomic driving factors affecting  PM2.5 concentration 
and constructs an extended STIRPAT model, whose expression is:

where  PM2.5 is the average annual  PM2.5 concentration in the city, P stands for the popu-
lation size (stated in terms of population urbanization rate), A represents the per capita 
GDP, T represents the technical level (expressed by the proportion of R & D investment in 
GDP here), IS stands the industrial structure (the chosen data is the percentage of indus-
trial added value in GDP, revealing the influence of the effect of industrial source pollu-
tion on  PM2.5 concentration), EC is the intensity of energy consumption (expressed here 
in terms of comprehensive energy consumption of industries above designated size), TR is 
the traffic structure (expressed here in terms of urban motor vehicle ownership, reflecting 
the impact of traffic source pollution on  PM2.5 concentration), and ER is the intensity of 
environmental regulation (expressed here in terms of current operating expenses of indus-
trial waste gas treatment facilities). β, γ, δ, λ, ρ, θ, ξ, σ stand for the elastic coefficient of 
each variable, respectively, while μ is a random error term. Table 2 has an explanation of 
each model variable. According to research by York et al. (2003), the quadratic term of per 
capita GDP is additionally introduced to investigate the nonlinear link between  PM2.5 con-
centration and economic development and to determine if an inverted U-shaped connection 
of the Environmental Kuznets Curve exists.

2.3  Ridge regression analysis

Because there is always an internal link between the socioeconomic variables influencing 
 PM2.5 concentration, this is referred to as multicollinearity. To maintain the integrity of 
explanatory variables, the ridge regression analysis method is introduced based on Formula 
(4) (Roberts & Martin, 2005; Tao et  al., 2020). Hoerl first proposed ridge regression in 
1962, and further discussed the ridge regression model with Kennard in 1970. The result 
is that there are multiple collinearities between independent variables. Ridge regression is 
an improved ordinary least squares estimation. The least squares estimation is improved to 
eliminate the influence of collinearity, and the model estimation results are more practical 
and reliable (Hoerl & Kennard, 1970). The process of eliminating multicollinearity is a 
process of independent variable selection (Hoerl, 2020). The basic formula of ridge regres-
sion is as follows:

In the formula, Y is a (n × 1) matrix of the dependent variable which refers to the  PM2.5 
concentration of each city. X is a matrix of n × p, which consists of relevant explanatory 

(4)
ln PM

2.5
= ln � + � lnP + � lnA + �(lnA)

2 + � lnT + � ln IS + � ln EC

+ � ln TR + � ln ER + ln�

(5)Y = X�(K) + �

(6)�(K) =
(

X
T
X + KI

)−1
X
T
Y
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variables affecting  PM2.5 concentration. Β is the p × 1-dimensional regression coefficient; ε 
is a random disturbance term. Variable I is the identity unit matrix; K is the variable ridge 
regression coefficient in ridge traces. The choice of K is critical for the ridge regression 
model since the model’s success is dependent on the ridge parameter K (ranging from 0 
to 1). The reasonable value of K is usually determined according to the stable point of the 
ridge trace map. In the ridge trace map, if the correlation coefficient tends to be stable after 
a certain point, the K value corresponding to that point is the best K value of the model. At 
the same time, the smaller the K value, the better the fitting effect of the model (Marquardt 
& Snee, 1975; Wang et al., 2019; Zhao et al., 2022). After determining the best K value, 
the K value can be actively entered into the model to acquire the ridge regression model’s 
estimated result.

2.4  Variables and data

The sources of  PM2.5 concentration data are diverse, mainly including the inversion estima-
tion of atmospheric composition from satellite remote sensing and the measured value on 
the ground-based observations (Gu et al., 2021; Rahman & Thurston, 2022). China did not 
include the  PM2.5 index into the scope of routine air quality monitoring before 2012, result-
ing in the lack of measured value of  PM2.5. To maintain the continuity of data, the average 
annual  PM2.5 concentration value in each city from 2006 to 2012 is obtained from the aero-
sol estimates data of the atmospheric composition analysis group of Dalhousie University, 
Canada (Weagle et al., 2018; Yang et al., 2021). The average annual  PM2.5 concentration in 
each city from 2013 to 2019 comes from the measured values of urban environmental mon-
itoring stations, specifically from the Statistical Yearbook of Zhejiang Province. Therefore, 
to keep the caliber of the two different data sources unified and better reflect the actual 
situation of urban  PM2.5 concentration, the correlation coefficient is obtained by dividing 
the measured  PM2.5 value in each city from 2013 to 2019 and the estimated value of atmos-
pheric composition from 2013 to 2019. And then, the correlation coefficient is multiplied 
by the estimated value of atmospheric composition from 2006 to 2012 to approximately 
estimate the final average annual  PM2.5 concentration from 2006 to 2012. Figure 3 shows 
the final variation characteristics of  PM2.5 concentration in 11 cities in Zhejiang Province.

Fig. 3  Variation characteristics of  PM2.5 concentration in Zhejiang from 2006 to 2020
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Data for the seven socioeconomic indicators were compiled from the Zhejiang Prov-
ince Statistical Yearbook and the Zhejiang Natural Resources and Environment Statisti-
cal Yearbook from 2007 to 2020. Some missing data are filled with linear interpola-
tion. Figure 4 depicts the box statistical findings of each index variable after taking the 
logarithm.

3  Results

3.1  STIRPAT model regression of  PM2.5 concentration

According to the collected index data, the linear STIRPAT of Formula (4) is selected as 
the analysis model (He et al., 2022). To facilitate the explanation, Hangzhou is taken as the 
case area for multiple regression analysis, utilizing the SPSS25 software. The outcomes are 
displayed in Table 3. Table 3 demonstrates significant multicollinearity between the varia-
bles, with the variance expansion factor much greater than 10 and the logarithm coefficient 
of per capita GDP and logarithm quadratic term coefficient of per capita GDP having vari-
ance expansion factors as high as 3402 and 3680, respectively. From the significance level 
of each explanatory variable, only lnIS and lnTR passed the significance test of 5% and 1%, 
respectively, and the regression coefficient is positive. This suggests that there is a negative 
relationship between  PM2.5 concentration and pollutant emissions brought on by the high 
percentage of industrial output value and the increasing number of motor vehicles, while 
having a significant positive promoting effect on air quality, which will aggravate  PM2.5 
pollution. However, the other six variables did not pass the significance test. Therefore, the 
coefficients fitted by the OLS method cannot be reliably guaranteed and cannot be judged 
according to the fitting results of the OLS method. The multicollinearity of independent 
variables must be eliminated to obtain robust results.

Fig. 4  Violin with box statistics of variables
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3.2  Ridge regression analysis of  PM2.5 concentration

To avoid multicollinearity among influencing factors, based on the extended STIR-
PAT model, this study fitted  PM2.5 concentration and influencing factors through ridge 
regression analysis and constructed  PM2.5 concentration prediction models for 11 cities 
in Zhejiang Province. Table 4 displays the relevant ridge regression results.

Thus, the  PM2.5 concentration prediction model of 11 cities in Zhejiang Province can 
be obtained. For example, in the ridge regression model, when k = 0.14, the regression 
coefficients of various influencing factors in Hangzhou tend to be stable. At this time, 
R2 = 0.92, F value is 11.532, which is significant at the 1% level, so the overall fitting is 
better. The specific model equation is:

For Hangzhou, urbanization development (P), economic development (A), techno-
logical innovation investment (T) and environmental regulation intensity (ER) have a 
substantial inhibitory impact on  PM2.5 concentration, while industrial structure (IS), 
industrial energy consumption (EC) and the number of motor vehicles (TR) have a sig-
nificant increase on  PM2.5 concentration. Among them, the percentage of industrial pro-
duction value has the most effect on  PM2.5 concentration. For every 1% increase in IS, 
 PM2.5 concentration will increase by 0.719%. Therefore, boosting the growth of the ter-
tiary and high-tech industries, continuously reducing the proportion of industrial output 
value and strictly controlling the emission of industrial pollution sources are vital to 
improving the  PM2.5 environment in Hangzhou. Meanwhile, the per capita GDP and 
its quadratic term coefficient (significant at the negative and 10% levels) demonstrated 
an inverted U-shaped relationship between  PM2.5 concentration and economic develop-
ment in Hangzhou. That is, economic development will first increase and subsequently 
decrease  PM2.5 concentrations, eventually improving air quality. This means that the 
current socioeconomic development model of Hangzhou (pursuing a digital economy 

(7)
ln PM

2.5
= 7.472 − 1.031 lnP − 0.052 lnA − 0.003(lnA)

2 − 0.257 ln T

+ 0.719 ln IS + 0.087 ln EC + 0.008 ln TR − 0.061 ln ER

Table 3  Ordinary least squares regression estimation results in Hangzhou

R2 = 0.975, F- Statistic is 38.953, Sig. = 0.000. Other cities also have similar collinearity issues, which are 
not listed here

Variable Unstandardized coef-
ficients

standardized 
coefficients

t–Statistic Sig Collinear statistics

B Std. Error Beta Tolerance VIF

Cons − 0.738 6.288 0.910
lnP − 2.802 1.551 − 0.583 − 1.807 0.114 0.034 29.137
lnA 1.281 0.327 0.743 1.845 0.276 0.002 3402.500
(lnA)2 − 0.023 0.014 − 0.791 − 1.597 0.154 0.015 3680.621
lnT 0.398 0.624 0.154 0.638 0.544 0.061 16.351
lnIS 1.898 0.486 1.220 3.901 0.006 0.037 27.327
lnEC 0.223 0.291 0.081 0.765 0.469 0.320 13.122
lnTR 0.814 0.343 1.738 2.372 0.049 0.007 150.113
lnER − 0.146 0.155 − 0.192 − 0.942 0.378 0.086 11.681
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direction and leading the efficiency of pollution management with science and technol-
ogy) is advantageous to the development of the  PM2.5 environment.

Similarly, through the regression fitting results of  PM2.5 concentration in other 10 cit-
ies, it has been discovered that P, A, T and ER significantly reduce  PM2.5 concentration. 
However, the significance level and effect coefficient of various cities vary to some extent, 
even though IS, EC and TR have a definite growing effect on  PM2.5 concentration. In con-
trast, the influence coefficient of IS on  PM2.5 concentration is generally higher than EC and 
TR, which means that a higher proportion of industrial output value and higher industrial 
pollution emissions are important factors leading to the increase of  PM2.5 concentration 
in Zhejiang. Thus, accelerating industry structural adjustment and decreasing industrial 
energy consumption are critical to improving  PM2.5 quality in Zhejiang Province in the 
future (Jiang et al., 2019; Xu et al., 2021). Among the indicators of restraining  PM2.5 con-
centration, the impact coefficient of urbanization level (P) is higher than A and T. On the 
one hand, it indicates that the current urbanization construction process in Zhejiang aims at 
building a green and harmonious livable city and realizing the synchronous improvement 
of  PM2.5 environmental quality in the process of the urban agglomeration of population. It 
is vital to improve the urban environment through scientific and technological means such 
as the digital economy and urban brain. On the other hand, it also implies that the  PM2.5 
pollution management path fueled by scientific and technological  innovation in Zhejiang 
Province has significant untapped potential, which is also a key breakthrough direction for 
 PM2.5 quality improvement in the future (Ding & Fang, 2022; Xia et al., 2020).

In addition, the quadratic coefficient of per capita GDP in Quzhou city did not pass the 
significance test, while other cities passed the significance test at least at the level of 10%, 
which indicates that, with the exception of Quzhou, there is an inverted U-shaped link 
between  PM2.5 concentration and economic growth. The effect of TR on  PM2.5 concentra-
tion in Quzhou and Lishui did not pass the negative significance test. The effect of ER on 
 PM2.5 concentration in Jiaxing did not pass the positive significance test. It is worth not-
ing that as an industrial city with a developed traditional manufacturing industry, Jiaxing’s 
industrial energy consumption has been increasing. The amount of normal coal consumed 
in 2020 stayed at 16.25 million tons. Effective action is currently required to slow down 
the pace of economic expansion, achieve energy conservation and emission reduction and 
lower the usage of petrochemical energy sources like coal. Further, the scientific and tech-
nological innovation level (T) of Huzhou and Lishui has a beneficial growing influence on 
the  PM2.5 concentration, which may be attributed to the two cities’ lack of investment in 
science and technology. It resulted in the lack of influence of science and technology on the 
 PM2.5 emission reduction.

3.3  Scenario analysis of  PM2.5 concentration trend prediction

3.3.1  Scenario mode setting of  PM2.5 concentration trend

According to the regression results of the above analysis, this paper sets 3 values, which 
are low, medium and high, for the change rate of the 7 factors in each city’s prediction 
model. In the median value, the change rates of P, A and T influencing factors in cities 
from 2021 to 2025 are set on average according to the binding objectives in the 14th 
Five-Year Plan, and the change rates of other indicators and influencing factors in cit-
ies after 2026 are set according to the change trends of population, economy, energy 
and other relevant policies and historical data. In the low and high values, the setting of 
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the change rate of each influencing factor is adjusted accordingly based on the median 
value. At the same time, this paper also takes into account the impact of COVID-19, 
economic globalization and other various factors in the new era (Chauhan & Singh, 
2020; Du et al., 2021; Le Quéré et al., 2020). Among them, COVID-19 will have a long-
term impact on the industrial structure and economic development, while other factors 
will be less affected. Therefore, the change rate of industrial structure is reduced based 
on the setting of relevant policies and historical data. The setting of the change rate 
for various influencing elements of  PM2.5 concentration change in Zhejiang Province is 
listed in Table 5.

According to the change rates of three influencing factors of low, medium and high in 
each city, five different scenario models are established to predict the changing trend of 
 PM2.5 concentration in each city in Zhejiang Province. Table 6 indicates the detailed set-
tings of the five scenarios.

Benchmark scenario (S1) The change rate of each influencing factor selects the 
medium value. Combined with the 14th Five-Year Plan and the long-term goal of 2035, 
this scenario implicates the potential change trend of  PM2.5 concentration in the future 
under the development goals of per capita GDP, population, energy, urbanization and 

Table 5  Change rate setting of influencing factors of  PM2.5 concentration in Zhejiang Province

The values of P, A and T take the Five-Year average value of the adjustments of each city in relation to the 
objectives of the 14th Five-Year Plan for National Economic and Social Development and the Outline of 
Long-term Objectives for the Year 2021–2025, named Expected Planning Value (EPV). IS and EC are in the 
process of transformation and energy emission reduction, so their change rate is set to negative

Change rate Time Setting of change rate

P A T IS EC TR ER

Low 2021–2025 EPV EPV EPV − 1.60% − 1.5% 7.00% 7.00%
2026–2030 0.50% 4.00% 1.50% − 1.40% − 1.0% 5.00% 5.00%
2031–2035 0.25% 3.00% 0.50% − 1.20% − 0.5% 3.00% 3.00%

Medium 2021–2025 EPV EPV EPV − 2.00% − 3.0% 11.00% 13.00%
2026–2030 1.00% 6.00% 2.20% − 1.80% − 2.0% 9.00% 10.00%
2031–2035 0.75% 5.00% 1.70% − 1.60% − 1.0% 7.00% 7.00%

High 2021–2025 EPV EPV EPV − 2.40% − 5.0% 15.00% 20.00%
2026–2030 1.50% 8.00% 4.50% − 2.20% − 3.0% 13.00% 15.00%
2031–2035 1.00% 7.00% 3.00% − 2.00% − 1.0% 11.00% 10.00%

Table 6  Scenario setting of  PM2.5 concentration change in cities in Zhejiang Province

Scenario Setting of change rate

P A T IS EC TR ER

S1 Medium Medium Medium Medium Medium Medium Medium
S2 Medium Medium Medium High Medium Medium Medium
S3 Medium Medium Medium Medium High Low Low
S4 High High High High High Low High
S5 Low Low Low Low Low High Low
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other relevant policies of cities, which aims to investigate the impact of cities on  PM2.5 
concentration in the future in light of the existing planning guidelines (Zhang et  al., 
2020).

Industrial structure optimization scenario (S2) The change rate of industrial structure 
(IS) selects a high value (i.e., the fraction of industrial production value falls dramati-
cally), and a medium value is chosen based on the pace of change of other relevant fac-
tors. This scenario reflects those cities further optimizing and upgrading their industrial 
structure on the basis of existing policies. Controlling pollution emissions from indus-
trial sources is an important way to improve  PM2.5 concentration and promote China’s 
sustainable development. Therefore, the air pollution control plan has been the subject 
of pertinent industrial structure transformation and upgrading programs from all levels 
of government. By adjusting the industrial structure, secondary industries, particularly 
traditional industries, will play a decreasing role in the national economic growth, while 
high-tech, the digital economy and services will take over as the main drivers (Li et al., 
2018). Compared with the benchmark scenario, the proportion of industrial output value 
of each city will be further reduced.

Energy saving scenario (S3) The energy consumption intensity (EC) selects the high 
value while the change rate of traffic source intensity TR selects the low value, and the 
change rate of other influencing factors selects the medium value. Reducing the con-
sumption of petrochemical energy such as coal and decreasing the emission of pollut-
ants is the most important step toward strengthening the quality of the air environment. 
This scenario reflects that based on existing policies, cities should tighten their grip 
on energy-related regulations, spend more on energy efficiency and emission reduc-
tion, aggressively change their energy structures, advance technology, and cut back on 
energy-intensive activities and traffic-related emissions, to reduce  PM2.5 concentration 
(Yue et al., 2020).

High-quality development scenario (S4) The change rate of each influencing factor 
chooses the high value, while the rate of TR chooses the low value, so it is possible to 
slow down the growth rate of urban automobile traffic and control the emission of traffic 
exhaust. This scenario reflects those cities do not take the growth of total GDP as the main 
goal, but take the coordinated development of the social, economic and environmental 
system as the focus. During the procedure of new urbanization, cities are taking effective 
measures to achieve green development and improve  PM2.5 environmental quality, such 
as increasing investment in scientific and technological innovation, applying energy con-
servation and emission reduction measurements (significantly reducing industrial energy), 
optimizing industrial structure (dramatically decreasing the percentage of industrial out-
put value, especially the reduction of pollution-intensive industrial sectors), strengthening 
environmental pollution control and other measures.

Conservative and extensive development scenario (S5): the change rate of each influ-
encing factor selects the low value, except that TR selects the high value. This scenario 
reflects that affected by the global epidemic, the socioeconomic development of these 
regions slows down (Wang et al., 2021b), the urbanization level and per capita GDP is at a 
low value, as well as a reduction in expenditure on scientific and technological innovation. 
Furthermore, throughout this phase, the industrial structure adjustment has slowed down 
and the industrial energy consumption has remained high. There are fewer restrictions on 
the number of motor vehicles, the handling of traffic-related pollution is inadequate, and 
less emphasis is placed on changes in air pollution emissions and  PM2.5 concentrations. 
Thus, economic growth is a relatively extensive and conservative method (Liu & Xiao, 
2018; Narayan et al., 2016).
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3.3.2  Scenario analysis results of  PM2.5 concentration trend

Based on the regression prediction model of  PM2.5 concentration change in each city, 
combined with five scenario settings, this study calculated the  PM2.5 concentration 
change of each city from 2021 to 2035 under different scenarios (Fig. 5). Besides, the 
study predicted the time when each city meets the  PM2.5 concentration constraint target 
set by the government and meets the 14th Five-Year Plan standard under different sce-
narios (Table 7).

Figure  5 shows that the  PM2.5 concentrations in each city decreased to differ-
ent degrees under different scenario models. The decrease of  PM2.5 concentration is 
S4 > S3 > S2 > S1 > S5. Thus, the High-quality development scenario (S4) has the most 
obvious effect on the improvement of urban  PM2.5 quality, while S1 and S5 scenarios 
are relatively weak in the improvement of urban  PM2.5 quality. It can be seen from this: 
(1) accelerating the transformation of industrial structure, reducing energy usage and 
focusing on green development will result in a rapid reduction in  PM2.5 concentrations; 
On the contrary, if the economy is developed in a sloppy manner, the investment in sci-
ence and technology innovation is slowed down, and the control of pollution emission is 
reduced, the reduction of  PM2.5 concentration will be hindered. (2) The effect of energy 
consumption reduction and motor vehicle quantity control (traffic source pollution emis-
sion reduction) in the S3 scenario on urban  PM2.5 quality improvement is better than the 
effect of industrial restructuring alone on  PM2.5 concentration. The purpose of industrial 
restructuring is also to regulate and reduce energy usage, such as coal consumption, 
which in turn achieves the control of air pollutant emissions to benefit the  PM2.5 quality.

To test the accuracy of the  PM2.5 concentration prediction results of the scenario analy-
sis, the ground-level measured  PM2.5 concentrations in each city in 2021 are compared 
with the predicted  PM2.5 concentrations of different scenarios here (Table 7). It was found 
that the overall  PM2.5 concentration prediction accuracy for different scenarios showed 
that S5 > S1 > S2 > S3 > S4, and this order is the opposite of the previous ranking of the 
decreasing trend of  PM2.5 concentration. Thus, affected by the epidemic, urban industrial 
restructuring and energy consumption reduction slow down accordingly, and the oper-
ating costs of air pollution treatment also slow down, resulting in the changes in  PM2.5 
concentration also slowing down, basically following the evolutionary path of S5 and S1. 
This is also in line with the current actual situation. Therefore, in the 14th Five-Year Plan 
(Table 1), Shaoxing, Zhoushan, Lishui and other cities preset the  PM2.5 concentration in 
2025 to be slightly higher than the initial concentration in 2020, retaining sufficient room 
for future socioeconomic development. Taking into account the various socioeconomic 
growth frameworks of various cities, the environmental planning policies should be for-
mulated in light of the real circumstances of urban development to fulfill the dual goals 
of economic growth and environmental quality improvement. So, it is suggested that the 
 PM2.5 concentration control should be implemented in a stepwise progressive model: that 
is, Zhejiang Province can choose the S1 baseline scenario or the S5 conservative economic 
development scenario during 2021–2025, and gradually make good reserves of science 
and technology, talents, capital and other factors for industrial structure transformation 
and upgrading. Then, choose the S2 or S3 green development model during 2026–2030, 
which on the basis of S1, continually improves the industrial structure and layout, min-
imizes industrial energy consumption, optimizes the industrial structure and layout, and 
minimizes industrial energy consumption on a constant basis. And finally, it pursues the S4 
high-quality development scenario during 2031–2035.
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Fig. 5  PM2.5 concentration forecast of 11 cities in Zhejiang Province
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It can also be found that regardless of the scenario model, by 2025, the  PM2.5 concen-
trations in all 10 cities, except Zhoushan, do not fulfill the key national requirements for 
ambient air quality.

4  Discussion and policy implication

4.1  Higher standard of  PM2.5 target planning

Combining the results of Table 1 and Table 7, it can be seen that according to the cur-
rent socioeconomic development trend, the  PM2.5 concentration in each city can reach the 
constraint target set in the 14th Five-Year Plan. However, for the long-term development 
of 2035, in the process of pursuing higher quality economic development and a beauti-
ful ecological environment, what development path should be taken if the higher standard 
 PM2.5 limits for environmental constraints have been involved, such as National Class I 
level standard and WHO standard?

Table  8 shows the earliest occurrence time when  PM2.5 concentration in 11 cities in 
Zhejiang province meets the National Class I standard and WHO standard (AQG 2005) 
under different scenarios.

The accompanying table shows that there are significant disparities in the occurrence 
periods of  PM2.5 concentrations meeting the National Class I level standard and the WHO 
standard in different cities. According to the time of reaching the standard, the 11 cities 
can be classified into three groups: (1) cities that are easy to control  PM2.5 concentrations. 

Fig. 5  (continued)
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Before 2035, no matter what development scenario is followed, the  PM2.5 concentration of 
these cities can reach the National Class I standard. These cities are Zhoushan, Quzhou, 
Jinhua, Ningbo and Wenzhou. The  PM2.5 concentration of these cities is low, so the pres-
sure of  PM2.5 emission reduction is relatively light. Benefiting from favorable natural geo-
graphical conditions and lower pollutant emissions, Zhoushan is the first city to reach the 
National Class I standard of  PM2.5 concentration in 2021. Other cities will not meet the 
National Class I standard until 2026 at the earliest. (2) Cities that are stable in control of 
 PM2.5 concentrations. Huzhou, Taizhou and Lishui can meet the national level standards 
in the other four scenarios except in the S5 scenario. These cities need to avoid taking the 
road of extensive development, adhere to the current direction of industrial adjustment and 
upgrading, and stabilize the investment of environmental protection funds for  PM2.5 gov-
ernance. (3) Cities that are difficult in controlling  PM2.5 concentrations. Hangzhou, Jiax-
ing and Shaoxing, can meet the National Class I standard mainly under the S4 scenario. 
Among them, the proportion of energy consumption and traditional polluting industries 
in Jiaxing and Shaoxing has been high, including the rising number of motor vehicles and 
significant traffic exhaust pollution. These cities are under severe economic transition and 
development strain. They should rely on the digital economy as well as scientific and tech-
nical innovation to improve pollution management and lower the emission of air pollutants. 
Therefore, these cities are critical places of  PM2.5 control in Zhejiang Province.

By 2035, most cities will not be able to meet the 10 μg/m3 limit of WHO’s AQG 2005 
version, and only the first category cities that easy to control the  PM2.5 concentrations will 
be able to meet the standard around 2035 in scenario models such as S4 and S3 (exception-
ally, Zhoushan can be the first to meet the standard around 2028). Meanwhile, all cities 
are unable to meet the 5 μg/m3 limit of WHO’s AQG2021 version. Therefore, Zhejiang, 
as China’s demonstration zone of ecological civilization, is in the process and context of 
achieving the province’s high-quality dual goals, which promoting economic development 
and the construction of a clean air demonstration zone facing 2035. Zhejiang can try to 

Table 8  The year to reach the National Class I level standard and WHO standard for  PM2.5 concentration in 
each city under different scenarios

“–” indicates that in this scenario, there is no year in which a city reaches the corresponding  PM2.5 envi-
ronmental quality standard. The World Health Organization (WHO) AQG2005 version of 10 μg/m3 is used 
here. In 2021, The World Health Organization (WHO) published the most recent global air quality recom-
mendations (AQG2021), which set a  PM2.5 indicator limit of 5 μg/m3

City National Class I level standard (15 μg/m3) WHO standard (10 μg/m3, AQG 2005)

S1 S2 S3 S4 S5 S1 S2 S3 S4 S5

Hangzhou – 2035 – 2031 – – – – – –
Ningbo 2027 2027 2027 2026 2030 – 2035 2035 2031 –
Wenzhou 2029 2028 2028 2027 2033 – – – 2033 –
Jiaxing – – – 2031 – – – – – –
Huzhou 2031 2030 2030 2029 – – – – – –
Shaoxing – – – 2032 – – – – – –
Jinhua 2029 2028 2028 2027 2034 – 2035 2035 2032 –
Quzhou 2028 2028 2028 2026 2034 – – – 2033 –
Zhoushan 2021 2021 2021 2021 2022 2029 2029 2028 2027 –
Taizhou 2034 2033 2030 2028 – – – – – –
Lishui 2030 2029 2028 2026 – – – – – –
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constrain and assess the ecological environmental protection tasks of each city with higher 
environmental quality standards, making a more active contribution to building a beautiful 
Zhejiang and effectively enhancing the people’s sense of happiness in enjoying the blue 
sky.

4.2  Regional  PM2.5 pollution control suggestions

Combining the results of different scenario analyses, the following pollution control meas-
ures for  PM2.5 are proposed, to achieve new progress in improving air quality.

(1) Optimize and adapt the industrial structure to reduce  PM2.5 pollutant emissions. From 
the regression analysis, IS has a significant positive effect on  PM2.5. Zhejiang needs to 
accelerate the relocation and transformation significantly polluting industries in densely 
populated metropolitan regions, mergers and acquisitions, reduce the production value 
of heavy polluting industrial sectors, direct the rational layout of essential industries 
such as petrochemicals, chemicals, iron and steel, building materials and nonferrous 
metals and ban the construction of new chemical parks. Strictly implement the require-
ments for capacity replacement in the steel, cement, flat glass and foundry industries, 
and continue to reduce and eliminate backward and excess capacity. Accelerate the 
implementation of textile, chemical fiber, pharmaceutical and chemical, metal products 
and other traditional industries’ green technology transformation (Ding et al., 2020).

(2) Leading the pollution control of  PM2.5 by science and technology innovation. From 
the regression analysis, T has a significant reduction effect on  PM2.5, which means 
increasing investment in science and technology innovation is a necessary path for 
industrial structure transformation. Therefore, on the one hand, it is vital to increase 
the end treatment technology of air pollution, research and develop the coordinated 
control technology of  PM2.5 and ozone, develop the efficient treatment technology and 
equipment of flue gas and volatile organic pollutants, and research and develop the key 
treatment technologies such as the source substitution of raw and auxiliary materials 
with low VOCs and the key technologies for the prevention and management of mobile 
source air pollution. On the other hand, it is critical to rely on artificial intelligence and 
information technology, to expedite the integration and deployment of a new generation 
of digital technology, to significantly boost scientific and technical innovation capabil-
ity, to upgrade and improve the three-dimensional monitoring network of atmospheric 
compound pollution and to systematically improve the  PM2.5 environmental manage-
ment capabilities (Zhang et al., 2020).

(3) Reduce the exhaust emission of  PM2.5 with green traffic engineering. From the regres-
sion analysis, TR can significantly increase  PM2.5. Therefore, it is necessary to accel-
erate the green development of highway transportation and reduce particulate matter 
emissions when the total number of motor vehicles cannot be reduced. On the one hand, 
Zhejiang Province should continue to eliminate old vehicles. By 2025, it will basically 
eliminate the operating heavy diesel trucks with National Class III and below emission 
standards and accelerate the elimination of National Class IV standard diesel trucks. 
On the other hand, it is necessary to promote the use of new and clean energy non-road 
mobile machinery, and actively promote the elimination, replacement or clean trans-
formation of high energy consumption and high pollution non-road mobile machinery. 
For the above-mentioned cities with difficulties in controlling  PM2.5 concentrations, it is 
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vital and necessary to accelerate the deployment of clean energy public transportation 
vehicles in large and medium-sized cities.

5  Conclusions

In terms of national economic and social planning and ecological and environmental plan-
ning, variations in  PM2.5 concentration over the long and medium term are significant 
binding indicators. In this study, a STRIPAT-Scenario analysis framework was constructed 
to predict the trends of  PM2.5 concentrations under five different scenarios based on panel 
data of 11 cities in Zhejiang from 2006 to 2020, and accordingly, to explore the compli-
ance of each city with higher quality environmental standards. The regression results show 
that urbanization development (P), economic development (A), technological innovation 
input (T) and environmental regulation intensity (ER) had a significant inhibitory effect on 
 PM2.5 concentration in Zhejiang Province, while the number of motor vehicles (TR), indus-
trial energy consumption (EC) and industrial structure (IS) have a considerable growing 
impact on  PM2.5 concentration.

The scenario analysis shows that the reduction of  PM2.5 concentration is 
S4 > S3 > S2 > S1 > S5, which is that the high-quality development scenario (S4) has the 
most obvious effect on the improvement of urban  PM2.5 quality. Under any scenario, the 
 PM2.5 concentrations of 11 cities in Zhejiang Province can reach the constraint objectives 
which is established in the 14th Five-Year Plan.

Toward 2035,  PM2.5 concentrations can reach the National Class I standard under 
most scenario models, but Hangzhou, Jiaxing, and Shaoxing are under stronger pressure 
to reduce emissions, which makes them key regions for  PM2.5 management in Zhejiang 
Province. It is worth noting that most cities cannot meet the 10  μg/m3 limit of WHO’s 
AQG2005 version. In the future, Zhejiang can try to constrain and assess the ecological 
environmental protection tasks of each city with higher environmental quality standards.

Due to data limitations, this study only predicted  PM2.5 concentration changes in the 
context of medium and long-term socioeconomic planning, represented by 11 cities in 
Zhejiang Province in key regions. For future research, the study can continue to expand 
the sample of cities and conduct detailed prediction model construction around the popula-
tion size and industrial characteristics of different cities. And the scenario index settings 
can be improved on the basis of clarifying the energy consumption and  PM2.5 emission 
coefficients of different industry sectors. Therefore, it can increase the accuracy of  PM2.5 
forecast and provide a scientific foundation and suggestions for medium- and long-term 
environmental planning.
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