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Abstract
Wearing a mask or a face covering became mandatory in indoor public spaces to reduce the 
spread of coronavirus disease 2019 (COVID-19). The Ontario government (i.e., a province 
of Canada) encouraged medical supply producers to switch their operations to produce per-
sonal protective equipment (e.g., masks) during the COVID-19 pandemic. In this regard, 
there are several uncertain parameters (e.g., operational costs, market demand, and capac-
ity levels of facilities) affecting the performance of producers in a medical supplies market. 
In this study, we propose a flexible optimization model to configure a robust mask supply 
chain network under uncertainty. Furthermore, companies are supposed to undertake their 
operations based on sustainable manners, in compliance with provincial policy, in Ontario. 
Therefore, the proposed flexible optimization model is extended to a robust multi-objective 
model to investigate sustainable strategies in a mask supply chain network design problem. 
The applicability of this model is demonstrated for the Greater Toronto Area, Canada.

Keywords Supply chain network · Multi-objective model · Mixed-integer linear 
programming · Robust optimization · COVID-19 outbreak

1 Introduction

The recent COVID-19 outbreak caused major uncertainty for supply chain networks 
(SCNs) across the world. A general structure of SCNs may consist of multiple echelons 
such as suppliers, producers, distribution centers, retailers, and customer zones. A suc-
cessful SCN design should have sufficient flexibility to fulfill customer expectations in 
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high-risk situations. The adoption of proactive strategies (e.g., inventory planning for han-
dling fluctuations in supply and demand) leads to mitigating structural risks in uncertain 
circumstances (Amin & Zhang, 2013; Iyengar et al., 2020; Olivares-Aguila & ElMaraghy, 
2021; Tosarkani et al., 2020). Two types of operational and disruption risks may occur in 
SCNs. The operational risk is caused by daily disturbance such as volatility in demand, 
while the disruption risk stems from high-impact events such as earthquakes, strikes, and 
disease outbreaks. Accordingly, the disruption risk leads to a significant impact on the 
structure of SCNs since some facilities may become unavailable (Govindan et al., 2020; 
Ivanov, 2020).

SCNs incorporate all strategic, tactical, and operational decisions (e.g., opening new 
facilities, partner selection, procurement, production and inventory planning, customer 
service, logistics, and transportations) through the collaboration between multiple enti-
ties (e.g., producers and intermediaries) to fulfill customer expectations (Yousefi et  al., 
2021; Rezaee et  al., 2017). In supply chain planning, efforts should be implemented to 
coordinate materials, information, and financial flows (Choi et al., 2017; Yousefi & Tosar-
kani, 2022). As mentioned previously, there are several sources of uncertainties affecting 
SCN configuration. Hence, different mathematical approaches can be applied to deal with 
uncertainties in facility location problems (e.g., robust optimization, stochastic, and pos-
sibilistic programming). The adoption of such methods depends on the type of imprecise 
(i.e., uncertain) parameters incorporating into optimization models. Robust optimization 
is applicable when variations of parameters are definable (e.g., bounded uncertainty sets) 
(Ben-Tal & Nemirovski, 2002; Prakash et al., 2020; Vahdani & Mohammadi, 2015). Sto-
chastic programming is employed when probability distributions of random parameters are 
known (Amin et al., 2017; Badri et al., 2017; Lima et al., 2018). However, in some cases, 
the statistical distributions of uncertain parameters (e.g., fluctuations in capacity levels of 
resources due to prevention policies and practices during the COVID-19 pandemic) can-
not be estimated. In such cases, the fuzzy theory is applied to define imprecise parameters 
through a membership function (Amin et al., 2020; Tsao et al., 2018).

The World Health Organization (WHO) has declared that the coronavirus spreads pri-
marily from person to person through small droplets from the nose or mouth when the 
person with COVID-19 coughs, sneezes, or speaks. Masks are supposed to be used to keep 
full protection of the eyes, nose, and mouth. On this matter, the presence of an efficient, 
effective, and robust mask SCNs is essential for COVID-19 prevention. This research is 
inspired by a medical device SCN in the GTA, including medical manufacturer(s), dis-
tribution center(s), retailer(s), and customers. In this respect, several uncertain factors are 
interfering with an optimal SCN configuration. To prevent the spread of COVID-19, many 
employees (except essential workers) either stay at home or work from home limiting the 
hours of operation. Furthermore, all employees presenting at their workplace should con-
tinue to practice physical distancing. This has a negative impact on the capacity levels of 
entities involved in SCNs, particularly in the healthcare sector, requiring long hours of 
operations due to the high-volume demand. The other uncertain parameters include market 
demand and major variable costs of transportation, production, and holding inventory. In 
this study, we develop a robust flexible multi-objective programming (RFMOP) model for 
a mask SCN under uncertainty in the Greater Toronto Area (GTA), Canada. The devel-
oped model enables managers to create robust SCNs for managing different types of risks. 
Accordingly, this model considers a variety of imprecise parameters (e.g., the capacity of 
producers, market demand, and infection prevention policies and practices) that affect the 
optimal configuration of SCNs during high-impact events.
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The structure of this study is organized as follows: Sect. 2 reviews the previous stud-
ies in the field of the research. The research methodology and problem definition are pro-
vided in Sects. 3 and 4, respectively. Section 5 presents the proposed mathematical mod-
els to address the defined problem and discusses the results. The practical implications of 
this study are discussed for practitioners in Sect. 6. Finally, Sect. 7 describes concluding 
remarks and future research avenues.

2  Literature review

2.1  SCN design using stochastic programming

The relevant studies using a stochastic programming (SP) model in facility location prob-
lems are reviewed in this section. Subulan et  al. (2015) designed a closed-loop supply 
chain network (CLSCN) for lead-acid battery production, using a scenario-based stochastic 
and possibilistic model considering financial and collection risks. Ameknassi et al. (2016) 
integrated logistics outsourcing decisions in an SCN design. They established multiple sce-
narios, including the uncertainty of demand, the capacity of facilities, quantity and quality 
of returned products, and other variable costs. Keyvanshokooh et al. (2016) developed a 
profit maximization model to design a CLSCN considering various scenarios for stochastic 
transportation costs. Soleimani et al. (2016) applied a mixed-integer linear programming 
(MILP) model to develop a CLSCN with stochastic demand and price. Jeihoonian et  al. 
(2017) utilized a two-stage stochastic MILP model to configure a CLSCN for modular 
structured products. Binary scenarios were considered to handle uncertainty in the quality 
of the return stream. Fahimnia et al. (2017) created a stochastic bi-objective model for a 
blood SCN in a disaster situation, which focused on minimizing the total cost and delivery 
time. Badri et  al. (2017) applied a two-stage stochastic programming (TSP) model for a 
value-based SCN design. Fathollahi-Fard et al. (2018) investigated the economic and social 
aspects of a CLSCN design using a multi-objective SPM. Heydari et al. (2018) proposed 
an analytical model to coordinate the order quantity and service level in a seller-buyer SCN 
with stochastic demand. Yu and Solvang (2018) mentioned that reverse product flow may 
have stochastic specifications due to the unpredictable quality of returned products and the 
fluctuations in pricing for remanufactured items. They applied a TSP model to design a 
reverse logistics network (RLN) under uncertainty.

Quddus et al. (2018) developed a two-stage chance-constrained stochastic model for a 
bio-fuel SCN with uncertain feedstock supply (e.g., forest residues, and municipal waste). 
Zahiri et  al. (2018) investigated the uncertainty in blood donation through a multi-stage 
SP model in a blood SCN. Ghelichi et al. (2018) developed a flexible SP model to design 
a green biodiesel SCN under the uncertainty of fuel demand. Hamdan and Diabat (2019) 
considered production, inventory, and location decisions using a TSP model for a blood 
SCN design. Poudel et al. (2019) designed a biomass SCN with regard to uncertain feed-
stock supply using a TSP model. Tosarkani and Amin (2019) designed a lead-acid bat-
tery CLSCN considering the environmental compliance of involved facilities. They exam-
ined multiple scenarios for recovery rates of returned products with a given probability of 
occurrence. Zhang et al. (2020) investigated the quick response in a two-echelon SCN with 
the stochastic production capacity. They developed the two-stage two-ordering model and 
employed dynamic programming to obtain an optimal ordering policy. Nur et  al. (2021) 
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proposed a novel TSP model for a biofuel SCN design incorporating related uncertain 
parameters such as biomass quality. Lin et al. (2020) designed a vaccine SCN, including 
manufacturers, distributors, and retailers (e.g., hospitals). They investigated the risks and 
uncertainty associated with vaccine-related adverse events and temperature damage to vac-
cines due to malfunctions of temperature-controlling equipment.

2.2  SCN design using fuzzy programming

In some cases, it is required to apply a fuzzy optimization model to cope with epistemic 
uncertainty due to the imprecise nature of input data. Dai and Zheng (2015) integrated 
fuzzy programming and chance-constrained programming methods to deal with uncer-
tain disposal rates, demand, and capacity levels in a CLSCN design. Sherafati and Bashiri 
(2016) developed a novel fuzzy optimization method to design a CLSCN with fuzzy tacti-
cal decision variables. Amin and Baki (2017) applied a fuzzy multi-objective program-
ming (MOP) model to deal with uncertain demand for a global CLSCN design. Dai and 
Li (2017) designed a multi-echelon CLSCN considering fuzzy parameters (e.g., demand, 
capacity levels, and prices). They proposed a bi-objective model including the total profit 
and waste of facilities involved in their model.

Tosarkani and Amin (2018a) introduced a fully fuzzy solution approach for a battery 
CLSCN. All the input parameters and decision variables were assumed to be uncertain in 
their created model. Yu et al. (2018) designed a dual-channel SCN for agri-product con-
cerning information uncertainty. They employed triangular fuzzy numbers (TFNs) to deal 
with uncertainty. Tosarkani et al. (2020) designed a scenario-based possibilistic model for 
an electronic RLN design. TFNs were applied to cope with the uncertainty of demand, 
return, and variable costs. Tirkolaee et al. (2020) applied an integrated approach, including 
fuzzy decision-making and MOP, to design a reliable two-echelon SCN. Zandkarimkhani 
et al. (2020) proposed a bi-objective MILP model to design a perishable pharmaceutical 
SCN under uncertainty of demand. They developed a chance-constrained fuzzy goal pro-
gramming model to solve a simultaneous facility location and vehicle routing problem. 
Goodarzian et al. (2021) proposed a fuzzy bi-objective MILP model to address the green 
medicine SCN design. They used various meta-heuristic algorithms (e.g., social engineer-
ing optimization and hybrid whale optimization to solve this model.

2.3  SCN design using robust optimization

A robust solution approach enhances the feasibility and performance of optimization 
models when their infeasibility costs are considerable. Mousazadeh et al. (2015) applied 
a robust possibilistic programming approach to design a pharmaceutical SCN concerning 
epistemic uncertainty. Akbari and Karimi (2015) introduced a novel robust optimization 
(RO) model to design a multi-echelon SCN considering process uncertainty. Bai and Liu 
(2016) presented a new RO approach for an SCN configuration with regard to the variabil-
ity of demand. Talaei et al. (2016) developed a robust fuzzy programming model (RFPM) 
to design a carbon-efficient CLSCN under the uncertainty of input parameters. Guo et al. 
(2016) presented an RO model to design an SCN regarding macroeconomic fluctuations. 
Golpîra et al. (2017) introduced a robust bi-level optimization model for a green SCN con-
figuration to mitigate the uncertainty of demand and costs of transportation and shortage. 
Zokaee et al. (2017) employed an RO model to design an SCN considering the uncertainty 
of demand, supply, and major costs.
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Alavi and Jabbarzadeh (2018) applied an RO approach for a CLSCN design to deal with 
the uncertainty of recycled products and market demand. Kim et al. (2018) utilized an RO 
method for a fashion CLSCN planning under uncertainty of market demand and RL flow. 
Ghahremani-Nahr et al. (2019) developed an RFPM for a multi-echelon CLSCN consid-
ering discounts on the purchase of components, shortage, and uncertain parameters (e.g., 
demand, return, and major costs). Yavari and Geraeli (2019) introduced an RO method 
to design a green CLSCN for perishable items regarding uncertain demand, quantity, and 
quality of returned products. Hamdan and Diabat (2020) proposed a bi-objective RO model 
to configure a blood SCN. The bi-objective model was applied to minimize the total cost 
and delivery time associated with the supply of blood during the occurrence of disasters. 
Sinha et al. (2020) utilized an RO approach to mitigate the impact of cost disturbance due 
to demand variation on the configuration of a multi-echelon apparel SCN. Arabsheybani 
and Arshadi Khasmeh (2021) proposed a robust bi-objective multi-product mathematical 
model to consider resiliency and uncertainty in SCN design. In this study, the ε-constraint 
method is employed to obtain Pareto solutions for a real case in the food industry.

2.4  SCN design considering sustainability

The economic benefits have been the primary consideration in the configuration of SCNs. 
However, lately, the concept of circular supply chains has appeared in operations manage-
ment due to the advance of technologies and the growing level of environmental aware-
ness (Choi et al., 2020). Govindan et al. (2016) mentioned that optimization of the social 
responsibility along with the environmental impact of operations should be considered 
in addition to the economic motivations of companies in an RLN design. In this regard, 
they proposed an MOP model to minimize the present value of costs, the environmental 
impact, and maximize the social responsibility in a medical syringe recycling program. 
Zhang et al. (2016) proposed an MOP model (i.e., minimizing the total cost and environ-
mental influences, and maximizing the customer coverage) for a sustainable SCN design. 
Soleimani et al. (2017) developed an MOP model (i.e., maximizing the total profit and ful-
filling the customer demand, and minimizing the number of missed working days because 
of accidents) to configure a sustainable CLSCN. Nurjanni et al. (2017) introduced a new 
green SCN design to minimize the total cost and carbon dioxide emissions. Van Engeland 
et al. (2020) mentioned that a great number of benefits are associated with the domain of 
waste management and facility location problems such as reducing the consumption of raw 
materials and diverting waste from landfills and waterways. Arampantzi and Minis (2017) 
applied an MOP model (i.e., emissions costs, waste generation, and community develop-
ment) to design a sustainable SCN. Tosarkani and Amin (2018b) developed an MOP model 
(i.e., the total expected profit, green practices, on-time delivery, and quality of products and 
services provided by third parties) to design a sustainable electronic RL using multiple-
criteria decision-making (MCDM). Rohmer et al. (2019) mentioned that the current pat-
terns of food consumption and production make a negative impact on the environment and 
food security for the next generation. Accordingly, they designed a sustainable SCN in the 
context of the global food system.

Vafaeenezhad et al. (2019) developed an MOP model (i.e., the total profit, greenhouse 
gas emissions, consumed energy, generated waste, travel distance of employees, and 
employment consistency) to design a sustainable SCN in the paper industry. Hosseini-Mot-
lagh et al. (2019) developed a coordination mechanism to obtain the optimal pricing, sus-
tainability levels, and corporate social responsibility in a competitive RLN. Mardan et al. 
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(2019) proposed a bi-objective model (i.e., the total cost and environmental emissions) to 
design a green CLSCN. Zarei et al. (2020) proposed a multi-objective MILP (MOMILP) 
model (i.e., the total profit, greenhouse gas emissions, and water consumption) to design 
a sustainable natural gas SCN. Rabbani et al. (2020) introduced an MOMILP model (i.e., 
operation costs, gasoline-related costs, uncollected waste, and the number of created jobs) 
to design a sustainable bioethanol SCN. Dutta et al. (2020) applied an MOP model (i.e., the 
total cost, environmental impact, and social responsibility) to configure a sustainable RLN 
in the e-commerce market. Durmaz and Bilgen (2020) introduced an MOMILP model 
(i.e., the total expected profit and the total distance between farms and biogas facilities) 
to design a sustainable biomass SCN. Fung et al. (2020) investigated the external pressure 
and internal motivations for companies to apply a sustainable planning strategy in a fash-
ion SCN. They employed the institutional theory through a triple bottom line framework, 
including social knowledge, value systems, and governmental policies. Table 1 illustrates 
the research contributions of some relevant research.

3  Research methodology

This research aims to develop an RFMOP for a mask SCN under uncertainty. As indicated 
in Fig. 1, the overall framework of this study can be summarized in three phases:

• Phase 1: A mask SCN is configured in the GTA considering a realistic situation arising 
during the COVID-19 outbreak. In this regard, a flexible optimization model (FOM) is 
primarily developed to minimize the total cost of the SCN.

• Phase 2: As mentioned previously, environmental and social objectives should be 
involved to design a sustainable SCN. The model proposed in Phase 1 is extended to the 
MOP model. The RO approach is also employed to handle the uncertainty of the men-
tioned imprecise parameters. Therefore, the FOM is advanced to the RFMOP model to 
enable decision-makers (DMs) for managing multiple objectives under uncertainty. To 
the best of our knowledge, such an integrated approach is novel in SCN literature.

• Phase 3: The MOP model includes the total cost (z1),  CO2 emissions (z2), and the 
producer capability index (CI) (z3). Two objectives of z1 and z2 consist of quantita-
tive parameters, while z3 contains a qualitative index associated with the capability of 
producers to fulfill customer expectations. Hence, a fuzzy quality function deployment 
(QFD) model is utilized to convert the qualitative index of CI to a quantitative param-
eter. Then, the non-dominated solutions of the RFMOP model are computed and dis-
cussed as managerial insights for practitioners.

4  Problem definition

According to Toronto By-Law 541–2020, wearing a mask or face covering is mandatory in 
indoor public spaces beginning July 7, 2020. There are 25 municipalities in the GTA with 
a total population of 6,417,516 (Canada statistics). In this regard, millions of people are 
affected by such an additional measure mandated to reduce the spread of the COVID-19. 
The Ontario government has begun investing in medical manufacturers to redesign their 
operations and expand their capacity levels to make personal protective equipment (PPE) 
(e.g., masks, face shields, and goggles). The COVID-19 pandemic has led to unprecedented 
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demand for certain PPE supplies. Accordingly, the presence of robust healthcare SCNs for 
the purpose of handling fluctuations in demand and different types of risks is essential.

The applicability of the proposed solution approach is investigated using a leading com-
pany in advanced manufacturing of textile technology in the healthcare industry. Their 
productions include textile-based wearable items (e.g., biometric clothing) for the remote 
monitoring of brain, heart, and muscle activities. By the beginning of the COVID-19 out-
break, they have provided textile-based PPE to reduce the spread of coronavirus disease in 
the GTA, Ontario.

A multi-echelon, multi-product mask SCN is illustrated in Fig. 2. The network includes 
producer(s), distribution center(s), retailer(s), and customer zones (markets). The producer 
is responsible to hold an optimal operation plan to fulfill market demand. Distribution cent-
ers are utilized for the purpose of the rapid movement of products. Retailers are located in 
all municipal districts. However, the number of selected retailers is mainly dependent on 
the fluctuations in demand during the COVID-19 outbreak. This study aims to optimize 
three objectives of the total cost,  CO2 emissions, and CI of the proposed SCN by answer-
ing the following questions:

• Which and how many producer(s), distribution center(s), and retailer(s) should be con-
sidered?

• How many products should be produced in each period?
• How many products should be held as the inventory and how many should be sent to 

the markets?

Objective: To design a sustainable and resilient mask SCN under uncertainty

Phase 1: To introduce a 
flexible optimization 

model (FOM) 

Phase 3: To compute the 
non-dominated solutions 

of the RFMOP model

Phase 2: To advance 
the FOM to the 
RFMOP model

Fig. 1  The overall approach to develop a proposed RFMOP model

Producer

1…p …P

Distribution 
center 1…w

…W

Retailer

1… r…R

Market

1…m …M

Xpwjt Ywrjt Vrmjt

Fig. 2  The proposed mask SCN
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Table 2  Indices, parameters, and decision variables used in the mathematical programming

Indices
P: Set of potential locations for producers (p ∈ P)
W: Set of distribution centers (w ∈ W)
R: Set of retailers (r ∈ R)
M: Set of Markets (m ∈ M)
T: Set of time periods (t ∈ T)
J: Set related to different types of mask supplied by producers (j ∈ J)
Parameters
Ap: Fixed cost of agreement with producer p
Bw: Fixed cost of agreement with distribution center w
Cr: Fixed cost of agreement with retailer r
aj: Unit cost of transportation related to mask j between producers and distribution centers
bj: Unit cost of transportation related to mask j between distribution centers and retailers
cj: Unit cost of transportation related to mask j between retailers and markets
qpw: Distance between producer p and distribution center w
swr: Distance between distribution center w and retailer r
urm: Distance between retailer r and market m
ej: Unit cost of supply related to mask j
fj: Unit cost of holding inventory related to mask j
Dmjt: Demand of mask j required at market m in period t
Epj: Capacity of producer p to produce mask j
Fwj: Capacity of distribution center w for shipping mask j
Grj: Capacity of retailer r for mask j
Hpj: Capacity of producer p for holding mask j
n: Truck capacity
k: Truck  CO2 emissions per km
op: Capability of producer p to fulfill customer expectations
Decision variables
Mpjt: Quantity of available mask j for the supply at producer p in period t
Npjt: Quantity of mask j holding as the inventory at producer p in period t
Xpwjt: Quantity of mask j shipping to distribution center w from producer p in period t
Ywrjt: Quantity of mask j shipping to retailer r from distribution center w in period t
Vrmjt: Quantity of mask j shipping to market m from retailer r in period t
xp: 1, if a producer is selected at location p, 0, otherwise
yw: 1, if a distribution center is selected at location w, 0, otherwise
vr: 1, if a retailer is selected at location r, 0, otherwise
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5  Flexible optimization model

An FOM is proposed to minimize the total cost of a mask SCN configuration. Table 2 indi-
cates the notation utilized in the formulation of the FOM.

Subject to the following constraints:

The objective function (1) is introduced to minimize the total cost of the mask SCN 
design. In this regard, variable costs (i.e., costs of supply, inventory, and transportation) 
along with fixed costs of agreement associated with producer(s), distribution center(s), 

(1)

Minz1

=
∑
p

∑
j

∑
t

(
ej
)
Mpjt +

∑
p

∑
j

∑
t

(
fj
)
Npjt

+
∑
p

∑
w

∑
j

∑
t

(
ajqpw

)
Xpwjt +

∑
w

∑
r

∑
j

∑
t

(
bjswr

)
Ywrjt

+
∑
r

∑
m

∑
j

∑
t

(
cjurm

)
Vrmjt +

∑
p

Apxp +
∑
w

Bwyw

+
∑
r

Crvr.

(2)Mpjt + Npj(t−1) − Npjt =
∑
w

Xpwjt, ∀p, j, t

(3)
∑
p

Xpwjt =
∑
r

Ywrjt, ∀w, j, t

(4)
∑
w

Ywrjt =
∑
m

Vrmjt, ∀r, j, t

(5)
∑
r

Vrmjt ≥ Dmjt, ∀m, j, t

(6)Mpjt ≤ xpEpj + Npj(t−1), ∀p, j, t

(7)Npjt≤̃xpHpj, ∀p, j, t

(8)
∑
r

Ywrjt ≤ ywFwj, ∀w, j, t

(9)
∑
m

Vrmjt ≤ vrGrj, ∀r, j, t

(10)xp, yw, vr ∈ {0, 1}, ∀p,w, r

(11)Mpjt,Npjt,Xpwjt, Ywrjt,Vrmjt ≥ 0, ∀p,w, r,m, j, t.
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and retailer(s) are taken into account. Constraint (2) implies that the quantity of prod-
ucts shipping to the distribution center(s) should be equal to the number of available 
products for the supply minus the number of products that must be held as the inven-
tory in period t. Constraints (3) and (4) balance the flows between distribution center(s), 
retailer(s), and markets. Constraint (5) is utilized to ensure that the market demand is 
fulfilled. Constraint (6) represents the limit in the capacity of supply. In other words, as 
the nominal capacity of production ( Epj ) in period t decreases, the number of inventory 
held in period (t-1) should be increased to cover the required number of the supply in 
period t. Constraint (7) indicates the maximum capacity for holding inventory, and also 
ensures that only the selected producer(s) can hold the inventory. Constraints (8) and (9) 
are associated with the capacities of distribution center(s), and retailer(s), respectively. 
Constraint Eq. (10) illustrates the binary variables. Finally, nonnegative decision vari-
ables are presented by Constraint Eq. (11).

5.1  A solution approach to solve the FOM

As mentioned previously, different policies (e.g., practice physical distancing, and a 
self-isolation period for the ones with symptoms of COVID-19) have been announced to 
prevent the spread of COVID-19. Such policies reduce the production capacity of pro-
ducers. In this regard, producers should be flexible to fulfill market demand in a timely 
manner. In Constraint (7), we employ ≤̃ , representing the soft version of ≤ applied in 
flexible constraints, which enable producers to have the inventory more than a specific 
level due to the limited production capacity. Accordingly, the quantity of holding inven-
tory is supposed to be less than or equal to the maximum capacity of producers for 
holding inventory. Based on Peidro et  al. (2009), Npjt≤̃xpHpj can be transformed into 
the crisp inequality constraint by Npjt ≤ xp

(
Hpj

)
+ xp

([
�pj

(
1 − �p

)])
 , where �p is the sat-

isfaction level of such constraint (i.e., 0 ≤ �p ≤ 1 ), and �pj implies the violation of the 
flexible constraint. In practice, �pj can be either the emergency stock or the number of 
products purchased from other sources to fulfill market demand in case of operational 
disturbance. However, holding emergency stock imposes additional costs to the system. 
On this matter, �pj is used as the unit cost of holding emergency stock. The proposed 
model can be rewritten as follows:

Subject to:
Constraints (2)–(6), (8)–(11),

The multiplication of xp by �p in (12) and (13) causes a mixed-integer nonlinear pro-
gramming (MINLP) model. To overcome nonlinearity, a nonnegative auxiliary variable 
of �p = �pxp is utilized to transform the MINLP model into the equivalent MILP model. 
Accordingly, Eqs. (12) and (13) are replaced by Eqs. (14) and (15), respectively. Fur-
thermore, Eqs. (16)–(18) are employed based on a technique introduced by Pishvaee and 
Khalaf (2016). Equation  (16) enforces �p to be equal to zero if xp = 0 . Otherwise, �p is 
equal to �p if xp = 1 based on Eqs. (17) and (18).

(12)Minz1 +
∑
p

∑
j

�pj

(
xp
([
�pj

(
1 − �p

)]))
.

(13)Npjt ≤ xp
(
Hpj

)
+ xp

([
�pj

(
1 − �p

)])
, ∀p, j, t.
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Subject to:
Constraints Eq. (2)–(6), (8)–(11),

5.2  Applicability of the proposed FOM

The proposed FOM is investigated using information related to the GTA. As stated, there 
are 25 municipal areas in the GTA considered as the regional markets. According to the 
mandatory mask or a  face covering By-Law 541–2020, everyone is required to wear a 
mask in indoor public spaces (exempt children under the age of two and individuals with a 
medical condition). Therefore, the demand for masks in each region (market) is supposed 
to be equal to the population of such municipal areas. The population of each region is con-
sidered based on the 2016 census of Canada.

The unit cost of transportation is calculated as a function consisting of distances 
between selected facilities and the price of fuel. Hence, Google Maps is used to estimate 
the driving distances. The values of other parameters, incorporating into the proposed 
model, are set based on the case observed in the GTA (see Table 13 in Appendix 1).

IBM ILOG CPLEX 12.7.1 is applied to solve the FOM. In the proposed optimization 
problem, there are 645 constraints, 5,096 nonnegative decision variables, 37 binary vari-
ables, and 20,480 nonzero coefficients. The optimal solutions are obtained in 1,023 itera-
tions and the CPU time required to solve the problem is 3 s. Table 3 illustrates the optimal 
configuration (i.e., the required number of facilities and flows of products) of the mask 
SCN in the GTA.

The optimal solutions demonstrate the balance between selected facilities. For 
instance, the number of masks sent to the distribution center 2 from the producer 5 (i.e., 
X5 2jt = 10,548,365) is matched by the number of masks shipped from the distribution 
center 2 to the retailers (i.e., Y2 2jt + Y2 10jt + Y2 13jt + Y2 18jt + Y2 21jt + Y2 24jt = 10,548,365). As 
indicated in Fig. 3, the optimal network includes 1 producer, 3 sites for distribution centers, 
and 9 locations for retailers. Figure 4 shows the routes among the selected facilities.

Table  4 demonstrates the sensitivity analysis conducted on the nominal production 
capacity (Epj) of the selected producer. As mentioned previously, the Epj may decrease 
due to many factors during the COVID-19 pandemic. The 1st scenario indicates 30% 
decrease in the capacity of Producer 5 (E5j), while β5 is equal to 1. Recalling Eq. (13) (i.e., 
Npjt ≤ xp

(
Hpj

)
+ xp

([
�pj

(
1 − �p

)])
 ), it means that Producer 5 is still capable to handle 

market demand without using its emergency stock 
(
�5j

)
.

(14)Minz1 +
∑
p

∑
j

�pj

([
�pj

(
xp − �p

)])
.

(15)Npjt ≤ xp
(
Hpj

)
+
([
�pj

(
xp − �p

)])
∀p, j, t

(16)�p ≤ Mxp∀p

(17)�p ≥ M
(
xp − 1

)
+ �p∀p

(18)�p ≤ �p∀p.



Design and optimization of a sustainable and resilient mask…

1 3

Ta
bl

e 
3 

 S
ol

ut
io

n 
fo

r t
he

 p
ro

po
se

d 
m

as
k 

SC
N

 in
 th

e 
G

TA
 

Fo
r 

al
l 

j =
 1 

to
 

3;
 

t =
 1 

to
 

2.
M

5 
jt =

 12
,8

21
,4

14
. 

X 5
 

2j
t =

 10
,5

48
,3

65
, 

X 5
 

3j
st
 =

 1,
66

1,
19

5,
 

X 5
 

6j
st
 =

 61
1,

85
4.

 
Y 2

 
2j

t =
 2,

19
5,

29
3,

 
Y 2

 
10

jt =
 1,

24
5,

76
9,

 
Y 2

 1
3j

t =
 1,

55
6,

24
8,

 Y
2 

18
jt =

 4,
50

0,
00

0,
 Y

2 
21

jt =
 96

5,
55

5,
 Y

2 
24

jt =
 85

,5
00

, Y
3 

3j
t =

 1,
44

1,
15

9,
 Y

3 
7j

t =
 22

0,
03

6,
 Y

6 
12

jt =
 61

1,
85

4.
 V

2 
2j

t =
 1,

44
1,

75
5,

 V
2 

5j
t =

 38
7,

27
6,

 V
2 

6j
t =

 36
6,

26
1,

 
V 3

 3
jt =

 1,
18

6,
08

9,
 V

3 
4j

t =
 13

2,
87

1,
 V

3 
8j

t =
 12

2,
20

0,
 V

7 
7j

t =
 22

0,
03

6,
 V

10
 1

jt =
 98

2,
16

6,
 V

10
 1

0j
t =

 23
9,

11
5,

 V
10

 1
8j

t =
 24

,4
87

, V
12

 1
2j

t =
 61

1,
85

4,
 V

13
 1

3j
t =

 65
7,

27
4,

 V
13

 1
4j

t =
 38

9,
65

4,
 

V 1
3 

15
jt =

 91
,5

82
, 

V 1
3 

16
jt =

 11
0,

77
9,

 
V 1

3 
17

jt =
 16

8,
28

0,
 

V 1
3 

19
jt =

 47
,9

34
, 

V 1
3 

20
jt =

 90
,7

45
, 

V 1
8 

1j
t =

 4,
47

5,
51

3,
 

V 1
8 

18
jt =

 24
,4

87
, 

V 2
1 

9j
t =

 18
3,

35
8,

 
V 2

1 
11

jt =
 31

8,
59

7,
 

V 2
1 

21
jt =

 23
,2

61
,V

21
 2

2j
t =

 18
3,

84
2,

 V
21

 2
5j

t =
 25

6,
49

7,
 V

24
 2

3j
t =

 43
,1

91
, V

24
 2

4j
t =

 42
,3

10

O
bj

ec
tiv

e 
va

lu
e 

( �
p
 =

 1)
Se

le
ct

ed
 p

ro
du

ce
r

Se
le

ct
ed

 d
ist

rib
ut

io
n 

ce
nt

er
s

Se
le

ct
ed

 re
ta

ile
rs

19
1,

39
4,

52
1

x 5
: E

to
bi

co
ke

y 2
: M

is
si

ss
au

ga
 y

3: 
B

ra
m

pt
on

 y
6: 

C
on

co
rd

v 2
: M

is
si

ss
au

ga
 v

3: 
B

ra
m

pt
on

v 7
: M

ilt
on

 v
10

: T
or

on
to

 v
12

: V
au

gh
an

 v
13

: M
ar

kh
am

 v
18

: 
To

ro
nt

o 
v 2

1: 
Pi

ck
er

in
g 

v 2
4: 

U
xb

rid
ge



 M. Alizadeh-Meghrazi et al.

1 3

However, as E5j decreases by 35%, β5 decreases from 1 to 0.72, which means that Pro-
ducer 5 is not able to fulfill the market demand. Therefore, β5 is reduced to boost the emer-
gency stock in the selected producer (i.e., x5

([
�5j

(
1 − �5

)])
 ). The 5th scenario indicates 

that the production capacity decreases to 50% of its nominal value. In this case, Producer 
5 is not able to handle the market demand even it uses its emergency stock; therefore, Pro-
ducer 3 is added to the SCN structure.

Figure 5 illustrates the impact of the decrease in E5j on the supply (Mpj2) in period 2 and 
inventory (Npj1) in period 1. As a result of the decrease in E5j in period 2, Mpj2 decreases as 
well. Therefore, the number of Npj1 held in period 1 increases to fulfill customer demand 
(6,410,706) in period 2.

Fig. 3  The optimal mask SCN design in the GTA 
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Fig. 4  The optimal routes among the selected facilities

Table 4  Sensitivity analysis of production capacity

1st scenario 30% 
decrease in E5 j

2nd scenario 35% 
decrease in E5 j

3rd scenario 40% 
decrease in E5 j

4th scenario 45% 
decrease in E5 j

5th scenario 
50% decrease 
in E5 j

196,617,701 204,180,072 212,430,072 220,680,072 290,273,898
β5 = 1 β5 = 0.72 β5 = 0.40 β5 = 0.09 β3 = β5 = 1
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5.3  An extension to an MOP model

Three aspects of economic, environmental, and social should be considered for a sustain-
able SCN design. The 1st objective function was introduced to investigate the economic 
aspect (i.e., the total cost) of the proposed model. In this section, we define Eqs. (19) and 
(20) to address the environmental, and social aspects of this facility location problem, 
respectively. Equation  (19) identifies the  CO2 emissions stemming from transportation 
between facilities in the SCN. Furthermore, a capability index (CI) of potential producers 
to fulfill customer expectations is described by Eq. (20).

The CI (i.e., z3 ) is a qualitative objective required to be measured by expert judgments. A 
fuzzy QFD model is employed to estimate the CI associated with each potential producer. 
The QFD process has some privileges compared to other MCDM methods since it provides 
a systematic approach for producers to enhance customer satisfaction. This technique is 
utilized in decision analysis, particularly for introducing new products. Many researchers 

(19)

Minz2

=k

⎛⎜⎜⎜⎜⎜⎝

�
p

�
m

�
j

�
t

�
Xpwjt

n

�
qpw +

�
w

�
r

�
j

�
t

�
Ywrjt

n

�
swr

+
�
r

�
m

�
j

�
t

�
Vrmjt

n

�
urm

⎞⎟⎟⎟⎟⎟⎠

(20)
Maxz3

=
∑
p

∑
w

∑
j

∑
t

(
op
)
Xpwjt.

58,30,353 56,42,853 54,55,353 52,67,853

5,80,353 7,67,853 9,55,353 11,42,853

64,10,706

0

10,00,000
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Supply in period 2 Inventory in period 1 Available masks for shipping in period 2

Fig. 5  The impact of operational risks on supply and inventory
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have employed QFD in different industries, such as product design process (Bottani, 2009; 
Karsak et  al., 2003; Lee et  al., 2010; Sousa-Zomer & Miguel, 2017; Zaim et  al., 2014), 
information system development (Han et  al., 1998), healthcare system (González et  al., 
2006), energy security management (Shin et  al., 2013), employee turnover risks (Wang 
et  al., 2014), vendor assessment and supplier recommendation for business-intelligence 
systems (Wang, 2015), process performance measurement system (Wieland et al., 2015), 
project management (Lo et al., 2017), strategic maintenance technique selection (Baidya 
et al., 2018), transportation sector (Chin et al., 2019; Pakdil & Kurtulmuşoğlu, 2014), and 
technology development (Gündoğdu & Kahraman, 2020; Haktanır & Kahraman, 2019). In 
QFD models, DMs play prominent roles to identify the appropriate criteria related to cus-
tomer expectations and producers’ technical determinants. To compare the potential pro-
ducers, it is difficult to make a decision based on certain factors. Therefore, fuzzy linguistic 
scales can be utilized with QFD to aggregate experts’ judgment in uncertain situations.

Chardine-Baumann and Botta-Genoulaz (2014) identified some major areas (e.g., cus-
tomer issues, societal commitment, and business practices) to consider the social develop-
ment in the configuration of sustainable SCNs. As indicated in Fig. 6, we consider price 
and durability, reliability of producers, and environmental compliance as indicators of 
customer issues, societal commitment, and business practices, respectively. Accordingly, 
experience, strategic alliances, and flexible manufacturing systems are considered as pro-
ducers’ technical determinants to fulfill customer expectations. The procedure of producer 
ranking is provided in Appendix 2.

Priority of producers based on their 
capabilities

Price (C1)

Durability (C2)

Reliability (C3)

Environmental compliance (C4)

Experience (C5)

Strategic alliances (C6)

Flexible manufacturing systems
(C7)

Customer expectations Technical determinants

Producer 1 Producer 2 Producer 3 Producer 4 Producer 5

Fig. 6  An overall qualitative framework to rank the potential producers based on their capability to fulfill 
customer expectations
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5.4  An introduction of an RFMOP model

A sustainable SCN design is a strategic decision since opening or closing a facility imposes 
considerable costs and time. Therefore, an SCN configuration should be robust to deal with 
uncertain parameters (e.g., customer demand, transportation costs). Accordingly, we pro-
pose a novel RFMOP model to find the best solution that can be immunized for all possible 
scenarios in a specified bounded box. Model Eq. (M1) is considered to define the solution 
approach (Ben-Tal & Nemirovski, 2000; Ben-Tal et al., 2005; Pishvaee et al., 2011).

In Model (M1), z1 =
�
c

�
x+

�

d
�
y in which vector ′c and 

′

d represents variable costs and 

fixed costs, respectively.
′

b implies the market demand and 
′

A , 
′

B , 
′

E are coefficient matri-
ces in constraints. All variables are indicated by vectors 

′
y (i.e., binary variables) and ′x 

(i.e., nonnegative decision variables). In this model, all parameters of variable costs ′c 

and market demand 
(

′

b

)
 are presumed to be uncertain and vary in specified bounded 

boxes. Equation (21) shows the typical form of such boxes.

where �t is the nominal value of the �t . �t is the uncertainty scale, and � > 0 defines the 
uncertainty level. In this regard, a specific case of interest is �t = �t , therefore �t deviates 
from the nominal value to the maximum amount of � . Furthermore, Model (M1) includes 
multiple objectives. The concept of the ε-constraint method is integrated to handle multiple 
objectives. In the ε-constraint method, the objective with the highest priority is optimized 
as the main objective function and the remaining objectives are considered as constraints 
using the ε values as the bound (Collette & Siarry, 2004; Nayak & Ojha, 2019; Roni et al., 
2017). Accordingly, Model (M1) can be replaced by Model (M2).

(M1)

Minz1

Minz2

Maxz3

s.t.

�

A
�
x ≥

�

b,

�

B
�
x ≤

�

E
�
y,

�
y ∈ {0, 1}, x ∈ R+.

(21)ubox =
{
� ∈ Rn ∶ ||�t − �t

|| ≤ ��t, t = 1,… , n
}
,
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If the bounded box is replaced by a finite set (i.e., extreme points of ubox ), Model 
(M2) can be transformed into the equivalent tractable version (Ben-Tal et  al., 2005; 
Pishvaee et al., 2011). Equations (22) and (23) are the equivalent tractable versions of 
the constraints including uncertain parameters ′c and 

′

b varying in bounded uncertainty 
sets.

Finally, Model (M3) is written as the tractable form of Model (M2) to handle uncer-
tain parameters as follows:

Accordingly, the robust counterpart of the mask SCN considering uncertain demand 
and variable costs is equivalent to the following MILP model.

(M2)

MinZ

s.t.

�
c

�
x+

�

d
�
y ≤ Z, ∀

�
c ∈ u

�
c
box

,

�

A
�
x ≥

�

b, ∀
�

b ∈ u
�

b
box

,

�

B
�
x ≤

�

E
�
y,

z2 ≤ �2,

z3 ≥ �3,

�
y ∈ {0, 1}, x ∈ R+.

(22)
�
c

�
x ≤ Z −

�

d
�
y, ∀

�
c ∈ u

�
c
box

||||||
u

�
c
box

=

{
�
c ∈ R

n�
c ∶

|||||
�
c
t
−

�
c
t

|||||
≤ � �

c
�

�
c
t
, t = 1,… , n �

c

}
.

(23)

�
a
i

�
x ≥

�

b
i
,∀i ∈

{
1,… , n �

b

}
, ∀

�

b ∈ u
�

b
box

||||||
u

�

b
box

=

{
�

b ∈ R
n�
b ∶

|||||
�

b
i
−

�

b
i

|||||
≤ � �

b
�

�

b
i
, i = 1,… , n �

b

}
.

(M3)

MinZ

s.t.

∑
t

�
ct

�
x
t
+�t ≤ Z −

�

d
�
y,

� �
c
�

�
c
t

�
x
t
≤ �t, ∀t ∈

{
1,… , n �

c

}
,

� �
c
�

�
c
t

�
x
t
≥ −�t, ∀t ∈

{
1,… , n �

c

}
,

�
a
i

�
x ≥

�

b
i
+ � �

b
�

�

b
i
,∀i ∈

{
1,… , n �

b

}
.

�

B
�
x ≤

�

E
�
y, z2 ≤ �2, z3 ≥ �3,

�

B
�
x ≤

�

E
�
y,

�
y ∈ {0, 1}, x, � ∈ R+.
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Subject to:
Constraints (2)–(4), (6), (8)–(11), (15)–(18),

(24)

Minz1

=
∑
p

∑
j

∑
t

((
ej
)
Mpjt + �e

pjt

)
+
∑
p

∑
j

∑
t

((
f j

)
Npjt + �

f

pjt

)

+
∑
p

∑
w

∑
j

∑
t

((
ajqpw

)
Xpwjt + �a

pwjt

)

+
∑
w

∑
r

∑
j

∑
t

((
bjswr

)
Ywrjt + �b

wrjt

)

+
∑
r

∑
m

∑
j

∑
t

((
cjurm

)
Vrmjt + �c

rmjt

)
+
∑
p

Apxp

+
∑
w

Bwyw +
∑
r

Crvr

+
∑
p

∑
j

�pj

(
xp
([
�pj

(
1 − �p

)]))
.

(25)z2 ≤ �2,

(26)z3 ≥ �3,

(27)�e�
e
j
Mpjt ≤ �e

pjt
,∀p, j, t

(28)�e�
e
j
Mpjt ≥ −�e

pjt
,∀p, j, t

(29)�f �
f

j
Npjt ≤ �

f

pjt
,∀p, j, t

(30)�f �
f

j
Npjt ≥ −�

f

pjt
,∀p, j, t

(31)�a

(
�a
j
qpw

)
Xpwjt ≤ �a

pwjt
,∀p,w, j, t

Table 5  Non-dominated solutions of proposed RFMOP model ( � = 0.15)

Objective functions Series 
1:�2 = 526,500 
�3 = 1,475,000

Series 
2:�2 = 560,500 
�3 = 1,474,500

Series 
3:�2 = 535,600 
�3 = 1,625,000

Series 
4:�2 = 619,500 
�3 = 3,220,500

Total cost 
(
z1

)
315,394,216 220,433,293 315,669,473 326,882,384

CO2 emissions 
(
z2

)
502,540 558,240 505,580 619,500

CI 
(
z3

)
1,611,700 1,474,500 1,625,100 3,220,500
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5.5  Non‑dominated solutions of RFMOP model considering different uncertainty 
levels

In MOP models, there is not a single solution that optimizes all objectives simultaneously. 
In such cases, several efficient solutions may exist which none of them is dominated (Deb 
et al., 2002; Mirzapour Al-E-Hashem et al., 2011; Tosarkani & Amin, 2018b). As demon-
strated in Tables 5 and 6, we employed the RFMOP model to compute efficient solutions. 
In this regard, ε2 and ε3 are changed to reach different non-dominated solutions. By com-
paring Tables 5 and 6, it can be concluded that the uncertainty level (�) has a significant 
impact on efficient solutions of MOP model. As demonstrated in Model (M3), � ′

c
�

′
c
t

′
x
t
 is less 

than or equal to �t incorporating into the objective function. The value of � is identified by 
DMs based on the type of uncertain parameters and the associated risk level.

The value path analysis (VPA) is utilized to investigate the trade-off between non-domi-
nated solutions of RFMOP model. According to the properties of VPA, if two paths (lines) 
do not intersect, then an inferior line lies entirely below the superior one. In other words, 

(32)�a

(
�a
j
qpw

)
Xpwjt ≥ −�a

pwjt
,∀p,w, j, t

(33)�b

(
�b
j
swr

)
Ywrjt ≤ �b

wrjt
,∀w, r, j, t

(34)�b

(
�b
j
swr

)
Ywrjt ≥ −�b

wrjt
,∀w, r, j, t

(35)�c

(
�c
j
urm

)
Vrmjt ≤ �c

rmjt
,∀r,m, j, t

(36)�c

(
�c
j
urm

)
Vrmjt ≥ −�c

rmjt
,∀r,m, j, t

(37)
∑
r

Vrmjt ≥ Dmjt + �D�
D
mjt
,∀m, j, t

(38)�e
pjt
, �

f

pjt
, �a

pwjt
, �b

wrjt
, �c

rmjt
≥ 0,∀p,w, r,m, j, t.

Table 6  Non-dominated solutions of proposed RFMOP model ( � = 0.30)

Objective functions Series 1: 
�2 = 526,500 
�3 = 1,475,000

Series 2: 
�2 = 560,500 
�3 = 1,474,500

Series 3: 
�2 = 535,600 
�3 = 1,625,000

Series 4: 
�2 = 619,500 
�3 = 3,220,500

Total cost 
(
z1

)
544,306,199 347,113,426 444,584,884 450,698,448

CO2 emissions 
(
z2

)
526,340 568,450 534,930 594,700

CI 
(
z3

)
2,213,700 1,821,900 2,213,700 3,220,500
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neither of the value paths is dominated, if they have an intersection (Wadhwa and Ravin-
dran, 2007; Afshari et al., 2020).

In the RFMOP model, we propose different types of objective functions (i.e., minimiz-
ing the total cost and  CO2 emissions along with maximizing the CI of potential producers). 
Therefore, the non-dominated solutions are converted to normalized measurements prior 
to analyzing the trade-off between them. In the case of minimization, the inferior value of 
one objective is divided by the corresponding values of same objective among all sets (e.g., 
normalized scale of z1: 326,882,384 / 315,394,216 = 1.04 and z2: 619,500 / 502,540 = 1.23 
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Fig. 7  Value path analysis for the non-dominated solutions of Table 5
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Fig. 8  Value path analysis for the non-dominated solutions of Table 6
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for the 1st set of Table 5). However, in the case of maximization, the objective values of a 
certain objective are divided by the minimum value among all alternatives (e.g., the nor-
malized scale of z3: 1,611,700 / 1,474,500 = 1.09 for the 1st set of Table 5). Accordingly, in 
both cases of maximizing and minimizing commands, a higher normalized scale leads to 
a more desirable result. Figures 7 and 8 illustrate value paths (i.e., Linear sets 1, 2, 3, and 
4) for the non-dominated solutions of Tables 5 and 6, respectively. In both Figs. 7 and 8, 
all linear lines (Series 1, 2, 3, and 4) have intersections, and therefore, neither of them is 
superior based on the properties of VPA. In other words, it is verified that all the solutions 
are efficient.

Furthermore, the compromise programming method (i.e., a well-known method to solve 
the MOP model) is also considered to verify the performance of the proposed RFMOP 
model. This technique is utilized to compute the Pareto efficient solutions in close proxim-
ity to objectives’ ideal values (Amin & Baki, 2017). Equation (39) represents the formula 
where wi and zi

* are the weight and ideal values for objective i, respectively. To compute 
zi

*, each objective function is supposed to be solved separately with respect to the defined 
constraints (i.e., Constraints (2-4), (6), (8-11), (15-18), (25-38)). In this research, there are 
three objective functions including the total cost (z1),  CO2 emissions (z2), and CI of poten-
tial producers (z3). Equation  (40) indicated the objective function for the multi-objective 
mask SCN.

(39)z =

(∑
i

w�

i

(
zi − z∗

i

z∗
i

)�
) 1

�

∀i = 1, 2… ,∞

(40)

Minz

=

(
w�

1

(
z1 − z∗

1

z∗
1

)�

+ w�

2

(
z2 − z∗

2

z∗
2

)�

− w�

3

(
z3 − z∗

3

z∗
3

)�) 1

�

.

Table 7  Non-dominated solutions of proposed RFMOP model ( � = 0.15) using distance technique

Objectives’ weight Series 1: 
w1 = w2 = w3 = 0.33

Series 2: w1 = 0.8 
and w2 = w3 = 0.1

Series 3: w2 = 0.8 
and w1 = w3 = 0.1

Series 4: w3 = 0.8 
and w1 = w2 = 0.1

Total cost 
(
z1

)
316,780,000 224,130,000 419,830,000 670,230,000

CO2 emissions 
(
z2

)
499,050 580,260 528,340 822,090

CI 
(
z3

)
1,601,600 1,474,500 1,625,100 3,221,500

Table 8  Non-dominated solutions of proposed RFMOP model ( � = 0.30) using distance technique

Objectives’ weight Series 1: 
w1 = w2 = w3 = 0.33

Series 2: w1 = 0.8 
and w2 = w3 = 0.1

Series 3: w2 = 0.8 
and w1 = w3 = 0.1

Series 4: w3 = 0.8 
and w1 = w2 = 0.1

Total cost 
(
z1

)
364,880,000 362,020,000 547,750,000 800,970,000

CO2 emissions 
(
z2

)
707,100 687,250 552,080 1,851,000

CI 
(
z3

)
2,049,700 1,666,800 2,285,200 3,151,800
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Constraints (2)-(4), (6), (8)–(11), (15)–(18), (25)–(38).
To calculate Pareto efficient solutions of the MOP model, several pairs of wi are tested 

while 
∑
i

wi = 1 . Tables  7 and 8 show the non-dominated solutions of the MOP model, 

while the uncertainty levels (�) are assumed to be equal to 0.15 and 0.30.
By comparing Table 5 with Table 7 (i.e., non-dominated solutions while � = 0.15), and 

Table 6 with Table 8 (i.e., non-dominated solutions while � = 0.30), it can be determined 
that the proposed RFMOP model performs in proximity to the compromise programming 
method. However, the proposed RFMOP model enables DMs to compute more Pareto effi-
cient solutions by changing ε2 and ε3 in desirable ranges. For example, DMs may decide 

s.t.
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Fig. 9  The non-dominated solutions of carbon emissions and total cost
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to consider all non-dominated solutions in which  CO2 emissions are less than 550,000. In 
this case, they consider 550,000 as the value of ε2 and change ε3 to find different non-dom-
inated solutions. Table 9 indicates several Pareto efficient solutions, while the  CO2 emis-
sions are less than the specific level of 550,000.

MOP models are utilized to calculate ideal decisions in the presence of a trade-off 
between some conflicting objectives. As mentioned previously, a variety of Pareto effi-
cient (i.e., non-dominated) solutions may exist for MOP problems. All non-dominated 
solutions are equally considered (Amin & Zhang, 2012; Deb et  al., 2002). It depends 
on DMs to choose one of them based on their strategies. By comparing the series of 
non-dominated solutions in Tables 5, 6, 7, 8, and 9, it can be concluded that the value 
of one objective function cannot be improved without degrading the value of at least 
one objective function. In this study, three objectives (i.e., the total cost, carbon emis-
sions, and CI of potential producers) are taken into account to design a sustainable mask 
SCN. To consider the impact of each objective on the others, three bi-objective models 
are solved. Figure 9 indicates that the total cost of SCN must be increased to reduce the 
carbon emissions stemming from transportation between facilities. Figure 10 illustrates 
that SCN must incur more costs to improve the CI associated with potential producers. 
We provide a discussion to show the reasons, as managerial insights, in Sect. 4. Simi-
larly, as indicated in Fig. 11, the carbon emissions increase as the CI is supposed to be 
improved.

5.6  Application of simulation to evaluate the performance of RFMOP model

The main feature of the RFMOP model is to support strategic decisions with regard to multi-
ple sources of uncertainty. In this section, simulation is conducted to demonstrate the perfor-
mance of the proposed RFMOP model compared to the deterministic model in dealing with 
risks and uncertainty. Since the uncertain parameters are deviated within bounded uncertainty 
boxes in the proposed RFMOP model, six test problems are generated, using beta distribution, 
for different uncertainty levels (i.e., φ = 0.15, 0.30, 0.45, 0.60, 0.75, 0.90). The beta distribu-
tion is a continuous probability distribution, defined in terms of two parameters of α and β, on 
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Fig. 11  The non-dominated solutions of carbon emissions and CI
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the bounded interval (Gupta & Nadarajah, 2004; Johnson, 1997). The mean and variance of 
beta distribution, on the bounded interval [ �l,�u ], are computed by (41) and (42).

where �l , �m , and�u are the minimum, average, and maximum values of the uncertain 
parameter (i.e., � ), respectively. The parameters of α and β can be estimated by Eqs. (43) 
and (44). For more information, it is recommended to refer to Davis (2008).

The BETAINV (RAND (), � , � , �l,�u ) function is employed to generate random num-
bers for uncertain parameters (e.g., demand and variable costs) in the bounded interval. 
For example, in the case of φ = 0.15, �l and �u are considered as a 15 percent decrease 
and increase of �m (i.e., nominal values of parameters). The generated random numbers 
(GRNs), associated with each parameter, are replicated 1,000 times. Then, the average 

(41)� = �l +
(
�u − �l

)( �

� + �

)

(42)�2 =
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� + �

)(
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� + � + 1
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and maximum values of each data set are considered to compare the performance of the 
RFMOP model and deterministic MOP (DMOP) model.

Constraints (25) and (26) are relaxed to indicate the impact of robustness price on the 
total cost of SCN precisely. To this aim, very large and small values are assigned to �2 
and �3 , respectively. Then, the DMOP model is solved considering the average and maxi-
mum values of GRNs. Figure 12 demonstrates that the total cost obtained by the RFMOP 
model is higher than the deterministic multi-objective model solved by average values of 
GRNs (DMOMA) and is less than the deterministic multi-objective model solved by maxi-
mum values of GRNs (DMOMM) (i.e., worst case scenario). Therefore, the application 
of the RFMOP model leads to the higher total cost, compared to the DMOMA, stemming 
from handling risks and uncertainty (i.e., cost of robustness) in the SCN. Table 10 dem-
onstrates the performance of the RFMOP model, DMOMA, and DMOMM in terms of 
the number and locations of producers (i.e., network configuration). As mentioned previ-
ously, various policies (e.g., lockdown and self-isolation period) have been considered, in 
Ontario, to reduce the spread of the COVID-19, which have a significant impact on the 
capacity levels of producers. In this regard, the RFMOP, DMOMA, and DMOMM models 
are solved based on different capacity levels of producers. As illustrated in Table 10, only 
Producers 3 and 5 (x3 and x5) are required to be open based on the RFMOP approach when 
the uncertainty level is equal to 0.15. However, the number and locations of producers are 
varied based on the deterministic approach (DMOMA and DMOMM) in the same level of 
uncertainty level. Therefore, the RFMOP model offers more stable solutions (i.e., network 
configuration) compared to the deterministic approach leading to the optimal utilization of 
producers in uncertain situations.

Table 10  Performances of RFMOP and DMOP models

*The lower number of producers is required based on the RFMOP approach

Uncertainty level Model 75% of capacity 50% of capacity 25% of capacity

φ = 0.15 RFMOP x5 * x3 and x5 x3 and x5 *

DMOMA x2 and x5 x3 and x5 x3, x4 and x5

DMOMM x2 and x5 x3 and x5 x3, x4 and x5

φ = 0.30 RFMOP x3 and x5 x3 and x5 x3 and x5 *

DMOMA x3 and x5 x3 and x5 x3, x4 and x5

DMOMM x3 and x5 x3 and x5 x3, x4 and x5

φ = 0.45 RFMOP x3 and x5 x3 and x5 x3 and x5 *

DMOMA x3 and x5 x3 and x5 x2, x4 and x5

DMOMM x3 and x5 x3 and x5 x1, x2, x4 and x5

φ = 0.60 RFMOP x3 and x5 x3 and x5 * x3, x4 and x5 *

DMOMA x3 and x5 x3, x4 and x5 x1, x3, x4 and x5

DMOMM x3 and x5 x3, x4 and x5 x1, x3, x4 and x5

φ = 0.75 RFMOP x3 and x5 x3 and x5 * x3, x4 and x5 *

DMOMA x3 and x5 x3, x4 and x5 x1, x3, x4 and x5

DMOMM x3 and x5 x3, x4 and x5 x1, x3, x4 and x5

φ = 0.90 RFMOP x3 and x5 x3 and x5 * x3, x4 and x5 *

DMOMA x3 and x5 x3, x4 and x5 x1, x3, x4 and x5

DMOMM x3 and x5 x3, x4 and x5 x2, x3, x4 and x5
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Furthermore, we conduct a sensitivity analysis to evaluate the performance of the 
RFMOP model and DMOMM based on the mean and standard deviations of z1 . Under 
different uncertainty levels, five numerical experiments, created by GRNs, are investigated 
with regard to different capacity levels of producers. As shown in Table 11, the RFMOP 
model dominates DMOMM in terms of lower standard deviations of solutions in all 
numerical experiments. With respect to the mean of objective functions, the results suggest 
that the robust flexible approach has a better performance compared to the deterministic 
model when the capacity of producers drops from their 100% nominal capacity levels. For 
further clarification, in the proposed robust flexible approach, producers are able to benefit 
from the emergency stock owing to the application of the flexible constraint. Therefore, as 
demonstrated in Table 11, the gap between the mean of the two models becomes larger as 
the capacity levels of producers decrease to 25% of their nominal capacity.

5.7  Incorporating online shopping into the proposed RFMOP model

As mentioned previously, this study is inspired by a textile company whose SCN is signifi-
cantly affected due to the COVID-19 pandemic. This company delivers its products to the 
markets through distribution centers and retailers. However, online shopping has become 
more popular among customers to avoid COVID-19. In this section, we investigate the impact 
of online purchases on the network configuration. As illustrated in Fig. 13, customers may 
have the option to either purchase products from retailers (i.e., a conventional choice) or place 
online orders. In this regard, a logistics flow is required to be considered directly from distri-
bution centers to the markets, and the proposed RFMOP model is rewritten as follows:

Qwmjt

Producer

1… …

Distribution 
center 1…

…

Retailer

1… …

Market

1…m …

Fig. 13  The modified mask SCN considering both conventional and online purchases
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Subject to:
Constraints (2)–(4), (6), (8)–(11), (15)–(18), (25)–(38),

Equations  (45) and (46) are applied to minimize the total cost and  CO2 emissions of 
the mask SCN considering both conventional and online purchases. In this regard, Qwmjt 
denotes the number of products delivered directly from distribution center w to market m, 
gj is the unit cost of transportation for mask j between distribution centers and markets, and 
iwm refers to the distance between distribution center w and market m.
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Constraints (47) and (48) represent the variation of transportation costs between distri-
bution centers and markets. Constraint (49) ensures that the quantity of products shipping 
to the distribution center(s) 

(
Xpwjt

)
 is equal to the number of products sending to the retail-

ers 
(
Ywrjt

)
 and the number of products sending to the markets 

(
Qwmjt

)
 . Constraint (50) is 

applied to guarantee that online orders are fulfilled. Constraint (51) is associated with the 
capacity of distribution center(s). Finally, Constraint (52) describes the new nonnegative 
variables required for direct deliveries due to online shopping.

Table 12 demonstrates the comparison between results of the 1st set of Table 8 (i.e., a 
conventional choice) and the modified version of the proposed RFMOP model, which con-
sidered both conventional and online purchases. As online shopping is taken into account 
the number of distribution centers increases to deliver the products to the customers 
directly. As a result, the optimal configuration of the conventional SCN changes, and the 
total distance between selected facilities and markets increases from 1,495 to 2,265.96 km. 
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Fig. 14  Sensitivity analysis on the ratio of customers placing online orders (Note: The number of custom-
ers is fixed, therefore 0.4 implies that 40% of customers place online orders and 60% of customers purchase 
masks from retailers.)

1st set of Table 8 ( = = = 0.33) 2nd set of Table 8 ( =0.8 and = = 0.1)

Fig. 15  Changes in SCN configuration due to the allocation of different weight to objectives by DMs
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Accordingly, Table 12 indicates that the values of z1 (i.e., total cost) and z2  (CO2 emissions) 
degrade while z3 (i.e., CI) improves when online delivery is considered in the configura-
tion of SCN. For further clarification, the impact of growth in online shopping is investi-
gated on the total cost and  CO2 emissions separately. As demonstrated in Fig. 14, z1 and 
z2 increase as the ratio of customers placing online orders grows due to the increase in the 
total distance between selected facilities and markets.

6  Managerial insights

In a continuous outbreak, there is a variety of uncertain internal and external factors affect-
ing the configuration of supply chains in the field of healthcare. Internal factors are con-
cerned with the limited capacity of production and transportation, and external ones are 
associated with the timing and quantities of medical supply required for society. In this 
regard, an efficient and effective logistics capacity management can support a constant flow 
of production and mitigate the risk of medical device shortage during a disease outbreak.

The study of sustainable facility location models investigates the systematic determi-
nation of the number and location of facilities required to fulfill the market demand with 
regard to customer requirements, economic benefits, and environmental protection (Tosar-
kani et al., 2020; Tsai et al., 2020). In this study, the CI of producers has been optimized in 
addition to the total cost and  CO2 emissions for a medical SCN design. Therefore, there are 
several objectives which may have conflict in practice. This study attempts to offer valu-
able insights to managers. To this aim, let’s consider the non-dominated solutions of the 
proposed RFMOP model provided in Table 8. We intend to compare the optimal networks 
for the 1st set (i.e., w1 = w2 = w3 = 0.33) and the 2nd set (i.e., w1 = 0.8 and w2 = w3 = 0.1) of 
non-dominated solutions.

Figure 15 illustrates the comparison between the number and location of selected facili-
ties for the two mentioned sets. As indicated in the 2nd set, 1 producer (i.e., x5), 2 distri-
bution centers (i.e., y2, and y3), and 5 retailers (i.e., v2, v3, v10, v14, and v18) are selected 
when the economic aspect has the highest priority for DMs. However, the SCN configura-
tion is significantly different, if equal weight factors are considered for all three objectives 
(i.e., 1st set of Table  8). Accordingly, Producer 1, which has the highest priority in the 
aspect of CI (see Table 23 in Appendix 2), should operate along with Producer 5, and also 
the number of distribution centers and retailers increases. Therefore, the capability of pro-
ducers to fulfill the customer requirements (i.e., social aspects) improves from 1,666,700 
to 2,049,700. However, the total cost and  CO2 emissions of SCN are degraded from 
362,020,000 to 364,880,000 and 687,250 to 707,100, respectively, since the total distance 
between selected facilities increases from 1057 to 1495  km. The proposed MOP model 
implies that at least the value of one objective must be compromised to improve the values 
of other objectives. This provides DMs with an opportunity to investigate the impact of 
each objective on the configuration of facility location models under uncertainty.
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7  Conclusions

A multi-objective, multi-echelon, multi-product, multi-period model was proposed for a 
mask SCN in the GTA. The proposed MOP model included three objectives (i.e., the total 
cost, generated  CO2 emissions, CI of potential producers) to consider sustainability in a 
facility location problem. The proposed SCN contained multiple facilities such as produc-
ers, distribution centers, retailers, and markets. In this study, several challenges were inves-
tigated in uncertain circumstances (e.g., ongoing COVID-19 outbreak), such as matching 
the production capacity of producers with fluctuations in market demand. In this regard, 
various activities such as planning for production, inventory, and transportation were taken 
into account in multiple periods.

A successful SCN design should be flexible and robust to fulfill demand during high-
impact events, particularly in the field of healthcare. In this study, an FOM was first intro-
duced to utilize the emergency stock in case of a reduction in the capacity levels of produc-
ers. Another source of uncertainty was caused by imprecise input parameters (e.g., variable 
costs and market demand). To handle such types of uncertainty, robust optimization was 
integrated with the FOM to find the optimal solution that can be guaranteed by all possible 
scenarios. Pareto efficient (i.e., non-dominated) solutions were computed for the proposed 
MOP model. As demonstrated by VPA analysis, as the value of one objective function 
improves, the values of other objective functions degrade in the MOP model. Therefore, it 
depends on DMs which set of non-dominated solutions should be selected in the ongoing 

Table 13  Values of the 
parameters

*op is calculated in Appendix 2

P = 5 Ap = 100,000,000 Epj = (2,500,000)5*3

W = 7 Bw = 400,000 Hpj = (500,000)5*3

R = 25 Cr = 100,000 Grj = (750,000)25*3

M = 25 ej = 4 Fwj = (3,000,000)7*3

T = 2 fj = 6 ρpj = (500,000)5*3

J = 3 aj = bj = cj = 0.107 n = 50,000
ψpj = 14 k = 68

Fig. 16  A: customer expecta-
tions (i.e., voice of customers), 
(WHATs) B: priority of customer 
requirements, C: technical 
determinants (i.e., voice of the 
organization), (HOWs), D: 
relationship matrix HOWs vs 
WHATs, E: correlation between 
technical determinants, F: prior-
ity of technical determinants DA B

F

C

E



Design and optimization of a sustainable and resilient mask…

1 3

circumstance. A discussion was provided to show how the structure of an SCN might 
change in terms of considering different non-dominated solutions. However, it is worthy to 
note that an SCN configuration includes strategic decisions (e.g., third-party selection and 
capacity decisions), which are impossible to change in the short term. To our knowledge, 
this study is among the first investigations to propose an integrated RFMOP model to con-
figure an SCN in the field of healthcare. According to our findings, the proposed RFMOP 
model is an effective solution approach to deal with imprecise parameters.

This research can be extended in different directions. To design a sustainable SCN,  CO2 
emissions were investigated based on the driving distance. On this matter, incorporating 
other criteria (e.g., routing plan and traffic condition) to estimate  CO2 emissions will offer 
more precise results. Furthermore, various types of risks (i.e., the uncertainty of input 
parameters, disruptions in facilities, and transportations) may exist in real problems, and 
we discussed the first type of risk in this research. Therefore, it is valuable to develop the 
proposed model to mitigate the impact of disruptions on SCNs. In this research, the values 
of demand are assumed to be equal to the population of each specific region due to the 
mandatory face mask policy. However, demand will change after the outbreak. Therefore, 
developing a forecasting approach for market demand can be a future research direction for 
this study.

Table 14  Ranking of criteria WHATs 1st DM 2nd DM 3rd DM

C1 VH M MH
C2 M M H
C3 H H H
C4 MH MH MH

Fig. 17  Very Low (VL) = (0,0,1), Low (L) = (0,1,3), Medium Low (ML) = (1,3,5), Medium (M) = (3,5,7), 
Medium High (MH) = (5,7,9), High (H) = (7,9,10), Very High (VH) = (9,10,10)

Table 15  The obtained aggregated weights

WHATs α1 * wi1 α2 * wi2 α3 * wi3 Aggregated weight 
(
w
i

)

C1 (90, 200, 200) (15, 50, 105) (50, 140, 180) (155, 390, 485)
C2 (30, 100, 140) (15, 50, 105) (70, 180, 200) (115, 330, 445)
C3 (70, 180, 200) (35, 90, 150) (70, 180, 200) (175, 450, 550)
C4 (50, 140, 180) (25, 70, 135) (50, 140, 180) (125, 350, 495)
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Appendix 1: Parameters

See Table 13.

Table 16  Relationship matrix HOWs vs WHATs

HOWs 
WHATs

C5 C6 C7

1st DM 2nd DM 3rd DM 1st DM 2nd DM 3rd DM 1 st DM 2 nd DM 3 rd DM

C1 H VH H H MH MH VH H VH
C2 MH M H ML M H H H H
C3 MH H MH M H H MH MH MH
C4 MH M M VH VH VH H H H

Table 17  Results of relationship matrix WHATs and HOWs

HOWs 
WHATs 

(
a
ij

) C5 C6 C7 Aggregated weight 
(
w
i

)

C1 (185, 460, 550) (145, 390, 515) (215, 490, 550) (155, 390, 485)
C2 (135, 370, 485) (95, 290, 405) (175, 450, 550) (115, 330, 445)
C3 (135, 370, 510) (135, 370, 490) (125, 350, 495) (175, 450, 550)
C4 (95, 290, 425) (225, 500, 550) (175, 450, 550) (125, 350, 495)
f1: (19,925, 142,375, 243,363) f2: (21,288, 

147,325, 242,938)
f3: (24,300, 163,650, 264,000)

Table 18  The capability of 
producer 1 to perform technical 
determinants

WHATs 1st DM 2nd DM 3rd DM Aggregated weight 
(
PR1j

)

C5 VH VH VH (225, 500, 550)
C6 VH VH H (205, 480, 550)
C7 H H VH (195, 470, 550)

Table 19  The capability of 
producer 2 to perform technical 
determinants

WHATs 1st DM 2nd DM 3rd DM Aggregated weight 
(
PR2j

)

C5 ML ML L (15, 110, 235)
C6 L ML ML (15, 110, 235)
C7 L L L (0, 50, 165)
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Appendix 2: The QFD model

In this study, the QFD model is employed to prioritize producers based on qualitative fac-
tors. As indicated in Fig. 16, there are different sections in the QFD model (e.g., customer 
requirements, technical determinants).

As indicated in Fig. 6, various criteria are defined to consider both voices of customers 
and producers. In this study, four qualitative criteria (i.e., price, durability, reliability, and 
environmental compliance) are identified to represent the customer expectations and three 
technical criteria (i.e., experience, strategic alliances, and flexible manufacturing system) 
are considered to evaluate the capability of producers, respectively. Following phases are 

Table 20  The capability of 
producer 3 to perform technical 
determinants

WHATs 1st DM 2nd DM 3rd DM Aggregated weight 
(
PR3j

)

C5 ML ML ML (25, 150, 275)
C6 L L L (0, 50, 165)
C7 L L L (0, 50, 165)

Table 21  The capability of 
producer 4 to perform technical 
determinants

WHATs 1st DM 2nd DM 3rd DM Aggregated 
weight (
PR4j

)

C5 L VL L (0, 40, 135)
C6 L L VL (0, 30, 125)
C7 L L L (0, 50, 165)

Table 22  The capability of 
producer 5 to perform technical 
determinants

WHATs 1st DM 2nd DM 3rd DM Aggregated 
weight (
PR5j

)

C5 VL L L (0, 30, 125)
C6 L ML L (5, 70, 195)
C7 L L VL (0, 30, 125)

Table 23  Final ranking of each potential producer

Producer FPR Defuzzified index Ratio Ranking

l m u

Producer 1 4,528,521 72,939,667 137,555,000 71,674,396 50.12% 1st
Producer 2 206,063 13,349,833 52,613,500 22,056,465 15.42% 2nd
Producer 3 166,042 12,301,667 50,189,792 20,885,833 14.61% 3rd
Producer 4 0 6,099,083 35,593,708 13,897,597 9.72% 5th
Producer 5 35,479 6,497,833 36,931,042 14,488,118 10.13% 4th
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taken into account to rank the potential producers based on their capability to fulfill cus-
tomer expectations.

Phase 1: As indicated in Table 14, the following linguistic scale (i.e., Fig. 17) is utilized 
to rank the criteria based on the expert judgment.

Phase 2: DMs have different levels of experience that must be considered in the judg-
ment. Therefore, it is proposed to determine the weight factors for DMs. In this study, we 
consider experience index (i.e., poor = (0, 0, 10), normal = (5, 10, 15), perfect = (10, 20, 
20)). In this case, there are three DMs. αn (i.e., n = 1, 2, 3) is defined as the weight of  DMn. 
The 1st and 3rd DMs have the perfect level of experience, while the 2nd one has a normal 
level of experience. Then, (b.1) is employed to aggregate the weights assigned by DMs. 
The results are provided in Table 15.

where I and N are the numbers of customer expectations and DMs, respectively.
Phase 3: As illustrated in Table 16, the linguistic scale is utilized by all three DMs to 

evaluate the impact of technical determinants (i.e., HOWs) on customer expectations (i.e., 
WHATs).

Phase 4: (b.2) and (b.3) are employed to compute the relationship matrix between cus-
tomer expectations (WHATs) and technical determinants (HOWs). Table 17 indicates the 
results of the relationship matrix.

where aij is the aggregated weight between WHATs and HOWs. J is the number of 
HOWs and fj is the weight associated with HOWs.

Phase 5: (b.4) is applied to estimate the capability ( PRpj ) of each potential producer p to 
perform a technical determinant j. Tables 18, 19, 20, 21, and 22 illustrate the results.

Phase 6: (b.5) is employed to calculate the final ranking of each potential producer 
regarding customer expectation and technical determinants. The final results are provided 
in Table 23.
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