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Abstract
Understanding transport carbon dioxide (CO2) emission impact factors’ effects is important 
for the rational planning strategy making in reducing the emissions. This study determines 
transport emission impact factors’ heterogeneous effects and proposes urban and transport 
planning strategies in typical developing cities. Quantile regression is applied to overcome 
the insufficiency of factors’ mean effects and to avoid the biased estimations when the 
outcome variable is non-normally distributed and heteroscedastic. It is found that, from 
the low emitters at the 10th quantile to the high emitters at the 90th quantile, transport 
emissions’ increasing rates are 8.8 times and 79.6 times that of car availability and home-
to-center/subcenter distance (HCD/HSD), respectively. When commute distance reaches 
5.8 km or farther, and car availability percentage is 41.2% or greater, the effects that metro 
services have on reducing emissions decrease by 37.8%. Polycentric and satellite city 
forms can greatly reduce emission increases, which are caused by HCD growth when HCD 
is more than 10–15 km. According to these findings, the following planning strategies are 
recommended, including limiting oil-fueled car use to about 40% among the urban resi-
dents, forming employment and life circles within a 5–6 km radius, allocating better public 
transit services around metro stations, providing high service levels of bicycle lanes, pedes-
trian streets, and greenways to attract more transfers to metros, controlling urban radius 
within 10–15 km under the monocentric pattern, and fostering polycentric structures and 
satellite cities when city continuously sprawls. This study can provide empirical evidence 
and reference value globally.
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1  Introduction

Transport CO2 emissions contribute substantially to global greenhouse gas (GHG) emis-
sion increases, which will cause climate change and increase the vulnerability of ecosys-
tems and human societies (Ostad-Ali-Askar et al., 2018). It is projected by the International 
Energy Agency’s World Energy Outlook 2013 that transport fuel demand will increase 
nearly 40% globally by 2035 (ADB, 2016), and there will be large increases of transport 
CO2 emissions from developing Asian countries (Timilsina & Shrestha, 2009).

Understanding transport CO2 emission factors’ effects comprehensively is important for 
making rational planning strategies. Previous studies have examined and modeled the rela-
tionships between transport CO2 emissions and their significant factors, including socio-
economic characteristics, urban form factors, and metro accessibility. It is found that car 
availability, high income, and location in the outer and sprawling areas will notably cause 
larger transport CO2 emissions (Brand & Boardman, 2008; Brand & Preston, 2010; Brand 
et al., 2013; Büchs & Schnepf, 2013; Ko et al., 2011; Shuai et al., 2018; Wang et al., 2017; 
Yang et al., 2018, 2019, 2020). Fostering polycentric and satellite cities can decrease trans-
port CO2 emissions significantly (Cirilli & Veneri, 2014; Grunfelder et al., 2015; Knaap 
et al., 2016; Modarres, 2011; Sun, Zacharias, et al., 2016; Sun, Zhou, et al., 2016; Veneri, 
2010; Yang et al., 2018, 2020). Metro or light rail constructions can reduce driving dis-
tance and transport CO2 emissions (Cao, 2019; Huang et  al., 2019; Spears et  al., 2017; 
Boarnet et al., 2017). These previous studies have only examined the average effects of the 
significant transport CO2 emission impact factors. However, if the variation effects of these 
factors among different locations of transport emission distribution are further measured, a 
detailed view of the relationship between transport CO2 emissions and their impact factors 
can be obtained. Then, the results will guide for more effective urban and transport plan-
ning strategy making. Presently, research with such focus is lacking, though. Thus, this 
paper will identify the heterogeneous effects of transport CO2 emission impact factors by 
using the quantile regression model. This method can estimate the factors’ effects at any 
quantile of the outcome variable’s distribution, and thus capture a more comprehensive 
evaluation of the characteristics among transport emitters. Also, this method can overcome 
the shortcomings of the models based on the conditional mean method, which means that 
when the outcome variable is not normally distributed and heteroscedastic, the estimation 
results would probably be biased (Koenker & Hallock, 2001; Wang et al., 2019; Xu & Lin, 
2016). Then, according to the quantile regression model results, this study will propose 
urban and transport planning strategies for emission reduction and climate change mitiga-
tion in developing cities.

China and India, with most of their cities in the inland areas, are two economic giants 
experiencing rapid economic growth, urban expansion, and motorization. Transport CO2 
emission increases have been evident in recent decades. It is necessary to focus on Chi-
nese and Indian developing cities for mitigating transport CO2 emission increases. Thus, 
four typical inland Chinese and Indian cities are selected as case cities, namely Beijing, 
Xian, and Wuhan in China, and Bangalore in India. Beijing, located in the eastern part, 
with a strong center, is the capital city of China. Xi’an and Wuhan are two provincial cities 
located in the western and middle inland, respectively; their noticeable differences lie in 
the urban forms (Xi’an has a strong center, while Wuhan has a polycentric urban form, sep-
arated by two big rivers). In India, Bangalore is located in the southern part of the inland, 
with a strong center, and is known as ‘Asia’s Silicon Valley’, with famous information tech-
nology industries. These four inland cities have experienced urban expansions, as well as 
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population, motorization, and economic increases in recent decades, representing the gen-
eral situations of urban and transport developments among Chinese and Indian cities. Due 
to the large number of commute trips in urban transportation, as well as the inflexibility of 
these trips, this study intends to focus on the CO2 emissions that result from commuting.

In recent decades, Chinese and Indian cities are experiencing important stages of devel-
opment, in terms of urban growths, motorization and economic increases, metro and rail 
network constructions, urban agglomeration developments, energy technology improve-
ments, and new energy vehicle promotions. These developments are crucial issues for 
transport emission increases and climate change, not only in China and India, but also in 
other global cities. Therefore, this paper’s findings will provide empirical evidence and ref-
erence value globally.

The remainder of the paper is organized into the following sections. In Sect. 2, previous 
studies on transport CO2 emission impact factors and the research gap will be discussed. In 
Sect. 3, the process of data collection in the four case cities will be briefly introduced, and 
the quantile regression model will be illustrated for measuring the heterogeneous effects of 
transport CO2 emission factors. Section 4 analyzes the model results. The last section pro-
vides discussions and conclusions of this study.

2 � Literature review

Exploring and measuring significant impact factors of transport CO2 emissions, as well 
as travel behaviors, have been interests of scholarly research for many years. They are the 
key steps for rational planning strategies to develop sustainable travel patterns and miti-
gate transport CO2 emission increases. Numerous researchers have found that household 
and commuter socio-economic characteristics can significantly affect transport CO2 emis-
sions. Car availability is found to be the most notable predictor of transport CO2 emis-
sions (Brand & Boardman, 2008; Brand & Preston, 2010; Brand et  al., 2013; Ko et  al., 
2011). By using the linear regression method, with log-transformed transport CO2 emis-
sions as the explained variable, it has been found that, in the UK, owning at least one car 
tends to increase the weekly transport CO2 emissions by 44%-59% (Brand et al., 2013), and 
owning two cars or more can increase the individual transport CO2 emissions by 13.3% 
(Brand & Preston, 2010). Higher income can also increase transport CO2 emissions (Ko 
et al., 2011; Büchs & Schnepf, 2013; Brand et al., 2013; Brand & Preston, 2010; Brand 
& Boardman, 2008; Susilo & Stead, 2009; Carlsson-Kanyama & Lindén, 1999). A 1% 
increase of household annual income can increase the total annual transport CO2 emis-
sions by 59.8% (Büchs & Schnepf, 2013). Individuals with incomes higher than £40,000 
have 49.9% larger transport CO2 emissions (Brand & Preston, 2010). Additionally, better 
education backgrounds could have effects on the emission increases. Individuals with edu-
cation backgrounds of more than 16 years produce 15.4% larger transport CO2 emissions 
(Büchs & Schnepf, 2013). Similarly, full-time employment, commuters with professional 
occupations, and those working in the government and in foreign companies produce more 
transport CO2 emissions than those with part-time jobs and other work unit types (Brand 
& Preston, 2010; Brand et al., 2013; Ko et al., 2011; Wang et al., 2017; Yang et al., 2017).

Urban form factor effects on travel patterns and transport CO2 emissions have also 
attracted considerable interest from scholars in recent decades. Many studies found that 
cities with polycentric patterns can promote more sustainable travel patterns and less trans-
port CO2 emissions. Higher degrees of polycentricity and higher job-to-population ratios 
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can result in shorter commute times in some Chinese cities, Italian metropolitan areas, 
and Southern California (Modarres, 2011; Sun, Zacharias, et al., 2016; Sun, Zhou, et al., 
2016; Veneri, 2010), and can also decrease commuting distances in Danish city regions 
(Grunfelder et al., 2015). Employment share increases in the central cities have shown to 
cause larger commuter CO2 emissions in Italy (Cirilli & Veneri, 2014). Compared to a 
metropolis with one strong center in China, the polycentric city of Wuhan has shorter com-
muting distances, smaller car mode share, more public bus usage, and more local com-
mute trips (Yang et  al., 2018). Under the scenario of a polycentric pattern, the average 
commuter’s CO2 emissions are 15% smaller than cities with one strong center and similar 
economic levels, and 51%-75% of the resident transport CO2 emissions will be reduced in 
future (Yang et al., 2020). Also, developing satellite cities can make individuals commute 
shorter distances, make more local trips, and use more non-motorized modes of transpor-
tation, thus producing significantly less transport CO2 emissions (Yang et al., 2019). Fos-
tering satellite cities will reduce transport CO2 emissions by 75–82% in the long-run in 
developing cities (Yang et al., 2020). Numerous studies also find that household locations 
can influence transport CO2 emissions significantly. It is found that in the Greater Toronto 
Area, a 1 km increase of the straight-line distance from the city center will cause a 0.25 km 
increase of vehicle miles travelled (Miller & Ibrahim, 1998). In the Minneapolis-St. Paul 
Twin Cities Area, a 1 mile increase of the distance to the downtown area is connected to 
approximately 0.08–0.1 kg increase of transport CO2 emissions per day (Wu et al., 2019). 
Households located near the radial road and outer ring road areas produce much more 
transport CO2 emissions than those located in the city center in Chinese cities (Wang et al., 
2017; Yang et al., 2017, 2019). In developing Chinese and Indian cities, when commuters 
are located in the outer areas, more than 10 km from the city center, their commuting CO2 
emissions per trip tend to be about 0.3  kg larger than emissions of those located in the 
inner areas, within 5 km from the center (Yang et al., 2020).

Presently, numerous cities have begun metro or light rail constructions to provide mass 
public transportation services, with fast speeds, for the urban residents. Plenty of schol-
ars have started to focus on the impacts of rail transit on travel behaviors and transport 
CO2 emissions. Moving into metro neighborhoods is found to be positively related to 
decreased driving distances by autos and more transit uses (Cao & Ermagun, 2016; Huang 
et al., 2019), and living in new housing near rail stations can reduce auto ownership (Chat-
man, 2013). Evidence from a study based in Minneapolis shows that in light rail corridors, 
residents’ vehicle miles driven will be reduced by approximately 20% more than those in 
the urban control corridors, after controlled for neighborhood characteristics (Cao, 2019). 
Driving distances can be reduced by 10 miles per day among the households living within 
1 km walking distance to the light rail transits, compared to controlled households located 
farther away (Spears et al., 2017). Households located within a half mile of light rail tran-
sits produce smaller transport CO2 emissions (Boarnet et al., 2017). Developing cities with 
metro services will generally produce less resident transport CO2 emissions by 43–62% 
by 2050 (Yang et  al., 2020). In recent years, some new forms of transfer modes greatly 
promote the first-and-last mile access trips to metros, such as shared bicycles/cars, feeder 
buses/customized shuttle buses, electric bicycles/motors, and electric scooters (Baek et al., 
2021; Chen et al., 2021; Zuo et al., 2020). These convenient transfers have attracted more 
residents to use transit and metro modes, and have reduced transport CO2 emissions to 
some extent.

Also, recent study results show that nature-based solutions can improve and protect eco-
system services, and can bring about changes in land use and land cover in urban areas 
(Zwierzchowska et al., 2021; Pan et al., 2021). Greenways can reduce pedestrian exposure 
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to air pollution (Ahn, et al., 2021), and residents living near the greenway drive less, and 
thus, reduce their transport emissions (Ngo et al., 2018). Pedestrian and environmentally-
friendly designed streets can promote walkability and access to metro trips (Sun, Zacha-
rias, et al., 2016; Sun, Zhou, et al., 2016). All these nature-based solutions will be benefi-
cial for reducing transport emissions and mitigating climate change.

The above predictors of transport CO2 emissions have been discussed extensively, but 
limitations still exist. At present, few studies describe the varied effects of the impact fac-
tors at different locations of transport CO2 emission distribution. It is vital to obtain het-
erogeneous emission factor characteristics comprehensively to effectively make planning 
strategies and implement specific emission reduction policies to address the current devel-
oping situations of Chinese and Indian cities. These development situations include urban 
growths, motorization and economic increases, metro and rail network constructions, urban 
agglomeration developments, energy technology improvements, and new energy vehicle 
promotions. In order to identify factors’ heterogenous effects, models based on the condi-
tional mean method, which are frequently used in the previous studies (Huang et al., 2019; 
Spears et  al., 2017; Boarnet et  al., 2017; Sun, Zhou, et  al., 2016; Sun, Zacharias, et  al., 
2016; Brand et al., 2013; Brand & Preston, 2010; Büchs & Schnepf, 2013; Cirilli & Veneri, 
2014), are not appropriate. The conditional mean method can only provide average effects 
of the impact factors from transport emissions, neglecting the various characteristics of 
factors’ effects among the high and low emitters. In addition, the conditional mean method 
generally assumes that the outcome variable is normally distributed and homoscedastic. 
However, in most cases, these two assumptions cannot be satisfied. In terms of transport 
CO2 emissions, they are always larger than zero and are non-normally distributed in most 
cases. If the conditional mean method is applied for the transport emission model estima-
tion, the results would probably be biased, which may lead to ineffective or insufficient 
planning strategies or policy suggestions. However, the quantile regression method can 
overcome the above shortcomings. This method is robust to outlying observations and does 
not make distributional assumptions (Koenker & Hallock, 2001; Xu & Lin, 2016). It can 
provide specific estimations on each quantile of the emission distribution and, therefore, 
describe the relations between the outcome variable and the independent variables more 
completely (Cameron & Trivedi, 2009).

To address the above limitations in the existing research, this study will explore the het-
erogeneous relationships among the impact factors and transport CO2 emissions in typical 
developing Chinese and Indian cities. The quantile regression model will be used, and then, 
varied characteristics of factors’ effects can be analyzed at high and low levels of trans-
port emissions. The significant impact factors’ heterogenous effects to be identified include 
car availability, distance to the center/subcenters, polycentric and satellite city forms, and 
whether the city has metro services or not. According to the model results, rational plan-
ning strategies will be proposed for reducing transport CO2 emissions and mitigating cli-
mate change in developing cities.

3 � Data and methodology

3.1 � Data collection and description

Simple random samplings were carried out in the urban areas of Beijing, Xi’an, Wuhan, 
and Bangalore in the years of 2010, 2012, 2010, and 2011–2012, respectively. Face-to-face 
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inquiries were implemented in the household neighborhoods. Altogether, 1,400 households 
and 1,915 commuters were interviewed in Beijing, 1,501 households and 2,449 commut-
ers in Xi’an, 1,194 households and 2,050 commuters in Wuhan, and 1,967 households and 
3,934 commuters in Bangalore. The questionnaires included inquiries related to commut-
ing trip information (distance, travel mode, workplace, and household location) and house-
hold and commuter socio-economic characteristics (car availability, household income, 
housing tenure, age, work unit type, and educational background). Home-to-center dis-
tances (HCD) in Beijing, Xi’an, and Bangalore, and home-to-subcenter distances (HSD) 
in Wuhan, were calculated by using ArcGIS software. The same calculations were done for 
home-to-work distances, as well.

Beijing is the political, economic, and cultural center of China. Beijing has 1,268 km2 
of urban built-up area, and there is a population of 12.8 million people in the main urban 
area. The per capita GDP amounts to about US$ 11,218, and the motor vehicles amount to 
4.8 million. Xi’an has 522 km2 of urban built-up area, and there is a population of 4.5 mil-
lion people in the main urban area. The per capita GDP is approximately US$ 8,140, and 
the motor vehicles are about 1.47 million. Wuhan has 520 km2 of urban built-up area, and 
there is a population of 5.46 million people in the main urban area. The per capita GDP is 
about US$ 10,563, and the motor vehicles are about 1.19 million. Bangalore has 741 km2 
of urban built-up area, and there is a population of 5.83 million people in the main urban 
area. The per capita GDP is about US$ 8,664, and the two-wheelers amount to 3.72 mil-
lion, taking up 69.1% of the total motor vehicles. In regards to the aspect of urban form, 
monocentric patterns have been fostered in Beijing, Xi’an, and Bangalore, while Wuhan 
developed polycentric forms, with three towns (HanKou, WuChang, and HanYang) sepa-
rated by the Yangtze and Han Rivers, since the city’s initial formation. Satellite cities in 
the outer areas of Beijing have evolved in recent decades, including Changping, Huairou, 
Shunyi, Miyun, Pinggu, Fangshan, and Daxing. More detailed information of the four case 
cities can be obtained in the literature of Yang et al. (2020). The three Chinese cities’ metro 
lines have been in operation, but Bangalore’s metro line was under construction during the 
survey year.

Commuting CO2 emissions are equal to the CO2 emission factor (by mode, fuel type, 
and occupancy) multiplied by the commuting trip distance (IPCC 1997). Well-To-Wheel 
(WTW) CO2 emission intensities for different fuel types were calculated to obtain CO2 
emission factors. The calculation method is described in greater detail in Wang et  al. 
(2017) and Yang et al., (2017, 2019, and 2020). Table 1 reports the statistics and percen-
tiles of individual commuting CO2 emissions in the four city samples. Bangalore in India 
has larger transport CO2 emissions than the Chinese city of Xi’an, despite their similar 
economic levels and urban forms. Beijing’s top 25% emitters produce the most transport 

Table 1   Summary statistics of individual commuting CO2 emissions

(a) . The minimum transport CO2 emissions are zeros, indicating that commuters are using bicycles or in 
walking mode

CO2 (kg) Obs 10th 25th 50th 75th 90th Std. Dev Mina Max

Beijing 1,863 0.000 0.000 0.185 0.771 2.309 1.083 0.000 5.640
Xi’an 1,952 0.000 0.015 0.080 0.306 0.994 0.450 0.000 2.327
Wuhan 1,863 0.000 0.000 0.042 0.225 0.754 0.472 0.000 2.815
Bangalore 2,433 0.000 0.067 0.268 0.641 1.005 0.454 0.000 2.400
Pooled Samples 8,111 0.000 0.000 0.132 0.500 1.151 0.677 0.000 5.640
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CO2 emissions. Wuhan has the smallest transport CO2 emissions, and Xi’an’s emissions 
are in the middle level.

3.2 � The quantile regression model

The quantile regression model was first introduced by Koenker and Bassett (1978). This 
method can depict a more complete picture about the relationship between the outcome 
y and the regressors x at different points in the conditional distribution of y (Cameron & 
Trivedi, 2009). Compared to the conditional mean regression method used in the previous 
studies, such as the frequently used ordinary least square (OLS) method, or other methods 
based on the OLS method, quantile regression has several advantages. First, OLS regres-
sion is sensitive to outliers; however, quantile regression estimates are more robust to 
address this problem. Second, quantile regression could estimate the covariate effects on 
any percentile of the distribution, not only obtaining the conditional mean estimation on 
the entire distribution. Third, the quantile regression method avoids assumptions about the 
regression error distribution. This means that if the regression error is not normally distrib-
uted and is heteroscedastic, using OLS method would produce biased estimation results. 
The quantile regression method does not need to be applied under the above assumptions. 
(Cameron & Trivedi, 2009; Wang et al., 2019; Xu & Lin, 2016).

The standard quantile approach is used to specify the conditional quantile function to 
be linear, and parameters of the intercept and slope may vary with each quantile. The q th 
conditional quantile function of y given x is denoted as Qq(y|x) . The standard linear condi-
tional quantile function is

where Qq

(
yi|xi

)
 means the q th quantile of the dependent variable yi ; x′i indicates the vector 

of independent variables; �q is the vector of estimated coefficients; �qi indicates a random 
error term.

The q th quantile regression estimator �̂q is the solution of minimizing the following 
function

From Eq. (3) it can be seen that quantile regression could be considered as a weighted 
regression. As Cameron and Trivedi (2009, pp. 207) point out, “If q = 0.9 , for example, 
then much more weight is placed on prediction for observations with yi ≥ x

′
i
�q than for 

observations with yi < x
′
i
�q”.

Since the objective function (3) is not differentiable, it is not applicable to use gradient 
optimization methods. However, the linear programming method can be used and can pro-
vide relatively fast computation of �̂q (Cameron & Trivedi, 2005). The following concisely 
introduces this method, quoted from StataCorp (2017, pp. 2158):

“Define τ as the quantile to be estimated; the median is � = 0.5 . For each observation i , 
let �i be the residual

(1)yi = x
�
i
�q + 𝜀qi, 0 < q < 1

(2)Qq

(
yi|xi

)
= x

�
i
�q

(3)Q
(
�q

)
=

N∑

i∶yi≥x
�
i
�q

q
|||yi − x

�
i
�q

||| +
N∑

i∶yi<x
�
i
�q

(1 − q)
|||yi − x

�
i
�q

|||
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The objective function to be minimized is

where �{⋅} is the indicator function. This function is referred to as the check function; 
the slope of c� (�i) is τ when εi > 0 𝜀i > 0 and is � − 1 when εi < 0 𝜀i < 0 , but is undefined 
for εi = 0 �i = 0 . Choosing the β̂τ �̂� that minimize c� (�i) is equivalent to finding the �̂� that 
make x�� best fit the quantiles of the distribution of y conditional on x.

This minimization problem is set up as a linear programming problem and is solved 
with linear programming techniques. Here 2n slack variable, un×1 and vn×1 , are introduced, 
where ui ≥ 0, vi ≥ 0 and ui × vi = 0 , reformulating the problem as

where 1n �n is a vector of 1s . This is a linear objective function on a polyhedral constraint 

set with 
(
n

k

)
 
(
n

k

)
 vertices, and the goal is to find the vertex that minimizes (4). Each step 

in the search is described by a set of k observations through which the regression plane 
passes, called the basis. A step is taken by replacing a point in the basis if the linear objec-
tive function can be improved. If this occurs, a line is printed in the iteration log. The defi-
nition of convergence is exact in the sense that no amount of added iterations could 
improve the objective function. A series of weighted least-squares (WLS) regression is 
used to identify a set of observations as a starting basis. The WLS algorithm for � = 0.5 is 
taken from Schlossmacher (1973) with a generalization for 0 < τ < 1 0 < 𝜏 < 1 implied 
from Hunter and Lange (2000).”

The bootstrap method is applied to acquire the standard errors and confidence intervals 
of the estimated coefficients in the quantile regression model. In order to obtain a sound 
estimation, the bootstrap replications should be more than 500 or 1,000 times (Efron & 
Tibshirani, 1993). In our estimations, the bootstrap replications are 1,000 times.

The independent variables in the quantile regression model consist of the following 
impact factors: household car availability, household annual income, dummy variable of 
whether the city form is polycentric or has a strong center, dummy variable of whether 
a commuter is located in the satellite cities, dummy variable of whether a city has metro 
services, and distance from home to the city center/subcenter (HCD/HSD). The dependent 
variable is individual commuting CO2 emissions in the form of a natural logarithm. Table 2 
presents the definitions and the summary statistics of the variables in the quantile regres-
sion models.

�i = yi − �
�

i
�̂�

(4)

c𝜏 (𝜀i) =
(
𝜏�{𝜀i ≥ 0} + (1 − 𝜏)�{𝜀i < 0}

)||𝜀i||
=
(
𝜏�{𝜀i ≥ 0} − (1 − 𝜏)�{𝜀i < 0}

)
𝜀i

=
(
𝜏 − �{𝜀i < 0}

)
𝜀i

(5)min
�� ,u,v

{��
�

n
u + (1 − �)�

�

n
v|y − X�� = u − v}



6995Rational planning strategies of urban structure, metro, and…

1 3

Ta
bl

e 
2  

D
efi

ni
tio

ns
 a

nd
 su

m
m

ar
y 

st
at

ist
ic

s o
f t

he
 v

ar
ia

bl
es

 in
 th

e 
qu

an
til

e 
re

gr
es

si
on

 m
od

el
s

(a
)  . D

um
m

y 
va

ria
bl

e;
 1

 in
di

ca
te

s 
th

e 
ho

us
eh

ol
d 

ow
ns

 a
 c

ar
, a

nd
 0

 re
fe

rs
 to

 n
o 

ca
r i

n 
th

e 
ho

us
eh

ol
d.

 In
 B

an
ga

lo
re

’s
 s

ur
ve

y,
 c

ar
 m

od
e 

an
d 

tw
o-

w
he

el
er

 m
od

e 
ar

e 
co

m
bi

ne
d 

in
 

on
e 

ch
oi

ce
 in

 th
e 

qu
es

tio
nn

ai
re

. (b
) . D

um
m

y 
va

ria
bl

e;
 H

In
c 

re
fe

rs
 to

 h
ou

se
ho

ld
 a

nn
ua

l i
nc

om
e 

in
 U

S$
. (c

) . D
um

m
y 

va
ria

bl
e;

 1
 re

fe
rs

 to
 c

om
m

ut
er

’s
 c

ity
 h

as
 p

ol
yc

en
tri

c 
ur

ba
n 

fo
rm

, a
nd

 0
 re

fe
rs

 to
 th

e 
m

on
oc

en
tri

c 
ur

ba
n 

fo
rm

; (d
) . D

um
m

y 
va

ria
bl

e;
 1

 re
fe

rs
 to

 c
om

m
ut

er
s 

ar
e 

lo
ca

te
d 

in
 th

e 
sa

te
lli

te
 c

iti
es

, a
nd

 0
 re

fe
rs

 to
 n

ot
; (e

) . D
um

m
y 

va
ria

bl
e;

 1
 

re
fe

rs
 to

 c
om

m
ut

er
’s

 c
ity

 h
as

 m
et

ro
 s

er
vi

ce
s, 

an
d 

0 
re

fe
rs

 to
 n

ot
; (f

) . H
C

D
/H

SD
 re

fe
rs

 to
 h

om
e-

ce
nt

er
 d

ist
an

ce
 o

r h
om

e-
su

bc
en

te
r d

ist
an

ce
 in

 th
e 

un
it 

of
 k

ilo
m

et
er

s. 
(g

) . T
he

se
 

tw
o 

nu
m

be
rs

 re
fe

r t
o 

al
l t

he
 sa

m
pl

es
 in

 B
ei

jin
g,

 in
cl

ud
in

g 
co

m
m

ut
er

s i
n 

th
e 

m
ai

n 
ur

ba
n 

ar
ea

 in
si

de
 th

e 
6t

h 
R

in
g 

R
d.

 (1
,4

31
 o

bs
er

va
tio

ns
) a

nd
 in

 th
e 

ou
te

r s
ub

ur
bs

 o
f t

he
 sa

te
l-

lit
e 

ci
tie

s (
36

0 
ob

se
rv

at
io

ns
). 

Th
e 

av
er

ag
e 

H
C

D
 o

f t
he

 sa
m

pl
es

 in
 th

e 
m

ai
n 

ur
ba

n 
ar

ea
 in

si
de

 th
e 

6t
h 

R
in

g 
R

d.
 is

 9
.7

98
 k

m
, w

ith
 th

e 
st

an
da

rd
 d

ev
ia

tio
n 

of
 5

.4
86

 k
m

. T
he

 a
ve

r-
ag

e 
H

C
D

 o
f s

am
pl

es
 in

 th
e 

sa
te

lli
te

 c
iti

es
 o

ut
si

de
 th

e 
6th

 R
in

g 
R

d.
 is

 4
3.

32
5 

km
, w

ith
 th

e 
st

an
da

rd
 d

ev
ia

tio
n 

of
 1

5.
35

5 
km

. (h
) . T

he
se

 tw
o 

nu
m

be
rs

 re
fe

r t
o 

al
l t

he
 s

am
pl

es
 in

 
th

e 
fo

ur
 c

as
e 

ci
tie

s, 
in

cl
ud

in
g 

co
m

m
ut

er
s l

oc
at

ed
 in

 th
e 

sa
te

lli
te

 c
iti

es
 in

 B
ei

jin
g’

s o
ut

er
 su

bu
rb

s w
ith

 m
uc

h 
lo

ng
er

 d
ist

an
ce

s t
o 

th
e 

ci
ty

 c
en

te
r

B
ei

jin
g

X
i’a

n
W

uh
an

B
an

ga
lo

re
Po

ol
ed

 S
am

pl
es

O
bs

M
ea

n
St

d.
D

ev
O

bs
M

ea
n

St
d.

D
ev

O
bs

M
ea

n
St

d.
D

ev
O

bs
M

ea
n

St
d.

D
ev

O
bs

M
ea

n
St

d.
D

ev

C
ar

 A
va

ila
bi

lit
ya

1,
86

3
0.

43
8

0.
49

6
1,

95
2

0.
40

3
0.

49
1

1,
86

3
0.

24
3

0.
42

9
24

33
0.

67
0a

0.
47

0
8,

11
1

0.
45

4
0.

49
8

H
In

c 
U

S$
 6

,0
00

–1
0,

00
0b

1,
86

3
0.

18
1

0.
38

5
1,

95
2

0.
18

4
0.

38
8

1,
86

3
0.

39
2

0.
48

8
24

33
0.

18
7

0.
39

0
8,

11
1

0.
23

2
0.

42
2

H
In

c 
U

S$
 1

0,
00

0–
20

,0
00

b
1,

86
3

0.
39

7
0.

48
9

1,
95

2
0.

65
1

0.
47

7
1,

86
3

0.
28

8
0.

45
3

24
33

0.
10

4
0.

30
6

8,
11

1
0.

34
5

0.
47

5
H

In
c 

U
S$

 2
0,

00
0–

40
,0

00
b

1,
86

3
0.

25
6

0.
43

7
1,

95
2

0.
09

0
0.

28
6

1,
86

3
0.

07
7

0.
26

7
24

33
0.

03
1

0.
17

4
8,

11
1

0.
10

8
0.

31
0

H
In

c >
 U

S$
 4

0,
00

0b
1,

86
3

0.
03

9
0.

19
4

1,
95

2
0.

02
5

0.
15

6
1,

86
3

0.
02

2
0.

14
7

24
33

8,
11

1
0.

02
0

0.
14

0
Po

ly
ce

nt
ric

 C
ity

c
1,

86
3

1,
95

2
1,

86
3

1.
00

0
0.

00
0

24
33

8,
11

1
0.

23
0

0.
42

1
Sa

te
lli

te
 C

ity
d

1,
86

3
0.

19
3

0.
39

5
1,

95
2

1,
86

3
24

33
8,

11
1

0.
04

4
0.

20
6

M
et

ro
e

1,
86

3
1.

00
0

0.
00

0
1,

95
2

1.
00

0
0.

00
0

1,
86

3
1.

00
0

0.
00

0
24

33
8,

11
1

0.
70

0
0.

45
8

H
C

D
/H

SD
 (k

m
)f

1,
79

1
16

.5
40

 g
15

.8
70

 g
1,

44
5

6.
55

2
2.

63
8

1,
82

8
5.

46
7

3.
72

9
24

33
8.

26
9

3.
80

8
7,

49
7

9.
23

0 h
9.

35
4 h



6996	 L. Yang et al.

1 3

4 � Quantile regression model results

4.1 � Pooled samples of four case cities

Columns 1 to 5 in Table 3 shows the quantile regression model results of the pooled sam-
ples at the 10th, 25th, 50th, 75th, and 90th quantiles of commuting CO2 emissions. Column 
6 in Table 3 shows the estimation results using the OLS regression method. Figure 1 illus-
trates the varied coefficients at different quantiles of the emissions, the coefficients’ mean 
levels using the OLS method, and the distribution of commuting CO2 emissions. It is found 
that the signs of the estimated coefficients are consistent between the quantile regression 
and OLS methods. The OLS coefficients are approximately at the middle level of the upper 
and lower limits of the quantile regression method Fig. 2.

Results in Table 3 show that the changing tendency of the coefficient of car availability 
turns out to be an inverted U-shape. As commuting CO2 emissions increase from the lower 
level to the middle level, the positive coefficient of car availability displays a tendency to 
increase rapidly. At the 10th quantile, car availability could increase 69.5% of the emis-
sions, while this percentage will amount to 118% at the 50th quantile. When the commuting 
CO2 emissions are larger than the middle level, the positive coefficient of car availability 
has a slight decrease, increasing 93.2–115.8% of the emissions. Car availability’s effect 

Table 3   Quantile regression model results of four case city pooled samples

(a) . The t-statistic is  − 10.117/0.0727 = − 1.609, and the p-value is 0.106. This indicates that the 
dummy variable of polycentric city is almost statistically significant at 10% level. (b). The t-statistic is − 
0.094/0.0623 = − 1.508, and the p-value is 0.131. This indicates that the dummy variable of city has metro 
service is almost statistically significant at the 10% level. (c). Standard errors are in parentheses, calculated 
by the bootstrap method of 1,000 times random samplings with replacements; (d). ***p < 0.01, **p < 0.05, 
*p < 0.1

Variables q10 q25 q50 q75 q90 OLS

Car Availability 0.695***
(0.0857)

0.925***
(0.0646)

1.180***
(0.0527)

1.158***
(0.0427)

0.932***
(0.0445)

1.042***
(0.0348)

HInc US$ 6,000–
10,000

0.321***
(0.111)

0.174**
(0.0773)

0.144**
(0.0572)

0.0689
(0.0585)

0.0962*
(0.0555)

0.127***
(0.0454)

HInc US$ 10,000–
20,000

0.245*
(0.126)

0.134
(0.0826)

0.200***
(0.0559)

0.146**
(0.0572)

0.174***
(0.0652)

0.140***
(0.0479)

HInc US$ 20,000–
40,000

0.815***
(0.148)

0.778***
(0.104)

0.828***
(0.0877)

0.855***
(0.0779)

0.848***
(0.0847)

0.758***
(0.0669)

HInc > US$ 40,000 1.016***
(0.285)

0.769***
(0.211)

0.891***
(0.217)

0.889***
(0.124)

0.969***
(0.132)

0.866***
(0.125)

Polycentric City − 0.399***
(0.0881)

− 0.148**
(0.0714)

− 0.00844
(0.0571)

− 0.0601
(0.0545)

− 0.117a

(0.0727)
− 0.125***
(0.0469)

Satellite City 0.0535
(0.414)

− 0.247
(0.259)

− 0.827***
(0.188)

− 0.924***
(0.192)

− 0.564**
(0.244)

− 0.599***
(0.158)

HCD/HSD 0.00783
(0.00914)

0.0216***
(0.00608)

0.0341***
(0.00470)

0.0377***
(0.00366)

0.0246***
(0.00495)

0.0278***
(0.00340)

City has metro − 0.343**
(0.142)

− 0.391***
(0.0934)

− 0.231***
(0.0696)

− 0.135**
(0.0630)

− 0.094b

(0.0623)
− 0.228***
(0.0483)

Constant − 3.428***
(0.112)

− 2.751***
(0.0774)

− 2.253***
(0.0708)

− 1.553***
(0.0584)

− 0.763***
(0.0630)

− 2.178***
(0.0471)

Observations 5599 5599 5599 5599 5599 5599
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on increasing the emissions rises by approximately 30% as emissions rise from the 10th 
quantile to the 50th quantile. As shown in Fig. 3, the marginal effects of car availability are 
between 33.36 g and 72.38 g of CO2 per trip. At the 75th quantile, the marginal effect turns 
out to be the largest, registering at 2.2 times that of the minimum. These results are mainly 
due to the fact that, shown in Fig.  2 and Fig.  4, longer commute distances (averaging 

Fig. 1   Quantile regression coefficients and commuting CO2 emission distribution. Note: (a). The lines in 
bold black refer to the coefficients of OLS regression; (b). The lines in dark green refer to the varied coef-
ficients in the quantile regression; (c). The gray bands refer to the confidential intervals of the coefficients in 
the quantile regression; (d). The bar graph shows the distribution of commuting CO2 emissions

(a) (b) (c) (d) (e)
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Fig. 2   Percentages of mode choice and car availability below and above the 10th, 25th, 50th, 75th, and 90th 
quantiles in the pooled samples
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Fig. 3   Average marginal effects on commuting CO2 emissions below and above the 10th, 25th, 50th, 75th, 
and 90th quantiles in the pooled samples
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11 km), as well as higher car mode share (66.3%), exist among the commuters with emis-
sions larger than the middle level. Among the low emitters, with emissions smaller than the 
middle level, the average commute distance is only 4.2 km, and the car mode share is only 
17.9%. Conversely, the bus mode share for these individuals is as high as 62.1%.

The changing tendency of the coefficient of HCD/HSD also turns out to be an inverted 
U-shape. The positive coefficient of HCD/HSD has a slight increasing trend as commut-
ing CO2 emissions increase to the 75th quantile. At the 25th quantile, a 1  km increase 
of HCD/HSD causes the emissions to increase by 2.16%; at the 75th quantile, this quan-
tity increases to 3.77%. HCD/HSD’s effect on increasing the emissions rises by 32% as 
emissions rise from the 25th quantile to the 75th quantile. At the 90th quantile, the posi-
tive coefficient of HCD/HSD has a slight decrease, increasing 2.46% of the emissions. The 
marginal effects of HCD/HSD also increase as emissions increase to the 75th quantile. Fig-
ure 3b shows that a 1 km increase of HCD/HSD could cause 1.1 g to 1.67 g increases of 
emissions per trip. At the 75th quantile, the marginal effect becomes the biggest, at 2.1 
times that of the minimum. These results are caused by the increased commute distances 
as quantiles increase, from the smallest average level of 1.47 km, increasing to the largest 
average level of 15.75 km, shown in Fig. 4.

Model results also indicate that, among the high emitters with emissions larger than the 
middle level, satellite city forms could reduce 56.4–92.4% of the commuting CO2 emis-
sions. These effects are not statistically significant among the low emitters at the 10th or 
25th quantiles. Figure 3(d) shows that the marginal effects of satellite cities are between 
− 38.35 g and − 57.75 g of CO2 per trip. At the 75th percentile, the marginal effect turns 
out to be the largest, at 1.5 times that of the minimum. Additionally, polycentric urban 
forms could generally reduce commuting CO2 emissions. At the 10th, 25th, and 90th quan-
tiles, polycentricity could reduce 39.9%, 14.8%, and 11.7% of the emissions, respectively. 
Figure 3c reports that the marginal effects of polycentric forms are between − 7.55 g to 
− 19.15 g of CO2 per trip. At the 10th percentile, the marginal effect becomes the largest, 
calculated as being 2.5 times that of the minimum level.

The significant effects polycentric or satellite city forms have on reducing emissions can 
be illustrated from the following characteristics. High emitters are characterized by much 
longer commute distances and more frequent car usage, especially for the high emitters in 
the top 10th percentile. These commuters have an average travel distance of 15.75 km, with 

(a)  (b)
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Fig. 4   Average distance below and above the 10th, 25th, 50th, 75th, and 90th percentiles in the pooled sam-
ples
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a car mode share of 89.6%, shown in Fig. 2e and Fig. 4b. However, polycentric and satellite 
city urban forms can promote job-to-housing balances, shorten commute distances, and, 
thus, reduce driving frequency, which will substantially lower transport CO2 emissions. 
Among the samples taken from the polycentric city of Wuhan, fewer driving trips, more 
non-motorized trips, and more intra-trips inside the three subcenters existed, resulting in 
lower levels of transport CO2 emissions. Among the samples taken from the satellite cities 
in Beijing, more local trips inside the satellite cities were observed, and, thus, the transport 
CO2 emissions were lower, compared with the sprawling areas.

Based on the above results, it can be concluded that controlling the percentage of oil-
fueled cars, shortening the HCD/HSD, and developing satellite cities have the largest 
effects for reducing transport CO2 emissions from the emitters of the middle and higher 
levels. Moreover, these middle and higher levels of emitters account for about 50% of the 
total emitters. Therefore, the above policies will have enormous effects on transport CO2 
emission reductions.

Another notable finding reveals that the effects metro services have on reducing the 
emissions decrease as the emissions increase from the 25th quantile to the 90th quantile. 
At the 10th quantile, cities with metro services could reduce 34.3% of the emissions, and 
at the 25th quantile, cities with metro services could reduce 39.1% of the emissions; while 
at the 75th quantile, this effect drops to 13.5%, and at the 90th quantile, this effect becomes 
the lowest, at only 9.41%. Calculated from the model results, it can be obtained that the 
effects of metro services reducing the emissions will suffer a 19% decrease when commut-
ing CO2 emissions increase by 1 kg. Figure 3e and Fig. 5 indicate that the marginal effects 
of this impact factor are between − 19.94 g to − 6.4 g of CO2 per trip. At the 25th quantile, 
the marginal effect is the greatest, at 3.1 times that of the minimum. On the one hand, 
these results are due to the increasing tendencies of car availability, household income, 
driving frequencies, and commute distances, and the decreasing tendency of metro mode 
usage as transport CO2 emissions increase, as reflected in Fig. 2 and Fig. 4. Despite the 
advanced metro services and metro networks in the sprawling areas in Beijing, commut-
ers will still heavily rely on driving when car availability and long-distance commutes are 
present. Another possible reason lies in the long travel times that exist while transferring to 
other modes when using buses and metros. For instance, among the bus or metro users of 
Beijing, half of the commuters take more than a 1/3 of their total travel time just in trans-
ferring; among the bus users in Bangalore, half of the commuters spend more than 1/2 of 
their total travel time before and after riding the bus.

Figure  5 shows that, between the 25th quantile and the 50th quantile of the emis-
sions, metro’s effects on reducing the emissions have a great extent of decrease. We 
analyze the samples’ characteristics between the 25th to 50th quantile, between the 50th 
to 75th quantile, and between the 75th to 90th quantile. It is found that, when commut-
ing distance reaches and exceeds 5.8 km, and the percentage of car availability reaches 
41.2% or more, metro’s effects in reducing the emissions drop continuously at a rate 
of 37.8%. Thus, for low-carbon transportation development, it is suggested to form 
employment and life circles within a 5–6 km radius. Meanwhile, in order to attract more 
high emitters to use metros, better transit resources, such as feeder buses or customized 
shuttle buses, need to be allocated around the metro stations. For the first-and-last mile 
access to metros, shared bicycles and electric scooters are now popularly used (Baek, 
2021; Zuo et al., 2020; Chen et al., 2021), which can expand the access distance to met-
ros, compared with walking, making transfer to metros more convenient for those resi-
dents located farther away from the station. These non-motorized travel modes need to 
be encouraged. Also, urban roads with better walkability and greenways can encourage 



7000	 L. Yang et al.

1 3

more travelers to walk or use non-motorized traffic modes in their transfers to metros 
(Ahn, et  al., 2021; Pan et  al., 2021; Ngo et  al., 2018; Sun, Zhou, et  al., 2016; Sun, 
Zacharias, et al., 2016). Therefore, bicycle lanes, pedestrian streets, and greenways need 
to be constructed with high service levels. These above suggested measures will be ben-
eficial for the first-and-last mile access to metros and will make metros more attractive 
to those commuters with cars and high income. In addition, it is necessary to combine 
proper traffic demand management policies and metro network construction together to 
control the driving frequencies. The percentage of oil-fueled cars in ownership needs to 
be controlled, and newer energy-operated vehicles need to be encouraged through the 
use of transport policies. Car ownership restriction or congestion pricing policymaking 
need to consider the travel behaviors and sensitivity of travel consumptions among the 
high-income commuters.

Fig. 5   Commuters’ percentages, transport CO2 emissions per trip, and metro’s marginal effects at different 
quantiles. Note: HWD refers to home-work distance in kilometers; CA refers to car availability
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By using the model equations at the 50th, 75th, and 90th quantiles, the increasing 
rates of transport CO2 emissions produced by the high emitters were calculated when the 
impact factors’ values varied. These impact factors include distance to the city center, 
metro provision, mono/polycentric form, and whether satellite cities exist. The high emit-
ters refer to those with car availability and higher household annual incomes between US$ 
20,000–40,000. The results are shown in Fig. 6. As the distances to the city center increase, 
the increasing rates of transport CO2 emissions increase continuously. At the 50th quan-
tile, the increasing rates change between 0.01 and 0.07, at the 75th quantile, the increasing 
rates change between 0.02 and 0.18, and at the 90th quantile, the increasing rates change 
between 0.03 and 0.14. Generally, the increasing rates of transport CO2 emissions become 

Fig. 6   Increasing rates of transport CO2 emissions and distances to the city center under different scenarios
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larger as the emissions increase. When there are metro provisions, polycentric forms, or 
satellite cities, the increasing rates of transport CO2 emissions will decrease, especially for 
the scenarios with satellite city developments. It is noteworthy that, under the scenarios 
with polycentric and satellite city developments, as the distances to the city center increase, 
though, the increasing rates of transport CO2 emissions will have more declines. At the 
75th quantile, there exist larger extents of the decreased emissions when the distance to the 
city center is more than about 8–10 km, and at the 50th and 90th quantiles, the emissions 
will have more decreases when the distance to the city center is more than about 15–18 km. 
These results indicate that when the urban radius is more than approximately 10–15 km, 
transport CO2 emissions in the outer areas will increase significantly, while developing 
polycentric and satellite cities can greatly decrease the increasing extents in the outer areas. 
These results suggest that, for transport emission reductions, it is necessary to control the 
urban development radius within 10–15 km under the monocentric pattern, and when the 
city continues to sprawl, polycentric structures and satellite cities need to be formed.

4.2 � Samples of four single cities, car availability, high income, and polycentric/
satellite cities

In order to test the robustness of the heterogeneous effects of the impact factors, different 
quantile regression models were established by using different subsamples. These subsam-
ples include samples of the four single cities, a sample of the commuters with car availabil-
ity, a sample of the commuters with high household annual income (> US$ 40,000), and a 
sample of the commuters located in the polycentric city or satellite city.

Table 4 shows the model results in the samples of the four single cities. In the cities 
of Beijing, Xi’an, and Bangalore, all of which have one strong center, the positive coef-
ficients of car availability and HCD/HSD increase stably along with the increase of emis-
sions, while in the polycentric city of Wuhan, such an increasing tendency does not exist. 
The positive coefficients of car availability become smaller when the emissions are larger 
than the middle level. Additionally, at the 10th, 25th, 50th, and 90th quantiles, HCD/HSD 

Fig. 6   (continued)
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does not have statistically significant effects on the emission increases, which illustrates 
that HCD/HSD is not the significant factor behind emission increases, under the polycen-
tric form.

Results in Tables 5 and 6 report that, in the sample of the commuters with car availabil-
ity, satellite city form’s effects in reducing the emissions are statistically significant among 

Table 4   Quantile regression model results of four case city samples

(a) . Household incomes are included in the quantile regression models; (b). Standard errors are in paren-
theses, calculated by the bootstrap method of 1,000 times random samplings with replacements; (c). 
***p < 0.01, **p < 0.05, *p < 0.1

Variables q10 q25 q50 q75 q90

Xi’an
Car Availability 0.884***

(0.161)
1.408***
(0.126)

1.865***
(0.0689)

1.941***
(0.0589)

1.953***
(0.0531)

HCD/HSD 0.00123
(0.0256)

0.0250
(0.0153)

0.0263**
(0.0119)

0.0286**
(0.0112)

0.0219*
(0.0113)

Constant − 3.967***
(0.488)

− 3.071***
(0.260)

− 2.517***
(0.240)

− 2.168***
(0.126)

− 1.881***
(0.152)

Household Income Yes Yes Yes Yes Yes
Observations 1271 1271 1271 1271 1271
Beijing
Car Availability 0.603***

(0.142)
0.926***
(0.148)

1.320***
(0.0807)

1.502***
(0.0751)

1.468***
(0.0878)

HCD/HSD 0.00838
(0.0110)

0.0186**
(0.00786)

0.0200***
(0.00500)

0.0286***
(0.00731)

0.0179***
(0.00508)

Satellite City − 0.447
(0.410)

− 0.803**
(0.332)

− 1.063***
(0.169)

− 0.984***
(0.291)

− 0.515**
(0.237)

Constant − 3.114***
(0.232)

− 2.490***
(0.157)

− 1.840***
(0.230)

− 1.238***
(0.115)

− 0.722***
(0.222)

Household Income Yes Yes Yes Yes Yes
Observations 1222 1222 1222 1222 1222
Wuhan
Car Availability 1.538***

(0.209)
1.905***
(0.198)

1.834***
(0.111)

1.618***
(0.0892)

1.247***
(0.129)

HCD_HSD − 0.0185
(0.0243)

− 0.00671
(0.0144)

− 0.0118
(0.0131)

0.0195
(0.0136)

− 0.00400
(0.0146)

Constant − 3.877***
(0.170)

− 3.161***
(0.158)

− 2.272***
(0.102)

− 1.642***
(0.105)

− 0.782***
(0.197)

Household Income Yes Yes Yes Yes Yes
Observations 1113 1113 1113 1113 1113
Bangalore
Car Availability − 0.0148

(0.0196)
0.229*
(0.117)

0.259***
(0.0675)

0.238***
(0.0544)

0.357***
(0.0619)

HCD_HSD − 0
(0.000998)

− 0.00161
(0.0121)

0.0216**
(0.00927)

0.0233***
(0.00810)

0.0193**
(0.00940)

Constant − 2.688***
(0.0235)

− 2.210***
(0.156)

− 1.481***
(0.117)

− 0.862***
(0.115)

− 0.410***
(0.120)

Household Income Yes Yes Yes Yes Yes
Observations 1993 1993 1993 1993 1993
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high emitters at the 50th, 75th, and 90th quantiles. At the 75th quantile, satellite city form 
could reduce as much as 117.8% of the emissions, which is about 2 times that of the mini-
mum. The marginal effects are between − 48.8  g and − 98.5  g of CO2 per trip. HCD/
HSD effects are statistically significant and have a slight increasing tendency. At the 50th, 
75th, and 90th quantiles, a 1 km increase in HCD/HSD could increase emissions by 2.04%, 
3.09%, and 2.97%, respectively, with the marginal effects between 1.7 and 2.6 g of CO2 per 
trip, showing larger effects compared with those in the pooled samples. At the 75th quan-
tile, the marginal effect is the greatest, at about 1.53 times that of the minimum.

In the sample of the commuters with higher household annual incomes (> US$ 40,000), the 
positive coefficient of car availability increases with the emission increases, with the marginal 
effects between 254.5 g and 340.4 g of CO2 per trip. At the 75th quantile, the marginal effect 

Table 5   Quantile regression results from the subsamples of car availability, high-income, and polycentric/
satellite city

(a) . Household incomes are included in the quantile regression models; (b). High-income sample refers to 
household annual income larger than US$ 40,000; (c). Standard errors are in parentheses, calculated by the 
bootstrap method of 1,000 times random samplings with replacements; (d). ***p < 0.01, **p < 0.05, *p < 0.1

Variables q10 q25 q50 q75 q90

Sample of car availability
Satellite city 0.0148

(0.401)
− 0.308
(0.399)

− 0.786***
(0.272)

− 1.178***
(0.331)

− 0.583*
(0.345)

HCD_HSD − 0
(0.00538)

0.0101
(0.00760)

0.0204***
(0.00639)

0.0309***
(0.00593)

0.0297***
(0.00604)

Constant − 2.703***
(0.0429)

− 2.072***
(0.138)

− 1.217***
(0.0726)

− 0.716***
(0.0846)

− 0.152
(0.119)

Household income Yes Yes Yes Yes Yes
Observations 3036 3036 3036 3036 3036
Sample of high income
Car availability 1.485***

(0.295)
1.799***
(0.444)

1.823***
(0.397)

1.986***
(0.495)

1.848**
(0.706)

Polycentric city 0.0263
(0.415)

0.737
(0.586)

0.144
(0.360)

− 0.465**
(0.233)

− 0.851***
(0.275)

Satellite city − 3.902
(2.506)

− 6.372**
(2.674)

− 6.639***
(1.840)

− 7.016***
(2.012)

− 4.241***
(1.497)

HCD_HSD 0.0726*
(0.0421)

0.108**
(0.0456)

0.0906***
(0.0317)

0.0826**
(0.0364)

0.0255
(0.0278)

Constant − 3.747***
(0.360)

− 3.876***
(0.488)

− 2.528***
(0.513)

− 1.789**
(0.683)

− 0.687
(0.730)

Observations 107 107 107 107 107
Sample of polycentric or satellite cities
Car availability 1.389***

(0.191)
1.646***
(0.205)

1.562***
(0.0969)

1.530***
(0.0936)

1.257***
(0.119)

HCD_HSD 0.00666
(0.00458)

0.0107**
(0.00475)

0.0102***
(0.00366)

0.0140***
(0.00380)

0.0128***
(0.00279)

Constant − 3.939***
(0.108)

− 3.233***
(0.130)

− 2.399***
(0.0811)

− 1.596***
(0.100)

− 0.909***
(0.153)

Household income Yes Yes Yes Yes Yes
Observations 1276 1276 1276 1276 1276
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is the largest, at about 1.3 times that of the minimum. The effect of polycentric forms reducing 
emissions is significant among high emitters, with the marginal effects between − 79.7 g to − 
145.9 g of CO2 per trip. At the 90th quantile, the average marginal effect becomes the largest, 
at about 1.8 times that of the minimum. Meanwhile, the effect of satellite city forms reducing 
emissions is also significant among high emitters, with much larger marginal effects between 
− 726.9 g and − 1202.5 g of CO2 per trip. At the 75th quantile, the marginal effect becomes 
the maximum, at about 1.7 times that of the minimum. Notably, the positive coefficients of 
HCD/HSD in the high-income sample are much larger than those in other samples. At the 
25th, 50th, and 75th quantiles, a 1 km increase in HCD/HSD could increase the emissions by 
10.8%, 9.06%, and 8.26%, respectively, with the marginal effects between 12.4 g and 18.5 g of 
CO2 per trip. At the 25th quantile, the marginal effect turns out to be the largest, at about 1.5 
times that of the minimum.

Looking at the results in the sample of the commuters located in the polycentric or satellite 
cities in Table 5, no increasing tendency exists in the positive coefficients of car availability, 
which is similar to the model results for the Wuhan sample in Table 4. In addition, the results 
show that the effect of car availability increasing the emissions becomes smaller compared 
with those in the high-income sample, and the effects of HCD/HSD increasing emissions also 
become smaller. A 1 km increase of HCD/HSD will increase emissions by 1% to 1.4%, with 
marginal effects between 0.4 to 0.6 g of CO2 per trip.

Table 6   Marginal effects on commuting CO2 emissions

Marginal Effects on CO2 (g) per trip Min Avg Max

Satellite city
Sample of car availability − 98.537 − 73.652 − 48.767
Sample of high income − 1202.49 − 964.681 − 726.874
Pooled samples of four case cities − 57.75 − 48.051 − 38.35
Polycentric city
Sample of high income − 145.855 − 112.776 − 79.697
Pooled Samples Of Four Case Cities − 19.15 − 13.35 − 7.55
Metro service
Pooled samples of four case cities − 19.94 − 13.170 − 6.40
1 km increase of HCD/HSD
Sample of car availability 1.706 2.146 2.585
Sample of high income 12.443 15.477 18.510
Sample of polycentric or satellite cities 0.429 0.508 0.588
Pooled samples of four case cities 1.10 1.729 2.36
Car availability
Sample of high income 254.517 297.451 340.385
Sample of polycentric or satellite cities 52.8093 60.981 69.152
Pooled samples of four case cities 33.36 52.868 72.38
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5 � Conclusion

In this study, to make rational planning strategies for reducing transport CO2 emissions 
and climate change, heterogeneous effects of the significant impact factors from trans-
port emissions were measured in four typical developing Chinese and Indian cities.

The quantile regression method was applied, because it can overcome the shortcom-
ings of the conditional mean method, frequently used in the previous literature. The 
conditional mean method can only provide the mean level of the impact factors’ effects, 
and the regression error has normal distribution and homoscedastic assumptions, while 
the quantile regression method can estimate the covariate effects on any percentile of 
transport emission’s distribution and is not limited to the conditional mean model’s 
assumptions. The quantile regression model is estimated by linear programming tech-
niques, and the standard errors and confidence intervals of the estimated coefficients are 
calculated by the bootstrap method.

The significant impact factors of transport CO2 emissions include household car 
availability, mono/polycentric urban form, satellite city development, metro service, 
and distance from home to the city center/subcenter. The statistical test and robust 
test results indicate the reliability of the model results. According to the study results, 
specific urban and transport planning strategies are proposed to reduce transport CO2 
emissions under Chinese and Indian cities’ development situations. These development 
situations include urban growths, metro and rail network constructions, urban agglom-
eration formations, motorization and economic increases, energy technology improve-
ments, and new energy vehicle promotions. The above development situations are 
equally important issues for other global cities. Therefore, this study’s findings will be 
beneficial to transport CO2 emission reductions globally.

Model results indicate that the marginal effects of a city having metro services vary 
from − 19.94 to − 6.4 g of CO2 per trip. From the lowest emitters to the highest emit-
ters, the effects of metros reducing the emissions drop at a rate of 27%, averagely. That 
means metro service provisions could not bring about substantial emission reductions 
among the high emitters, while the marginal effects of car availability change from 33.4 
to 340.4 g of CO2 per trip. From the low emitters to the high emitters, the effects of car 
availability increasing the emissions have a general rising tendency. The largest mar-
ginal effect of car availability increasing the emissions is seen within the high-income 
sample (254.5  g to 340.4  g of CO2 per trip). It is also found that, after the commute 
distance reaches 5.8 km or more and the car availability’s percentage amounts to 41.2% 
or greater, metro’s effects on reducing the emissions decrease continuously at a rate of 
37.8%.

Therefore, for low-carbon transportation development, it is recommended to form 
employment and life circles within a 5–6 km radius. Dependence only on metro con-
struction cannot bring about desired emission reductions in future. It is necessary to 
combine traffic demand management policies together to reduce driving, including con-
trolling the percentage of oil-fueled cars owned, car use restriction, and congestion pric-
ing. In the policymaking of car restriction or congestion pricing, it is necessary to con-
sider the travel behaviors and sensitivity of travel consumptions among the high-income 
commuters. In addition, to attract high emitters toward using public transit and metro 
services more often, better public transit resources (feeder buses or customized shuttle 
buses) need to be allocated around the metro stations. Additionally, high service levels 
of bike lane facilities, pedestrian streets, and greenways need to be constructed. These 
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could attract more travelers to use low-carbon traffic modes when transferring to metros, 
and attract more residents located farther from metro stations to access metros.

Model results also indicate that the marginal effects of HCD/HSD are between 0.5 to 
18.5 g of CO2 per trip. The effects of HCD/HSD contributing to the increase of emis-
sions grow at a rate of approximately 32.1%. In the sample of the commuters with car 
availability, marginal effects of HCD/HSD are a little larger (1.7–2.6 g of CO2 per trip) 
than those in the pooled samples (1.1–2.3 g of CO2 per trip), and in the high-income 
sample, the marginal effects turn out to be the largest, at 12.4–18.5 g of CO2 per trip. 
Under future urban expansion and urban agglomeration development, HCD/HSD will 
continue to become longer. This reality, paired with the higher marginal effects of HCD/
HSD among the high-income and car availability commuters, will inevitably create 
surges in transport CO2 emissions. In order to mitigate these rapid increases in future, it 
is of great importance to foster polycentric forms inside the main city and develop sat-
ellite cities in the outer areas, since the model results report that polycentric and satel-
lite city forms could reduce transport CO2 emissions significantly, with marginal effects 
of − 145.9 g to − 7.6 g of CO2 per trip and − 1202.5 g to − 38.4 g of CO2 per trip, 
respectively. Additionally, these two factors’ effects become larger in the high-income 
and car availability samples. Furthermore, car availability’s and HCD/HSD’s effects on 
increasing the emissions decline under the scenarios of developing polycentric and sat-
ellite city forms. Under the scenarios with polycentric and satellite city developments, 
as HCD increases farther, the increasing rates of transport CO2 emissions have signifi-
cant declines. When the distance to the city center is more than 8–10 km and 15–18 km, 
developing polycentric and satellite cities can greatly decrease the increasing extents of 
the emissions caused by the increase of HCD. These above results manifest that, under 
the situation of the urban form with one strong center, there will be smaller transport 
CO2 emissions if the urban radius is within approximately 10–15  km. When the city 
sprawls beyond this range, transport CO2 emissions will substantially increase. There-
fore, it is necessary to control the urban radius within 10–15 km under the monocentric 
urban pattern and to foster polycentric structures and satellite cities in the outer areas.

In summary, for transport CO2 emission reductions, it is necessary to combine the 
following planning strategies together, including controlling the percentages of oil-
fueled cars, metro and rail network construction, and providing better public transit ser-
vices around metro stations. Meanwhile, bicycle lanes, pedestrian streets, and green-
ways need to be constructed with high service levels for the first-and-last mile transfer 
to public transit or metros. Also, employment and life circles are suggested to be within 
a 5–6  km radius, and urban radius is recommended to be 10–15  km under the urban 
form with one strong center. When the city continuously sprawls, polycentric structures 
and satellite cities need to be formed.
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