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Abstract
The agriculture sector is one of the leading emitters of greenhouse gases in Bangladesh, 
owing to increasing mechanization, changing population patterns and increasing culti-
vation of irrigation intensive crops like rice. The objective of this research is to analyze 
how population trends, energy use and land use practices impact the emissions of three 
greenhouse gases from the agriculture sector in Bangladesh. The gases studied are carbon 
dioxide, methane and nitrous oxide. The Stochastic Impacts by Regression on Population, 
Affluence, and Technology (STIRPAT) model and ridge regression are used to analyze 
the drivers of emissions covering the period from 1990 to 2014. Explanatory factors of 
emissions are the total and rural population, affluence, urbanization, fertilizer intensity and 
quantity, carbon and energy intensity, irrigation, rice cultivation, cultivated land and crop 
yield. The findings reveal that the country’s total population has a negative effect, and the 
rural population has a negative, nonlinear impact on the emissions of methane. Affluence 
affects emissions of all the gases. The energy intensity and carbon intensity of agriculture 
increase carbon dioxide emissions. The cultivated land area, rice cultivation quantity and 
crop yield increase methane emissions, while irrigated land area decreases it. Rural popula-
tion, total population and urbanization have a positive linear effect on carbon dioxide and 
nitrous oxide emissions. Fertilizer quantity and intensity increase nitrous oxide emissions. 
The findings imply that increasing agricultural mechanization should be based on clean 
energy, and land management should be regulated to enable the country to meet its Nation-
ally Determined Contribution (NDC) targets as well as the targets of Sustainable Develop-
ment Goal (SDG) 7 of increasing the share of clean energy.
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1 Introduction

A historic event occurred in Bangladesh in 2014, when for the first time in modern 
history, the rural population of the country peaked and then started to decline (World 
Bank, 2020) (Fig. 1, 2, 3). In 2020, Bangladesh also became the third biggest rice pro-
ducing nation, after China and India. In order to support the growing population, the 
government emphasized increasing the production and yield in the agriculture sector, 
and as a result, the yield of the land has almost doubled during this period, though the 
area of cultivated land increased little (Figs.  4, 5) (World Bank, 2020). Following a 
great flood in 1988, the government took widespread measures to stimulate the agricul-
ture sector, but this came at the expense of environmental degradation and pollution. It 
instilled policies to subsidize diesel, as well as agricultural machinery, and allowed tax 
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free imports of the machinery, all of which expanded their sales. It also removed restric-
tions on boring and groundwater extraction, leading to uncontrolled groundwater pump-
ing. The shortage of rural labor during brief and busy harvesting periods, and a local 
industry for manufacturing agricultural machinery, have further increased dependence 
on mechanization (International Development Enterprise, 2012). Food security is also 
a motivation for mechanization, as the machines reduce crop damage and wastage, and 
enable quick harvests during emergencies before anticipated climate disasters (Interna-
tional Development Enterprise, 2012).
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However, the mechanization and irrigation intensity of agriculture makes it one of 
the most energy consuming sectors in the country. The agriculture sector of Bangladesh 
is second in petroleum consumption (19%), after the transport sector (45%) (SREDA & 
MoPEMR, 2015). To mitigate this, there is government initiative under the Ministry of 
Agriculture and the Ministry of Power, Energy and Mineral Resources to introduce renew-
able energy based irrigation on a massive scale, by using solar irrigation (SREDA & 
MoPEMR, 2015). Despite this, the falling rural population is leading to greater mecha-
nization in all stages of agriculture, including tilling, planting and harvesting. In the past, 
agriculture subsidies from the government were allocated to farmer credit, seeds, fertilizers 
and pesticides (BBS, 2020). Now, the worldwide lockdowns due to Covid-19 in 2020 have 
led the government to reemphasize the importance of food security, in a world where trade 
flows may become obstructed. Therefore, the new budget has increased subsidies for agri-
cultural machinery as well (Bhuyan, 2020).

The lack of widespread use of expensive farm machinery in the past was due to the 
ample availability of rural labor, lack of capital and small size of land holdings. The 
decreasing rural population (Fig. 2) and the potential productivity increase from mecha-
nization has now created a large untapped opportunity for mechanization (Alam et  al., 
2020; Fuad & Flora, 2019). Bangladesh already has a roadmap for the achievement of the 
Nationally Determined Contribution (NDC) target of reducing greenhouse gases (GHG) 
emissions from the power, industry, transport and agriculture sectors. The aim is to reduce 
emissions by 5% unilaterally, or by 15% with international support, by 2030. This roadmap 
expressly aims to reduce methane emissions from agricultural land. The plan also aims to 
reduce the overall energy intensity of the economy by 20% within 2030 (MOFE, 2015).

Urbanization and a declining share of rural population is a feature of developing coun-
tries across the world, and especially the largest agriculture producing developing coun-
tries like China, India, Indonesia and Bangladesh. However, to our knowledge, the impacts 
on agricultural emissions from a falling share of rural population, alongside the changing 
technology and land use patterns have not been studied.

Rice cultivation, starting in historic times over 5000 years ago, has been a top emissions 
source of  CH4, but the process has been accelerating in recent years and decades, with 
the increase in the populations and economies of the top rice producers of the world, the 
populous Asian countries (Li et al., 2009). Agriculture also represents the biggest source 
of anthropogenic  N2O emissions, due to the application of artificial nitrogen-rich fertiliz-
ers, soil management practices and biomass management (Reay et al., 2012). In addition 
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to  CO2,  CH4 and  N2O make up the second and third largest share of greenhouse gases 
(16% and 6% respectively). Furthermore, agriculture, forestry and land use emit 24% of 
the GHGs worldwide (EPA, 2020). Rosa et  al. (2004) studied the anthropogenic drivers 
of GHGs across countries, and Singh and Mukherjee (2018) studied GHG emissions from 
livestock farming in America. However, to our knowledge, there has been no study of the 
socioeconomic drivers of specifically methane  (CH4) and nitrous oxide  (N2O) emissions 
from the agriculture sector.

The emissions of  CO2 depend on the use of fossil fuel-based energy for irrigation, till-
age and cultivation, and the energy intensity of the process. Among anthropogenic sources, 
rice agriculture plays as great a role in  CH4 emissions as energy consumption, and agri-
cultural soil management activities are responsible for more  N2O emissions than any other 
source (Inamori et al., 2003; Scheehle & Kruger, 2006). Among SAARC countries, Bang-
ladesh has a middle rank when it comes to  CO2 emissions from agriculture, coming after 
Pakistan and India, but above Afghanistan and Bhutan (Ikram et  al., 2020). Bangladesh 
also has the lowest  CO2 emissions intensity from rice production among top eight rice pro-
ducing countries (Maraseni et al., 2018). However, the overall emissions show an increas-
ing trend. Studies of the drivers of greenhouse gases in the electricity sector in Bangladesh 
have shown that energy intensity, carbon intensity, population, affluence and urbanization 
all play important roles (Aziz & Chowdhury, 2020). The effects with respect to the agricul-
ture sector have not been previously explored.

In the context of the demographic and energy transition in Bangladesh, the aim of this 
study is to analyze impacts of population, rural population change, affluence, urbanization, 
and selected energy and agricultural technologies on the emissions caused by the agricul-
ture sector in the Bangladeshi economy. Using the STIRPAT model and ridge regression, 
in this study we hope to add to the literature by exploring the anthropogenic sources of the 
three salient atmospheric emissions of agriculture,  CO2,  N2O and  CH4, in the context of 
Bangladesh. We investigate the effects of some new factors previously not explored for the 
agriculture sector, namely the linear and nonlinear effects of rural population, the linear 
and nonlinear effects of urbanization, land area under grain cultivation, irrigated land area, 
rice cultivation quantity and the land yield. We show their implications for achieving the 
climate targets of the country, alongside the socioeconomic goals. The findings from Bang-
ladesh will also shed light on the effects of the socioeconomic drivers of GHG emissions 
from agriculture in other major rice growing countries, which are also undergoing some of 
the same demographic and energy transitions.

With respect to the emission of  CO2, we test the following hypotheses:

1. The carbon intensity of agriculture increases  CO2 emissions.
2. The energy intensity of agriculture increases  CO2 emissions.
3. Urbanization trends increase  CO2 emissions.

With respect to the emissions of  CH4, we explore the following hypotheses:

1. Higher crop yield increases the emissions of  CH4
2. More rice cultivation increases the emissions of  CH4
3. Greater irrigated land area increases the emissions of  CH4
4. Greater cultivated land area increases the emissions of  CH4.

With respect to  N2O emissions, we explore the following hypotheses.
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1. Higher fertilizer intensity increases  N2O emissions.
2. Greater fertilizer use increases  N2O emissions.

Furthermore, we also explore the effects of rural population decline, and its nonlinear 
effects, on the emissions of all three gases. Overall country population and affluence are 
used as control variables.

The factors affecting emissions can vary depending on the specific GHG, and can 
include drivers like energy intensity, carbon intensity, land use, fertilizer use, irrigation pat-
terns and crop yields. Drivers like population and affluence are common factors in increas-
ing the emissions of all GHGs. However, energy use is primarily responsible for  CO2 emis-
sions, irrigation and rice production increases  CH4 emissions, and fertilizer use affects  N2O 
emissions. The studies exploring the drivers of the three GHGs in our literature review are 
summarized in Table 1.

Increasing agricultural production itself leads to increase of  CO2 emissions, though 
using clean or renewable energy in agriculture can reduce these emissions (Anwar et al., 
2019; Aziz et al., 2020; Liu et al., 2017; Waheed et al., 2018).

The nonlinear effects of anthropogenic drivers have also been studied in the STIRPAT 
literature, most commonly the affluence driver. This is in the framework of the environ-
mental Kuznets curve (EKC) hypothesis, which was pioneered by the research of Shafik 
and Bandyopadhyay (1992) and Grossman and Krueger (1991). It proposes that low 
income countries pollute the environment in the course of economic activities, but after 
reaching a certain level of affluence, invest in clean technologies and policies to reduce 
pollution. This relationship is captured by an inverted U-shaped curve created by the envi-
ronmental degradation variable as a function of income. The nonlinear effects of popula-
tion on overall country emissions have been studied by Selden and Song (1994) and Lantz 
and Feng (2006). However, we have not found studies which explore the nonlinear effects 
of urbanization or population, or rural population in particular, on the agriculture sector in 
particular, and hope to address this gap in our research.

Using our literature survey as a guide, we explore the impact of critical anthropogenic 
factors affecting emissions of the top three GHGs from the agriculture sector of Bangla-
desh. We prepare separate models for each of the gases, including the factors most indi-
cated to influence their emissions. We will also explore the nonlinear effects of rural popu-
lation and urbanization on emissions, as the total rural population of the country has turned 
a corner, and begun to decrease.

2  Methodology

2.1  Analytical model

The literature exploring the factors behind atmospheric emissions includes a number 
of socioeconomic, demographic and technological factors, often summarized in the 
STIRPAT (Stochastic Impacts by Regression on Population, Affluence, and Technol-
ogy) model, proposed by Dietz and Rosa (1994). This model has been used to reveal 
the causes of emissions in a number of sectors, countries or groups of countries. These 
studies reveal that the factors responsible for increasing emissions include rising pop-
ulation, increasing affluence, urbanization, economic structure, energy consumption, 
energy mix and related technological aspects of the country. We use this STIRPAT 
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model in our research. The STIRPAT model is derived from an earlier IPAT model 
developed by Ehrlich and Holdren (1971). The basic IPAT model can be stated as

where P is the population, A is the affluence, and T is the technology term. They together 
form a multiplicative relationship to affect the dependent variable I. This variable I indi-
cates the environmental impact, which can be a measure of pollution, like greenhouse gas 
emissions. The initial multiplicative specification of the model implies that the relation-
ship among the driving forces is not independent of one another, and changes in one factor 
are multiplied by the other factors. No one factor is alone responsible for the environmen-
tal impacts. The drivers create impacts at different scales and different rates. However, a 
limitation of the multiplicative form is that it assumes there is a proportional relationship 
among the explanatory variables, which may not be empirically founded. This multipli-
cative form also did not allow the type of analysis needed for hypothesis testing or the 
assumption of nonlinear effects. To overcome this, Dietz and Rosa proposed an additive 
form of the model, by taking the logarithms of the terms and converting it into a regression 
model, in the following steps:

In the first step, Ii is the impact in observational unit i from population P, affluence 
A and technology T. This equation is multiplicative, but converting the terms into their 
logarithms makes it additive, as follows

York et  al., (2003) further demonstrated the use of the model to account for the 
technology term, which can include one or more factors according to the needs of the 
research. The coefficients of the variables can be interpreted as ecological elasticities, 
where the coefficient represents the percentage change in the impact variable for one 
percentage change in the explanatory variable. The STIRPAT model allows the princi-
ple of model parsimony to be met, as a limited number of significant variables account 
for a high degree of the variance in the environmental impact dependent variable.

We prepare three STIRPAT models for the three gases as follows.

A comprehensive review of 112 STIRPAT-based studies by Vélez-Henao et  al. 
(2019) revealed that there is often multicollinearity among the explanatory variables, 
and a common solution to this in the literature is to apply ridge regression. In this 
analysis, we will use as measures of technology the energy intensity, carbon intensity, 
fertilizer use, fertilizer intensity, land area under cultivation, irrigated land, rice culti-
vation and agriculture yield of the land. We will also apply ridge regression, after test-
ing for multicollinearity.
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(3)lnI = a + b(lnP) + c(lnA) + d(lnT) + e

(4)
ln ICO2

= a + b1(lnP) + b2(lnRP) + b3(lnRP2) + b4(lnA) + b5(lnU) + b6(lnU2) + b7(lnEI) + b8(lnCI) + e

(5)
ln ICH4

= a + b1(lnP) + b2(lnRP) + b3(lnRP2) + b4(lnA) + b5(lnCY) + b6(lnLA) + b7(lnLI) + b8(lnRC) + e

(6)
ln IN2O = a + b1(lnP) + b2(lnRP) + b3(lnRP2) + b4(lnA) + b5(lnU) + b6(lnU2) + b7(lnFI) + b8(lnF) + e
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2.2  Variables

The dependent variables used in this study are the  CO2,  CH4 and  N2O emissions from 
agriculture. The population variables are the population of Bangladesh in each of the 
studied years, and the rural population. The total population represents the number of 
people dependent on the agricultural output. The rural population on the other hand 
indicates how many people work in the agriculture sector. We have included the quad-
ratic term for the rural population to investigate the nonlinear effects. Urbanization is 
the share of the population living in urban areas, and the quadratic term is to detect 
nonlinear effects. A decrease in the rural population leads to an increased dependence 
on mechanization. The affluence variable is the real GDP per capital. The carbon inten-
sity of energy indicates to what extent clean energy is used in the irrigation and overall 
mechanization of agriculture process. The energy intensity is a proxy for artificial irri-
gation using diesel pumps and the use of agricultural machinery in case of  CO2 emis-
sions. In the model for the  CH4 emissions, we will also include the area of land under 
cultivation, area of land under irrigation, amount of rice cultivated and the crop yield 
of the land. In the  N2O model, we include the quantity of nitrogen fertilizer use, and 
the intensity of nitrogen fertilizer. The GDP per capita and the net operating surplus of 
agriculture used to calculate emission intensity are expressed in constant USD with base 
year 1990. Table 2 displays the variables and their details. Figures 1,2,3,4 and 5 show 
the trends of the variables. The  N2O and  CH4 emissions are the direct and indirect emis-
sions from agriculture in thousand tons.

Table 2  Variables used in the model

Dependent variable Description Unit

CO2_emissions Carbon dioxide emissions from agriculture Thousand tons
CH4_emissions Methane emissions from agriculture Thousand tons
N2O_emissions Nitrous Oxide emissions from agriculture Thousand tons
Independent variables
Population (P) Population size of the country Number of persons
Rural population (RP) Number of rural inhabitants Number of persons
Rural population square (RP2) Square of rural population to capture nonlinear 

effects
Urbanization (U) Urban population as percentage of total population Percentage
Urbanization square (U2) Square of urbanization to capture nonlinear effects
GDP per capita (A) GDP per capita in real USD USD
Energy intensity (EI) Energy used per unit of industry income Ktoe/ million USD
Carbon intensity (CI) Emissions per unit of fuel used Thousand tons/ktoe
Fertilizer use (F) Amount of nitrogen-based fertilizer used Tons
Cereal yield (CY) Quantity of grain produced per unit land area Kg/hectare
Land area (LA) Area of land under agricultural cultivation Hectare
Land irrigated (LI) Area of lander under irrigation Hectare
Rice cultivated (RC) Amount of rice cultivated Million tons
Fertilizer use intensity (FI) Amount of nitrogen fertilizer used per land area Kg/hectare
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2.3  Data and study period

We have analyzed data from 1990 to 2014, covering a period of 25 years. This time period 
is chosen because the government stimulus to increase mechanization, fuel consumption and 
artificial irrigation in agriculture started at the beginning of this period, and in 2014, the rural 
population peaked, while in 2015, Bangladesh committed to NDC targets. The data for the 
production of the agriculture sector are obtained from the Eora multiregional input output 
(MRIO) tables created by Lenzen et al., (2013). As this is an environmentally extended input 
output database which disaggregates economic value addition at the sectoral level, we found 
this to be the best option to isolate the effects of the agriculture sector exclusively. This is 
also the only input output database to our knowledge which includes data for more than 180 
countries including Bangladesh, covering several decades. The data for energy consumption 
in the sector are obtained from International Energy Agency (IEA) (IEA, 2020), and the  CO2 
emissions data area obtained from PRIMAP (Gütschow et al., 2016, 2019). The energy inten-
sity and carbon intensity are calculated from the data here. The data for the population, rural 
population, urbanization rates, GDP per capita, cereal yield and land under cereal cultivation 
are obtained from the World Bank country database for Bangladesh (World Bank, 2020). The 
monetary data for GDP per capita, and the net operating surplus for the sector used to calcu-
late the energy intensity of that sector, are originally available in current USD, but are con-
verted to constant USD taking 1990 as the base year. The data for the  CH4 and  N2O emissions 
are taken from the Emissions Database for Global Atmospheric Research (EDGAR) database. 
Here, the total (direct and indirect)  N2O emissions from managed soils are used, and the  CH4 
emissions from agriculture and rice cultivation are used (EDGAR, 2020). The values for nitro-
gen fertilizer use in agriculture, nitrogen fertilizer intensity, rice cultivated and land area under 
irrigation were obtained from the Food and Agriculture Organization database (FAOSTAT, 
2020).

2.4  Ridge regression analysis

Ridge regression is used to solve the issue of multicollinearity that has been revealed from 
the VIF values of the ordinary least squares (OLS) regression analysis. It is a biased estima-
tion method that is effective for creating models with improved overall predictive ability and 
for reducing multicollinearity. The method was originally developed by Hoerl and Kennard 
(1970), and has been shown to have better predictive abilities by introducing a small amount 
of bias in the model, which will reduce the overall variance and avoid over fitting. This prop-
erty makes it suited to estimating STIRPAT models, especially because the STIRPAT explana-
tory variables often have multicollinearity among themselves. In ordinary least squares, we 
estimate the coefficients using the following formula in matrix form:

The ridge regression formula is a modification of this by adding a positive quantity 
lambda, λ, which is the ridge coefficient, a biasing parameter, with values between 0 and 
∞:

When λ has a value of 0, ridge regression gives the same results as OLS. For estimating 
ridge regression, the values of λ should ideally be between 0 and 1. As per the requirements 
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of the STIRPAT methodology, the original data are first converted into logarithmic form, 
and an OLS analysis is performed to check for multicollinearity. The variance inflation 
factors (VIF) of the independent variables are checked. Finally, ridge regression analysis is 
done to find out the coefficients of the explanatory variables.

The proper values of λ are found by trying values starting from 0.01 with increments 
of 0.01, until the VIF values of all the independent variables go below 10 and coefficients 
stabilize. This estimation method has been shown to perform well when the sample size 
is limited, the number of explanatory variables is many compared to the sample size, and 
when there is multicollinearity (Kibria, 2003). It has been often used for similar studies for 
the agriculture sector (Cui et al., 2018), for countries and locations (Lin et al., 2009; Wang 
et al., 2013), for water footprint analysis (Zhao et al., 2014) and others included in a review 
by Vélez-Henao et al (2019). We have used Excel, SPSS 16 and Eviews 9 software to con-
duct the OLS and ridge regression analyses.

3  Results

The preliminary test for multicollinearity in our variables using OLS regression has 
revealed that the independent variables in all cases have very high VIF values. This shows 
high multicollinearity (Table 3). Furthermore, the signs of some of the variables, like crop 
yield, land area and urbanization, are at times negative, which does not reflect their theo-
retical validity. The coefficients of variables like population, rural population, affluence, 
fertilizer and urbanization are not always statistically significant. All this indicates that the 
OLS results would lead to conclusions which are contrary to the theoretical validity of the 
relationships among the variables (Kidwell & Brown, 1982).

In order to account for this multicollinearity, we have employed ridge regression for 
each model. The values of λ for which the VIF values fall below 10, and the resultant ridge 
regression coefficients for each of the gases are shown in Table 4. Figures 6, 7 and 8 show 
the ridge trace graphs for the three models. We can see that the values of the coefficients of 
the variables start to stabilize as the values of λ increase. After trials of incremental values 
of λ, at λ values of 0.03, 0.06 and 0.09, we find that the VIF values are all below 10, and 
the coefficients are also stable, for the three GHGs respectively, as given in Table 3. The 
 R2 of the models have high values, and the F statistics are statistically significant. The coef-
ficients of the variables in the three models are also statistically significant.

4  Discussion

With respect to  CO2 emissions, our results show that the biggest factor is the rural popu-
lation, followed by carbon intensity, affluence, population, energy intensity and urbaniza-
tion. An increasing population is responsible for emissions, as the rise in the number of 
consumers of rice and other agricultural products in itself leads to increasing use of energy 
for cultivation. The findings for the effects of total population on  CO2 emissions reflect 
those of Abbas et al. (2020) for Pakistan, and Long et al. (2018) and Li et al. (2014) for 
China. However, there is a much stronger relationship between the rural population and 
 CO2 emissions. The rural population in our  CO2 model has the biggest coefficient, with a 
value of 0.83, and is statistically significant. Although the staple foods of rural and urban 
people are alike, rural populations use the agricultural biomass as a source of fuel, and 
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this leads to significant amounts of emissions. These findings on the effects of rural pop-
ulation correspond to those of Cui et  al. (2018) for China. However, the quadratic term 
for the rural population is positive, showing that the effect is linear. It implies that as the 
rural population falls further in the future, the emissions of  CO2 can slow down in the long 

Table 3  OLS results for the three 
STIRPAT models

Variable Coefficients t-statistic Sig VIF

OLS regression results for  CO2

LnP 2.302 0.628 0.538 13,804.648
LnRP 0.385 0.454 0.655 92.441
LnRP2 −69.149 −2.746 0.013 904,837.3
LnA 0.569 2.639 0.016 29.548
LnU −1.396 −0.165 0.871 72,129.48
LnU2 0.158 2.083 0.051 162.753
LnEI 0.487 4.021 0.001 35.241
LnCI 0.752 6.509 0.000 29.837
Constant −6.375 −0.414 0.683
R2 0.982
F-statistic 208.55
P value 0.0000

OLS regression results for  CH4

LnP 0.613 1.947 0.068 447.812
LnRP −1.471 −3.919 0.001 209.797
LnRP2 86.481 1.378 0.187 3,120,202
LnA 0.119 1.766 0.095 33.844
LnCY −1.962 −5.773 0.000 1503.505
LnLI −0.057 −0.613 0.548 102.299
LnLA −1.101 −3.974 0.001 43.051
LnRC 1.958 6.644 0.000 1589.123
Constant 49.735 7.041 0.000
R2 0.977
F-statistic 105.027
P value 0.0000

OLS regression results for  N2O
LnP 2.416 1.295 0.212 15,874.43
LnRP 77.236 2.568 0.019 5,155,133
LnRP2 0.011 2.696 0.014 26.799
LnA 0.038 0.509 0.616 31.231
LnU −4.003 −0.968 0.346 75,083.12
LnU2 0.082 4.939 0.000 69.886
LnFI 0.167 1.499 0.150 136.834
LnF −0.075 −0.617 0.545 126.237
Constant −0.911 −0.420 0.679
R2 0.996
F-statistic 876.75
P value 0.000
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Table 4  Ridge regression results 
for the three STIRPAT models

Variable Coefficients t-statistic Sig VIF

Ridge regression results for  CO2

LnP 0.332235 4.649918 0.000229 0.612114
LnRP 0.833081 4.64322 0.000233 1.274994
LnRP2 0.022491 4.624193 0.000242 1.262623
LnA 0.39931 2.542791 0.021019 4.848716
LnU 0.13822 1.78508 0.092102 1.235411
LnU2 0.019243 1.475465 0.158369 1.479082
LnEI 0.192419 2.5758 0.019638 4.138086
LnCI 0.418596 5.272666 0.000065 4.354048
Constant −25.7
R2 0.948
λ 0.03
F-statistic 38.9
P value 0.00000

Ridge regression results for  CH4

LnP −0.06356 −1.85812 0.080557 0.671981
LnRP −0.34947 −6.34878 0.000007 0.574856
LnRP2 −0.00943 −6.32021 0.000007 0.569141
LnA 0.198794 4.327977 0.000457 1.987107
LnCY 0.066399 2.179417 0.043654 1.538568
LnLI −0.07391 −2.29685 0.034604 1.583335
LnLA 0.527602 3.077357 0.006828 2.100351
LnRC 0.087844 3.656672 0.001953 1.344805
Constant 8.35639
R2 0.8225
λ 0.06
F-statistic 9.45
P value 0.0000

Ridge regression results for  N2O
LnP 0.169181 10.33008 0.000000 0.199135
LnRP 0.213627 4.314947 0.00047 0.601112
LnRP2 0.005814 4.306842 0.000478 0.602293
LnA 0.135208 4.186774 0.000619 1.269688
LnU 0.14876 8.431696 0.000000 0.39715
LnU2 0.023322 7.912239 0.000000 0.467809
LnFI 0.052763 2.539832 0.021147 1.013752
LnF 0.052519 2.143876 0.046796 1.075298
Constant −7.95157
R2 0.981819
λ 0.09
F-statistic 114.7553
P value 0.00000
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run. Although nonlinear effects of rural population have not been found in the literature, 
Selden and Song (1994) found population density to have nonlinear effects in OECD coun-
tries, and Lantz and Feng (2006) have found nonlinear effects of population in Canada. Or 
results for nonlinear effects of rural population in Bangladesh diverge from these findings 
in the case of high income countries.

The results for urbanization rate show that the greater the share of urban people in the 
population, the more are the emissions from this sector. The urbanization rate has no evi-
dence of a nonlinear effect either, as the coefficient of the quadratic term of urbanization 
has a positive sign. This indicates that at the present time, increasing rates of urbanization 

Fig. 6  Ridge trace graph of 
standardized coefficients against 
λ values for  CO2
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beyond a certain level will not result in decreasing emissions of agricultural  CO2. These 
findings on the effects of urbanization are similar to those of Cui et al. (2018), Long et al. 
(2018), Lin and Xu (2018) and Xu and Lin (2017) for China. The affluence of the popula-
tion has a major impact on  CO2 emissions, as people consume more agricultural prod-
ucts with an increase in purchasing power.1 This too corresponds to the findings of Cui 
et al. (2018), Long et al. (2018), Lin and Xu (2018) and Xu and Lin (2017) for China. The 
energy intensity of agriculture has a prominent impact on emissions, indicating that as the 
sector becomes more mechanized, there is greater consumption of fossil fuels, leading to 
more emissions. This confirms that the migration of people from the countryside to the cit-
ies over the last few decades has resulted in increasing dependence on agricultural mecha-
nization, with accompanying emissions. Moreover, the carbon intensity of the fuels in the 
energy mix also has a strong impact. This is because a chief fuel used in farming machin-
ery is diesel, which is relatively more polluting than natural gas or grid electricity. The 
increasing rate of mechanization leads to a greater share of carbon intensive fuels in the 
energy mix of the sector. Our findings on the positive effects of energy intensity and carbon 
intensity on emissions reflect those of Hamilton and Turton (2002) for OECD countries, 
Yan et al. (2017) for European countries, and Maraseni et al. (2009) for some developed 
and developing countries.

In the case of  CH4 emissions, the biggest impact comes from the land used for agricul-
ture of grains. A 1% increase in the land dedicated to rice cultivation contributes to 0.53% 
increase in  CH4 emissions. Our findings on the effects of land use reflect that of Parajuli 
et al. (2019). This stresses the importance of land management in the country. However, 
the coefficient for irrigated land area has a negative value, indicating that the more the area 
of land under artificial irrigation, the lower the  CH4 emissions. Although soil flooding is 
supposed to increase  CH4 emissions, in the context of Bangladesh, increasing artificial irri-
gation implies increasing the number of harvests per year. This is because artificial irriga-
tion is required for one or two out of the three harvests per year, depending on the location. 
When there are more harvests, there is automatically more tilling of the soil, leading to 
decreased anaerobic conditions, and lower  CH4 emissions. These findings on the effects of 
irrigation on  CH4 emissions add to those of Neumann et al. (2014) and Minami and Neue 
(1994).

Increasing affluence of the population leads to increasing  CH4 emissions, as there is 
more demand on rice and agricultural production. The total population increase on the con-
trary has a negative impact on  CH4 emissions. A rising population leads to a more intensive 
cultivation of a limited area of land, which can lead to more frequent tilling and therefore 
more aerobic conditions in the soil. Moreover, the demands of feeding a bigger population 
have led to the cultivation of high yield varieties of rice and other crops, which results is 
lower emissions relative to the quantity of crops produced. This corresponds to the find-
ings of Bhatia et al. (2013). However, the rural population has a large negative impact on 
 CH4 emissions. The falling rural population has led to increasing  CH4 emissions. Rural 
inhabitants use agricultural biomass as thatching material or fuel, and a decline in rural 
populations may lead to the anaerobic decomposition of residual biomass in fields, which 
are sources of  CH4 (Karakurt et al., 2012). The quadratic term for the rural population has 
a negative sign, indicating a nonlinear relationship. This implies that as the rural popula-
tion further decreases,  CH4 emissions are expected to increase at a slower rate. This can 

1 We have conducted tests for the Environmental Kuznets Curve by using the quadratic term for affluence 
for all the GHGs, but have found no evidence of it. Therefore, we did not include this in our final models.
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be due to the inclusion of technology which reduces  CH4 emissions. The crop yield of the 
land has a positive effect on  CH4 emissions. In order to increase yield and obtain three har-
vests per year, agricultural land is artificially irrigated throughout the year, leading to soil 
conditions that generate  CH4. Rice cultivation has a positive impact on  CH4 emissions, as 
it is dependent on irrigation, and this is predicted by previous research of Li et al. (2009). 
However, our research also reflects that of Maraseni et al. (2018), in that the coefficient of 
rice cultivation is actually much lower than that of some of the other variables.

In the emissions of  N2O, the total population and the rural population have the high-
est impact. This is a positive impact, as increase in population leads to increase in use of 
nitrogen fertilizer to increase yield. Unlike in the case of  CH4, there is no negative rela-
tionship with the rural population.  N2O emissions are related to mainly fertilizer use. The 
relationship is also linear, which indicates that as the rural population declines over the 
years, emissions should drop in the long run. Affluence has an impact on  N2O emission, 
as greater agricultural demand arises from higher purchasing power spurring more cultiva-
tion. The impact of urbanization is also positive and linear. As there is more urbanization, 
there is greater demand for agricultural supplies to the cities. Nitrogen fertilizer use and 
fertilizer intensity both have positive impacts, reflecting earlier findings of Smith (2005) 
and Johnson et al. (2007). This arises out of residual fertilizer in the soil, not absorbed by 
the crops. Fertilizer use in excessive amounts can lead to higher emissions of  N2O, and our 
results indicate that agriculture in Bangladesh applies fertilizer in excessive quantities.

Our results reflect the findings of Maraseni et  al. (2009), who found that developing 
countries are less successful in controlling agricultural emissions. However, they are con-
trary to the findings indicated by Ali et al. (2017) that although the long-term  CO2 emis-
sions are affected by fertilizer use in Pakistan, irrigated land or land yield does not. Fig-
ure 9 summarizes the findings of the analysis.

In Bangladesh, the diesel run irrigation system is switching to grid electricity, and there 
is the dissemination of solar irrigation units around the country. However, the progress 
in this sector is very slow. There are at present 1.34 million diesel irrigation pumps in 
the country, and the current plan is to replace only one third of them with solar pumps 
over the next fifteen years (Ahmed, 2019). Furthermore, the mitigation effects of the solar 
irrigation can be offset by the increase of farm machinery and vehicles. However, the use 
of solar irrigation pumps is supposed to reduce the use of water by up to 50%, due to the 
lack of evaporation loss, and the loss into non-agricultural layers of the soil (Hasan, 2019). 
The total number of shallow diesel pumps increased from around 200,000 to around 1.5 
million from 1990 to 2014, accounting for 73% of groundwater irrigation, covering 53% 
of the total irrigated land. Seventy-eight percent of the equipment uses diesel, and most 
of the remaining run on electricity, although since 2014, the number of these pumps has 
decreased (MOA, 2018). The roadmap for NDC implementation states the plan to increase 
the number of solar irrigation pumps, but it is expected that most of the diesel based pumps 
will switch to electricity in the electrified areas (MoEFCC, 2018).

In addition to irrigation equipment, Bangladesh has seen an increase of 500,000 two-
wheel tractors, and the market for four-wheel tractors, rice threshers and rototillers is also 
increasing through the expansion of agricultural services marketing and credit purchase 
options. These machineries run on diesel, and there is no clear plan to incorporate clean 
energy into this part of the agriculture production process (International Development 
Enterprise, 2012).

Considering the energy use and agricultural practices in Bangladesh, the government 
must step up the drive to reduce emissions to attain climate targets. At present, there 
are more than 1700 solar irrigation pumps in Bangladesh, and IDCOL (Infrastructure 
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Development Company Limited), the financial institution responsible for their dissem-
ination, has plans to increase the number to 50,000 by 2025, substituting more than 
300,000 diesel pumps (Jude et al., 2019). This must in addition be accompanied by poli-
cies to control the amount of irrigation and other soil management practices to combat 
emissions of CH4 and  N2O. The alternate wetting and drying (AWD) method of irri-
gation should be introduced and enforced among farmers, which has the potential to 
reduce the emissions of these two gases by 24% in the rice fields of Bangladesh (Begum 
et  al., 2019). Another estimate by Islam et  al. (2020) in Bangladesh also shows that 
AWD results in a net reduction in greenhouse gas emissions by 36% from the soil of 
rice fields, compared to continuous flooding, without loss of yield. There is also a great 
scope for reducing the emissions by increasing the share of renewable energy through 
the use of solar irrigation, according to Liu et al. (2017), Aziz et al. (2020) and Naseem 
and Ji (2020). Therefore, there should be the formulation and implementation of energy 
efficiency and fuel quality standards in agricultural machinery, and the implementa-
tion of water conserving irrigation methods. The objectives of crop yield maximiza-
tion and renewable energy incorporation can be realized through innovative solutions 

Fig. 9  Patterns of factors affecting emissions of the three GHGs
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like agrivoltaics, which uses solar panels installed in crop land to generate renewable 
electricity.

5  Conclusion and policy recommendations

In this study, we have used an extended STIRPAT model to explore the relationship of 
demographic, socioeconomic and technological factors on the emissions of three top 
greenhouse gases,  CO2,  CH4 and  N2O, from the agriculture sector in Bangladesh. We have 
used ridge regression to estimate the model, for a twenty-five year period covering 1990 
to 2014. Our findings indicate that the emissions of the three greenhouse gases will keep 
increasing, given the trends in the driving factors. Unless steps are taken to curb or mitigate 
the drivers, this will have negative implications on meeting the clean energy and climate 
targets of the country.

The population of Bangladesh is stabilizing, as the country fertility rate has been 
brought under control, having fallen from 6.9 in 1971 to 2.05 births per woman in 2020 
(United Nations, 2021; World Bank, 2020).

However, urbanization, the migration of the rural population, and the increase in afflu-
ence are continuing trends, and places demand on agricultural productivity. In order for 
Bangladesh to meet the clean energy and climate change mitigation goals, it must take 
urgent measures to implement emission reducing technologies in the agricultural sector. 
Some measures that can prove effective include increasing the number of solar irrigation 
pumps, incorporate renewable energy into agricultural vehicles and machinery, and imple-
menting the alternate wetting and drying method of irrigation.

Finally, the issue of GHG emissions cannot be tackled from the policy guidelines cover-
ing energy alone. Although the NDC plan (MOFE, 2015) and the Energy Efficiency and 
Conservation Master Plan up to 2030 (SREDA & MoPEMR, 2015) recognize the need of 
reducing emissions, they largely focus on the energy side of it. The NDC plan proposes 
ways to reduce  CH4 from agriculture, but no plans for  N2O. The same is true for the Bang-
ladesh Delta Plan 2100 (GED, 2019). The National Water Management Plan (MoWR, 
2001) does not mention emissions or GHGs, and discusses environmental concerns in 
terms of aquatic ecosystem conservation. The same is true for the National Land Use Pol-
icy (GOB, 2016), which discusses environmental degradation and ecosystem preservation, 
without reference to GHG emissions. The prevention of emissions of all significant GHGs 
should be elaborated in the land use policy, water use policy and long-term climate adapta-
tion plans as well, to maintain coordinated and effective efforts.

A limitation of this study is that the effects of natural and artificial irrigation could not 
be separated due to lack of data. Year wise data for the stock of machinery were also not 
available. Future scope for research could be the measurement of volume of groundwater 
pumped for irrigation and the quantity of fuel used in agricultural machinery and vehi-
cles. This would enable a more disaggregated study of effects and more specific policy 
recommendations.
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