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Abstract
Waste sorting is an effective means of enhancing resource or energy recovery from munici-
pal solid waste (MSW). Waste sorting management system is not limited to source sep-
aration, but also involves at least three stages, i.e., collection and transportation (C&T), 
pretreatment, and resource utilization. This review focuses on the whole process of MSW 
management strategy based on the waste sorting perspective. Firstly, as the sources of 
MSW play an essential role in the means of subsequent valorization, the factors affecting 
the generation of MSW and its prediction methods are introduced. Secondly, a detailed 
comparison of approaches to source separation across countries is presented. Constructing 
a top-down management system and incentivizing or constraining residents’ sorting behav-
ior from the bottom up is believed to be a practical approach to promote source separation. 
Then, the current state of C&T techniques and its network optimization are reviewed, facil-
itated by artificial intelligence (AI) and the Internet of Things technologies. Furthermore, 
the advances in pretreatment strategies for enhanced sorting and resource recovery are 
introduced briefly. Finally, appropriate methods to valorize different MSW are proposed. 
It is worth noting that new technologies, such as AI, show high application potential in 
waste management. The sharing of (intermediate) products or energy of varying process-
ing units will inject vitality into the waste management network and achieve sustainable 
development.
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1  Introduction

Along with the rapid industrialization and population explosion, the increasing amount 
of municipal solid waste (MSW) has gradually become one of the significant bottlenecks 
restricting the sustainable development of economy, environment, and society (Heidari 
et al., 2019). It is reported that the global annual production of MSW currently constitutes 
over 2 billion tonnes (Shah et al., 2021), and is expected to be doubled to about 4 billion 
tonnes by 2100 (Ebrahimian & Karimi, 2020). In the absence of appropriate and timely 
waste management, tons of MSW lead to serious public health issues, environmental deg-
radation, and natural resource depletion (Mohammadi et al., 2019). The emerging circular 
economy provides a zero-waste management model through integrated waste recycling and 
technological digitization (Kurniawan et al., 2021). It can not only eliminate the adverse 
environmental and social impacts of MSW’s indiscreet or organized discards, but also 
bring economic benefits to drive the sustainable development of the whole MSW manage-
ment (MSWM) (Thomas & Soren, 2020). Moreover, following the new financial situation 
after coronavirus disease 2019 (COVID-19) pandemic, the “industrial chain” of waste sort-
ing and valorization may become one driving force for promoting world economic growth.

The Environmental Protection Agency’s definition of MSW is mostly waste produced 
in households, residential settings, commercial and institutional locations, not includ-
ing industrial, hazardous, or construction and demolition waste (Agency, 2016). Spe-
cifically, MSW constituents consist of food waste (FW) (25–70%), garden waste, yard 
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trimmings, paper, glass, metals, plastics, rubbers, textiles, electronics, etc. (Ashani 
et  al., 2020), excluding waste from sewage networks and treatment (such as sewage 
sludge) (Malinauskaite et al., 2017). There are considerable differences in the genera-
tion and composition of MSW in various regions, influenced by local natural resources, 
culture, and socioeconomic development (Vazquez et al., 2020). For example, the MSW 
production rate is approximately 170 million tons per year in China (Zhou et al., 2014), 
of which 55% is biodegradable waste, compared to only 15.1% in the USA (Mukher-
jee et  al., 2020). It leads to a possibility that China might pay more attention to the 
treatment of biodegradable waste. Different types of waste materials necessitate vari-
ous treatment methods. Therefore, each country and region should carefully assess and 
supplement its own MSW generation and physical composition database to establish a 
realistic national MSWM strategy.

Effective waste sorting and separation is the basic strategy for MSWM and the most 
effective way to increase the recovery rate of MSW (such as the EU’s requirement of 65% 
recovery by 2030) (Calabro & Satira, 2020). Shanghai and Beijing in China also succes-
sively issued relevant laws and regulations on source separation to solve the heterogeneity 
problem in the resource utilization of MSW. At the same time, the development of sys-
tem technologies such as Internet + and artificial intelligence (AI) has promoted the resi-
dents’ awareness of source separation. MSW enters the material flow management system 
through collection and transportation (C&T), and researchers preferred to model and a 
variety of algorithms to solve the contradictory problems of transportation cost, green-
house gas (GHG) emission, and social concern in this process (Ferronato et  al., 2020). 
Moreover, the application of cross-disciplinary tools, such as geographic information sys-
tem (GIS) and Internet of Things (IoT), provided a more refined management approach for 
C&T systems (Abdullah et al., 2018; Cetin, 2015b). The purpose of source separation and 
intermediate treatment station is to select the most suitable value-added treatment method 
or to improve the potential of resource utilization (Calabro & Satira, 2020), rather than to 
adopt landfills with low resource potential and more emerging pollutants, such as antibiotic 
resistance genes (Li et al., 2020a), pharmaceutical and personal care products (Yu et al., 
2020), and microplastics (Golwala et al., 2021).

The concept of valorizing MSW, transforming it into energy, or producing various prod-
ucts is an attractive alternative to landfills, which shows the potential of carbon mitiga-
tion and revenue generation (Kannah et al., 2020; Ooi et al., 2021). There were plenty of 
valorization methods of MSW, including mechanical recycling, thermal process, and bio-
logical strategy, but the substrate boundary between them was not noticeable. For example, 
plastic waste and organic fraction of municipal solid waste (OFMSW) can be recycled by 
thermal conversion (e.g., incineration and pyrolysis) (Hasan et al., 2021), yet it is appar-
ent that plastic recovery is much sustainable. Furthermore, the concept of ‘combination’ 
has proved to be promising and effective in biological strategies, such as co-digestion of 
OFMSW and wastewater sludge (Amodeo et  al., 2021), integration of anaerobic diges-
tion and gasification technology (Zhang et al., 2020a), synergistic pyrolysis of MSW (Lee 
et al., 2020), the combination of pretreatment technology (Bala & Mondal, 2020; Kannah 
et al., 2020). Substrate combination or technology integration was designed to produce the 
target products with high yield and achieve resource utilization by MSW from different 
sources. The valorizing products of MSW and its economic value could not only be sup-
plied to the MSWM system, but some recycled materials could also be used in sustain-
able urban landscaping and soil protection (Cetin, 2013, 2015a). Nevertheless, landfills still 
dominate MSW treatment, with 52.1% of MSW in the USA still used for landfill treatment 
in 2017. Simultaneously, the MSW resource utilization methods have not been unified in 
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commercial applications, and the whole MSWM could not fully realize the positive output 
of energy and economy, which strongly depends on the economic development locally.

Although there were some review papers on valorization methods of MSW, they pre-
ferred the resource utilization methods of a particular MSW, such as anaerobic fermenta-
tion (Chen et al., 2021), slow pyrolysis (Hasan et al., 2021; Lee et al., 2020), preparation 
of high-value chemicals (Ebikade et al., 2020; Kumar et al., 2021), and production of bio-
fuels (Kannah et al., 2020), and even the disposal of hazardous waste related to COVID-
19 (Klemeš et al., 2020). However, under the background of the continuous deepening of 
waste sorting, the whole process from the generation, source separation, collection and 
transportation, pretreatment, and resource utilization of MSW has not been systematically 
and comprehensively reviewed. Thus, this paper aims to: (1) summarize the generation, 
physical composition of MSW and the reasons for their differences; (2) compare the status 
and promotion factors of waste source separation in various countries; (3) list the latest 
technological progress of MSW collection, transportation, automatic sorting and pretreat-
ment; and (4) figure out suitable resource utilization method for various types of MSW in 
the future.

2 � MSW generation and source separation

2.1 � Generation and composition of MSW

MSW is a heterogeneous solid waste stream generated by human activities inevitably (Yan 
et al., 2020), which has non-point source pollution characteristics in contrast with industrial 
solid waste, hazardous waste (including medical waste), and construction waste. Numer-
ous studies investigated the generation and characteristics of MSW in various countries 
and regions intensively, including waste quantity, waste composition, moisture content, and 
calorific value (Abylkhani et al., 2019; Mmereki et al., 2016). The generation and composi-
tion of MSW are markedly geographically variable (Shi et al., 2021), whose forecast is an 
initial step in planning and establishing a waste sorting management system (Abbasi & 
El Hanandeh, 2016; Gu et al., 2015). It determines its subsequent treatment methods and 
potential for resource recovery.

2.1.1 � Generation of MSW

According to data from the World Bank in 2018 (Kaza et  al., 2018), the average MSW 
generated rate was 0.74 kg (kg) per capita per day (PCPD) globally; however, national gen-
eration rates of MSW fluctuated widely from 0.11 to 4.54 kg PCPD. The total MSW gen-
eration grows primarily based on the gross domestic product (GDP) (Lu et al., 2017), and 
population size (Oribe-Garcia et al., 2015). Generally, the higher GDP growth rate would 
significantly increase the per-capita and total waste generation rate. Similarly, there was 
a significant correlation between population growth and MSW generation in high-income 
countries, but the effect was insignificant in low-income countries (Zambrano-Monserrate 
et al., 2021). Besides, the strict demographic policy would boost the per-capita waste gen-
eration rate but have little impact on the total MSW generation (Xiao et al., 2020b). For 
instance, East Asia and Pacific region generated the most in absolute terms, an estimated 
468 million tonnes in 2016, accounting for 23% of global MSW production; yet the per-
capita generation rates of MSW were only 0.56 kg PCPD there, which was only 25% of 
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the USA (2.24 kg PCPD) and 15% of Singapore (3.72 kg PCPD). Therefore, there is not 
a manifest correlation between per-capita waste generation rate and total MSW generation 
due to the uneven distribution of the population.

The generation rates of MSW generally have spatial dependence, depending on but not 
limited to factors such as income levels, urbanization rate, road conditions, energy con-
sumption (Gui et al., 2019; Liu & Wu, 2011). The World Bank used a regression model 
to estimate the expected growth of the generation rate of MSW in each country, taking 
GDP per capita in each country as an independent variable. Homoplastically, Lebreton and 
Andrady calculated MSW generation per capita through GDP per capita (USA dollar) by 
introducing an empirical function (Eq. 1.), where a = 11.434 (lower bound: 11.218, upper 
bound: 11.953) and b = 0.3433 (lower bound: 0.3565, upper bound: 0.3298) (Lebreton & 
Andrady, 2019). Gui et al. explored the spatial dependence of MSW by designing two spa-
tial panel models and using panel data of 285 cities in China from 2006 to 2015. This study 
revealed a mutual improvement relationship between MSW generation and GDP per cap-
ita, rather than an inverted U-shape as predicted by the environmental Kuznets curve (Gui 
et al., 2019), which fell after an inflection point. Liu et al. studied the factors influencing 
the generation of MSW in China through a specifically principal component analysis and 
cluster analysis. The proportion of the population played the most significant role in all fac-
tors; however, the relationship between China’s GDP growth and the MSW generation is 
not as clear-cut as the generally assumed developed countries (Liu & Wu, 2011). Ma et al. 
also pointed out that MSW generation might not increase with GDP growth in develop-
ing countries, and it was important to consider the influences of other factors (Zambrano-
Monserrate et al., 2021).

Apart from the conventional socioeconomic factors above, more and more studies 
focused on the impact of emerging factors (e.g., electronic commerce, season, housing 
type, education level, household size, etc.) on MSW generation (Adelodun et  al., 2021; 
Getahun et al., 2012; Tian et al., 2016; Xiao & Zhou, 2020). For example, the rise of elec-
tronic commerce has boosted the prosperity of the express delivery industry. In densely 
populated central and eastern China (Tian et al., 2016), couriers’ recycling behavior may 
alleviate the growing problem of MSW. When other variables remain unchanged and the 
Internet penetration rate in western China increases by 1%, per-capita MSW generation 
would remarkably decrease by 1.738 kg due to the improvement in environmental aware-
ness (Guo et  al., 2017; Xiao & Zhou, 2020). Given various variables mentioned above, 
advanced AI prediction systems have shown advantages over traditional models such as 
regression analysis, material flow analysis, and time series analysis models in waste man-
agement research, especially modeling complex nonlinear behavior. To predict the monthly 
MSW production in the Logan City Council area in Queensland, Australia, Abbasi et al. 
took and compared four intelligent system algorithms, including support vector machine, 
adaptive neuro-fuzzy inference system, artificial neural network (ANN), and k-nearest 
neighbors. This study showed that the AI model could successfully establish MSW pre-
diction models (Abbasi & El Hanandeh, 2016). ANN is the most widely used to develop 
predictive MSW generation models due to its robustness, fault tolerance, and applicabil-
ity in describing the complicated relationship between variables in a multivariate system 
(Abdallah et al., 2020). However, ANN cannot judge the correlation between various vari-
ables, whose data also need to be preprocessed (Abdallah et al., 2020). Moreover, Vu et al. 
proposed that weekly climate and socioeconomic factors would also have time-lagged 

(1)MSW generation per capita = a (GDP per capita)b
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effects on the ANN waste prediction model (Vu et  al., 2019a;  Vu et  al., 2019b). Since 
the establishment and calibration of AI systems require a large amount of MSW’s data to 
drive, insufficient practical data will become the biggest challenge for AI systems in depth 
utilization.

2.1.2 � Physical composition of MSW

The physical composition of MSW refers to categorizing types of materials in MSW. 
Investigating the MSW composition has a crucial reference role in estimating the recov-
ery potential and GHG emissions and formulating subsequent waste sorting, transporta-
tion, and treatment strategies in this area. The physical compositions of MSW in different 
regions are shown in Table S1. Various studies have not been consistent statistics on the 
composition of MSW (Gu et al., 2017). The World Bank characterized the global MSW 
stream to contain food and green waste (i.e., organic) as the most significant percentage 
(44%), followed by paper and cardboard (17%), plastics (12%), glass (5%), metals (4%), 
rubber and leather (2%), wood (2%), and others (14%) (Kaza et al., 2018). As shown in 
Fig. 1, the compositions of MSW in developing countries and developed countries were 
dissimilar through the ternary chart compared, i.e., OFMSW, especially FW, was domi-
nant. Generally, the composition of MSW varies considerably by GDP. Compared with 
MSW from developing countries, the amount of paper, plastic, metal, and glass in devel-
oped countries is higher, while FW is lower (Benis et al., 2019; Zhou et al., 2014). The 
percentage of organic matter in MSW might be negatively correlated with income level. 
For example, FW in Singapore only accounted for 12.6% of MSW, while it was as high as 
77% in Niger Delta Region. However, even in the more developed Chinese cities, such as 
Beijing (Wang & Wang, 2013) and Shanghai (Nie et al., 2018), FW was still 20% higher 
than those in most European and American countries (Table S1.). It might be because Chi-
nese people prefer unpackaged and less packaged food raw materials (Chen et al., 2010b; 

Fig. 1   Comparison of MSW 
compositions in developed coun-
tries and developing countries. 
KOR, Oman, USA, CHN, and 
IND are abbreviations for the 
Republic of Korea, the Sultanate 
of Oman, the United States of 
America, China, and India
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Gu et al., 2017). Therefore, the MSW generation and physical composition might have sig-
nificantly been decoupled from the local income level (Zhu et al., 2020). Besides, the abun-
dance of natural resources and climatic conditions also significantly affected the character-
istics of MSW (Gu et al., 2015), yet they rarely analyzed their impact separately.

2.2 � Importance and impact factors of source separation

As a starting point for material flow management, source separation of MSW mentioned 
refers to the waste sorting at the generated place before transportation, whose purpose is 
to reduce waste generation better, recovery of available resources, and hazardous waste 
disposal (Tai et  al., 2011; Zhang et  al., 2019). Unlike the sorting and separation during 
the pretreatment mentioned later, source separation starts from the generation of MSW, 
affecting the whole waste management process. A practical source separation strategy is 
a prerequisite for reducing intermediate processing facilities and increasing the recovery 
rate (Calabro & Satira, 2020). Chen et  al. presented a community investigation demon-
strating that source separation could not only reduce the load of landfills, the moisture of 
waste incineration, and increase the lower heating value of MSW, but also reduce the car-
bon emission by at least 66.8% (Chen et al., 2020). The source separation program would 
significantly reduce the relative per-capita waste generation through the spatial-two-stage-
least squares models analysis (Zhao et al., 2020). However, many challenges remain, such 
as people’s attitudes, treatment facilities, economic benefits.

2.2.1 � Comparison of source separation

According to physical waste composition and economic conditions in various regions, 
there are different requirements for source separation. Developed countries began to carry 
out source separation education 30 years ago and have sufficient infrastructure to collect 
them separately (Dehkordi et al., 2020). Table 1 shows the comparison of source separation 
of MSW in some regions. For example, as an environmental leader in the Asia area, more 
than 92% of municipalities have source-separated collection programs in Japan (Matsu-
moto, 2011). Only 1% of MSW was a sanitary landfill after source separation. However, 
it took Japanese residents considerable time and effort to sort recyclable waste at home 
(Takahashi, 2020). In comparison, Sweden, where advocates economic rationalism, fully 
considers economic incentives and source-separated FW collection. It promoted the sys-
tematic improvement in roadside collection systems and drastically enhanced the recovery 
rates (Takahashi, 2020). Furthermore, Andersson et  al. argued that a separated FW col-
lection system in Sweden was generally more effective than a weight-based MSW tariff, 
reducing the amount of MSW incinerated and increasing recovery of materials and bio-
mass energy (Andersson & Stage, 2018). Therefore, source separation should sufficiently 
consider the bioavailability and economic cost of FW. Hong Kong introduced an optical 
bag system to encourage residents to put FW into green optical bags and other waste into 
shared plastic bags (Woon & Lo, 2016). In addition, Bulgaria was also a successful case of 
source classification. The collection system of Bulgaria included three containers: green 
(glass), yellow (metal and plastic), and blue (paper and cardboard) (Stoeva & Alriksson, 
2017). Nonetheless, residents were not keen on waste separation in small uneducated Bul-
garian villages with low incomes (Vasileva & Ivanova, 2014).

Developing countries have also been exploring suitable source separation methods, but 
the implementation rate is not high. As stated above, organic waste in developing countries 
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was high in content and rich in moisture. If there was a lack of overall management and 
treatment facilities between various departments, sorted waste was again artificially mixed 
during the transfer process, although source separation was carried out. It would lose the 
significance of source separation, increase the cost burden, and exert an unpredictable neg-
ative impact on the citizens’ willingness (Xiao et  al., 2020a). Ghana encouraged source 
separation through economic incentives (Owusu et al., 2013). Malaysia strictly implements 
compulsory source separation through Act No. 672 (Fauziah & Agamuthu, 2012), yet 
most Malaysians do not know that compulsory source separation is necessary for recy-
cling (Moh, 2017). In July 2019, Shanghai took the lead in the first implementation of 
a new waste management policy in China, the "Regulations of Shanghai Municipality on 
the administration of municipal solid waste," which divides MSW into residual waste (dry 
waste), household food waste (wet waste), hazardous waste, and recyclable waste (Table 1.) 
(Chen et al., 2020; Tong et al., 2020). By June 2020, the sorting rate of household food 
waste had increased to 99.5% in Shanghai, basically forming a whole-process source sepa-
ration, collection, and transportation system (Wang et al., 2021b). Besides, rural areas in 
Hangzhou, China, proposed the ‘2 + T’ model (biodegradable waste, other waste, and toxic 
waste), which effectively separated the biodegradable waste for subsequent reduction and 
resource treatment (Li et al., 2019). However, source separation is not as fine as possible, 
and social acceptability must be considered in economic and environmental factors to for-
mulate the most locally appropriate waste sorting policy (Nie et  al., 2018). The factors 
affecting source separation of MSW are introduced in detail below.

2.2.2 � Factors contributing to source separation

Sustainable source separation management requires the continuous participation of the 
government, municipal sector (private sector), and the public. Multiple studies examined 
the internal factors that affect people’s waste sorting behavior, such as habitual attitude 
(Moh, 2017), satisfaction (Wang et al., 2020), moral norm (Razali et al., 2020), environ-
mental awareness (Echegaray & Hansstein, 2017; Zhang et  al., 2017; Fan et  al., 2019), 
family time (family structure)(Matsumoto, 2011), peer-pressure (Lu & Sidortsov, 2019), 
public education (Miafodzyeva & Brandt, 2013; Vasileva & Ivanova, 2014), and gender 
ratio. Economies of scale and cost drivers vary by waste types (Greco et al., 2015). Rel-
evant departments and organizations usually adopt the traditional top-down approach when 
implementing recycling programs, tending to use only economic and political means to 
try to make the family part of sustainable development, such as a combination of educa-
tion and punishment. Zhang et al. developed a “Green House” program that collects and 
categorizes the mixed waste manually on a conveyor belt into dry and wet waste (Zhang 
et al., 2016). Although it can reduce the amount of waste by 37%, there was a lack of gov-
ernment support and public participation, with 1,982 RMB lost per month, making it chal-
lenging to operate sustainably. The ordered probability regression studied the MSW source 
separation activities of residents in Suzhou and five community groups (Zhang & Wen, 
2014). It was believed that the main determinants of residents’ source separation behavior 
were age, facilities, and preferential government policies. Nevertheless, only the intercept 
survey failed to show the influence of factor changes (such as time changes) on sorting 
behavior. The top-down approach to governance has produced passive citizens who may be 
more supportive of flexible classification policies (Hou et al., 2020; Moh, 2017). In the ini-
tial stage of waste sorting, the down-up co-production approach through the government-
volunteer consortium’s synergy and the peer-pressure effect was an effective method (Lu 
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& Sidortsov, 2019). Wang et al. established the concept of IoT-enabled accountability in 
MSW source separation based on the perspective of accounting theory and demonstrated 
its validity through several case studies (Wang et al., 2021a). However, it was noted that 
factors, such as fines, charges, time, procedures, and rules, under the compulsory policy 
breed negative attitudes toward source separation (Wu et al., 2021). In addition, external 
factors such as the types of recycled materials, classification policies (Hou et al., 2020), 
recycling plans (Stoeva & Alriksson, 2017), market facilitators, and government fac-
tors (Xu et al., 2017), economic incentives, or penalties (Varotto & Spagnolli, 2017) also 
affected residents’ recycling behavior. Knickmeyer et  al. had detailed the social factors 
affecting source separation (Knickmeyer, 2020).

The research mentioned above only focuses on user behavior and does not consider the 
development system’s technical aspects. A sustainable waste management plan should 
build an overall treatment system from top to bottom and promote waste sorting behavior 
from bottom to top. Adopting policies to improve disposal capacity is one of the ways to 
achieve stable recyclable waste management (Ko et al., 2020). Management, facilities, and 
services require the continuous participation of the government and municipal departments 
or private companies. For example, FW treatment plants should be built as soon as possible 
to prevent traditional treatment methods to treat classified FW in areas where wet and dry 
classification was carried out (Xiao et al., 2020b). Establishing waste management associa-
tions between neighboring cities can reduce waste management service costs by 26% (Chi-
fari et al., 2017). It is necessary for developing countries that started garbage sorting late to 
monitor waste sorting for a long time (Li et al., 2019). Some communities have launched 
smart dustbins, which delivered kitchen waste or recyclables to different bins by scanning 
the code and returning the corresponding points or money (the Green Account). Li et al. 
developed a method for identifying kitchen waste and dry waste based on volume density, 
which can test the accuracy of waste classification, but did not modify solid waste in differ-
ent regions (Li et al., 2020b). The Internet + method would be a unique and effective way to 
recycle recyclable waste in developing countries (Xiao et al., 2018). In the future, Internet 
technology should be used to establish a comprehensive information platform, apply tech-
nologies such as the Internet of Vehicles, IoT, and Big Data, develop intelligent classifica-
tion equipment, and comprehensively consider environmental, economic, and social factors 
to achieve sustainability source classification strategy.

3 � Collection and transportation of MSW

3.1 � Overview of collection and transportation techniques

Collection and transportation (C&T) techniques remove MSW from its source and trans-
port it to transfer stations (TS), processing facilities, or disposal sites (Rodrigues et  al., 
2016; Yadav & Karmakar, 2020). Only a few researchers paid attention to C&T cost and 
environmental effect, but most focused on the final treatment. Actually, because of high 
labor intensity and extensive use of transportation tools, 50–75% of total MSWM expen-
ditures were spent on C&T in developed countries, while this proportion even reached 
70–90% in developing countries such as India (85%) (Amal & Chabchoub, 2018; Nasiri 
et al., 2017; Nguyen-Trong et al., 2017; Yadav & Karmakar, 2020). As shown in Table 2, 
five common methods of waste collection were reviewed. Clearly, the collection methods 
of MSW varied remarkably among different regions due to the imbalance in economic 
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development. Generally, collection methods adopt isolated MSW mechanical collection 
systems in America and Europe’s developed countries, such as entering the property and 
pneumatic collection (Lella et al., 2017; Mohsenizadeh et al., 2020; Teerioja et al., 2012). 
However, common practices in developing countries are informal recycling, scavengers, or 
unorganized dumping, whose collection requires many manual labors (Papageorgiou et al., 
2009; Yadav & Karmakar, 2020). The environmental effects of C&T techniques mainly 
originated from unorganized GHG emissions and odor gases in transportation (Boies et al., 
2009; Sánchez-Arias et  al., 2019; Zhou et  al., 2017). Subsequently, fossil energy deple-
tion, environmental pollution, human health, economic costs, and the aesthetics of C&T 
facilities, in turn, caused public social concern, that is, citizens’ subjective choices (Chester 
et al., 2008). Therefore, the objectives of optimizing C&T techniques are mostly around 
one or several factors of economic cost, environmental and social impact, which are also 
the goal of sustainable development (Bulatov et al., 2021; Yousefloo & Babazadeh, 2020).

Vehicles are the primary C&T instrument, whose main job is to load, compress, trans-
port the MSW, and unload it into TS or the final disposal/processing facility (Mohseniza-
deh et al., 2020). Figure S1 illustrates the common C&T system, i.e., single-stream (mixed 
collection) and multiple streams (separate collection). After generation of MSW, it relies 
on manual operation for source separation or manpower transportation tools (such as hand 
rickshaws and tricycles) to transport to the community transfer point, and then transport 
to the nearest TS through primary collection vehicles (PCVs) such as tractor-trailers, mini 
trucks. As in Beijing and Shanghai, communities were required to use special collection 
tools to avoid "separating from the source but mixing in the middle"(Tai et  al., 2011). 
Finally, the secondary collection vehicles (SCVs), mainly heavyweight carrying vehi-
cles, transfer the pre-treated MSW to the final disposal/processing facility (Yadav et  al., 
2020). Specifically, TS is an intermediate station between the processing /disposal facility 
and MSW generation source, which is also a docking station for PCVs and SCVs. MSW 
through the PCVs transported is compressed by various technologies in the TS and then 
loaded onto the SCVs (Fig. S1). A study based on life cycle assessment (LCA) showed that 
the construction of a TS could reduce the impact of global warming potential by 44.9% and 
cumulative energy demand rates by 51.7% compared to directly transferring to a sanitary 
landfill (Taşkin & Demir, 2020). Therefore, TS could increase the efficiency of wide-area 
collection and transport. Besides, TS adopting dump floors and surge tank technology was 
more economical and environmental-friendly than the direct dump in the transportation 
field.

Selecting an economically, socially, and environmentally C&T system is a significant 
challenge. Recent studies have been primarily based on the optimization of the existing 
MSW C&T network design, which is a tactical or operational level decision (Ghiani et al., 
2014), including (1) optimization of vehicle routes; (2) modeling of facility location; (3) 
flow allocation (Yadav & Karmakar, 2020; Yadav et  al., 2020). Other factors were also 
reported. Goes et  al. presented that eco-driving technology not only could impact fuel 
economy, provide economic returns based on mileage, but also mitigate GHG and air pol-
lutants emissions (Goes et al., 2020). Furthermore, Mohsenizadeh et al. presented Ankara’s 
case study demonstrating that transport vehicles’ speed variations would not cause signifi-
cant changes in CO2 emissions and economic costs (Mohsenizadeh et al., 2020).
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3.2 � Optimization of C&T network

The important features of studies related to optimizing the C&T network over the past three 
years are highlighted in Table 3. Tracking hotspots and future directions of C&T techniques 
through literature analysis, the following four points are summarized in this review. (i) The 
shift from single-objective to multi-objective analysis: from the beginning only to focus on 
the shortest route (Fiorucci et al., 2003), to the pursuit of the optimal vehicle routes and 
environmental effects (Ferronato et al., 2020; Hannan et al., 2020; Yousefloo & Babaza-
deh, 2020), and then more studies involved social effects (Chabok et al., 2020; Yadav et al., 
2020). Bányai et al. put forward a cyber-physical system that included routing, distribution, 
and scheduling issues to simulate the urban waste C&T process, while minimizing overall 
operating costs and the environmental effects of CO2 emissions simultaneously (Bányai 
et al., 2019). Tirkolaee et al. presented a multiperiod model to resolve the green location-
allocation-inventory problem under uncertainty, whose objective was to reduce economic 
costs and pollution emissions costs, including air, water, and soil pollution (Tirkolaee et al., 
2020). However, compared to directly quantifying economic costs and CO2 emissions with 
numerical values, a unified social evaluation standard has not yet been formed, and it is dif-
ficult to compare and measure the social effects of various literature.

(ii) Multiple methods (algorithms) are combined to solve various models. As an 
operational research technique, MILP has become one of the most widely used mod-
eling frameworks for C&T network optimization. However, when it comes to nonlinear 
constrained optimization, such as regional roads and slopes, traffic congestion, source 
classification, it is frequently necessary to establish a NLMIP model. This model’s solu-
tion is often limited by the algorithm’s difficulty but lays the foundation for thorough 
research. With the rise of AI, the newly developed algorithm has been applied to C&T 
optimization research. The literature review showed that frequently used AI systems for 
C&T process modeling and optimization included ANN, genetic algorithm (GA), sup-
port vector machine (SVM), linear regression (LR), and decision tree (DT) (as shown 
in Fig. 2a). As mentioned above, modeling the C&T optimization process involves mul-
tiple variables and might be difficult due to the nonlinear behavior exhibited by these 
variables. Owing to its innovative surge and ability to handle large data, map nonlinear 
relationships, and solve complex problems at high speed, ANN has gained superiority 
over other models in C&T optimization modeling studies (Hoque & Rahman, 2020). 
As shown in Fig. 2(b), an ANN typically consists of an input layer, hidden layers, and 

Fig. 2   Analytical data for ANN model. (a): Distribution of publications by AI model type. (b): Schematic 
diagram of the ANN model for optimization of C&T network s (x: input value; W: weight; b: bias; y: output 
value). (c): Proportions of different ANN methods in 147 studies. GRNN: generalized regression neural 
network
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an output layer, each of which consists of many nodes linked to each node in the fol-
lowing layers by directed weighted edges (Abdallah et  al., 2020). It was reported that 
feedforward neural networks are the most dominant ANN approaches in studying MSW-
related issues (Xu et  al., 2021). Analysis of 147 reviewed studies revealed that multi-
layer perceptron ANN (MLPANN) and radial basis function ANN (RBFANN) were the 
two most popular ANN methods, with MLPANN being used in 79% of the reviewed 
studies (Fig. 2c).

Besides, heuristic approaches have become popular as they can overcome huge data 
calculation problems under multiple constraints (Hannan et  al., 2020). For instance, GA 
(Amal & Chabchoub, 2018), simulated annealing algorithm (Men et al., 2019), backtrack-
ing search algorithm (Akhtar et al., 2017), and ant colony optimization (Tirkolaee et al., 
2019) have been used for waste vehicle routing optimization. Nonetheless, when optimiz-
ing C&T networks, heuristic algorithms (HA) have low precision and long execution time 
(Viotti et  al., 2003). The meta-heuristic algorithm can overcome this shortcoming. Qiao 
et al. proposed a comprehensive benefit maximization scheme balancing economic, envi-
ronmental, and social factors by a two-phase meta-heuristic algorithm combining particle 
swarm optimization and tabu search (Qiao et al., 2020), but it was not applied in the actual 
case. Besides, the p-median method (Lv et al., 2020), LCA (Taşkin & Demir, 2020), saved 
footprint (Peri et al., 2018), voronoi graph (Xin et al., 2020) were also used for C&T net-
work optimization. Furthermore, GIS is often applied to optimize sustainable C&T net-
work in combination or alone (Chabok et al., 2020; Ferronato et al., 2020), because it can 
store, retrieve, analyze and apply large amounts of data, as well as the output visualization 
function with response time (Nguyen-Trong et  al., 2017). On the other hand, GIS deci-
sions are based on static analysis, unable to examine the effects of traffic congestion, waste 
production fluctuations, etc. It is also difficult to consider social acceptance. Therefore, 
GIS is often combined with other analytical methods, such as the analytic hierarchy pro-
cess (AHP) (Ali & Ahmad, 2020; Bouroumine et al., 2020; Chabok et al., 2020), MCDA 
(Slavík et al., 2021), and GA (Amal & Chabchoub, 2018).

(iii) Research on the C&T models of waste source separation. Due to mandatory source 
separation in Japan, the municipal department formulated a detailed schedule for collect-
ing different MSW types and reminded residents through a smartphone application. For 
example, they collected combustible waste on Monday while collecting recyclable waste 
on Tuesday (Takahashi, 2020). Besides, the identification and classification for image anal-
ysis through neural networks contributed to the C&T models of waste source separation 
(Nowakowski et al., 2020). Lou et al. proposed an optimal transportation model of various 
classified waste from the point of MSW generation to the final landfills through converting 
it to a modified TSP (Lou et al., 2020). However, the differences in classification policies 
make limited applicability of the published classification C&T models.

(iv) The advance of smart device applications. With the popularization of the IoT and 
AI, monitoring the fill level and weight of waste in the smart bins is possible by radio-
frequency identification (RFID) technology and GIS (Hannan et al., 2020; Owusu, 2020). 
Bányai et  al. established a cyber-physical waste collection system by using Industry 4.0 
technologies, as well as intelligent technologies (Bányai et  al., 2019). The system was 
connected via WIFI to monitor the filling level of trash bins in real-time remotely and 
uploaded real-time data to the Waste Collection Cloud through RFID readers to optimize 
and adjust the C&T route automatically. Simultaneously, the system can prioritize the col-
lection order of different trash bins (Abdullah et al., 2018), which would phase out infor-
mal recyclers and scavengers (Lv et al., 2020). Meanwhile, the 5G wireless communication 
system can help connect smart bins to the cloud platform through the network and improve 
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communication efficiency (Wang & Nai, 2021). Furthermore, the routing system’s optimi-
zation should consider combining the local social, geographic, topographical conditions, 
and even the residents around each collection point. It requires the system to be tested and 
optimized in practice, increasing the difficulty of wide applications (Hannan et al., 2020).

4 � Pretreatment techniques of MSW

4.1 � Waste compaction and mechanical pretreatment

Compaction is an effective pretreatment method to use pressure to decrease waste volume, 
improve treatment efficiency, and reduce GHG emissions (Chaerul & Tompubolon, 2019), 
which can be performed in the collection bucket, transport vehicle, TS process and land-
fill. The unit weight of compacted waste depends on the composition of the waste, the 
layer thickness, the weight and type of compaction equipment, and the number of times 
the equipment passes through the waste. Nevertheless, waste with more than 25% plas-
tic cannot be compacted (Okonta et  al., 2017). As a mechanical pretreatment method of 
MSW, high-pressure extrusion has been applied to a host of waste treatment plants in 
Beijing (Kong et al., 2016). The high-pressure extrusion combined with friction heating, 
mixing, crushing, and shearing operations can realize the separation of organic fractions 
(Chen et  al., 2010a). It promoted the hydrolysis of OFMSW and enhanced the methane 
production of anaerobic digestion (AD). However, an excessively high extrusion pressure 
would cause excessive acidification of the reactor (Xu et  al., 2016). Autoclaving steam 
treatment and rotary drum reactor (RDR) are commonly used technologies in the MSW 
treatment industry. RDR can not only realize the fractionation of organic waste, but also be 
used as a pretreatment process for biological treatment (Gikas et al., 2018). Hansen et al. 
compared the pretreatment efficiency of three different mechanical pretreatment technolo-
gies of screw press, disk screen, and shredder with magnet on source-separated OFMSW: 
shredder with magnet > spiral press > disk screen (Hansen et  al., 2007). In addition, dry 
waste dehydration, wet waste grinding, pulping/separation, degreasing, and other universal 
mechanical pretreatment methods all require the development of efficient and economical 
commercial techniques to enhance the potential for subsequent resource utilization.

4.2 � Waste sorting techniques

The mixed or source-separated MSW transported to the TS will be further sorted to facili-
tate subsequent sorting treatment and resource utilization. At present, MSW sorting is still 
a combination of manual and automatic sorting and is gradually developing in AI, robot 
sorting, and multi-sensor fusion (Gundupalli et al., 2017; Pellegrinelli, 2019). Research on 
sorting techniques is a complement and alternative to source separation deficiencies. Com-
mon automatic sorting techniques are shown in Table 4. Bag breaking and crushing before 
sorting are essential. For example, Hong Kong used optical sensor technology to identify 
and classify green optical bags containing FW and then used hydraulically driven rollers to 
open light bags. After a crusher broke up the FW, the FW and optical bags were separated 
by screening (Woon & Lo, 2016). In developing countries such as Iran, Brazil, and India, 
water separation based on buoyancy and gravity and mechanical separation using trom-
mel screens, rotating drums, and shredders are the two commonly separated methods for 
OFMSW (Dehkordi et al., 2020). However, the water-separated system first needs to crush 
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MSW with the assistance of a series of machines such as a shear shredder, hammer mill, 
ring mill, and disc mill, yet the water should be recycled (Zhang et al., 2012). Ashkiki et al. 
assessed the effects of seasonal changes and operating parameters on double-layer roller 
screens’ performance in northern climates (Ashkiki et al., 2019), while there is no seasonal 
difference in the manual sorting of plastics (Gala et al., 2020). However, manual sorting 
should consider the impact on worker health.

The dynamic industrial application of sensor-based indirect automatic sorting tech-
niques is currently studied (Signoret et  al., 2020), especially for non-ferrous metal and 
plastic sorting. It is worth mentioning that the industrial identification system for waste 
sorting must identify the MSW on the high-speed conveyor belt within a few milliseconds; 
otherwise, the processor would not issue instructions to manipulate the robotic arm or 
compressed air nozzles for sorting operations. Some indirect sorting technologies such as 
XRF spectrometry, VIS, NIR have been used in factory production (Gadaleta et al., 2020); 
Rani et al. developed a compact and miniaturized NIR spectrometer and established a NIR 
spectrum database, which can sort all kinds of polymers well without pretreatments such 
as cleaning and drying (Rani et  al., 2019). However, the sorting of black plastic waste, 
the interference of additives and fillers is still a challenge or a research direction. Mid-
Infrared (MIR) can make up for the difficulty of sorting because the black waste plastic 
strongly absorbs the laser light from the NIR spectrometer (Signoret et al., 2019). Bae et al. 
compared the effects of Attenuated Total Reflectance (ATR) Fourier Transform Infrared 
Radiation (FTIR) and a Raman spectrometer in separating black plastic waste. Although 
the sorting results of FTIR-ATR were slightly better, the advantages of fast recognition and 
non-contact could arise the Raman spectrometer more competitive (Bae et al., 2019). Simi-
larly, Signoret et al. investigated the separation effect of carbon black, calcite, talc, titanium 
oxide, and certain flame retardants as additives or fillers based on laboratory FTIR-ATR 
on plastic waste. However, it cannot be equated with commercially evaluating MIR-HSI 
(Signoret et al., 2020).

Recently, there have been studies on adding markers in plastic production to detect and 
sort traced objects, which have the advantages of maintaining plastics’ appearance and 
mechanical properties. Brunner et al. identified waste polymers based on the incorporated 
fluorescent tracer, which could sort 300 kg of waste plastics per hour (Brunner et al., 2015). 
Fluorescence-labeled plastics can record significant fluorescence emission even after expo-
sure to aggressive conditions (Arenas-Vivo et al., 2017). However, fluorescent substances 
must be marked on the surface and are easily interfered with by light-absorbing materials. 
Instead of optical tracers as tracking and identification markers, magnetic superparticles 
can overcome this problem (Müssig et al., 2019), but the environmental risks are caused 
by nanoparticles and microplastics that decompose after spilling into the environment are 
worthy of attention. Furthermore, as a method to identify the types of non-ferrous metals 
in mixed waste streams, MIS based on the eddy current can also avoid the defect of optical 
sorting, which is susceptibly affected by surface contaminants (O’Toole & Peyton, 2019). 
Actually, in addition to the continued development or commercialization of sorting tech-
nology under factory acquisition’s harsh conditions, the future of multi-sensor coupling for 
fine sorting, signal processing, and advanced classification algorithm also have excellent 
prospects.



11492	 X. Zhang et al.

1 3

4.3 � Enhance the pretreatment strategy of bioconversion

Recently, researchers were more interested in the bio-transformation of biodegradable 
OFMSW (kitchen waste, yard waste, garden waste, etc.) to produce value-added products 
(Sindhu et al., 2019). However, due to the inherent recalcitrance of the lignocellulosic bio-
mass and the heterogeneity of OFMSW (Karthikeyan et al., 2017; Veluchamy & Kalamd-
had, 2017), hydrolysis limits the biotransformation efficiency (Bala et al., 2019). Substrate 
pretreatment is an effective strategy to improve the biodegradability of OFMSW before 
bioconversion (Kavitha et al., 2017), which can improve the water solubility of complex 
organic matter. In this process, microbial cells are damaged and lysed, lignin and hemi-
cellulose are hydrolyzed to cleavage, cellulose crystallinity is decreased, and the complex 
molecules are broken down into simple monomers, then dissolved, and transferred to the 
water phase. The original pores of the material are amplified, and the porosity increases 
(Banu et  al., 2020). It provides an enormous specific surface area for the attachment of 
microorganisms and enzymes in the subsequent biological treatment (Kannah et al., 2020). 
As shown in Fig. 3, after sorted OFMSW is crushed, solid–liquid separated, and conven-
tional mechanical pretreated, other pretreatment methods are usually used to improve the 
biological treatment effect. As an expensive but indispensable step in OFMSW resource 
utilization, appropriate pretreatment or even combined pretreatment methods should be 
selected from multiple perspectives such as biomass substrate composition, subsequent 
biological treatment methods, and economic feasibility. Hence, research on new pretreat-
ment techniques should focus on (1) increasing the yield of the target product, (2) accel-
erating the rate of biological reaction, (3) avoiding or reducing the generation of inhibi-
tors/poisons, (4) convenient raw material management (i.e., transportation and storage), (5) 
environmental-friendly low energy consumption-stable operation (Carrere et al., 2016; Li 
et al., 2017; Panigrahi & Dubey, 2019).

Fig. 3   Various pretreatment methods for biodegradable waste and impact on the molecular level (Bala & 
Mondal, 2020; Banu et al., 2020; Córdova et al., 2019; El Gnaoui et al., 2020; Fang et al., 2020; Kannah 
et al., 2020; Liang et al., 2019; Yue et al., 2020)
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5 � Resource recovery and valorization

The treatment and disposal are the end of the MSWM system and an essential step to 
achieving the recovery and valorization of MSW. In general, landfilling is the most con-
venient alternative to dispose of excess MSW. Although methane can be captured from 
landfills(Malav et  al., 2020), high land demand, uncontrolled biogas quality and yield, 
high leachate concentrations, and the associated environmental pollution and human health 
issue make landfilling only a desperate and unsustainable option for the treatment of mas-
sive MSW temporarily. The pathways to resource MSW can be divided into mechanical 
recycling, thermal conversion, and biological strategies (Fig.  4). Notably, recycling is a 
broad concept. In parallel to the direct recovery of raw materials, energy recovery and 
value-added chemicals also fall under recycling.

5.1 � Mechanical recycling

Recycling of MSW is an integral step toward a circular economy (Xiao et  al., 2020a), 
and the low environmental footprint and energy consumption make recycling widely rec-
ognized as a sustainable waste management strategy (Faraca et al., 2019). Recycling is a 
systematic process, including collection, transportation, sorting, and reprocessing stages, 
and any missing link will make recycling uncompetitive (Ragaert et al., 2017). Due to the 
susceptibility of MSW to contamination, mechanical recovery (raw material recovery) is 
the preferred measure for recyclables such as paper, metal, plastic, and glass, but does not 
exclude energy recovery methods for combustible waste among them. In addition, informal 
recycling is a consolidated feature in MSWM streams of developing countries like Mexico, 
Brazil, China, and India (Conke, 2018). However, it is more targeted at MSW that gener-
ates economic benefits for waste collectors. Cooperation with municipalities, such as out-
sourcing, can transition from informal to formal recycling (Yousefloo & Babazadeh, 2020). 
Furthermore, with the closure of some markets for recycled goods in China, the fate of 
recycled products in some developed countries is also forced to be rethought (Wang et al., 
2019b).

Fig. 4   Resource recovery methods and products of various MSW after sorting
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Source separation of MSW creates favorable conditions for recycling (Salah et  al., 
2020). Figure 5 illustrates the fine sorting of recyclable waste in two scenarios, based on 
source separation and mixed collection. After the manual or mechanical removal of organ-
ics, bulky recyclables (cardboard, plastic and glass bottles, bulky metals), and hazardous 
wastes, the residual waste is finely sorted by a combined method (magnetic separation, 
eddy current, optical sorting, etc.) for feedstock recovery. The purpose of cleaning is to 
remove surface pairs of contaminants/impurities to guarantee the recycled material quality, 
especially plastic wastes with high heterogeneity (Soto et al., 2020). In detail, the purity of 
plastic waste is the primary factor determining the quality and economic profitability of the 
recycled product (Faraca et al., 2019). The presence of impurities or heterogeneous plastics 
makes it challenging to realize the potential benefits of mechanical recycling, making ther-
mal conversion seem more appropriate. Besides, bioplastics (BP) are an effective strategy 
to tackle white pollution due to their potential biodegradability and harmlessness (Shen 

Fig. 5   Schematic of waste sorting and fine sorting techniques for recyclable MSW (Gundupalli et al., 2017; 
Vazquez et al., 2020; Wagland, 2019)
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et al., 2020). However, in the long run, BP is not a complete replacement for conventional 
plastics in terms of performance, and its share in the overall plastics market is relatively 
low. Therefore, mechanical recycling and reuse of plastics are currently reliable means of 
addressing white pollution (Borrelle et al., 2020).

From an environmental point of view alone, the "zero-waste" concept seeks higher or 
even 100% recycling rates. However, the reduced cost of primary materials makes new 
products made from recycled secondary materials uncompetitive (Pluskal et al., 2020), and 
the negative economic benefits of the entire recycling process are prohibitive. It is worth-
while for policymakers to consider whether it is necessary to invest a lot of labor and much 
money in detailed sorting to increase recycling rates (Cui & Sošić, 2019). Therefore, it 
is not advisable to pursue a high recycling rate, but rather to find an appropriate balance 
between economic benefits and pollution emissions in MSWM system. Nevertheless, 
some of the difficult-to-measure metrics significantly aggravate the complexity of mod-
eling. Besides, the "Internet + Recycling" associated with mobile applications offers a new 
approach to waste recycling management at the source (Gu et al., 2019).

5.2 � Thermal conversion

Still, about 30% of residual MSW (e.g., contaminated paper and plastics) cannot be recov-
ered even with advanced waste programs that separate recyclables from other MSW. The 
thermal conversion method of energy recovery is a promising alternative to landfills, 
including incineration, pyrolysis, gasification, and energy densification and homogeniza-
tion techniques (such as refuse derived fuel (RDF), solid recovered fuel (SRF), and hydro-
thermal carbons (HTC)). The major advantage of thermal conversion is efficient MSW 
reduction, heat and material recovery in a short time, which is a promising waste-to-energy 
(WtE) technology (Sebastian et al., 2020), and more suitable for dry MSW with little or 
no moisture content (Kumar & Samadder, 2017). Table 5 provides a detailed comparison 
of the three main thermal conversion methods. In those processes, the chemical bonds 
between the carbon, hydrogen, and oxygen atoms are broken, and substantial amounts of 
energy are released, which can then be used for energy recovery (electricity, heat) or for 
the production of gases, liquids, or solids known as biofuels to reduce dependence on fos-
sil fuels. Now WtE concentrates on recovering heat for running steam engines to generate 
electricity or system heating. By the end of 2019, China had built 418 WtE plants (Xu 
et al., 2020), whose total incineration capacity is even higher than the whole EU. Moreo-
ver, it is gratifying to note that recent studies, such as microwave heating acting on the 
material center, assisted co-pyrolysis of CO2 or additives, and catalytic pyrolysis paved the 
way for pyrolysis commercialization (Lu et al., 2020; Zhang et al., 2020b). Nevertheless, 
there were still limited engineering applications for MSW synergistic pyrolysis. Plasma-
assisted gasification using a plasma torch as a heat source (5000  °C) (Rajasekhar et  al., 
2015), higher syngas yields, and lower toxic accumulation are considered as an emerging 
and promising technology; however, it has not yet gained acceptance in MSW processing 
(Mukherjee et al., 2020).

Compared to gasification and pyrolysis, mixed-collection waste is more suitable for 
incineration. However, an intensive pretreatment phase is indispensable to eliminate exces-
sive moisture, inert waste, and toxic elements such as chlorine and mercury (Lombardi 
et al., 2015). Incineration of OFMSW has been reported, but OFMSW alone (e.g., FW) is 
not an appropriate incineration option, and co-incineration with other wastes loses the sig-
nificance of waste sorting. Besides, incineration is the preferred decontamination method 
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for a tremendous amount of intractable or infectious waste (e.g., medical waste contami-
nated with COVID-19) generated each year. Pyrolysis possesses strong substrate adapt-
ability, and most carbon-containing wastes such as waste plastics (Liu et al., 2020), waste 
tires (Arabiourrutia et al., 2020), OFMSW (Elkhalifa et al., 2019), agroforestry waste (Kan 
et al., 2016), and even sewage sludge could be used in the pyrolysis process. Meanwhile, 
the respective intermediates produced by the mixed MSW during the pyrolysis process 
may interact with each other, to cause synergistic pyrolysis (desired by the researchers): 
it may accelerate the reaction rate or increase the yield of the desired fuel product (Lu 
et al., 2020; Wang et al., 2019a). For example, the co-pyrolysis of FW with other MSW 
(e.g., PVC, PET) has not only significant synergistic effects but improved product quality 
(Qureshi et al., 2020; Tang et al., 2018). In contrast, pyrolysis seems to be a better option 
than gasification for the cellulose-rich OFMSW. Gasification is highly influenced by MSW 
properties and less adaptable to mixed wastes, so that most mainstream gasification tech-
nologies typically use pretreated waste or waste-derived fuel as feedstock rather than the 
initial waste (Schulze et al., 2017). In addition, combined pyrolysis gasification, which uses 
pyrolysis products as gasification feedstock, will be a promising option for small urban 
waste treatment plants.

The prevailing trend in thermal conversion technology is to optimize MSW feed-
stocks and decrease transportation expenses through energy densification treatment steps 
(Mukherjee et al., 2020), such as RDF, SRF, HTC. As a homogeneous fuel with a high cal-
orific value (1912–3346 kcal/kg) (Malav et al., 2020), RDF/SRF can significantly reduce 
GHG emissions due to its partial carbon neutrality, but is not suitable for high moisture 
OFMSW. HTC offers significant advantages for pretreatment of high moisture OFMSW 
(e.g., FW). Therefore, in selecting an appropriate WtE process, its economics and envi-
ronmental applicability should be evaluated on a whole life cycle basis, rather than being 
limited to a particular technology (Torkashvand et al., 2021).

5.3 � Bioconversion strategies

Bioconversion strategies are based on anaerobic/aerobic microorganisms’ physiological 
functions, and the connection/integration of environmental biotechnologies to sustainably 
bioconvert OFMSW with high water content into valuable products through different con-
version pathways. It offers economic advantages and eliminates the nuisance generated by 
the decomposition of organic waste in the surroundings and landfills (Bilal & Iqbal, 2019). 
Bioconversion strategies for wet waste have already been reviewed in detail (Engelberth, 
2020; Melikoglu, 2020; Sindhu et al., 2019), so that this review would analyze the latest 
bioconversion strategies from a product perspective, (1) Biofuels: including gaseous bio-
fuels (hydrogen, methane, and biohythane), liquid fuels (ethanol, butanol, biodiesel), and 
microbial fuel cells; (2) value-added chemicals: including liquid chemicals (organic acids 
such as volatile fatty acids (VFAs), medium-chain and long-chain fatty acids, lactic acid, 
citric acid, etc.; biosurfactants; sugars such as glucose, D-tagatose, D-mannose, etc.; bio-
active compounds such as antioxidants, pigments, polysaccharides, polyphenols, etc.) and 
solid chemicals (polyhydroxyalkanoate (PHA), active peptides, bioproteins, snow melting 
agents, bio-compost and bio-feeds, etc.).

Green biofuels are a promising alternative to fossil fuels, contributing significantly to 
environmental, economic, and social sustainability (Kammen & Sunter, 2016). Dark fer-
mentation without light has engineering advantages over photo fermentation, which is noto-
riously difficult to penetrate consistently with sunlight (Hassan et al., 2020). Wannapokin 
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et  al. proposed a new method of co-immobilizing nanometals with hydrogen-producing 
microorganisms and obtained better hydrogen production performance (Wannapokin et al., 
2020), but it is debatable whether the method is suitable for large-scale industrial pro-
duction. Co-fermentation with complementary substrates and synergistic approaches that 
combine biological strategies with electrochemistry promise sustainable technologies. For 
example, Zhi et al. integrated a microbial electrolytic cell into a conventional AD system to 
electrochemically regulate the co-fermentation of FW and sewage sludge, which stimulated 
the auto-fermentation and proliferation of typical methanogenic bacteria and increased 
CH4 yields by 2.8 times (Zhi et al., 2019). In addition, attention should be paid to the effi-
cient separation and utilization of the generated biofuels.

Various value-added chemicals synthesized by OFMSW are more advantageous in unit 
price than biofuels. Compared with the latest market price (Sep. 2021, USD/ton): poly(3-
hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) (9000) > calcium magnesium acetate snow 
melting agent (2000) > citric acid (1320) > propionic acid (1164) > ethanol (1035) > acetic 
acid (935), with the price of ethanol increasing due to the effects of COVID-19. They can 
be used not only as specialty chemicals that can enhance specific properties or functions of 
other products but also as niche chemicals for target specific industries or markets (Xiong 
et  al., 2019). For instance, VFAs are not only important intermediates in bioconversion 
processes to generate hydrogen, methane, and PHA, but are also excellent chemical feed-
stocks through matrix separation. However, some researchers used a single category of FW 
as a substrate, such as citrus peel waste (Patsalou et  al., 2017) and coffee grounds (Gu 
et  al., 2020). Extremely heterogeneous OFMSW are not easily reproducible for experi-
mental results. In addition, the platform for microbial consortium construction provides 
new perspectives for the high-value utilization of OFMSW. For example, Shahab et  al. 
inoculated aerobic fungus, facultative anaerobic lactic acid bacteria, and anaerobic prod-
uct-forming strains of fermented lactic acid on a membrane-aerated bioreactor based on 
oxygen gradients, respectively, to modularize microbial functions and establish a lactate 
platform for high-value conversion of complex substrates (Shahab et al., 2020). Therefore, 
biorefining of OFMSW is environmentally comparable with state-of-the-art incinerators, 
but faces the following challenges: (1) the complexity of MSW sources and composition 
makes the treatment of actual waste by pure microorganisms not economically feasible 
(Krishnan et  al., 2019), requiring high pretreatment costs; (2) more extended processing 
footprint brings more operating costs; (3) low yields and high complexity of product sepa-
ration; and (4) the reduction effect of waste is not apparent, and the disposal of by-products 
must be considered.

In summary, the treatment of MSW in categories according to their characteristics is 
intended to realize environmental and economic benefits with minimal investment and 
operating costs. However, they are not isolated from each other but are interconnected and 
mutually reinforcing. For example, the pyrolysis product biochar can stimulate direct inter-
species electron transfer between the syntrophic acetogen and methanogen communities 
as an electron conductor in the AD process and enhance methane production (Qiu et al., 
2019). Zhao et al. added the landfill degradation product aged waste to the OFMSW anaer-
obic fermentation process, which increased the yield of short-chain fatty acid by 1.9 times. 
"Separate processing of sorted MSW + combining (intermediate) products from other pro-
cesses or energy input to increase yield" may be a prospective approach for resource utili-
zation of MSW in the future.
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6 � Conclusion and perspective

Waste sorting has become a consensus among policymakers. The recovery of energy 
and resources not only creates an opportunity to expand the `zero waste’ concept but 
also provides financial support for the whole process of MSWM. Because the critical 
issues of waste management are interconnected and interact, this paper has the benefit 
of providing a systematic and unified overview of MSW from generation, sorting, C&T, 
pretreatment, to resource recovery. However, there is no one-size-fits-all management 
strategy, and it is essential to develop a nationally/regionally appropriate MSWM sys-
tem, beginning at the source. Although the pursuit of ’zero waste’ will be an essential 
direction to move forward, it is imperative to establish a network of sorted MSW, which 
can be resourced simultaneously, to provide the most appropriate technology options for 
each MSW type. Here are some summaries and prospects:

1.	 GDP per capita is the dominant factor influencing the generation and composition of 
MSW; however, it may also depend on other factors such as dietary culture in China. 
Further valid data on MSW generation and composition need to be supplemented to 
develop predictive models for artificial intelligence-based tools.

2.	 Source separation compensates for the inaccurate classification of mixed waste. Sus-
tainable source-separated strategies require building on a complete waste management 
stream, and system technology development will be an essential adjunct to enhanced 
source separation. Moreover, to realize the fine sorting of recyclable materials, MSW 
with source separation may still require further sorting after C&T. With the emergence 
of sensor-based sorting technologies, it is still unknown whether the future will be a 
complex quadruple sort (e.g., Shanghai), an organic/inorganic dichotomy, or a mixed 
collection method. What is clear, however, is that source separation reduces MSW 
cross-contamination and can significantly increase the fraction of MSW available for 
mechanical recycling.

3.	 Pretreatment processes are an indispensable part of achieving efficient resource recov-
ery. However, the development of technologies such as fine sorting is still promising in 
source separation.

4.	 The uniformity of the C&T process management also allows for improving the quality of 
the MSWM system. The optimization of C&T network would prioritize transportation 
costs and also focus on carbon emissions and social impact. The investments in smart 
devices and AI provide the possibility to implement C&T models for source separation.

5.	 Mechanical recycling is a sustainable means of achieving multiple recyclable MSW 
reuses, but incineration is undoubtedly the preferred option for contaminated MSW 
(including medical waste). Pyrolysis and gasification as indirect WtE technologies, offer 
new ideas for chemical recycling. OFMSW is adapted to bioconversion, yet strongly 
relies on pre-treatment (physical, chemical, thermal, biological, and combined). Biore-
fining is a promising approach for the synthesis of various value-added products; how-
ever, due to the heterogeneity of OFMSW, it is not straightforward to obtain the target 
products.

6.	 AI, IoT, and 5G technologies will be widely and deeply used for waste generation pre-
diction, waste collection route optimization, waste management facility positioning, 
and waste resource recovery process modeling, etc. MSWM will also enter a leapfrog 
development stage.
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7.	 MSWM system is a tightly interconnected network system. One treatment unit is likely 
to provide energy, substrates, or promoters that can be used to boost the capacity for 
another treatment unit to increase the overall profitability of the overall MSWM. It 
takes the combined efforts of scientists and engineers to develop overall supply and 
demand chains that can value MSW both technically and economically to achieve sus-
tainable MSWM. Balancing system costs, environmental effects, and social impacts 
have always been a concern for MSWM. Unfortunately, due to the uncertainty of C&T 
and resourceization process selection, this paper does not evaluate the economic and 
environmental perspectives, which requires a complete life-cycle evaluation of each 
pathway, which will be worth considering in the future as each technology becomes 
commercially viable.
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