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Abstract
The main advantages of magnesium alloys are that they are lightweight, easy to recycle, 
and have high vibration absorption. These unique characteristics make magnesium alloys 
important green metal materials for manufacturing, especially for the automotive and 3C 
products industries. The developing trends of these related industries can be recognized by 
forecasting the demand for magnesium alloys. This study develops grey prediction power 
models to forecast the demand for such a promising green metal material. Grey predic-
tion is an appropriate technique because available data regarding the demand for magne-
sium alloys are not in line with any statistical assumptions. In particular, because outliers 
might cause a deterioration of forecasting performance, a robust nonlinear interval regres-
sion analysis with neural networks is applied to detect outliers by estimating data intervals. 
Then, a power model is applied to the newly generated non-equidistant data sequence with-
out outliers. Residual modification is further considered here to improve the forecasting 
performance of the power model. The forecasting abilities of the proposed grey residual 
modification models are verified using actual magnesium alloy demand data. The experi-
mental results for ex-post testing show that the mean absolute percentage errors of the pro-
posed models that can work on non-equidistant data were minimal among all considered 
models.

Keywords  Green material · Neural network · Grey system · Interval forecast · 
Environmental protection

1  Introduction

Magnesium is a lightweight engineering material, and magnesium alloys are regarded as 
a twenty-first century green metal material. Compared with other metal materials, mag-
nesium alloys have a few advantages: they are lightweight, have high impact resistance, 
high corrosion resistance, and are easy to recycle. These advantages are the reason why 
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magnesium alloys have been widely used for the development and manufacture of various 
products, including the components of automobiles, aircraft, bicycles, sports equipment, 
and the metal cases of computer, consumer electronic, and computer (3C) products (Hong, 
2016; Lu, 2014). In 2016, as a result of major demand from the automotive industry, 32% 
of the worldwide magnesium was consumed in the die casting of magnesium alloys (Lee 
et al., 2017). Next, as the main determinant of fuel consumption is vehicle weight, light-
weight components are essential for the automotive and aerospace industries. As national 
authorities make efforts to significantly mitigate the effects of CO2 emissions and pro-
mote waste recycling, using magnesium materials in the manufacture of products, such as 
vehicles and 3C products, can have a very positive influence on environmental protection 
and energy conservation. Therefore, magnesium alloy demand forecasting can help these 
industries understand developing trends to quickly recognize market configurations and set 
up investment strategies.

In contrast to artificial intelligence techniques and time series models, grey system the-
ory has been applied to many real-world problems (Gao et al., 2021; Rajesh, 2020). Grey 
prediction has drawn attention because of the need to use limited samples to characterize 
an unknown system without complying to any statistical assumptions (Liu & Lin, 2010). 
This characteristic motivated us to apply a power model of a first-order grey model with 
one variable (GM(1,1)), abbreviated to GM(1,1)-P, to predict the demand trends for mag-
nesium alloys. Indeed, the GM(1,1)-P model has been widely applied to real-world prob-
lems. The literature on the applications of GM(1,1)-P is briefly described in Table 1.

In light of the applicability of the GM(1,1)-P model to real-world problems, it is inter-
esting to apply the GM(1,1)-P and its variants to forecast the magnesium alloy demand. 
Two issues are particularly addressed in this paper. First, GM(1,1)-P often works well 
on annual or equidistant data; however, there is always the possibility that outliers might 
worsen the performance of the prediction model (Huang et  al., 1998). To avoid outliers 
adversely affecting forecasting performance, robust interval regression analysis can be used 
to detect outliers by gauging the intervals consisting of upper and lower bounds (Hladík & 
Černý, 2014; Wang et al., 2015). Thus, it is interesting to develop the GM(1,1)-P that can 
work on a newly generated non-equidistant data sequence after removing those outliers to 
better forecast magnesium alloy demand.

Next, it has been demonstrated that residual modification is available to promote fore-
casting accuracy of an original prediction model (Liu et al., 2017). Therefore, it is reason-
able to incorporate the mechanism of residual modification into GM(1,1)-P. Based on these 

Table 1   Summary of the literature on the applications of GM(1,1)-P

Author(s) Application

Wang et al. (2011) Qualified discharge rate of industrial wastewater in China
Pao et al. (2012) CO2 emissions, energy consumption and economic growth in China
Lu et al. (2016) Traffic flow forecasting
Chen et al. (2019) Short-term forecast of the passenger volume of Taiwan High Speed Rail
Wu et al. (2019) Short-term renewable energy consumption
Xiao et al. (2020) Biomass energy consumption
Ma et al. (2019) Tourist income prediction
Şahin (2020) Cumulative number of confirmed cases of COVID-19
Zheng et al. (2020) Hydroelectricity consumption of China
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features, this study aims to develop GM(1,1)-P and its residual version that works on non-
equidistant data sequences, generated using robust nonlinear interval models to remove 
outliers.

To deal with the first aforementioned issue, we use two neural networks (NNs) to build 
a nonlinear interval model that is robust against outliers. This approach is adopted here 
because several studies have demonstrated the effectiveness of using two NNs on the con-
struction of nonlinear interval models. The related literature is summarized in Table 2. As 
for the second issue with respect to residual modification, the functional-link net (FLN) is 
considered because Hu (2017) and Hu et al. (2019) indicate the effectiveness of the FLN 
on the combination of a grey prediction model with its residual version. The main advan-
tage of FLNs is relieving the restrictions arising from commonly used sign estimation 
methods, such as Markov-chain estimation (Hsu, 2003) and genetic programming (Lee & 
Tong, 2011).

The remainder of this paper is organized as follows. The robust nonlinear interval 
regression analysis using NNs and grey prediction are introduced in Sects. 2 and 3, respec-
tively. The proposed GM(1,1)-P along with its residual model that work on non-equidistant 
sequences are presented in Sect. 3. For forecasting magnesium alloy demand, we investi-
gate the forecasting accuracy of the different grey prediction models in Sect. 4. Finally, the 
conclusions are presented in Sect. 5.

2 � Robust nonlinear interval regression analysis using NNs

Imprecise observations can be represented by estimated data intervals (Xie et  al., 2014; 
Zeng et  al., 2014). Nonetheless, an unsatisfactory interval can be obtained when a data 
sequence contain outliers. In Sect. 2.1, Eqs. (1), (2), (3), (4), (5), and (6) describe nonlinear 
interval regression analysis using NNs, and Eqs.  (7), (8), (9), (10), and (11) in Sect. 2.2 
describe the development of the robust nonlinear interval models against outliers.

2.1 � Nonlinear interval regression analysis

In practice, a nonlinear interval model can be determined using two NNs, denoted by 
NNu and NNl, from a given original data sequence x = (x1, x2,…, xm). As a result, (t1, 

Table 2   Summary of the literature on the use of NNs to build nonlinear interval models

Author(s) Subject

Cheng and Lee (2001) Fuzzy regression with radial basis function network
Chen and Jain (1994) A robust back propagation learning algorithm
Huang et al. (1998) Robust interval regression analysis using multi-layer perceptrons 

(MLPs)
Ishibuchi and Tanaka (1992) Fuzzy regression analysis using MLPs
Ishibuchi et al. (1993) Fuzzy regression analysis using NNs with interval weights
Ishibuchi and Nii (2001) Fuzzy regression using fuzzified neural networks
Nasrabadi and Hashemi (2008) Robust fuzzy regression analysis using NNs
Hao (2009) Interval regression analysis using support vector networks
Hu (2009) Robust nonlinear interval regression analysis using functional-link nets
Hu (2014) Robust nonlinear interval regression analysis using MLPs
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x1), (t2, x2),…, and (tm, xm) comprise a data set for the two NNs (NNu and NNl) where 
(tp, xp) denotes the p-th input–output pattern at time tp. Also, let gu(tp) and gl(tp) be the 
upper and lower limits obtained from NNu and NNl, respectively, such that the differ-
ence between gu(tp) and gl(tp) denotes the width of the gauged interval. A nonlinear 
optimization problem is formulated as.

subject to

To approximately satisfy the constraint condition, Ishibuchi and Tanaka (1992) pro-
posed an NN-based approach in which two MLPs are used to set up the nonlinear inter-
val model, and each MLP has a single output, a single input, and one hidden layer with 
five hidden units. Note that what the NN this study addresses is MLP. With a weighting 
parameter �p , a cost function Eu is formulated to discover the upper limit:

in which

where ω ∈ (0, 1). To determine the lower limit, cost function El is formulated as

in which

2.2 � Robust nonlinear interval models

A robust nonlinear interval model can be built on the basis of the aforementioned NN-
based approach, where the quality index, �p , with respect to (tp, x(0)

p
 ) at time tp beyond 

the estimated interval should be considered to help the MLP training resist outliers. The 
quality index is given as follows:

where c is a cutoff point, and � is a very small positive real value. During the model con-
struction, rp > c means that (tp, xp) falls in the rejection region. To determine the upper limit 
against outliers, the absolute residual, rp, with respect to (tp, xp) is defined as follows (Chen 
& Jain, 1994; Huang et al., 1998):

(1)Minimize
(
gu(t1) − gl(t1)

)
+
(
gu(t2) − gl(t2)

)
+ ... +

(
gu(tm) − gl(tm)

)

(2)gu(tp) ≤ xp ≤ gl(tp), p = 1, 2, ..., m
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m∑
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1

2
�
p
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p
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2
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p
=
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p
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p
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2
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p
− gl(tp))

2

(6)𝜔
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=
{

1, if x
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≥gl(tp)

(7)𝜓p =
{

1, if r
p
≤c

𝜓 , if r
p
>c
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In this approach, data in the rejection region impose little effect on the construction of 
NNu.

To determine c, we renumber the data by sorting rp in descending order, such that (tp, 
x(0)
p

 ) is renumbered as one as it has min{r1, r2,…, rm}. r(1−qu)m is assigned to c, where qu 
(0 ≤ qu ≤ 1) indicates the tolerable limit on the rate of outliers beyond the true interval. 
With �p , cost function Eu is defined as (Hu, 2009, 2014)

To determine the lower limit, rp is defined as

In a similar manner, with ql being the tolerable limit on the rate of outliers beneath the 
true interval, c is given by r(1−ql)m as well. With �p , cost function El is defined as

The data in the rejection region also impose little effect on the construction of NNl.
By defining the fitness function as Eu (El), the connection weights of NNu (NNl) can be 

determined using the toolbox in MATLAB to implement a real-valued genetic algorithm 
(GA). The estimated data intervals can be obtained from the best chromosome whose fit-
ness value is a minimum among the straight generations. As a result, any data outside the 
data intervals can be treated as outliers. The details of applying MLPs to robust nonlinear 
interval regression analysis using GAs are omitted here for simplicity, but the reader is 
referred to Hu (2014) for further information.

3 � Grey prediction

3.1 � Equidistant grey prediction

GM(1,1)-P and its residual model, both of which use equidistant data sequences are 
described here prior to the introduction of the grey prediction models that use non-equi-
distant data sequences. Section  3.1 including Eqs. (12)-(20) introduces the traditional 
GM(1,1)-P first. Then, the residual modification model, NGM(1,1)-P, consisting of 
GM(1,1)-P and its residual version, is described in Sect. 3.2 including Eqs. (21)-(25).

3.1.1 � GM(1,1)‑P model

Given an equidistant data sequence �(0) = (x(0)
1

,x(0)
2

,…,x(0)
n

 ) composed of n data samples, a 
new sequence �(1) = (x(1)

1
,x(1)

2
,…,x(1)

n
 ) is generated from �(0) by a one-order accumulated gen-

erating operation (1-AGO) as (Liu & Lin, 2010)

(8)rp =

{
xp − gu

(
tp
)
,

0,

xp ≥ gu
(
tp
)

xp < gu
(
tp
)

(9)Eu =

m∑

p=1

1

2
�
p
�p(xp − gu(tp))

2

(10)rp =

{
gl
(
tp
)
− xp,

0,

xp ≤ gl
(
tp
)

xp > gl
(
tp
)

(11)El =

m∑

p=1

1

2
�
p
�p(xp − gl(tp))

2
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Since �(1) monotonically increases, the following first-order Bernoulli equation can be 
used as the mathematical form of the GM(1,1)-P as

where a denotes the developing coefficient, b represents the control variable, and r repre-
sents the power exponent.

The time response function with respect to Eq. (13) is (Chen, 2008; Chen et al., 2008)

where r ≠ 1. Then, a and b can be estimated by a linear regression model consisting of n–1 
grey difference equations with the following form:

where the background value z(1)
k

 is given by

in which 0 ≤ � ≤ 1. The interpolation coefficient � is usually set to 0.5 for convenience, 
although such a setting may not be optimal.

In turn, with the ordinary least squares (OLS) method, a and b can be derived as

in which

Finally, the predicted value of x(0)
k

 can be obtained by the inverse 1-AGO (1-IAGO):

To optimally construct GM(1,1)-P, we apply the well-known optimization modeling 
software, Linear Interactive and General Optimizer (LINGO), to solve the optimization 
problem by minimizing the mean absolute percentage error (MAPE) as

subject to r ≠ 1, x̂(1)
1

 = x(1)
1

 , Eq. (3), and Eqs. (5), (6), (7) and (8).
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=

k∑

j=1

x
(0)

j
, k = 1, 2,… , n

(13)dx(1)(t)

dt
+ ax(1)(t) = b
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That is, MAPE is the sum of the APE of xk (k = 1, 2,…, n) divided by the sample size. 
The computational steps of setting up the optimized GM(1,1)-P model are as follows.

Step 1 Generate accumulated generating sequence from the equidistant data sequence.
Step 2 Construct GM(1,1)-P with LINGO to obtain the optimal parameters, including 

the developing coefficient (a), control variable (b), interpolation coefficient ( � ), and power 
exponent (r).

Step 3 Obtain the predicted sequence with 1-IAGO.
It should be noted that GM(1,1)-P, also called the nonlinear grey Bernoulli model, is 

identical to GM(1,1) when r = 0. In particular, the power exponent makes GM(1,1)-P much 
more useful than GM(1,1) (Dang et al., 2016; Lu et al., 2016).

3.1.2 � Residual modification of GM(1,1)‑P model

After constructing the GM(1,1)-P model, a sequence of absolute residual values, �(0) = (�(0)
2

 , 
�
(0)

3
,…, �(0)

n
 ), is generated where

A residual model is established with respect to �(0) as GM(1,1)-P using �(0) such that the 
corresponding time response function is

In common with GM(1,1)-P, aε and bε can be derived by the OLS method. A new pre-
dicted value can be obtained by modifying the predicted value produced by GM(1,1)-P as

The resultant prediction model consisting of GM(1,1)-P and its residual version is called 
RGM(1,1)-P.

Traditionally, sk is 1 or − 1 (Liu & Lin, 2010). Even so, to optimally determine sk, since 
it has been indicated that an FLN without hidden layers is effective for building a residual 
modification model (Hu et al., 2019), we set up an FLN to better integrate GM(1,1)-P and 
its residual version. Let tk denote the time k with respect to x̂(0)

k
 . The input pattern for the 

FLN is an enhanced pattern, vk = (tk, sin(πtk), cos(πtk), sin(2πtk), cos(2πtk)). Let w = (w1, w2, 
w3, w4, w5) be a vector of connection weights. Then, the actual output of vk can be obtained 
as:

where θ is the bias and ˗1 ≤ yk ≤ 1. As a result, a new predicted value generated from the 
proposed model can be computed as follows:

in which � > 0 and sk = � yk. Thus, the new value of x̂(0)
k

 ranges from x̂(0)
k

− 𝜂yk𝜀̂
(0)

k
 to 

x̂
(0)

k
+ 𝜂𝜀̂

(0)

k
.

To set up the RGM(1,1)-P, we use the toolbox in MATLAB to develop a real-valued 
GA, using MAPE as the fitness function, by which the connection weights of the FLN can 
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|||
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=
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(0)
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(0)

k
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(24)yk = tanh(wtvk + �)
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(0)
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= x̂

(0)
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+ 𝜂yk𝜀̂
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, k = 2, 3,… , n
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be optimally determined. The relevant parameters can be obtained from the best chromo-
some whose fitness value is a minimum among all the straight generations. As a result, the 
computational steps to construct the RGM(1,1)-P are briefly summarized as follows.

Step 1 Build the optimized GM(1,1)-P using the equidistant data sequence with LINGO.
Step 2 In common with the construction of the optimized GM(1,1)-P model, use the 

equidistant residual sequence to establish the optimized residual GM(1,1)-P model with 
LINGO.

Step 3 Obtain the predicted sequence using an FLN to optimally combine the predicted 
values obtained from the optimized GM(1,1)-P and its optimized residual model. The opti-
mized FLN is derived with the GA toolbox in MATLAB.

3.2 � Non‑equidistant grey prediction

After removing outliers with the robust nonlinear interval model, the original equidistant 
data sequence becomes non-equidistant (Li et al., 2012). We use NGM(1,1)-P to denote a 
GM(1,1)-P model that can work on non-equidistant data. In our design, we first construct 
NGM(1,1)-P and then the residual NGM(1,1)-P. Therefore, NGM(1,1)-P is first introduced 
in Sect. 4.1 including Eqs. (26), Eq. (27) and Eq. (28). Generation of the proposed residual 
combination model, called RNGM(1,1)-P, consisting of NGM(1,1)-P and its residual ver-
sion, is then described in Sect. 4.2 including Eqs. (29), (30), (31), and (32).

3.2.1 � NGM(1,1)‑P model

A non-equidistant sequence, (x(0)(t1), x(0)(t2),…, x(0)(tn)) (n ≤ m), is obtained by removing 
outliers from the original sequence, where x(0)(ti) denotes the actual value at time ti (i ≤ n). 
Let Δti = ti − ti−1 , where i = 2, 3,…, n. Of course, Δti is not a constant. Let �(0) = (x(0)

1
,x(0)

2

,…,x(0)
n

) = (x(0)(t1), x(0)(t2),…, x(0)(tn)). There are four main differences between GM(1,1)-P 
and NGM(1,1)-P.

First, GM(1,1)-P and NGM(1,1)-P are set up by equidistant and non-equidistant 
sequences, respectively. Next, instead of 1-AGO, �(1) = (x(1)(t1), x(1)(t2),…, x(1)(tn)) = (x(1)

1

,x(1)
2

,…,x(1)
n

 ) for NGM(1,1)-P can be generated by the following AGO as (Dang et al., 2016; 
Liu et al., 2017)

Then, the time response function obtained by solving the following whitening equation 
is

where r ≠ 1 and k = 2, 3,…, n. Finally, with the following IAGO, the predicted value for 
NGM(1,1)-P with respect to x(0)

k
 is given by

(26)x
(1)

k
= x

(0)

1
+

k∑

j=2

x
(0)

j
Δtj, k = 2, 3,… , n

(27)x̂
(1)
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= [((x

(0)

1
)1−r −

b

a
)e−a(1−r)(tk−t1) +

b

a
]

1

1−r

(28)x̂
(0)

k
=

x̂
(1)

k
− x̂

(1)

k−1

Δtk
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Being analogous with the construction of GM(1,1)-P, the computational steps of set-
ting up the optimized NGM(1,1)-P model are as follows.

Step 1 Remove outliers from the equidistant data sequence using the robust nonlinear 
interval model to detect outliers.

Step 2 Generate the accumulated generating sequence from the non-equidistant data 
sequence.

Step 3 Construct NGM(1,1)-P with LINGO to obtain the optimal parameters, includ-
ing the developing coefficient, control variable, and interpolation coefficient.

Step 4 Obtain the predicted sequence with IAGO.

3.2.2 � Residual modification of NGM(1,1)‑P model

We set up the residual model of NGM(1,1)-P using the absolute residual value, �(0)
k

 , 
which is defined as

The prediction model consisting of NGM(1,1)-P and its residual version is called 
RNGM(1,1)-P. There are four main differences between RGM(1,1)-P and RNGM(1,1)-P 
as well. First, RGM(1,1)-P and RNGM(1,1)-P are set up using equidistant and non-equi-
distant residual sequences, respectively. Next, RNGM(1,1)-P follows the specific AGO 
where

Then, the corresponding time response function is

where r ≠ 1. In common with NGM(1,1)-P, aε and bε can be derived by the OLS method. 
Lastly, with the specific IAGO, the predicted value for RNGM(1,1)-P can be generated by

Figure 1 depicts a flowchart of the construction the proposed RNGM(1,1)-P model. 
The computational steps to set up the RNGM(1,1)-P are briefly summarized as follows.

Step 1 Build the optimized NGM(1,1)-P using the non-equidistant data sequence 
with LINGO.

Step 2 In common with the construction of an optimized NGM(1,1)-P model, use 
the non-equidistant residual sequence to establish the optimized residual NGM(1,1)-P 
model with LINGO.

Step 3 Obtain the predicted sequence with an FLN to optimally combine the pre-
dicted values obtained from the optimized NGM(1,1)-P and its optimized residual 
model. The GA toolbox in MATLAB is applied to optimize the connection weights of 
the FLN.

(29)𝜀
(0)

k
=
|||
x
(0)

k
− x̂

(0)

k

|||
, k = 2, 3,… , n

(30)�
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(0)

1
+
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j=2

�
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Δtj, k = 2, 3,… , n
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k
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, k = 3, 4,… , n
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4 � Experiments

Experiments were conducted for magnesium alloy demand forecasting to make compari-
sons between the different grey prediction models using the equidistant sequences and 
those using the non-equidistant sequences. The former include the optimized GM(1,1) 
and optimized GM(1,1)-P, and the latter includes the proposed NGM(1,1), NGM(1,1)-P, 
and RNGM(1,1)-P. It is reasonable to include GM(1,1) with equidistant sequences and 
NGM(1,1) with non-equidistant sequences because GM(1,1) is the most commonly used 
grey prediction model (Liu et al., 2017). Several distinctive prediction models, the adap-
tive NGM(1,1) (ANGM(1,1)) (Chang et  al., 2014) and FLNGM(1,1) (Hu (2017)), were 
included as well. It should be noted that, when a grey prediction model is developed on the 
basis of GM(1,1), “GM(1,1)” can be incorporated into the corresponding acronym by con-
vention. The considered prediction models include:

(1)	 NGM(1,1): A non-equidistant version of GM(1,1);
(2)	 GM(1,1)-P: A power model of the GM(1,1);
(3)	 NGM(1,1)-P: A non-equidistant version of GM(1,1)-P;

Fig. 1   Flowchart for constructing 
the RNGM (1,1)-P model
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(4)	 RGM(1,1)-P: A power model that integrates GM(1,1)-P with residual modification;
(5)	 RNGM(1,1)-P: A power model that integrates NGM(1,1)-P with residual modification;
(6)	 ANGM(1,1): Adaptive NGM(1,1) proposed by Chang et al. (2014) has shown its supe-

riority over some prediction models for non-equidistant data sequences on some real 
cases including synthetic control charts and color filter manufacturing.

(7)	 FLNGM(1,1): FLNGM(1,1) was originally developed for equidistant data, which uses 
an FLN to optimally integrate the optimized GM(1,1) and its residual model. For sim-
plicity, the details of FLNGM(1,1) are omitted here, but the study of Hu (2017) can be 
consulted for more information.

(8)	 NFLNGM(1,1): NFLNGM(1,1) denotes a non-equidistant FLNGM(1,1);
(9)	 NN: The NN we use is a multi-layer perceptron (MLP) that has a single output, a single 

input, and one hidden layer with five hidden units.

As for parameter specifications involving the construction of the proposed model, 
when using the GA to set up the MLPs introduced in Sect. 2.2, we assigned values of 
1000, 50, 0.8, and 0.01 to the total generations, population size, crossover, and mutation 
probabilities, respectively. In addition, ω in Eq. (4) and � in Eq. (7) are equal to 0.2 and 
10–5, respectively. To construct the proposed model, � in Eq. (25) was specified as 20. 
Although several factors could affect the performance of the GA, there are no optimal 
values that can be assigned to its parameter specifications (Osyczka, 2003).

4.1 � Case I: Magnesium die castings demand of China

China has consumed most of the magnesium in the world since 1999, and it has pro-
vided at least 80% of all magnesium materials used worldwide since 2008. With a 
demand of 70% from the automotive industry and 20% from the 3C products industry, 
about 35% of the magnesium has been consumed in die casting production with mag-
nesium alloys (Lee et  al., 2017). Magnesium die casting demand forecasting can thus 
reflect magnesium alloy demand and can indicate the developing trends of the automo-
tive and 3C products industries in China.

We used the historical data of the demand for magnesium die casting that was 
reported and analyzed by Hsu (2012), Hong (2015a, 2015b), and Lee et al. (2017). Data 
from 2002 to 2012 were used for model fitting, and data from 2013 and 2014 were used 
for ex-post testing. The upper and lower limits are shown in Fig.  2 after performing 
the robust nonlinear interval regression analysis with qu = ql = 0.1. There are two outli-
ers outside of the identified data intervals. The optimized NGM(1,1), NFLNGM(1,1), 
AGM(1,1), optimized NGM(1,1)-P, and RNGM(1,1)-P were constructed using the 
non-equidistant sequence by removing data in 2007 and 2009. The forecasting results 
are described in Table 3. Table 4 shows the forecasting accuracy obtained by the NN, 
GM(1,1), FLNGM(1,1), GM(1,1)-P, and RGM(1,1)-P that worked on the equidistant 
data sequence.

Table  5 summarizes forecasting accuracy for model fitting and ex-post testing. In 
terms of MAPE, we can see that the proposed RNGM(1,1)-P outperformed all the other 
models considered for model fitting and ex-post testing. In addition to MAPE, Table 5 
also includes two commonly used measures mean absolute deviation (MAD) and root 
mean square error (RMSE) defined as (Xiao et al., 2021):
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In terms of MAD and RMSE, we can see that the RNGM(1,1)-P outperformed most of 
the other considered prediction models for ex-post testing, despite that the RNGM(1,1)-P 
was slightly inferior to RGM(1,1)-P for ex-post testing.

4.2 � Case II: Magnesium alloy ingot and powder demand of Taiwan

In Taiwan, all magnesium materials are imported from abroad. Magnesium alloy ingots 
and scrap are the main materials imported for the magnesium alloy industry. Most of the 
magnesium alloys are used to manufacture the cases of 3C products, such as smart phones, 
tablet computers, and notebooks, by die casting and thixomolding. Taiwan is the global 
leader in the die casting of magnesium alloys for 3C products (Hong, 2016). To maintain 
this competitive advantage, magnesium alloy forecasting can be important in enabling 3C 
product manufacturers to recognize developing trends in related markets. Accordingly, the 
imported quantity of magnesium alloy ingots and scrap can be used to indirectly reflect the 
trends of the magnesium alloy demand of Taiwan.

We used the historical data of the import quantity of magnesium alloy ingots and scrap 
that was reported and analyzed by Lu (2014) and Hong (2016). Data from 2002 to 2012 
were used for model fitting, and data from 2013 and 2015 were used for ex-post testing. In 
Fig. 3, Two circles indicate outliers outside of the data intervals that were identified after 
performing the robust nonlinear interval regression analysis with qu = ql = 0.1. The opti-
mized NGM(1,1), NFLNGM(1,1), AGM(1,1), optimized NGM(1,1)-P, and RNGM(1,1)-P 
were constructed using the non-equidistant sequence by removing data in 2004 and 2010. 
Table  6 shows the prediction results. The prediction results obtained by NN, GM(1,1), 
FLNGM(1,1), GM(1,1)-P, and RGM(1,1)-P that worked on the original equidistant 
sequence are described in Table 7.

(33)MAD =
1

n

n∑

k=1

|||
x̂
(0)

k
− x

(0)

k

|||

(34)RMSE =

√√√
√1

n

n∑

k=1

(x̂
(0)

k
− x

(0)

k
)2

Fig. 2   Outlier detection of training data for Case I
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In terms of MAPE, Table  7 indicates that, among the prediction models considered 
here, the proposed RNGM(1,1)-P model demonstrated its superiority in the ex-post testing, 
despite that the RNGM(1,1)-P was slightly inferior to FLNGM(1,1) and NFLNGM(1,1) 
for model fitting. Indeed, one should place more emphasis on the results with respect to 
generalization (Luo et al, 2013). Table 8 summarizes forecasting accuracy for model fitting 
and ex-post testing. In addition to MAPE, we can see that the RNGM(1,1)-P outperformed 
most of the other considered prediction models in terms of MAD and RMSE for ex-post 
testing. The RNGM(1,1)-P outperformed all the other models by RMSE, but it was slightly 
inferior to NFLNGM(1,1) and ANGM(1,1) by MAD.

4.3 � Statistical analysis

To demonstrate the superiority of the proposed RNGM(1,1)-P, statistical analysis was 
conducted by using the Wilcoxon signed-rank test. The forecasting accuracy of the 
RNGM(1,1)-P was compared with that each of the other prediction models considered 
for ex-post testing. Let the statistic R− denote the sum of ranks for the last four and three 
years of Cases I and II, respectively, in which the accuracy of the proposed RNGM(1,1)-P 
was inferior to that of one prediction model. For instance, compared to NGM(1,1), R− was 
equal to the sum of ranks for the seven years in which the accuracy of the RNGM(1,1)-
P was inferior to that of the NGM(1,1). As R− = 4 which was less than the critical value 
of 6 at a significance level of 0.1 with respect to a right-tailed test, the RNGM(1,1)-P 
was significantly superior to the NGM(1,1). It was found that R− = 7 which was slightly 
greater than the critical value at a significance level of 0.1 when comparing with the 
NFLNGM(1,1), the RNGM(1,1)-P seems to be superior to the NFLNGM(1,1) as well. As 
a result, the RNGM(1,1)-P significantly outperformed most of the considered prediction 
models except for the GM(1,1)-P and NN. Even so, the RNGM(1,1)-P performed better 
than the GM(1,1)-P and NN from the viewpoint of the MAPE for ex-post testing.

5 � Discussion

The prediction accuracy of the proposed RNGM(1,1)-P was examined using real mag-
nesium alloy demand data from China and Taiwan. The experimental results for ex-post 
testing show that the MAPEs of the proposed model were minimal among all considered 

Fig. 3   Outlier detection of training data for Case II
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models. Statistical analysis further indicated that the RNGM(1,1)-P significantly outper-
formed the most of the considered prediction models as well. In terms of MAPEs, since 
the RNGM(1,1)-P outperformed the RGM(1,1)-P that can only deal with the original equi-
distant sequence, this indicated that the forecasting performance of the RGM(1,1)-P can be 
improved by removing outliers from data sequences. Altogether, the above results demon-
strated the high applicability of the proposed RNGM(1,1)-P in the forecast of magnesium 
alloy demand.

As mentioned above, MAPE is the primary measure to examine forecasting accu-
racy of the considered prediction models here. From Tables 5 and 8, we can see that the 
RNGM(1,1)-P outperformed the other considered models in terms of MAPE for ex-post 
testing. However, it cannot beat the other considered models in terms of MAD and RMSE. 
The reason is that all considered grey prediction models were constructed by minimiz-
ing MAPE rather than MAD and RMSE. Even so, with MAD and RMSE, the proposed 
RNGM(1,1)-P is comparable to the other considered models. It should be noted that, for 
magnesium material demand forecasting, Hu (2020) applied grey relational analysis to 
access the relative importance of each sample for GM(1,1), and a residual modification 
without constructing residual models was then provided. Indeed, the contributions of this 
study are quite different from those of Hu (2020).

6 � Conclusions

Many countries have established high standards for lowering CO2 emissions and energy 
consumption for automobiles, and constructing lightweight products has become an effec-
tive way to achieve these standards. Undoubtedly, magnesium alloys are important metal 
materials for the automotive industry, as well as for 3C products, aircraft, and medi-
cal appliances. As manufacturers need to invest in research and development in the use 
of magnesium alloys, the development of well-performed demand forecasting models is 
important and can help manufacturers understand the developing trends of related markets.

The main contribution of this study is to develop the grey residual modification model, 
namely RNGM(1,1)-P, to forecast the demand of magnesium alloy demand. To remove 
outliers that might give rise to a deterioration of forecasting accuracy, the robust nonlin-
ear interval models were particularly employed to generate non-equidistant data sequences. 
It turns out that the proposed RNGM(1,1)-P can work on the resultant non-equidistant 
data sequences, and it is not necessary for the available data to comply with any statistical 
assumption.

The findings of this study also highlight several directions for our future work. First, 
this study did not consider exogenous variables such as the price of magnesium and busi-
ness indicators in the context of the demand for magnesium alloy. As multivariate models 
may yield better predictions than single-variable models (Hu, 2020; Ma et al., 2019; Wu 
et al., 2019), we will investigate the applicability of several models, such as the multivari-
able models of Moonchai and Chutsagulprom (2020), the cumulative sum operator in grey 
prediction using integral transformations of Wei et al. (2020), and the background value 
optimization nonlinear model of Wu et al. (2020), to forecast the demand for magnesium 
alloy. Next, since there are shortcomings of MAPE outlined by Vandeput (2021), we will 
investigate how to incorporate the other measures such as MAD and RMSE into the con-
struction of the proposed models to improve forecasting accuracy.
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