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Abstract We present estimates for nitrogen (N) and phosphorus (P) sewage inputs to 19

Indonesian rivers for 1970–2050. Future trends are based on the four scenarios of the

Millennium Ecosystem Assessment. Our results indicate a rapid increase in N and P

pollution from sewage over time. In 1970, N and P inputs to rivers were low because not

many households were connected to sewage systems discharging to rivers. Sewage con-

nection is increasing over time. As a result, N and P inputs to rivers increase. We calculate

that between 2000 and 2050 the N and P inputs increase with a factor of 17–40, depending

on the scenario. Important determinants of future N and P sewage inputs are population,

economic growth, urbanization, sewage systems development and wastewater treatment.

Our calculations are based on an improved model for N and P inputs to rivers, indicating

that previous estimates underestimated these inputs considerably.
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1 Introduction

Water pollution caused by domestic waste is a serious problem in the large cities of

Indonesia such as Bandung, Jakarta, Semarang and Surabaya (Ramu 2004). The rivers that

flow through these urban areas are polluted often exceeding water quality standards (Lasut

et al. 2005). These problems are driven by high population pressure, increased economic

activity and waste discarded untreated (Lasut et al. 2008).

Eutrophication is one of the problems in aquatic systems and is caused by increased

nutrient availability in rivers, lakes and marine ecosystems. It is largely driven by increased

nitrogen (N) and phosphorus (P) availability (Howarth 2008). Human activities causing

increased N and P inputs to aquatic systems began about a century ago (Galloway et al.

2004; Seitzinger et al. 2006; Boyer et al. 2006; Mulholland et al. 2008). Eutrophication has

become a serious threat to water quality (Selman et al. 2008), reducing the biodiversity and

ability of aquatic ecosystems to provide valuable ecosystem services. It may reduce bio-

logical oxygen demand to below 2 mg/l (Diaz and Rosenberg 1995).

Several studies report serious events of eutrophication. Studies show dozens observations of

eutrophic and hypoxic coastal systems worldwide (Selman et al. 2008), the global inventory

observation hypoxic event and the so-called dead zones (Diaz and Rosenberg 2008). These studies

indicate that eutrophication is a problem in all coastal seas of the world (Carpenter et al. 1998).

During the past half century, inputs of N and P to coastal marine systems have been

increasing relatively fast (Billen and Garnier 2007; Howarth 2008; Glibert et al. 2008).

These increases in N inputs are associated with increased population and economic growth,

as well as with changes in the human diet, urbanization and the construction of sewerage

systems (Seitzinger et al. 2010; Van Drecht et al. 2009). Increases in P inputs to aquatic

systems can be explained by increased agricultural inputs as well as sewage inputs,

including human feces and urine, and detergents containing P. In Europe P-free detergents

have replaced P-based detergents since three decades ago (RPA 2006). In South America,

Asia and Africa, animal manure and sewage are often an important anthropogenic cause of

eutrophication (Van der Struijk and Kroeze 2010; Yasin et al. 2010).

In many world regions, anthropogenic nutrient inputs to rivers exceed natural sources

(Yasin et al. 2010; Yan et al. 2010). During the coming decades, the risk of coastal

eutrophication will likely increase in developing countries as a result of expected popu-

lation growth, economic growth and the development of wastewater treatment systems

(Bouwman et al. 2005; Van Drecht et al. 2009; Garnier et al. 2010).

Coastal eutrophication also occurs in Indonesia. Anthropogenic causes of coastal

eutrophication in Indonesia include agriculture, human waste and industrial sources

(Sunarto 2006). The impact of eutrophication is visible along, for instance, the northern

coast of Java, Sumatra and the eastern coast of Jakarta Bay (Latifah 2004). In 2003 until

2010, the Brantas river water quality declined due to N and P (Masrevaniah 2010). Several

polluted rivers export excess nutrients to coastal seas. For instance, the Citarum river is

polluted with N and P from industrial waste, residential sources and agriculture (Garno

2002). Likewise, freshwater reservoirs have experienced water quality problems leading to

excessive growth of floating plants (e.g., water hyacinth, Eichhornia crassipes) and fish

kills (Hart et al. 2002). These problems do not only pose a threat to aquatic ecosystems, but

also interfere with water availability for human consumption and irrigation (Carpenter

et al. 1998). Increased N and P contents in downstream rivers have been considered a some

of the problems (Yuliastuti 2011). Feces and detergents are the largest sources of N and P

in domestic waste. How N and P emissions to the rivers in Indonesia may develop in the

future depends on urbanization and developments in sewage systems.
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In this study, we will analyze inputs of nutrients to rivers by means of a quantitative

model. We will use the Global NEWS (Nutrient Export from Water Sheds) model

(Mayorga et al. 2010; Seitzinger et al. 2010). This model can be used to analyze past and

future trends in the export of nutrients to coastal seas in a spatially explicit way.

The Global NEWS models have been developed since the late 1990s (Beusen et al.

2005; Dumont et al. 2005; Harrison et al. 2005a, b; Seitzinger et al. 2006). Early versions

of the models calculated the river export of various forms of either N, P, or carbon (C) as a

function of hydrology, basin characteristics, land use and human activities in 6000

watersheds (Seitzinger et al. 2006). These early versions of Global NEWS consisted of a

set of models for different forms of nutrients. In the most recent version of Global NEWS,

these sub-models have been integrated in a one model interface (Seitzinger et al. 2010;

Mayorga et al. 2010). Also silica (Si) is now included in the model. The latest version of

the Global NEWS model has been used to analyze past and future trends in nutrient export

by rivers for the period 1970–2050 (Seitzinger et al. 2010).

In an earlier study (Suwarno et al. 2013), we compared N and P measurements at the

mouths of 19 selected rivers in Indonesia with the modeled values from the Global NEWS

model. In general, we concluded that the fit is reasonable, considering that the model was

not originally developed for Indonesia. For some rivers, the fits are very good, while for

others, there is a difference between measured and modeled values. We concluded,

therefore, that the Global NEWS model can be used for an analysis of nutrient export by

these Indonesian rivers at the regional scale. However, we also concluded that sewage

inputs are not well represented in the model for Indonesian rivers.

The purpose of this study is, therefore, to model sewage N and P inputs to the 19 selected

Indonesian rivers. To this end, we will first summarize the Global NEWS approach to model

sewage inputs. Next, we will evaluate this approach on the basis of local information, and

finally, we will propose an improved model for sewage inputs to Indonesian rivers.

2 Materials and methods

2.1 Global NEWS and the Millennium Ecosystem Assessment Scenarios

The Global NEWS model calculates nutrient export from land to sea as a function of

hydrology, river basin characteristics and human activities on the land. As explained

above, several versions of the Global NEWS model exist. In 2005, Global NEWS-1 sub-

models were released (Beusen et al. 2005; Dumont et al. 2005; Harrison et al. 2005a, b;

Seitzinger et al. 2005). These sub-models calculate the export of different forms of N, P

and C for more than 6,000 rivers. A strength of the Global NEWS model is that it can be

used for analyses of different nutrients simultaneously, for different years (past and future)

and that it can be used for analyses of the sources of nutrients in rivers. This compre-

hensiveness is one of the main differences with some other global models, that tend to

focus on one nutrient, or one time period only (e.g., He et al. 2011).

In 2010, an improved version of Global NEWS (version 2) was released (Beusen et al.

2009; Harrison et al. 2010; Mayorga et al. 2010; Seitzinger et al. 2010). This version of the

Global NEWS model calculates river export of dissolved inorganic N, P and C (DIN, DIP

and DIC), dissolved organic N, P and C (DON, DOP and DOC), particulate N and P (PN

and PP) and dissolved silica (Si). One of the improvements in this version is the modeling

of detergent P as a source of dissolved inorganic P in rivers (Harrison et al. 2010). In

addition, the sub-model for river export of dissolved silica was new in Global NEWS-2
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(Beusen et al. 2009). Moreover, the sub-models were integrated into one modeling envi-

ronment (Mayorga et al. 2010). And finally, Global NEWS-2 was used to analyze past

trends and future scenarios (for the period 1970–2050). The scenarios for the future were

based on the Millennium Ecosystem Assessment (MEA) (Alcamo et al. 2005). This

required the development of spatially explicit model inputs for diffuse nutrient inputs from

agricultural and natural ecosystems (Bouwman et al. 2005), for point sources (sewage)

(Van Drecht et al. 2009) and hydrology (Fekete et al. 2010). These model inputs are

consistent with the social, economic policy and ecological assumptions in the MEA sce-

narios (Mayorga et al. 2010). Our scenarios are comparable to nitrogen scenarios devel-

oped on the basis of the IPCC SRES scenarios (Bodirski et al. 2012).

Millennium Ecosystem Assessment includes four scenarios for 2030 and 2050:

Adapting Mosaic (AM), Global Orchestration (GO), Order from Strength (OS), and

TechnoGarden (TG). These scenarios differ with respect to the assumed socioeconomic

developments (regionalization or globalization) and the assumed approach toward envi-

ronmental management (reactive of proactive). AM describes a regionalized world with a

proactive approach toward ecosystem management based on simple technologies. It

assumes access to good sanitation, but no large increase in sewage connections. Rather it

assumes recycling of waste to substitute fertilizer N and P. GO is a globalized world

assuming a reactive approach toward ecosystem problems and investments in infrastructure

and education. Access to good sanitation and improved sewage connection is assumed in

this scenario between 2000 and 2050. Moreover, wastewater treatment is more advanced in

this world. OS describes a regionalized world with small investments in infrastructure. It

takes a reactive approach toward ecosystem problems. Connection to sewage systems is

comparable to urbanization with good sanitation, water treatment systems and sewage

disposal treatment systems will be expanded and replaced by more advanced systems. TG

is a globalized scenario assuming a proactive approach toward ecosystem management. It

assumes successful environmental technologies to ensure and protect ecosystem services

(Alcamo et al. 2005).

2.2 Sewage in Global NEWS

The Global NEWS approach to calculate sewage inputs to rivers is described in Mayorga

et al. (2010) and Van Drecht et al. (2009) (Table 1). Here, we summarize the approach.

Mayorga et al. (2010) describe how river export of N and P from sewage to sea is

calculated in Global NEWS. Van Drecht et al. (2009) describe how total emissions of N

and P human waste is discharged to surface water and calculated in Global NEWS. Table 1

summarizes the equations. In Global NEWS, the N and P inputs from sewage to rivers (Esw
N

and Esw
P ) are calculated as a function of the human N and P emission (Ehum

N and Ehum
P ), the

number of people connected to sewage systems (D) and N and P removal in waste water

treatment (RN and RP, respectively).

2.3 Number of people connected to sewage

Global NEWS determines the sewer connections based on assumptions about urbanization

and technical developments. If the level of urbanization is low, the model assumes little

human emission inputs to rivers. For developing countries with a large rural population, the

model assumes no sewage systems or waste water treatment. In Southern Asia, only 3–9 %

of the population was connected to sewage systems before the year 2000. For Indonesia,

however, they assume no sewage connection at all in the past (Van Drecht et al. 2009).
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In Global NEWS it is, therefore, assumed that in 1970 and 2000, no Indonesian people

were connected to sewage systems (D = 0). In the future scenarios, the number of people

connected to sewage systems is assumed to be increasing, but not in all rivers. In 2050,

Global NEWS assumes that in most Indonesian river basins, sewage connection is still

negligible (D = 0). Moreover, the model ignores that 20 % of the population of Indonesia

are defecating directly in the waters of the river (Van Drecht et al. 2009).

2.4 N and P removal in wastewater treatment

Van Drecht et al. (2009) distinguish between four types of wastewater treatment with

different treatment efficiencies, expressed by N and P removal fraction as in Eqs. (1) and

Table 1 Summary of the calculation of sewage inputs to rivers as included in the Global NEWS Model
(equations following Mayorga et al. 2010; Van Drecht et al. 2009)

No. Equations

1. EN
sw ¼ EN

hum � D � 1�RNð Þ � P

2. EP
sw ¼ ðEP

hum þ EP
Ldet þ EP

DdetÞ � D � 1� RPð Þ � P

3. IN
hum ¼ 4þ 14 � GDPppp=33000

� �0:3

4. EN
hum ¼ 0:365 � IN

hum

5. EP
hum ¼ f P

N � EN
hum

6. EP
Ldet ¼ ELdet � f P

Ldet � ð1�f Pfree
Ldet Þ

7. ELdet ¼ 10�10 � GDPmer=20000ð Þ�1½ �2

8. f Pfree
Ldet ¼ GDPmer=33000

Variables and parameters (Unit)

Esw
N = N emission to surface water (t year-1)

Ehum
N = human N emission (kg person-1 year-1)

D = population connected to the public sewerage system (fraction)

RN = N removal in the wastewater treatment (fraction)

Esw
P = P emission into surface water (kg person-1 year-1)

P = population in the river basin (thousands)

Ehum
P = human P emissions (kg person-1 year-1)

ELdet
P = P emissions from laundry detergents (kg person-1 year-1)

EDdet
P = P emission from dishwasher detergent (kg person-1 year-1)

RP = P removal in the wastewater treatment (fraction)

Ihum
N = N protein intake (kg person-1 day-1)

GDPppp = gross national domestic product per capita at purchasing power parity (1995 U.S.$ person-1

year-1)

GDPmer = gross national domestic product per capita at market exchange rate (1995 U.S.$ person-1 year-1)

fN
P = ratio between the emissions of human P to N

ELdet = laundry detergent use (kg person-1 year-1)

fLde
P

t = P content of laundry detergent (kg/kg)

fLdet
Pfree = fraction of laundry detergent that is P-free (fraction)
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(2). For N-specific removal efficiencies (R) are based on four types of waste water treat-

ment: no treatment (0 % removal), mechanical (primary) treatment (10 % removal), bio-

logical (secondary) treatment (35 % removal) and advanced (tertiary) treatment (80 %

removal) (Bouwman et al. 2005).

The overall N and P removal fractions are low in most developing countries in the

period 1970–2000. These removal fractions are assumed to remain low in the future in

most developing countries, based on the assumption that advanced biological waste water

treatment will not be applied widespread. The maximum removal fractions for developing

countries are in Global NEWS typically below 35 % throughout the simulation period

(1970–2050) and often not even higher than 10 %. In other world regions, these removal

rates can be up to 80 % for N and 90 % for P, based on the current processing technology.

In many industrialized countries, the nutrient removal fraction has substantially increased

over the past decade because of the optimized management. In addition, P-free detergents

are increasingly used for washing as GDP increases (Eq. 8).

For rivers in Indonesia, the Global NEWS model assumes relatively low N and P

removal in waste water treatment (5 % in 2000, increasing up to 12 % in 2050).

2.5 Example: Solo river

We take the Solo river as an example to illustrate how the Global NEWS model calculates

sewage N and P inputs to rivers using the equations of Van Drecht et al. (2009) (Tables 2).

Table 2 Sewage N and P inputs to the Solo river in 2030 (Global Orchestration Scenario) as calculated in
Global NEWS, following Van Drecht et al. 2009

Variable Value Unit Remark

Esw
N 27,672 t year-1 Output of Eq. 1 (Table 1)

Ehum
N 5.22 kg person-1 year-1 Output of Eq. 4 (Table 1)

D 0.39 Fraction Global NEWS Run 5 model assumption
(Mayorga et al. 2010)

Esw
P 5,743 t year-1 Output of Eq. 2 (Table 1)

Ehum
P 0.87 kg person-1 year-1 Output of Eq. 5 (Table 1)

ELdet
P 0.18 kg person-1 year-1 Output of Eq. 6 (Table 1)

EDdet
P 0 kg person-1 year-1 No dishwashers assumed in the Solo

basin in Global NEWS

RN 0.05 Fraction Global NEWS Run 5 model assumption
(Mayorga et al. (2010)

RP 0.05 Fraction Global NEWS Run 5 model assumption
(Mayorga et al. 2010)

Ihum
N 14.3 g person-1 day-1 Output of Eq. 3 (Table 1)

GDPmer 6,090 US$ in 1995 Global NEWS Run 5 model assumption
(Mayorga et al. 2010)

GDPPPP 11,852 US$ in 1995 Global NEWS Run 5 model assumption
(Mayorga et al. 2010)

fN
P 1/6 Fraction Van Drecht et al. (2009)

ELdet 5.2 kg person-1 year-1 Output of Eq. 7 (Table 1)

fLdet
P 0.12 kg/kg Van Drecht et al. (2009)

fLdet
Pfree 0.36 Fraction Output of Eq. 8 (Table 1)

See Table 1 for explanation of parameter and variable names
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We take the year 2030 and the scenario GO as an example. In this scenario, the human N

and P emission is 2 kg person-1 year-1 and 0.5 kg person-1 year-1; 39 % of the people

are assumed to be connected to sewage systems, and the N and P removal are 13.7 % and

16.2 %. As a result, the total N and P export by the Solo river amounts to 29,907 and

7,822 t year-1.

3 Results

3.1 Evaluation of Global NEWS approach for sewage in Indonesia

3.1.1 Strengths of Global NEWS

The Global NEWS model has many strengths. It is the first global, spatially explicit model

of nutrient export from land to sea that includes multiple nutrients in manifold forms. It is a

complete and comprehensive model which has been used to analyze past and future trends.

The Global NEWS model has been validated on the global scale. It can explain

60–90 % of the variation in observed nutrient export by world rivers (Mayorga et al. 2010).

It has also been validated at continental and regional scales, indicating that the model is

applicable at multiple levels (Qu and Kroeze 2010; Van der Struijk and Kroeze 2010;

Yasin et al. 2010; Yan et al. 2010; Qu and Kroeze 2012; Scheren et al. 2004; Seitzinger

et al. 2002). This makes it a powerful tool to analyze eutrophication in coastal areas of

data-poor regions.

Other strengths of this model are that it can be used to analyze N, P, C and Si fluxes in

various forms simultaneously. It has proven particularly useful for analyses in data-poor

regions (Scheren et al. 2004). Moreover, it provides insight in the causes of increased river

nutrient export.

The Global NEWS approach also includes an indicator for coastal eutrophication

potential (ICEP) (Garnier et al. 2010). This is an indicator for the environmental and social

implications of excessive nutrients in coastal waters. It is based on the ratio of N/P/Si,

which is an indicator for the occurrence of harmful algal blooms. The structure of the

Global NEWS model makes it possible to analyze trends in ICEP over time and to relate

these trends to trends in human activities on the land.

3.2 Suggestions for improvement for Indonesia

Global NEWS was not specifically developed for Indonesia, but based on global

assumptions on sewage inputs to rivers. We propose a number of improvements in the

model and the model parameters (Table 3) based on the available data from local

studies.

3.2.1 Fraction of people connected to sewage

As indicated above, Global NEWS assumes that the number of people connected to sewage

(D) is 0 in 1970 and 2000. In future years, the fraction of people connected to sewage is

expected to increase to 20–80 % of the total population. In Global NEWS, these increases

are based on general assumptions for Southeast Asia and Oceania. Here, we used estimates

that are more specific for Indonesia, based on expert judgment (Coordinating Ministry for
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Economic Affairs 2011). These assumptions are that sewage connection increases to

60–70 % of the urban population in 2050.

3.2.2 Human N and P inputs to rivers

In Global NEWS, there are only two possibilities: Either people are connected to sewage

systems discharging to rivers or human waste is not discharged to rivers (Galloway et al.

2004). In reality, however, nearly 20 % of the Indonesian population is defecating directly

into rivers in 1970. This input of N and P in rivers is ignored in Global NEWS. Here, we

include it for 1970 and 2000. We assume that within a decade, this type of waste disposal

will disappear, in line with current policy plans to connect people to sewage systems with

waste water treatment (Dwipayanti and Purnama 2010).

In addition, local studies indicate that the estimates of human waste production in terms

of N and P emissions in Global NEWS (Ehum
N and Ehum

P ) are too low for Indonesia (see e.g.,

Rahway 2002). The Global NEWS estimates are based on generic relations between human

waste production and GDP. For Indonesia, this generic approach implies emission levels

that are relatively low. Indonesian studies, however, indicate that the actual N and P

emission by humans is 60 % higher than the Global NEWS estimate (Rahway 2002). We

therefore increase the Global NEWS estimate by a factor of 1.6 for all years and scenarios.

3.2.3 N and P removal in waste water treatment

The Global NEWS model assumes 5 % N and P removal in 1970 and 2000, increasing to

12 % in the future. Local studies indicate that this increase may be quite optimistic for

Indonesia in the near future (Van der Struijk and Kroeze 2010). However, compared to

many other countries, 12 % is very low. It is technically possible to remove larger amounts

of N and P from wastewater. Even though one may not expect fast improvement in waste

water treatment in Indonesia during the coming decades, we use higher removal

Table 3 Model assumptions in the improved model for sewage (see text for references)

Variable 1970 2000 2030 2050

AM GO OS TG AM GO OS TG

D (fraction) 0* 0* 0.35** 0.40** 0.35** 0.40** 0.60** 0.70** 0.60** 0.70**

RN and RP

(fraction)
0* 0* 0.03 0.03 0.03 0.03 0.10 0.04 0.04 0.40

fLdet
P (kg/kg) 0.18 0.18 0.18 0.18 0.18 0.18 0.18 0.18 0.18 0.18

fLdet
Pfree (fraction) 0* 0* 0.65 0.50 0.50 0.75 0.80 0.50 0.50 0.80

Urban
population
(fraction)

0.17 0.42 * * * * * * * *

Edir
N *** For 1970 and 2000: Edir

N = urban population in basin * 0.2 * Ehum
N

Edir
P *** For 1970 and 2000: Edir

P = urban population in basin * 0.2 * Ehum
P

Ehum
N for all scenarios: 1.6 * Ehum

N Global NEWS

Ehum
P for all scenarios: 1.6 * Ehum

P Global NEWS

* As in Global NEWS

** Applied to urban population only

*** Edir
N and Edir

P = direct input of human waste in rivers (to be added to Esw
N and Esw

P
)
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percentages in some scenarios assuming proactive environmental management, as indi-

cated in Table 3 (up to 40 % removal in TG). We consider this feasible by 2050, since

removal percentages are still far below what is currently technically possible.

3.2.4 Fraction of P in detergents and the use of P-free detergents

The Global NEWS model assumes that detergents contain 12 % P. Local studies for

Indonesia indicate that the P content of detergents is 18 % (Standard 2006). We therefore

use this higher percentage in the calculations.

3.2.5 Urban population

The Global NEWS assumes that the Indonesia urban population in 1970 and 2000 is zero.

In Indonesian studies, urban population in 1970 and 2000 were 17 % and 42 % (Kama-

luddin 2004). For 2030 and 2050, we use the Global NEWS projections.

4 Discussion

4.1 Sewage N and P inputs to rivers in Indonesia

We modeled N and P inputs to Indonesian rivers for the period 1970–2050 (following

Table 3) and compared our results to estimates following the original approach (Table 1).

Tables 4, 5, 6 and Figs. 1 and 2 summarize the results for the 19 selected Indonesian rivers.

These 19 rivers are the same rivers as we used in an earlier analysis using Global NEWS

(Suwarno et al. 2013). Our results are in all cases higher than the Global NEWS estimates

(see Tables 4, 5, 6).

For 1970 and 2000, our estimates of sewage N and P inputs to rivers are higher than the

Global NEWS approach. In Global NEWS, sewage connection is assumed zero in these

years, implying no sewage N and P inputs to rivers. We, however, take into account that

20 % of the urban population defecate directly into rivers. This results in N inputs to rivers

of 3.1 kt year-1 (1970) and 16.8 kt year-1 (2000) (Fig. 1). Inputs of P are estimated at

0.5 kt year-1 in 1970 and 2.8 kt year-1 in 2000 (Fig. 2).

In all scenarios for the future, our estimates of sewage N and P inputs to rivers are

higher than those based on Global NEWS (Figs. 1, 2). Our estimates are 45–600 %

higher than the Global NEWS estimates. These differences are the net effect of our

assumptions summarized in Table 3. They can, however, be largely explained by our

assumption that in 2030 and 2050 a considerably larger fraction of the urban population

is connected to sewage. The Global NEWS assumption that in most basins no sewage

connection exists is resulting in a large underestimation of realistic N and P inputs to

aquatic systems. These differences are large and indicate that the original Global NEWS

model underestimates sewage as a source of coastal eutrophication in countries like

Indonesia. The differences are particularly large in scenarios Adapting Mosaic (N) and

Global Orchestration (P). The most important reason for the underestimation of Global

NEWS is that Global NEWS assumes zero sewage connection in many Indonesian

basins, while local studies indicate that this is not according to reality. Another reason

for differences between this study and Global NEWS for past years is the estimate for

direct defecation into rivers (Fig. 3).
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We estimate that total N and P emissions from sewage to the 19 Indonesian rivers

increase over time. Between 1970 and 2000, N and P inputs increase by more than a factor

4. Between 2000 and 2030, sewage N and P inputs to river may increase by a factor of

10–12 for N and 12–16 for P. By 2050, these inputs have increased by a factor of 17–26 for

N and 20–40 for P relative to the year 2000. These increasing trends can be largely

explained by improved sewage connection. Clearly, the improvement in waste water

treatment, as assumed in the TG scenario (40 % N and P removal), cannot avoid an

increase in sewage inputs to rivers if the sewage connection is as fast as we assume. There

is a large difference between the scenarios. Highest increases are calculated for scenario

GO and lowest for scenario TechnoGarden. This is in line with the underlying assumptions

of the scenarios. GO assumes a globalized world with a focus on economic growth and a

reactive approach toward environmental management. TechnoGarden, on the other hand,

assumes a proactive approach toward environmental management with high-tech solutions;

it assumes relatively effective waste water treatment in Indonesia. It should be noted that

Fig. 1 Nitrogen inputs (Esw
N ) to 19 Indonesian rivers in 1970, 2000, 2030 and 2050 as calculated following

the Global NEWS approach (following Van Drecht et al. 2009, see Table 1) and according to this study (see
Table 3). Results for 2030 and 2050 are for four Millennium Ecosystem Assessment Scenarios (AM, GO,
OS, TG, see Table 5)

Fig. 2 As Fig. 1, but for phosphorus (see Table 6)
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our scenarios do not include environmental management options that are specifically

focused on nutrient use efficiency. For further analyses, it would be interesting to analyze

the potential effect of nutrient use efficiency on eutrophication. A recent study for China

indicates the potential environmental impact of such improvements (Fischer et al. 2010).

4.2 N and P removal in waste water treatment

We assume relatively low N and P removal in wastewater treatment compared to many

other countries, even though our assumptions may be considered optimistic for Indonesia.

This is associated with the costs, energy requirement and skilled labor needed to operate

and maintain waste water treatment systems. It seems unrealistic to assume that such

expenses will be made in the coming decades in Indonesia. Therefore, we assume low

removal of N and P.

4.3 P in detergent and the use of P-free detergents

The Global NEWS model assumes that detergents contain 12 % P in the past, but after 2000,

P-based detergents have replaced by P-free detergents. In Indonesia, the content of P in

detergents is higher than Global NEWS namely 18 % in the past. The condition is still appli-

cable until now, so we study assumptions P-based detergent remains the same in the future.

5 Conclusions

We evaluated and improved the Global NEWS model for calculating sewage N and P

inputs to Indonesian rivers. To this end, we suggested several improvements in the model

Fig. 3 Nitrogen and Phosphorus inputs to 19 Indonesian rivers in 2000 (Esw
N and Esw

P in kg km-2 year-1).
Calculated following the Global NEWS approach (Table 1)
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and applied the improved model to 19 selected Indonesian rivers. Our estimates are

considerably higher than the original Global NEWS estimates based on Van Drecht et al.

(2009) We conclude that the Global NEWS assumption that prior to 2000 there was no

sewage inputs to Indonesian rivers is incorrect. For future years, our estimates are up to a

factor of 6 higher than those in Global NEWS.

Our results indicate that N and P inputs from sewage to Indonesian rivers were low in 2000

and before, but may increase very fast during the coming decades. Prior to 2000, human waste

inputs to rivers only included direct inputs and no inputs to sewage systems. Between 2000

and 2050, sewage N and P inputs to rivers are projected to increase by factors of 20–40, as a

result of an increasing number of people connected to sewage systems.

There are at least three reasons for this rapid increase in sewage N and P pollution over

time. The first is the fast increase in the number of people connected to the sewage system.

In past years, human waste was not discharged to rivers through sewage systems because

the waste was collected and processed in septic tanks (on-site). Connecting people to the

sewage systems is an important factor in Eqs. 1 and 2 of Van Drecht et al. (2009)

(Table 1). Second, we assume relatively low N and P removal in wastewater treatment

compared to many other countries, even though our assumptions may be considered

optimistic for Indonesia. Third, we assume an increased use of P-containing detergents in

Indonesia in the coming decades. Dishwashers, on the other hand, are assumed to be not an

important source of N and P in the rivers of Indonesia.

Our results indicate that optimistic assumptions about waste water treatment cannot avoid

increase in N and P inputs from sewage because of sewage system development. This may

hold for more developing countries where policies are focusing on improving living standards

by realizing sewage systems. There are, however, ways to avoid some of the projected

increase in N and P sewage inputs. Future sewage inputs to rivers can be reduced in several

ways. For instance, waste water treatment may be combined with biogas production, in which

feces can be processed to biogas. The remaining product may be used as fertilizer.

Our study indicates that even though the Global NEWS model has proven to be

applicable to multiple scales, it is useful to evaluate the Global NEWS estimates based on

local information. Our evaluation of sewage as a source of river pollution in Indonesia

shows that the model underestimates point sources of nutrients in rivers. Indonesia may not

be unique in this sense. Our study may, therefore, serve as an example for other developing

world regions.
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(2005b). Dissolved inorganic phosphorus export to the coastal zone, results from a spatially explicit.
Global model. Global Biogeochemical Cycles. 19. doi:10.1029/2004GB002357.

Hart, B. T., Dok, W. V., & Djuangsih, N. (2002). Nutrient budget for Saguling reservoir, West Java
Indonesia. Water Research, 36, 2152–2160.

He, B., Kanae, S., Oki, T., Hirabayashi, Y., Yamashiki, Y., & Takara, K. (2011). Assessment of global
nitrogen pollution in rivers using an integrated biogeochemical modeling framework. Water Research,
45, 2573–2586.

1094 D. Suwarno et al.

123

http://dx.doi.org/10.1029/2008GB003281
http://dx.doi.org/10.1029/2005GB002537
http://dx.doi.org/10.1029/2005GB002537
http://dx.doi.org/10.1029/2005GB002488
http://dx.doi.org/10.1029/2009GB003593
http://dx.doi.org/10.1029/2009GB003583
http://dx.doi.org/10.1016/j.hal.2008.08.023
http://dx.doi.org/10.1029/2009GB003590
http://dx.doi.org/10.1029/2005GB002480
http://dx.doi.org/10.1029/2004GB002357


Howarth, R. W. (2008). Coastal nitrogen pollution: A review of sources and trends globally and regionally.
Harmful Algae, 8, 14–20.

Kamaluddin, R. (2004). Urban poverty in Indonesia: Growth, characteristics and prevention efforts, Seminar
on Urban and Regional Development, Department of Economic Development 1 Nov 1–24, Jakarta.

Lasut, M. T., Jensen, K. R., Arai, T., & Miyazaki, N. (2005). An assessment of water quality along the rivers
loading to the Manado Bay, North Sulawesi, Indonesia. Coastal Marine Science, 29(2), 124–132.

Lasut, M. T., Jensen, K. R., & Shivakoti, G. (2008). Analysis of constraints and potentials for wastewater
management in the coastal city of Manado, North Sulawesi, Indonesia. Environmental Management,
88, 1141–1150.

Latifah, S. (2004). Management and control of pollution and marine Coastal. Digital Library, North
Sumatra University.

Masrevaniah, A. (2010). Prediction of eutrophication risk caused by N and P containing agriculture waste.
International Journal Academic Research, 2, 191–193.

Mayorga, E., Seitzinger, S. P., Harrison, J. A., Dumont, E., Beusen, A. H. W., Bouwman, A. F., et al. (2010).
Global nutrient export from watersheds 2 (NEWS 2), Model development and implementation.
Environmental Modelling Software, 25(7), 837–853.

Mulholland, P. J., Helton, A. M., Poole, G. C., Hall, R. O, Jr, Hamilton, S. K., Peterson, B. J., et al. (2008).
Stream denitrification across biomes and its response to anthropogenic nitrate loading. Nature, 452,
202–205.

Qu, H. J., & Kroeze, C. (2010). Past and future trends in nutrients export by rivers to the coastal waters of
China. Science Total Environment, 408, 2075–2086.

Qu, H. J., & Kroeze, C. (2012). Nutrient export by rivers to the coastal waters of China: management
strategies and future trends. Regional Environmental Change, 12, 153–167.

R. P. A. (Risk and Policy and Annalistic), (2006). Coastal flood risk—Thinking for tomorrow, Acting
today. Summary Report, November 2006, ABI.

Rahway, D. (2002). Study of pollution on Karangkates reservoir, Malang. Malang: The Center of Water
Resources Development.

Ramu, K. V. P. E. (2004). Brantas river basin case study of Indonesia.
Scheren, P. A., Kroeze, C., Janssen, F. J. J. G., Hordijk, L., & Ptasinski, K. J. (2004). Integrated water
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