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Abstract
Understanding the spatial and temporal patterns of sediment loading in water bodies is crucial for effective water quality 
management. Remote sensing (RS) has emerged as a valuable and reliable tool for monitoring turbidity, which can provide 
insights into sediment dynamics in water bodies. In this study, we investigate the potential of turbidity data derived from 
RS to explain simulated spatial and temporal sediment loading patterns in the Lake Tana basin, Ethiopia. Utilizing existing 
RS lake turbidity data from Copernicus Global Land Service (CGLS) and simulated seasonal and multiyear trends of river 
sediment loadings into Lake Tana from the Soil and Water Assessment Tool (SWAT + model), we estimate correlations at 
different river inlets into Lake Tana. The results reveal a strong positive correlation (R2 > 0.66) between the multiyear monthly 
average sediment load from inflow rivers and RS lake turbidity at most river inlets. This indicates that the simulated river 
sediment loads and lake turbidity at river inlets exhibit similar seasonal patterns. Notably, higher turbidity levels are observed 
at the river inlet with the highest sediment load export. These findings highlight the potential of RS turbidity products in 
characterizing temporal and spatial patterns of sediment loadings, particularly in data-scarce regions, contributing to a better 
understanding of water quality dynamics in such areas.
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1  Introduction

In recent years, the Ethiopian highlands have experienced 
an accelerated rate of soil erosion due to factors such as 
long-term intensification of land use, climate change, 

erosion-prone topography, and limited interventions 
[1, 2]. Soil erosion and sediment redistribution in the 
highlands have thus gradually evolved to become a critical 
environmental problem that undermines agricultural 
productivity, economic sustainability, and the quality of 
water resources within these areas [3]. Abebe and Minale 
[4] highlighted a significant transformation in the Lake Tana 
basin’s land use and management since the 1980s. Between 
1986 and 2013, the expanse of cultivated land doubled. 
This change intensified the basin’s vulnerability to soil 
erosion [5]. Notably, an estimated 18.4% of the basin is now 
considered highly susceptible to erosion with an average 
sediment yield fluctuating between 30 and 155 ton ha−1 yr−1 
[6, 7]. The accompanying sediment deposition from soil 
erosion into Lake Tana has consequently led to an increase 
in lake turbidity and overall decline in lake productivity [8, 
9]. The rise in sediment and nutrient inflow into the lake has 
also been linked to the incidental occurrence and spread of 
water hyacinths since 2011 [10]. Considering the economic 
and livelihood significance of the lake to the surrounding 
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inhabitants, the importance of safeguarding the lake water 
quality cannot be over emphasized. This necessitates 
the analysis of the processes within the catchment that 
contribute to soil erosion and sediment loading into the lake.

Several studies have employed process-based models 
like the Soil and Water Assessment Tool (SWAT [11] and 
SWAT + [12]) to investigate the response of sediment loads 
to changes in climate, land-use, and land management prac-
tices within the basin [13–15]. These studies have greatly 
contributed to the understanding of sediment processes 
within the basin but have been limited by the inadequacy 
of in situ sediment load data, which is required for vali-
dating the performance of sediment modelling processes. 
The lack of extensive water quality data, particularly long-
term records, is a significant challenge and impedes effec-
tive water quality assessment and management in several 
global regions, such as Africa and Southeast Asia [16]. 
Recognizing this scarcity of sediment load data in the Lake 
Tana basin, researchers have sought alternative methodolo-
gies. For example, Lemma et al. [2] and Yasir et al. [17] 
developed empirical relationships, such as rating curves, 
between discharge and sediment concentration to estimate 
sediment load in the basin. However, these rating curves 
are influenced by seasonality, which affects their reliability 
[6]. Moreover, sediment concentrations in these studies are 
derived from a limited number of costly and labor-intensive 
field campaigns, resulting in spatial and temporal coverage 
limitations. Consequently, the statistical predictive power 
of these empirical relationships may be insufficient when 
considering long-term and seasonal sediment load patterns.

To overcome these limitations, remotely sensed water 
quality datasets have emerged as a valuable and cost-
effective compliment to in  situ measurements, offering 
consistent broader spatial and temporal coverage. Remote 
sensing (RS) has been employed for over 40 years to monitor 
inland water bodies, especially in areas with limited in situ 
data [18–20]. RS provides consistent temporal data and has 
been used to study the spatial–temporal variation of optical 
water quality parameters such as trophic state and turbidity 
[21, 22]. Of specific interest in this study is the RS turbidity 
of inland waters which is fundamental as it is closely linked 
to sediment fluxes in rivers and lakes. Monitoring turbidity 
aids in assessing sediment discharge, seasonal variability, 
and long-term evolution of sediment budgets within 
catchments [23].

In the Lake Tana basin, previous studies have explored 
the link between satellite-based imaging, turbidity, and 
suspended sediment concentration [24, 25]. They have 
demonstrated the potential of RS measurements to establish 
long-term water quality databases, which serve as a baseline 
for trend studies and water resource management, especially 
in data-scarce regions like the Lake Tana basin. However, 
there is a scarcity of research on the utilization of RS water 

quality data to inform water quality models, specifically 
regarding the comparison of RS water quality products 
and simulated water quality variables [25]. Notably, there 
is a gap in research regarding the use of RS turbidity to 
explain the spatial and temporal variability of simulated 
river sediment loads by water quality models, despite the 
strong correlation between turbidity and sediment load. 
Nonetheless, RS water quality products present a unique 
opportunity to overcome the limitations of in  situ data 
concerning assessing the spatial and temporal variability of 
sediment loading [23].

This study aims at assessing the feasibility of utilizing 
existing RS lake turbidity data to explain both the spatial 
patterns and the seasonal and multiyear temporal patterns of 
modelled river sediment simulations within the Lake Tana 
basin. To achieve this, we employ the SWAT + model [12], 
which has demonstrated successful application in sediment 
modelling at large scales [1] and utilize the RS lake turbidity 
from the freely available products by the Copernicus Global 
Land Service (CGLS, https://​land.​coper​nicus.​eu/​global/). By 
establishing correlations between modelled river sediment 
loads and RS lake turbidity data, we aim to bridge the gap 
between RS water quality data and water quality modelling, 
contributing to a more comprehensive understanding of 
water quality dynamics in data-scarce regions like the Lake 
Tana basin. The findings of this study have implications 
for improving the evaluation of sediment modelling and 
supporting effective decision-making in managing sediment-
related issues in freshwater systems.

2 � Materials and Methods

2.1 � Study Area

The Lake Tana basin (Fig. 1) is situated in northwestern 
Ethiopia, geographically spanning between 10.95–12.78° 
N latitude and 36.98–38.25° E longitude [26]. With a total 
drainage area of 15,096 km2, the basin comprises Lake Tana, 
which covers 20% of the area and serves as the source of 
the Blue Nile (Abay) [27]. Lake Tana, the largest lake in 
Ethiopia, spans 3111 km2 and reaches a maximum depth of 
15 m, situated at an elevation of 1800 m [27]. The lake holds 
significant importance for large-scale irrigation, hydropower 
generation, commercial fishery, agricultural production, and 
ecotourism and supports various endemic bird species [28]. 
Moreover, Lake Tana serves as a major water supply for 
parts of Bahir Dar city, located on its southern shore, as well 
as neighboring rural regions [8].

The basin experiences a tropical highland monsoon cli-
mate, with the primary rainy season occurring from June 
to September [6]. The mean annual rainfall in the catch-
ment ranges from 805 to 2395 mm, while the mean annual 

https://land.copernicus.eu/global/


Can Turbidity Data from Remote Sensing Explain Modelled Spatial and Temporal Sediment Loading…

evapotranspiration (ET) is approximately 773 mm [27, 28]. 
Air temperature displays diurnal fluctuations, with daily 
temperatures ranging between 9 and 28 °C and averaging 
around 20 °C [27].

Within the Lake Tana basin, the four major subbasins, 
namely Gilgel Abay, Gummera, Megech, and Ribb 
(Fig. 1), are undergoing land use and land cover changes, 
contributing to more than 50% of the incoming sediment 
load to the lake [9]. These changes involve the conversion 
of natural vegetation areas especially forested areas to 
cropland and pasture [29]. Specifically, there has been a 
31% expansion of agricultural land and a 16% increase in 
built-up areas over the past 30 years (from 1989 to 2019) 
across the entire basin [30]. At the subbasin level, in the 
Gilgel Abay subbasin, cultivated land cover significantly 
increased from 26.1% in 1973 to 41.2% in 2008 [6]. 
Agricultural land use in the Gummera subbasin doubled 
in 40 years between 1973 and 2013 [31]. As of 2018, 88% 
of the Ribb subbasin was covered by agricultural land [32], 
while in the Megech subbasin, forests account for only 3% 
of the land, and 47% of the watershed area is classified 
as prone to erosion [33]. The steep slope in the Megech 
subbasin exacerbates erosion processes. Soil erosion 
represents a significant watershed issue in the Lake Tana 

basin, resulting in substantial loss of soil fertility, reduced 
productivity, and increased lake turbidity [34].

2.2 � Model Description

SWAT + is a river basin scale, physically based and semi-
distributed model developed to simulate the long-term 
impacts of land management practices on water, sediment, 
and nutrients in watersheds [12]. It is an improved version 
of SWAT that has been revised to allow for greater 
flexibility in delineating and configuring watersheds. 
Although the basic computational algorithms are retained, 
landscape units (LSUs) are introduced to improve the 
representation of subbasin land areas. SWAT + can also be 
used to define management schedules and connect natural 
flow streams to managed flow systems using decision 
tables [35, 36]. LSUs store topographical data that is 
useful to calculate concentration time and are further 
subdivided into hydrologic response units (HRUs). HRUs 
describe the area’s spatial heterogeneity in terms of the 
unique combination of land use, soil type, and slope [12]. 
They are the primary calculation units for simulating all 
hydrologic processes, and the results are aggregated at 
the subbasin level [11].

Fig. 1   Study area—Lake Tana 
basin and the four major sub-
basins
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The model uses water balance equation given by Neitsch 
et al. [37] (Eq. 1), to accurately simulate the hydrological 
processes within the basin before it can realistically predict 
the sediment yield [38].

where YBf is the final soil water content, YBi is the initial 
soil water content (mm) on day j , t is the time (days), Pj is 
the amount of rainfall (mm) on day j , Rj is the amount of 
surface runoff (mm) on day j , Ej is the evapotranspiration 
amount (mm) on day j , Dj is the percolation amount (mm) 
on day j , and RFj is the return flow amount (mm) on day j.

The Modified Universal Soil Loss Equation (MUSLE) 
is used to calculate soil erosion at the HRU level (Eq. 2). 
The soil erosion prediction is dependent on runoff energy 
which in turn is a function of rainfall and antecedent soil 
moisture conditions. The runoff energy represents the 
energy required in detaching and transporting the sedi-
ment. Runoff volume and peak runoff rate used for the 
sediment yield simulation are obtained from the hydro-
logical model [37].

where SY is the sediment yield on a given day (metric tons), 
Qsurf is the surface runoff volume (mm day−1), qpeak is the 
peak runoff rate (m3 s−1), Ahru is the area of the HRU (ha), 
KUSLE is the USLE soil erodibility factor, CUSLE is the USLE 
crop management factor, PUSLE is the USLE support practice 
factor, LSUSLE is the USLE topographic factor, and CFRG is 
the coarse fragment factor. Sediment routing in the channel is 
controlled by both the degradation and deposition processes 
[11]. If the upland sediment load is greater than the transport 
capacity of the channel, deposition occurs; otherwise, degra-
dation is the most dominant process in the channel.

(1)YBf = YBi +
∑t

j=1
(Pj − Rj − Ej − Dj − RFj)

(2)
SY = 11.8(QsurfqpeakAhru)

0.56
× KUSLE

× CUSLE × PUSLE × LSUSLE × CFRG

2.3 � SWAT + Model Setup

The modelling process followed a systematic approach. 
Initially, the default SWAT + model was setup utilizing the 
data listed in Table 1, which had been pre-processed into 
SWAT + input data formats. Subsequently, the model was 
simulated for the period from 1981 to 2020, corresponding 
to the range of climate input data used. The catchment was 
delineated into 20 subbasins consisting of 213 LSUs further 
discretized into 5829 HRUs. Consequently, multi-site hydro-
logical calibration and validation were conducted at the Lake 
basin outlet and at Gumera river inlet, at a monthly timestep 
using a period of 1992–2002. Then, the river sediment load 
was calibrated using reported annual average values. Finally, 
the temporal and seasonal simulations of sediment load were 
validated by comparing them to remote sensing (RS) lake 
turbidity data at the river inlets.

Of specific interest is the RS lake turbidity product. 
The RS lake turbidity product for Lake Tana was down-
loaded from the Copernicus Global Land Service (CGLS) 
at 300-m resolution for the periods 2016–2020. The CGLS 
for lake water provides remote sensing observations col-
lected within the optical and thermal spectrums using the 
Medium Resolution Imaging Spectrometer Multispectral 
(MERIS) sensor onboard ENVISAT and OLCI sensors on 
board Sentinel-3. The RS product contains corrected water 
quality parameters, namely lake water surface temperature, 
lake surface reflectance (LSR), lake turbidity (TUR) and 
Trophic State Index (TSI), which have been radiometrically 
and atmospherically corrected [48]. The LSR is given in 
all the available wavebands after correction and as a nor-
malized dimensionless quantity from which TUR and TSI 
can be derived [48]. A turbidity product with a tempo-
ral resolution of 10 days and spatial resolution of 300 m  
(version 1.3.0) was used. The turbidity was extracted as 
10-day averages (on the 1st, 11th, and 21st day of the 
month) and resampled to monthly averages.

Table 1   Input data used for the SWAT + model setup

Data type Resolution Source

Digital elevation model (DEM) 30 m Shutter Radar Topography Mission (SRTM; [39])
Land use 300 m for 2015 European Space Agency (ESA; [40])
Soil 250 m Africa Soil Information Service (AFSIS; [41])
Precipitation 0.05° at daily timestep Climate Hazards Group InfraRed Precipitation 

with Station data (CHIRPS; [42])
Temperature, solar radiation, wind speed, and 

relative humidity
0.5° at daily timestep GSWP3-W5E5 [43–46]

Observed discharge Monthly timestep for Gumera River and 
lake outlet

Bahir Dar University

Reported sediment load Annual average [3, 6, 47]
Lake turbidity 300 m at monthly timestep Copernicus Global Land Service (CGLS; https://​

land.​coper​nicus.​eu/​global/​produ​cts/​lwq)

https://land.copernicus.eu/global/products/lwq
https://land.copernicus.eu/global/products/lwq
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Turbidity serves to indicate underwater light availabil-
ity as measured relative to water clarity. Total suspended 
solids (TSS) can strongly influence the water transparency, 
and hence, TSS estimates in relation to LSR are used to 
derive TUR. The retrieved parameters for sampled sites are 
assessed against in situ measurements from various data 
sources including LIMNADES. LIMNADES is an initiative 
to establish a database of lake bio-optical measurements that 
can be used as match up data for remote sensing. Therefore, 
the information accessed in LIMNADES meets the require-
ments of being data that represents the surface character-
istics of water bodies and thus is reliable and can be used 
for direct comparison with remote sensing data [49, 50]. It 
serves as the primary database of optical property datasets 
and in situ water quality measurements for validating satel-
lite products. The validation also analyzes the consistency 
of the time series by taking the same 10-day averages for 
different years during the wet and dry periods [48].

2.4 � Model Calibration (Hydrological  
and Sediment Load)

The sensitivity of the model was carried out using the 
SWAT + Toolbox, an open-source software for calibrating 
SWAT + models. The Sobol algorithm was used to conduct 
a global sensitivity analysis. The model was hydrologically 
calibrated and validated on a monthly timestep using a mul-
tisite approach using flow data available for Gummera River 
and the lake outlet (Abay), for the period 1991–2002. Model 
performance was evaluated using the Nash–Sutcliffe (NSE) 
and the percent bias (PBIAS) [51].

Due to lack of a time series of observed sediment loads, 
the simulated sediment loading was calibrated based on 
reported mean annual sediment load values (1994–2016) 
from previous studies. The calibration was carried out by 
adjusting the bedload coefficient for individual rivers. The 
bedload coefficient determines the fraction of incoming 
sediments in a river that settles as bedload.

2.5 � Evaluation of Simulated Temporal Patterns 
of Sediment Loading with RS

Calibrating the model for mean annual sediment loads does 
not imply accurate representation of seasonal and long-term 
temporal patterns of sediment loading. Thus, the seasonal 
and temporal representation of sediment loads by the model 
was assessed using the RS Lake turbidity dataset. The 
turbidity data was extracted as a time series from CGLS 
at the four river inlets into Lake Tana (Fig. 1). The spatial 
representativeness of the turbidity values and hence the 
confidence in the turbidity values was ensured by averaging 
the values of neighboring pixels around the river inlets to 
reduce the possibility of selecting outliers. For each river 

inlet, the extracted turbidity dataset was used to evaluate 
the simulated river sediment loading from the calibrated 
SWAT + model. This was done on the premise that the lake 
turbidity dataset has been globally validated. The seasonality 
of the SWAT + river sediment load simulations was 
statistically and graphically assessed for consistency with 
the RS dataset to assess the performance of the model in 
representing the seasonal and temporal patterns of sediment 
loading into the lake from the four rivers.

3 � Results

3.1 � Flow Simulation

Based on the performance criteria by Moriasi et al. [51], 
the model calibration results demonstrated excellent 
performance at a monthly time step in simulating flow 
for the Gumera River, with NSE values of 0.89 and 0.78 
during the calibration and validation phases, respectively 
(Fig. 2a). The simulations effectively captured the seasonal 
variations in flow; however, they slightly underestimated 
the low flows, as indicated by a PBIAS of 1.5% and 4.9% in 
the calibration and validation periods, respectively (Fig. 2a). 
At the outlet of the lake (Abay), the model performance was 
lower but still satisfactory in reproducing the observed flow 
patterns. The NSE values for the calibration and validation 
periods were 0.58 and 0.49, respectively (Fig. 2b). The lower 
model performance at the outlet was also evident from the 
higher PBIAS, which amounted to 15.9% and 17.8% in the 
calibration and validation periods, respectively. This lower 
performance can mainly be attributed to the manual control 
of outflow from the lake using gates at the outlet leading to 
the Blue Nile [52]. This manual control makes it challenging 
to accurately replicate the management operations in the 
absence of actual data. Nevertheless, the flow performance 
at the lake outlet does not significantly impact the sediment 
simulations within the basin under study. Instead, its primary 
influence is on sediment loadings downstream from this 
basin, which falls outside the scope of this study.

3.2 � Sediment Loading

Sediment loading from the four rivers exhibited a similar 
temporal pattern to that of river discharge into the lake. The 
loading increased significantly during the rainy season, 
peaking over July to August, which coincided with the peak 
in river flow (Fig. 3). During the dry season, sediment load-
ing is considerably lower due to much lower runoff. Over 
the period 2016–2020, sediment loads from Gilgel Abay and 
Gummera Rivers were the highest of the four rivers, with 
peaks of up to 6 Mt/month (Gilgel Abay) and 3 Mt/month 
(Gummera) at the peak of the wet season. Ribb and Megech 
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Rivers on the other hand contributed much lower sediment 
loads peaking about 1 Mt/month during the wet season 
(Fig. 3). The selected time period of 2016–2020 aligns with 
the availability of RS lake turbidity data, which is used for 
validation in the subsequent section.

The calibrated annual average sediment loads for the four 
rivers were found to be consistent with the reported val-
ues of annual averages of river sediment loads from previ-
ous studies (Table 2). Collectively, these rivers contribute 
an estimated 25.2 Mt/yr, with Gilgel Abay and Gummera 
accounting for over 80% of the total sediment loading into 
the lake. In these river basins, sediment yield varies between 
50 and more than 80 tons/ha/yr and studies have demon-
strated that slope gradient, particularly in the hilly head-
waters of the sub-catchments, strongly influences sediment 
yield [6]. Thus, the high sediment loading in these rivers 

can be attributed to a combination of factors, including sig-
nificant soil erosion, higher rainfall, soil type, and extensive 
cropland areas in the respective sub-catchments [6].

As reported by Lemma et al. [47], the trend of sediment 
yield in the Lake Tana basin follows a general decrease from 
the south to the west in an anticlockwise direction, which is 
consistent with the findings of this study. This pattern aligns 
closely with the distribution of rainfall across the catchment 
and the relative size of the sub-catchments. The spatial vari-
ation in sediment yield and transport into the lake is readily 
apparent through the extent and intensity of turbidity plumes 
observed surrounding the lake, as illustrated in Fig. 4. Nota-
bly, the areas exhibiting the highest turbidity levels (Fig. 4) 
correspond to the inflow rivers characterized by the highest 
sediment loading (Fig. 3), providing a clear indication of the 
relationship between sediment loading and turbidity.

Fig. 2   Model performance at the Gummera River and the Lake Tana outlet (Abay) at monthly timestep
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3.3 � Lake Turbidity Hotspot vs River Sediment  
Load Input

During the dry season (December–May), the monthly 
remote sensing (RS) turbidity measurements over the lake 
consistently showed uniformly low turbidity levels, as 
depicted in Fig. 4. However, at the locations where the four 
major rivers flow into the lake, turbidity gradually increased 
from the beginning of the wet season and reached its peak 
in July to August, before gradually decreasing as the dry 
season approached (Fig. 5) which shows that the variation of 
turbidity over the lake is associated with the seasonal vari-
ation of regional climate which can carry along sediments 
and nutrients that end up impacting the turbidity levels of 
the lake. A similar finding was reported by Moges et al. [24].

The RS turbidity time series data extracted at the river 
inlets for the four major rivers, along with the spatial distri-
bution of turbidity across the lake, provided compelling evi-
dence that the fluctuation of turbidity in the lake followed the 
same seasonal pattern as the sediment loading from the four 
rivers (Fig. 4). Notably, the average annual turbidity recorded 
at the river inlet of Gilgel Abay was 91.2 NTU, compared to 
Gummera (41.8 NTU), Ribb (37.8 NTU), and Megech (37.6 
NTU) river inlets. The spatial visualization of turbidity across 
the lake (Fig. 5) demonstrated that, at the peak of the wet 
season, turbidity at the entry point of the Gilgel Abay River 
was significantly higher compared to the other river inlets.

The consistency between the simulated sediment loads 
for the four rivers and the observed turbidity levels further 
supported the relationship between high sediment contribu-
tion and elevated turbidity around the lake. This relationship 
also indicated that RS turbidity can be used to identify sedi-
ment loading hotspots into the lake. In this study, the entry 
of Gilgel Abay River emerged as a major sediment hotspot 
for Lake Tana (Fig. 5). This finding is consistent with a 
previous study by Kebedew et al. [53], which reported the 
formation of a peninsula stretching 10 km long and 2 km 
wide as a result of near shore sediment deposition by River 
Gilgel Abay. However, it is important to recognize that tur-
bidity is influenced not only by the quantity of sediment 
loadings but also by the concentrations of nutrients trans-
ported within those sediments [54]. Therefore, future studies 
may benefit from exploring beyond the correlation between 
turbidity and sediment loadings and consider the relation-
ship between turbidity and the concentration of nutrients 
carried by sediments.

3.4 � Evaluating Seasonality of SWAT  
+ Sediment Loading

The simulated sediment loads from the four tributary rivers 
were compared to the RS lake turbidity at the river inlets to 
assess the temporal representation of sediment loads. During 
the period of 2016–2020, a strong correlation (R2 > 0.66) was 
observed between the simulated sediment loading and RS lake 
turbidity for Gilgel Abay, Gummera, and Ribb rivers (Fig. 6). 
However, the correlation was considerably lower (R2 = 0.40) 
for River Megech, primarily due to the quality of turbidity 
data extracted at the river inlet of Megech into Lake Tana. 
As depicted in Fig. 4, the seasonality of turbidity for River 
Megech was not adequately captured compared to the other 
three rivers. This disparity might arise from the considerably 
smaller river flow, rendering it more susceptible to influences 
from the lake’s prevailing conditions. Alternatively, the pres-
ence of wetland areas around River Megech inlet [55] could 

Fig. 3   Simulated monthly SWAT + sediment loading into Lake Tana 
for selected major rivers

Table 2   Average annual simulated sediment loads at river inlets into 
Lake Tana

River inlet River sediment load (Mt/yr) Time period Source

Simulated Observed/reported

Gilgel Abay 13.24 7.9–14.3 1994–2016 [3, 6, 47]
Gummera 7.70 7.5–8.2
Ribb 2.54 2.7–3.9
Megech 1.72 0.9–2.2

Fig. 4   Time series of monthly RS lake turbidity at the four river inlets 
into Lake Tana
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potentially act as a buffer, modifying the river’s inflow dynam-
ics into the lake. Notably, the RS turbidity for River Megech 
only exhibited significant peaks during the wet seasons of 
2018 and 2019.

The high correlation observed for the other rivers suggested 
a strong connection between sediment load and turbidity, indi-
cating that the influx of sediment is a major contributor to 
lake turbidity. In the case of Gummera and Gilgel Abay rivers, 
which have substantial sediment loads, the plots demonstrated 
a stronger correlation for higher values of both turbidity and 
sediment loading (Fig. 6). This finding highlights the robust-
ness of the simulated sediment loads for these two rivers.

4 � Discussion

The strong correlation observed between model-simu-
lated river sediments and RS lake turbidity (R2 > 0.66) at 
most river inlets provides evidence that the turbidity in 
the lake is primarily caused by suspended sediment. This 
finding aligns with the conclusions reached by Womber 
et al. [56], who also identified relatively higher turbidity 

concentrations at the inlets of the major tributary rivers dur-
ing the rainy season. These findings highlight the signifi-
cant influence of river inflows containing high concentra-
tions of sediments originating from degraded and saturated 
runoff areas within the lake basins, which is consistent with 
the findings of our study.

Of specific focus in this study was the correlation of the 
model-simulated river sediments and RS lake turbidity. The 
results demonstrated that even though the SWAT + model 
was solely calibrated for mean annual sediment loading 
values, it adequately captured the seasonality and temporal 
variations of sediment loading for the four rivers consid-
ered in this study. Except for the Megech River inlet, the 
simulated sediment loading exhibited a strong correlation 
(R2 > 0.66) with remote sensing turbidity. The robustness 
of the RS turbidity dataset was also evident in its ability to 
represent the seasonal and spatial patterns of turbidity across 
the lake, enabling the identification of hotspots for incoming 
sediment loading. These findings highlight the potential of 
RS water quality products as a valuable option for evaluating 
water quality models, particularly in regions with limited 
data availability. Our findings align with previous studies 

Fig. 5   Long-term mean monthly 
spatial variation of RS turbidity 
over Lake Tana from 2016 to 
2020
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in the basin [25, 57], which utilized regression equations to 
derive historical suspended sediment concentrations and tur-
bidity from RS MODIS-Terra images for the Gumera River 
inlet. The results indicated a linear relationship between 
sediment concentrations and RS turbidity, with R2 > 0.76. 
However, the authors acknowledged various sources of 
uncertainty associated with employing regression statistics 
to derive data from RS products, and they also highlighted 
the lack of transferability of regression equations from one 
river to another.

While assessing the performance of the model, it is also 
important to recognize the limitations of RS lake turbidity 
product used in this study. One major challenge is that the 
turbidity product is derived from an optical sensor which is 
susceptible to atmospheric conditions such as interference by 
clouds. This affects lake surface reflectance and the retrieval 
of turbidity especially during the wet season when cloud cover 
can be significant. As already seen for the case of Megech 
River, the inconsistency in seasonal turbidity may have 
occurred due to the interference by clouds. The possibility of 
using a multi-sensor monitoring approach could be explored in 
the future, in order to overcome this limitation. Another limita-
tion arises from the averaging of lake turbidity over days where 
atmospheric conditions are not homogeneous. This can lead to 

maps available in patches of data over the lake and data that is 
inconsistent. Additionally, even though global validation has 
been carried out for the turbidity product, there has been no 
known validation campaign that has been conducted for Lake 
Tana, an indication of some level of uncertainty associated 
with the quality of the RS product. In addition, atmospheric 
correction of reflectance data may introduce systematic errors 
that may affect the quality of turbidity pixels in the remote 
sensing product. Finally, the comparative analysis of both the 
remote sensing and SWAT + sediment loading in this study 
was conducted over only 5 years (2016–2020) as remote sens-
ing turbidity from Sentinel 3 was not available prior to this 
period. Thus, the general findings arrived at from this study 
should be interpreted with caution given the short period of 
overlap between the two datasets.

5 � Conclusions

The increasing rate of land use change, land degradation, and 
soil erosion in the Tana basin poses a critical threat to the water 
resources, fishery, and agricultural productivity of the region. 
Monitoring sediment loading into the receiving water bod-
ies is thus important not only to safeguard water quality and 

Fig. 6   Correlation of monthly RS turbidity and SWAT + sediment loading at river inlets of the four major rivers



	 A. Nkwasa et al.

productivity of these water bodies but also to monitor the rate 
of land degradation and devise mitigatory management strate-
gies to reduce soil erosion and guarantee the sustainability of 
land-based resources. However, the applicability of physical 
models to model sediment trends and support decision mak-
ing in the basin has been restricted by the scarcity of in situ 
sediment data which is required to evaluate these models. This 
study bridges the gap by utilizing RS lake turbidity data to 
conduct a comprehensive comparison with simulated model 
sediment loads from four rivers within the Lake Tana basin.

Results from the SWAT + model indicated that Gilgel 
Abay and Gummera rivers contributed the highest sediment 
loading into the lake with annual average values of 13.24 
Mt/yr and 7.7 Mt/yr respectively, jointly contributing more 
than 80% of sediment loading into the lake. River Ribb 
contributed 2.54 Mt/yr while River Megech which drains 
the smallest of the four sub catchments contributed only 
at 1.72 Mt/yr. A comparison between simulated sediment 
load from the four inflow rivers and RS lake turbidity at the 
river inlet locations revealed that the simulated sediment 
loading and turbidity exhibit a similar seasonal pattern as 
evidenced by a high correlation coefficient. Additionally, 
locations of the highest turbidity corresponded with those 
where river sediment loading was highest enabling the 
identification of sediment loading hotspots in the lake using 
the turbidity data. Thus, RS lake turbidity data potentially 
provides a valuable alternative source of data to assess 
simulated temporal and spatial variability of river sediment 
loading in the absence of in situ data. However, the effects 
of local specific conditions, such as water hyacinth coverage, 
geological conditions, and existing infrastructures in the 
basins, are worth considering when estimating turbidity 
with respect to sediment concentration. Additionally, 
unless constrained by data availability, evaluating model 
performance with in situ measurements is always advisable.

These findings provide planners and decision makers with 
an additional support tool to devise catchment management 
measures that can address the land degradation problems in 
the basin and the deteriorating quality of water in the lake. 
It is also important to note that the turbidity levels of Lake 
Tana, as observed through remote sensing, are relatively 
high and have shown an upward trend over time. Hence, 
continuous monitoring is of vital importance for effective 
lake management and comprehensive assessment.
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