
Vol.:(0123456789)1 3

Environmental Modeling & Assessment 
https://doi.org/10.1007/s10666-023-09943-9

RESEARCH

Interpolation, Satellite‑Based Machine Learning, or Meteorological 
Simulation? A Comparison Analysis for Spatio‑temporal Mapping 
of Mesoscale Urban Air Temperature

Amirhossein Hassani1 · Gabriela Sousa Santos1 · Philipp Schneider1 · Núria Castell1

Received: 2 January 2023 / Accepted: 7 November 2023 
© The Author(s) 2023, corrected publication 2023

Abstract
Fine-resolution spatio-temporal maps of near-surface urban air temperature (Ta) provide crucial data inputs for sustainable 
urban decision-making, personal heat exposure, and climate-relevant epidemiological studies. The recent availability of 
IoT weather station data allows for high-resolution urban Ta mapping using approaches such as interpolation techniques 
or machine learning (ML). This study is aimed at executing these approaches and traditional numerical modeling within a 
practical and operational framework and evaluate their practicality and efficiency in cases where data availability, compu-
tational constraints, or specialized expertise pose challenges. We employ Netatmo crowd-sourced weather station data and 
three geospatial mapping approaches: (1) Ordinary Kriging, (2) statistical ML model (using predictors primarily derived 
from Earth Observation Data), and (3) weather research and forecasting model (WRF) to predict/map daily Ta at nearly 
1-km spatial resolution in Warsaw (Poland) for June–September and compare the predictions against observations from 5 
meteorological reference stations. The results reveal that ML can serve as a viable alternative approach to traditional krig-
ing and numerical simulation, characterized by reduced complexity and higher computational speeds within the domain of 
urban meteorological studies (overall RMSE = 1.06 °C and R2 = 0.94, compared to ground-based meteorological stations). 
The results have implications for identifying the urban regions vulnerable to overheating and evidence-based urban manage-
ment in response to climate change. Due to the open-sourced nature of the applied predictors and input parsimony, the ML 
method can be easily replicated for other EU cities.
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1 Introduction

Since the 1950s, most climate regions have experienced an 
increase in minimum and maximum near-surface air temper-
atures, and warming trends will likely continue in the near 
future due to projected global warming [1, 2]. This impact 
is amplified in densely populated regions where the Urban 
Heat Island (UHI) effect is observed [3, 4]. The UHI results 
in higher vulnerability in urban areas to extreme heat events 
[5, 6], which increases the risk of occupational accidents [7], 
difficulty with energy distribution [8], and urban transport 
network disruptions [9]. Moreover, exposure to urban heat is 

an acknowledged hazard to individuals’ mental and physical 
health [10, 11], sleep quality [12], and indoor comfort [13], 
which can lead to death in extreme cases [14].

The urban-scale air temperature (Ta) can be influenced, 
even at fine spatial resolutions, by various factors such as 
building materials, heights, depths, surface imperviousness, 
albedo, vegetation cover within populated regions, and prox-
imity to water bodies [15–17]. Mapping the spatio-temporal 
variation of the urban near-surface air temperature (Ta) can 
help minimize the impacts above through urban policy-
making and management [18] and inform citizens when and 
where temperature hotspots will happen [19], climate-air 
pollution studies [20], epidemiological studies on exposure 
to overheating [21, 22], operational snowpack estimation 
[23], etc.

Several approaches can be used for mapping Ta, such as 
measurements (meteorological stations and remote sens-
ing), weather numerical models, and statistical techniques. 
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Meteorological stations provide high-quality measurements; 
however, they are not densely distributed, and in most cases, 
they are located outside of urban areas to minimize urban 
effects on measurements [24]. These measurements can be 
accomplished by remotely sensing Land Surface Tempera-
ture (LST). For example, the Temperature-Vegetation Index 
(TVX) method approximates Ta using the negative correla-
tion between LST and the Normalized Difference Vegetation 
Index (NDVI). This is established on the assumption that 
the surface temperature over an infinitely thick vegetation 
canopy is approximately equal to Ta while an unvegetated 
surface can be highly warmer than the surrounding air tem-
peratures [25, 26]. However, this method is only valid in 
regions with varying densities of vegetation cover and areas 
with gradual variations in temperature, which is not the case 
in urban areas [27–29].

Climate and Numerical Weather Prediction (NWP) mod-
els simulate the planet’s atmospheric processes, aiding in 
long-term climate projections and short-term weather fore-
casts. Regional NWP models focus on smaller geographical 
areas, delivering higher-resolution predictions for localized 
weather patterns and events. With the aid of the NWP and 
Energy Balance approaches, Ta can be estimated based on 
the laws of thermodynamics and physical parametrization 
of Earth-atmosphere energy transfers [30, 31]. The least 
sophisticated surface parametrizations implemented into 
NWP models are slab or bulk urban parameterizations 
(urban canopy models) [32], which treat the urban geom-
etry as a flat surface with prescribed surface roughness and 
albedo. However, to reach a higher accuracy, these surface 
parametrizations need high-resolution information on mor-
phology of the urban canopy and physical characteristics of 
the surfaces, which is not the readily available information, 
especially at a high spatial resolution [33].

The third group is statistical methods, which allow for Ta 
estimates at locations without available measurements, like 
numerical weather models. This is achieved by training a 
statistical model that provides a function between measured 
Ta values and a set of relevant auxiliary data (or predictors) 
available for the whole study region, such as LST. Zhang 
and Du [34] and Taheri-Shahraiyni and Sodoudi [35] pro-
vided relatively comprehensive reviews on the wide variety 
of statistical methods ranging from geostatistical interpola-
tion to advanced data-driven Machine Learning (ML), that 
have been recently used in the field. Handling the spatial and 
temporal data gaps in predictors, overfitting, the uncertainty 
of predictors, and the lack of open-source data resources can 
challenge model training and prediction. Vastly, the statisti-
cal methods’ accuracy and efficiency depend on the size 
of the initial training dataset, study location/area, applied 
regression approach, model (hyper)parameterization, and 
predictor selection. The main goal of previous studies is 
to improve the accuracy of the predictions compared to 

available observational data. Considering the complexity 
and nature of the problem, Zhang and Du [34] argue that 
applying popular ML approaches, such as gradient boosting 
or random forest regression models suffices for reaching 
desirable accuracies in the prediction of urban Ta. The field 
of urban Ta should focus more on other aspects of statistical 
urban temperate prediction/modeling [34].

Here, we address another aspect, which is less consid-
ered in the literature: comparing different approaches for 
spatio-temporal urban Ta mapping of a study site. Speed, 
flexibility, and easy input/tuning data access define the suit-
able approach. In this study, (1) we selected three methods, 
including meteorological modelling (Weather Research and 
Forecasting [WRF] mesoscale model), interpolation (Ordi-
nary Kriging [OK]), and ML (Extreme Gradient Boost-
ing [XGBoost]) for predicting Ta at ≈ 1  km2 during warm 
months (Jun-Sep) in the city of Warsaw, Poland. (2) We 
compare the estimates against five meteorological stations 
scattered across Warsaw to reference their predictive power. 
(3) We provide spatio-temporal variability of Ta to identify 
urban areas vulnerable to heat stress in Warsaw. This man-
uscript’s primary objective was not to compare the WRF 
numerical simulation approach and ML regarding accuracy. 
In other words, our intention was not to establish a conclu-
sive judgment on the superiority of the numerical simulation 
or the ML methodology. Incorporating more complex land 
cover schemes or urban parameterizations might enhance the 
capacity of WRF. However, this level of refinement might 
not be practical for operational situations or when fast and 
accurate results are necessary. Different parametrizations or 
forcing data might or might not lead to improved outcomes, 
which could be the subject of a separate study. Similar prin-
ciples apply to the ML approach. Results could vary with 
different sets of predictors or other ML models, but delving 
into these intricacies would require a distinct study beyond 
the scope of this manuscript. Our core goal was to evaluate 
different approaches regarding pragmatism and effectiveness 
in cases where data availability, computational constraints, 
or specialized expertise pose challenges. However, the user 
or the project’s objectives determine the necessary degree 
of precision.

2  Methodology

2.1  Study Area

Warsaw, the capital of Poland, with a total area of 517.24 
 km2 (bounded approximately to longitudes between 20.85° 
E and 21.3° E and latitudes between 52.1° N and 52.4° N), 
hosts ca. 1.8 million residents (Fig. 1). With an average 
elevation of 100 m, Warsaw is a city in the middle of the 
Masovian Plain, where the highest and lowest points of the 
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city have approximately 46 m difference in height. Warsaw’s 
climate is oceanic (mild summers and cool but not cold win-
ters), denoted by Cfb in the Köppen climate classification, 
generally a temperate climate zone [36]. The city of War-
saw was selected as this study is part of a research project 
entitled “Embodying Climate Change: Trans-Disciplinary 
Research on Urban Overheating” (EmCliC—https:// www. 
emclic. com/, accessed in January 2023), focused on char-
acterizing the elderly people adaptive abilities in response 
to rising temperatures in Warsaw.

2.2  WRF: Weather Research and Forecast Model

The meteorological modelled data were generated with 
the Weather Research and Forecast model (WRF) ver-
sion 4.1.5, using initial and boundary conditions from the 
6-hourly 0.25° × 0.25° National Centers for Environmental 
Prediction (NCEP) Final (FNL) operational global analysis 
and forecast data [37]. WRF (https:// www. mmm. ucar. edu/ 
weath er- resea rch- and- forec asting- model, accessed in Janu-
ary 2023) [38] is a three-dimensional, non-hydrostatic mes-
oscale numerical model designed to serve both operational 
forecasting and atmospheric research needs.

WRF has several options for urban canopy models. The 
problem with using an urban canopy model is the data 
needed (unavailable here) and their uncertainty. For this 
study simulation, WRF was configured in a system with 
three one-way nested domains (Supplementary Fig. 1). 
Specifically, the largest domain (domain 1) had a grid 
size of 9 km, the middle (domain 2) was 3 km, and the 

smallest (domain 3) was 1 km. All three domains consist 
of a 100 × 100 grid-cell configuration. We used the terrain 
following the vertical coordinate system for these domains 
with an upper boundary at 103  hPa. To parameterize 
physical processes that cannot be calculated explicitly 
by the model, we used the NCAR Convection-Permitting 
suite (CONUS). The former suite comprises the following 
schemes: Thompson microphysics scheme [39], Mellor-
Yamada-Janjic planetary boundary layer scheme and 
Monin-Obukhov Janjić surface layer scheme [40], Noah 
land surface model [41, 42], rapid radiative transfer model 
for global applications (RRTMG) shortwave and longwave 
radiations schemes [43], and Tiedtke cumulus scheme [41, 
44]. CONUS was developed and tested over several years 
until its release in 2016 [45, 46].

For domains one and two, land use originates from 
NOAH-modified 20 category IGBP-MODIS (https:// ral. 
ucar. edu/ solut ions/ produ cts/ wrf- noah- noah- mp- model ing- 
system, accessed in January 2023). The land use information 
for domain 3 is from Broxton et al. [47]. This means 21 land 
categories in our WRF simulation, being that the most rep-
resented in our domain 3 are the “urban and built-up land,” 
“croplands,” “forested categories,” and “water” surfaces. 
The fraction of the WRF grid occupied by “urban and built-
up land” is considered impervious, and surface fluxes and 
temperature are calculated for the vegetated areas and the 
urban built-up areas. There are no explicit 3D structures con-
sidered as street canyons. The Noah land surface model [41] 
in its bulk urban parameterization uses the following param-
eter values to represent zero-order effects of urban surfaces 

Fig. 1  Netatmo stations and 
administrative boundary of 
Warsaw, Poland. The spatial 
distribution of 85 stations 
available in the warm months of 
2021 (Gregorian calendar days 
150–270) used in this study for 
kriging and Machine Learning 
prediction of 2-m air tempera-
ture (Ta); colours show the aver-
age recorded air temperature 
measurement by each station in 
warm months of 2021 (June–
September)

https://www.emclic.com/
https://www.emclic.com/
https://www.mmm.ucar.edu/weather-research-and-forecasting-model
https://www.mmm.ucar.edu/weather-research-and-forecasting-model
https://ral.ucar.edu/solutions/products/wrf-noah-noah-mp-modeling-system
https://ral.ucar.edu/solutions/products/wrf-noah-noah-mp-modeling-system
https://ral.ucar.edu/solutions/products/wrf-noah-noah-mp-modeling-system
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[48]: (1) roughness length of 0.8 m to represent turbulence 
generated by roughness elements and drag due to buildings; 
(2) surface albedo of 0.15 to represent shortwave radiation 
trapping in urban canyons; (3) volumetric heat capacity of 
3.0 J  m−3  K−1 for urban surfaces (walls, roofs, and roads), 
assumed as concrete or asphalt; (4) soil thermal conductiv-
ity of 3.24 W  m−1  K−1 to represent the large heat storage in 
urban buildings and roads; and (5) reduced surface mois-
ture availability over urban areas relative to vegetated areas 
to decrease evaporation. Terrain height is from the Global 
Multi-resolution Terrain Elevation Data 2010—GMTED 
2010 [49]. Regarding the treatment of urban geometry, we 
used WRF in the slab/bulk mode. The WRF simulation was 
executed continuously for the calendar year 2021.

2.3  Crowd‑Sourced Station Data

We use crowd-sourced Ta data from the Netatmo Internet of 
Things (IoT) weather station network as the primary input to 
develop interpolation and ML models. Crowd-sourced data, 
such as that collected from the Netatmo IoT network, offers 
distinct advantages for our research. The extensive cover-
age of Ta measurements across Warsaw through Netatmo’s 
network aligns with our objective of predicting Ta variability 
at a fine scale (≈ 1  km2). The diverse urban settings covered 
by Netatmo’s IoT network ensure our analysis encompasses 
various land use types, crucial for identifying heat-stressed 
areas. The accessible free nature of Netatmo data further 
simplifies its integration into our chosen prediction methods.

Although the conditions at which the crowd-sourced 
weather stations operate do not follow the technical stand-
ards and requirements for measuring equipment/sensors part 
of the reference weather station networks, the spatial density 
(number of stations per area) of crowd-sourced weather sta-
tions makes them promising indicators of Ta spatial vari-
ability [50]. The potential of crowd-sourced data for map-
ping air temperature at fine spatio-temporal resolutions has 
been suggested by, e.g., Venter et al. [51] or Zumwald et al. 
[19]. Accordingly, in this paper, we apply the term Ta to air 
temperature measured by crowd-sourced weather stations, 
despite their lack of accuracy.

We retrieved all publicly available Netatmo (https:// 
www. Netat mo. com/ en- gb/ weath er, accessed in January 
2023) weather station data (outdoor module) until Decem-
ber 13th, 2021, through the Netatmo Weather API (https:// 
dev. Netat mo. com/ apido cumen tation/ weath er, accessed in 
January 2023) inside the longitudes between 20.86° E 
and 21.24° E and latitudes between 52.1° N and 52.37° N 
(Supplementary Fig. 2). We used the “patatmo” (https:// 
nobod yinpe rson. gitlab. io/ pytho n3- patat mo/ index. html, 
accessed in January 2023) Python module to access the 
Netatmo Weather API. Data are available at the 10-min 
temporal resolution, and we retrieved hourly averages. 

Given that citizens operate the Netatmo weather stations, 
there is a possibility that the measured data can be erro-
neous due to device malfunction, exposure to sunlight/
warm surfaces, and malposition of the sensors. We per-
formed a Quality Assessment (QA) on the data (Fig. 2) 
following the procedure proposed by Napoly et al. [52] and 
programmed in the “CrowdQC” package for the statistical 
software R [53].

We delimited the stations to the exact administrative 
boundaries of Warsaw (https:// www. opens treet map. org, 
accessed in January 2023). The downloaded weather sta-
tion data are primarily related to recent years, particularly 
2021 (Supplementary Fig. 2). To acquire more robust results 
in the interpolation and ML parts, we limited the crowd-
sourced weather station dataset to 2021, with the high-
est number of stations available. Additionally, we did not 
include the data of cold months in 2021 for two reasons: 
(1) our final aim was to map the urban areas vulnerable 
to overheating, and (2) that would add more complexity to 
ML training which could reduce the predictive performance 
of the final trained models. Following QA and delimiting 
steps, 85 station records were available for the warm months 
of 2021 (between 30-05-2021 and 27-09-2021—Gregorian 
calendar days 150—270 in 2021). The data measured from 
these 85 Netatmo stations where the input to interpolation 
and ML model development parts (Fig. 1).

2.4  Interpolation: Ordinary Kriging

As the most straightforward approach for air temperature 
distribution modelling, we used Ordinary Kriging (OK) 
for predictions of Ta. The choices of Kriging with residu-
als and Regression-Kriging (combination of interpolation 
and regression techniques) were also available; however, we 
here used OK as it was the most straightforward approach, 
computationally reasonable, and needs less auxiliary para-
metrization and predictors, which adds to the complexity 
of semi-variogram fitting per se [35]. The main goal was 
to compare an approach as simple as possible that does not 
need additional input data or assumptions compared to ML 
or meteorological simulation, solely dependent on the air 
temperature weather station data. However, one assump-
tion was that kriging outperforms simpler interpolation 
techniques, e.g., Inverse Distance Weighting. We used the 
“SciKit GStat” Python module [54] for OK calculations. 
Assuming time as the third coordinate dimension, we treated 
each day separately and used 3D OK to make predictions. 
We assumed that Ta is stationary relative to the time coor-
dinate dimensions to reduce the calibrating parameters. 
Further technical details on the applied 3D OK approach 
are provided in the Supplementary Information Appendix: 
Interpolation: Ordinary Kriging.

https://www.Netatmo.com/en-gb/weather
https://www.Netatmo.com/en-gb/weather
https://dev.Netatmo.com/apidocumentation/weather
https://dev.Netatmo.com/apidocumentation/weather
https://nobodyinperson.gitlab.io/python3-patatmo/index.html
https://nobodyinperson.gitlab.io/python3-patatmo/index.html
https://www.openstreetmap.org
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2.5  Developing Predictive Machine Learning  
(ML) Models

We used the XGBoost (https:// xgboo st. readt hedocs. io/ en/  
latest/ index. html, accessed in January 2023—Chen and 
Guestrin [55]) gradient boosting algorithm to establish a 
data-driven relation (model) between crowd-sourced meas-
ured Ta and a set of auxiliary predictor data, to estimate 
Ta. We first prepared a collection of predictor data that we 
assume are primarily relevant to Ta. We trained ML models 
based on these predictor data and their relevance to crowd-
sourced air temperature data. The trained models were then 
used to make predictions of Ta in Warsaw.

2.5.1  Predictor Data

LST is assumed to be one of the predictors. The rest of the 
predictors discussed below are chosen as they are widely 
used in the literature [27, 34, 51], freely available, and allow 
for the transferability of the method to other geographical 
regions. However, in our predictor (feature) selection step, 

we tried to consider the typical accuracy levels observed 
in previous studies to avoid the addition of unnecessary 
predictors (see the Supplementary Information Appendix: 
Comparison with the literature). We stopped the addition of 
predictors as we reached the desirable accuracy. The auxil-
iary predictor data used here were primarily derived from 
Earth Observation satellite data and can be divided into two 
categories: spatial and spatio-temporal predictors (Table 1).

Spatial predictors included Landsat 8 LST (30-m spatial 
resolution, resampled from native thermal data at 100 m 
resolution), and Sentinel-2 band nine (B9) water vapor prod-
uct (60 m spatial resolution) to account for the water vapor 
absorption effect within the Thermal Infrared bands. These 
datasets are not “purely spatial” but we chose to average out 
the temporal dimension as part of the processing; we calcu-
lated the average of layers from the USGS Landsat 8 Level 2, 
Collection 2, Tier 1 (Band 10) [56, 57] and Sentinel-2 MSI: 
Multi-Spectral Instrument, Level-2A [58] satellite images 
captured in summers between 2016 and 2022. We performed 
these calculations in Google Earth Engine (GEE) platform. 
We used images’ averages as these two satellites pass over 

Fig. 2  Air temperature data 
recorded by Netatmo weather 
stations, before and after the 
statistically based quality 
control. Blue and red lines show 
the measured 2-m air tempera-
ture data retrieved from Babice 
and Okecie (Warsaw, Poland) 
reference meteorological sta-
tions, respectively. In short, (1) 
stations with similar coordinates 
were removed, and (2) the data 
of an individual station in a 
particular month were removed 
if the calculated Pearson cor-
relation coefficient between 
the station data and the median 
of crowd-sourced data (in that 
month) was less than 0.9. We 
ignored the height correction 
step as it has a negligible effect 
on a city like Warsaw with 
relatively flat topography

https://xgboost.readthedocs.io/en/latest/index.html
https://xgboost.readthedocs.io/en/latest/index.html
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Warsaw every 16 days, and in most cases, the captured satel-
lite images are cloud contaminated.

Other auxiliary purely spatial predictor data included 
coordinates (i.e., longitude and latitude in degrees) of the 
weather stations and their distance to water (in meters) of 
the region of interest. The maximum water extent layer from 
the Global Surface Water dataset (at 30-m spatial resolution) 
[59] available on the GEE platform was used to calculate the 
Netatmo stations’ distance to the nearest grid cell identified 
as water.

Unlike Landsat and Sentinel-2, LST data available from 
the MODIS (Moderate Resolution Imaging Spectroradi-
ometer) instruments onboard the Terra and Aqua satellites 
[60] exhibit in total ca. four overpasses per day (2 times per 
day and two days per night) and provide a spatial resolu-
tion of approximately 1  km2. MODIS LST data were chosen 
among the freely available, remotely sensed LST products 
by a trade-off between spatial and temporal resolution. For 
example, the SEVIRI instrument (Spinning Enhanced Vis-
ible and Infrared Imager) onboard the MSG (Meteosat Sec-
ond Generation) geostationary satellites are available every 
15 min. However, the 3-km spatial resolution does not allow 
mesoscale urban Ta mapping. We downloaded daytime and 
nighttime LST MODIS MOD/MYD11A1 version 6 products 
through Earth Data EOSDIS (NASA, https:// earth data. nasa. 
gov/) portal. Cloudy pixels and pixels with an average error 
higher than 2K were automatically removed based on the 
metadata available for each image. The newer V6.1 of these 
products was also available; however, we did not utilize them 

because of temporal gaps in those datasets (at the time of 
writing this paper).

MODIS Terra vegetative indices, including NDVI (Nor-
malized Difference Vegetation Index) and EVI (Enhance 
Vegetation Index) MOD13Q1 V6 data [61], generated every 
16 days at the 250-m spatial resolution, were also used as 
spatio-temporal predictors. We attributed the Netatmo 
weather station data to Terra vegetation indices based on 
the date bins. For example, Netatmo weather station data 
between 11-06-2021 and 26-06-2021 were attributed to 
the MOD13Q1 vegetation indices product available for 
26-06-2021.

Additionally, 2-m air temperature (°K), 2-m dewpoint 
temperature (°K), and total terrestrial evapotranspiration 
(meter of water equivalent) gridded data—derived from 
hourly ERA5-land reanalysis at 0.1° spatial resolution (9 
 km2) [62]—were used as other spatio-temporal predictors 
to improve the predictive performance of the trained ML 
model. We additionally used the Gregorian calendar day of 
the measurement by Netatmo weather stations as a predictor.

We decided not to use land cover and/or surface imper-
viousness as predictors in our analysis. Firstly, we operated 
under the assumption that the LST and vegetation (NDVI 
and EVI) data could serve as a suitable proxy for captur-
ing the effects of land cover and surface imperviousness. 
Given this assumption, we believed including explicit land 
cover and imperviousness variables might introduce collin-
earity issues among our predictors. Secondly, our research 
design specifically focused on investigating the impact of 

Table 1  Predictors used for training predictive models of 2-m air temperature (Ta) across Warsaw, Poland, using Machine Learning XGBoost 
approach

Predictor Source Spatio-temporal resolution

Longitude (degree) Netatmo weather API, base point layer coordinates 
(see Methods)

–
Latitude (degree)
Landsat 8 Land Surface Temperature, LST (°K) USGS Landsat 8 Level 2, Collection 2, Tier 1 

(Band 10)
30 m (resampled from native thermal 

data at 100 m resolution)
Sentinel-2 Water vapor Sentinel-2 MSI: Multi-Spectral Instrument, Level-

2A (Band 9)
60 m

Distance to water (m) JRC Global Surface Water Mapping Layers, v1.3 30 m
2-m air temperature (°K) ERA5-Land data reanalysis adopted from Climate 

Data Store
Hourly/0.1° (native resolution is 9 km)

2-m dew temperature (°K) ditto ditto
Total terrestrial evapotranspiration (m of water 

equivalent)
ditto ditto

MODIS Land Surface Temperature, LST (°K) MOD/MYD11A1 v006 Land Surface Tempera-
ture/Emissivity L3 products

Daily/1 km

NDVI (Normalized Difference Vegetation Index) MOD13Q1 v006 MODIS/Terra Vegetation Indices 
L3

16 days/250 m

EVI (Enhanced Vegetation Index) ditto 16-Day/250 m
Gregorian calendar day – –

https://earthdata.nasa.gov/
https://earthdata.nasa.gov/
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land cover on the predicted/observed air temperatures (will 
be discussed later).

2.5.2  Ta Model Training and Cross‑Validation

We used the Python package “XGBoost” to implement 
gradient boosted trees ML approach [55, 63]. We chose a 
tree-based ML method as they are computationally efficient, 
highly flexible in capturing non-linear trends [64], and have 
already been shown to be robust for urban Ta prediction [27, 
65]. Tree-based models are also highly efficient in treating 
collinearity and outliers [63]. MAE (Mean Absolute Error), 
RMSE, R2 (coefficient of determination), and maximum 
error (Predication minus Observation) evaluation metrics 
were also calculated for the final trained models using a 
tenfold cross-validation scheme (see Supplementary Infor-
mation Appendix: Ta Model training and cross-validation).

2.6  Models’ Deployment and Spatio‑temporal 
Prediction

The four final cross-validated models were then deployed 
to new predictor data to estimate urban-scale Ta (at nearly 
1-km2 spatial resolution) across Warsaw four times per 
day at MODIS Aqua and Terra satellite passing times. To 
do so, we first created a base point layer delimited to the 
administrative boundaries of Warsaw at 0.008° spatial reso-
lution (total of 1067 grid-cells) in the WGS 1984 spatial 
coordinates. Then we extracted the predictors’ values when 
the LST data of the MODIS instrument was available. For 
each point, we made predictions of Ta for Gregorian cal-
endar days between 30-05-2021 and 27-09-2021 in 2021. 
The daily semi-variograms calculated from 3D OK were 
similarly applied to the generated base point layer (i.e., the 
coordinates of the points) for the Netatmo weather station 
data of 2021 to make comparable predictions.

2.7  Validation Against Meteorological Stations

The WRF model, OK, and ML outputs were finally com-
pared against the observations of 5 meteorological (one 
synoptic and four climatic) stations spread across Warsaw 
during the summer of 2021. Data were collected from the 
Institute of Meteorology and Water Management of the 
Poland National Research Institute (https:// danep ublic zne. 
imgw. pl/, retrieved in January 2023). Hourly data are only 
archived by one station (Okecie), and the rest of the sta-
tions only release daily/diurnal statistics and Ta at hours: 
6:00, 12:00, and 18:00. Normally, Aqua and Terra satel-
lites pass Warsaw at ≈ 1:00/11:25 and ≈ 9:50/20:24 UTC 
(Fig. 3). These overpass times do not necessarily overlap 
with the times when usually daily minimum and maxi-
mum air temperatures are recorded for Warsaw. Thus, our 

comparison analysis between different approaches was lim-
ited to Ta data recorded at 12:00 UTC, as this is very close 
to the daytime overpass of the Aqua satellite (in Warsaw). 
We calculated the RMSE and R2 between the outputs of the 
three approaches and the reference meteorological stations’ 
observations. As meteorological observations are at synoptic 
scales, we analyzed the difference among the weather station 
data (Supplementary Fig. 3) to ensure that it is appropriate 
to use meteorological stations to test the three approaches 
for 1-km2 spatial resolution temperature mapping. The aver-
age and standard deviation of each day Ta range (min–max 
difference) among five stations were 1.73 °C and 0.75 °C, 
respectively.

The reanalysis data are generated based on the output of 
complicated atmospheric numerical models that assimilate 
observational data from various data resources. It is possible 
that meteorological stations’ observations have been used by 
ERA5 land reanalysis for model parametrization and assimi-
lation. One may claim that the application of ERA5 Ta as a 
predictor in the training of a ML model and later comparison 
of the resultant predictions against observations results in a 
ML model biased towards the site-observed temperature data, 
leading to uncertain assessment of the predictive power of the 
ML approach compared to other methods [34]. To address 
this, we trained our ML model based on the daytime MODIS 
Aqua LST data, this time excluding the ERA5 Ta as a predic-
tor. Therefore, such model predictions are unseen to ERA5 

Fig. 3  Diurnal 2-m air temperature (Ta) variability and approximate 
MODIS Aqua and Terra satellites’ overpass times in Warsaw. Ta is 
retrieved from the synoptic meteorological station (Okecie) in War-
saw. Satellite overpassing times are calculated by averaging the Land 
Surface Temperature (LST) day/night view times in Warsaw from 
2021-05-30 to 2021-09-27. The time zone on the x-axis is UTC 

https://danepubliczne.imgw.pl/
https://danepubliczne.imgw.pl/
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reanalysis Ta, which fairly assesses different approaches’ 
predictive performance. On the other hand, statistical accu-
racy metrics were not the only parameters we considered in 
our comparative analysis. Other parameters, such as running 
time, computational cost, and flexibility/efficiency in the 
realism of the spatial patterns were important.

3  Results

3.1  WRF, 3D Ordinary Kriging, and Machine 
Learning Predictions

The spatial distribution of Ta during the 2021 warm months 
(Jun-Sep) is mapped in Fig. 4a by averaging the hourly pre-
dictions of the WRF model. The predictions vary between 
18.06 °C and 20.55 °C. The distribution follows the land 
use fields read by WRF, in which the highest temperatures 

are predicted in grids with high to 100% urban built-up. In 
contrast, the lowest is predicted in grids with higher than 
60% cropland use (southeast and north in the domain) and/or 
forest (north and east). We note that the default land use for 
WRF that we used is a composite between 2001 and 2010.

The kriging results illustrating the spatial variations of Ta 
in Warsaw at ≈ 1-km2 resolution are presented in Fig. 4b. 
The average kriging predictions for all 120 days (warm 
months in 2021) are used to generate the map in Fig. 4b. 
According to the kriging predictions, Ta varies spatially 
between 18.34 °C and 21.17 °C across Warsaw in the warm 
months of 2021. The OK approach predicts higher Ta in 
northern areas, and the average air temperatures estimated 
in the east and south are lower than WRF predictions, espe-
cially near the Warsaw airport. The Ta map generated by the 
OK approach does not show any variability in response to 
the presence of the Vistula River.

Supplementary Table 1 illustrates the results of hyperpa-
rameters optimization and tenfold cross-validation for the 
four trained models corresponding to each overpass of the 
MODIS Aqua and Terra satellites. On average, the RMSE 
error for all four models (including ERA5 Ta) varied between 
0.68 and 0.88 °C (with an average of 0.78 °C), while R2 
ranged between 0.96 and 0.98. The respective Normalized 
RMSE (normalized to the range of input training datasets) 
for models trained on Aqua Day/Night and Terra Day/Night 
over passes was 3.42%, 3.27%, 3.80%, and 2.87%. The 
maximum absolute errors were also between 2.73 and 3.4 
°C. The validation (predictions against measurements) and 
residuals (the differences between observed and predicted 
data values) plots are also represented in Fig. 5 and Sup-
plementary Fig. 7 to visualize the quality and the predic-
tive power of the four models. Additionally, we calculated 
the importance of predictors for predicting Ta at different 
MODIS overpassing times (Fig. 6) and their relative impor-
tance in each trained model (Supplementary Table 9). On 
average, ERA5 land reanalysis Ta, ERA5 land reanalysis dew 
temperature, and Gregorian calendar day were the essential 
predictors with a respective average importance of 40.63%, 
14.40%, and 12.12%. In the absence of ERA5 Ta, the RMSE 
and R2 were reduced by 9.2% (relative to 0.86 °C) and 1% 
(relative to 0.96), respectively (see Supplementary Informa-
tion Appendix).

3.2  Model Predictions Against Meteorological 
Stations’ Observations

The time series of predictions made by the ML model and 
the other two approaches, as well as observations are illus-
trated in Fig. 7. ML learning predictions are only available 
for days that daytime MODIS Aqua LST is available, result-
ing in temporal gaps in the time series of predictions made 
by the ML approach. Therefore, the RMSE and R2 values 

Fig. 4  Spatial distribution of 2-m air temperature (Ta) across Warsaw, 
Poland. a Predictions of the WRF mesoscale model. b Predictions of 
the Ordinary Kriging approach. Maps are the hourly predictions aver-
aged over the period 2021-05-30 to 2021-09-27
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shown on each panel are calculated based on the dates that 
predictions are available from all three models. The number 
of these days was 43, 53, 54, 45, and 49 days for Babice, 
Okecie, Bielany, Filtry, and Obserwatorium II, respectively. 
Overall, for all five stations, respective RMSE and R2 values 
of 1.23 °C and 0.93 were calculated for the ML approach 
and 1.7 °C and 0.85 for the WRF meteorological model. The 
predictions from the OK approach showed the lowest perfor-
mance compared to observations, and the overall RMSE and 
R2 of the five stations were 3.00 °C and 0.58, respectively. 
The comparison of the models’ predictions against observa-
tions assuming ERA5 Ta as one of the predictors is addi-
tionally in Supplementary Fig. 8. The addition of ERA5 Ta 
further increased the performance of the ML model, where 

the overall calculated RMSE and R2 between the predictions 
and measurements were 1.06 °C and 0.94, respectively.

4  Discussion

4.1  Comparison of the Three Approaches’ Performance

The spatial distribution of Ta estimated using the three 
approaches at some sample times with high LST data avail-
ability (low cloud cover) is presented in Fig. 8. According to 
our results, with or without using ERA Ta as a predictor, the 
predictions of the ML (XGBoost) approach showed a lower 
error than the other two approaches, compared to the Ta 

Fig. 5  Machine Learning (ML) models’ validation plots, adopting a 
tenfold cross-validation scheme. 2-m air temperature (Ta) predictions 
of the four trained ML models (trained based on input data at differ-
ent MODIS Aqua/Terra overpass times) are validated against the air 

temperature measurements from the Netatmo weather stations. Red 
lines represent the y = x line. RMSE: Root Mean Squared Error. R2: 
coefficient of determination
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records of five meteorological stations spread across Warsaw 
(Fig. 7, Supplementary Fig. 8). Most of the time required 
for making predictions by the ML learning approach was 
relevant to input training data preparation. The XGBoost 
algorithm was very efficient in model training, and all mod-
els (for each MODIS overpassing time) were trained in less 
than 400s. The predictions made by the ML approach are 
fairly scattered around the y = x line. However, a negligi-
ble overestimation of the predictions can be observed at 
the higher temperature, especially for daytime predictions 
(Fig. 5). Excluding ERA Ta as a predictor, a total bias (mean 
of observations from the five stations minus the mean of cor-
responding predictions) of − 0.60 °C was calculated for the 
ML approach, representing the overall overestimation of the 
air temperatures during daytime. Overestimation of the Ta 
predictions based on ML and MODIS LST remote sensing 
is also reported by Venter et al. [24], who pointed out that 
the satellite-based UHI (Urban Heat Island) is overestimated 
by sixfold, relative to the UHI calculated based on station 
measurements over 342 European urban clusters.

The calculated bias was reduced to − 0.29 °C when 
the ERA Ta was added to the input dataset for training a 

predictive ML learning based on MODIS Aqua daytime LST 
measurements. According to our results, removing the most 
important predictor impacts the error from observations. The 
predictive model still effectively explains the variability in 
observations. Removing the ERA Ta as a predictor from the 
model training reduced the RMSE and R2 values only by 
13.82% and 1.06%, respectively. Predictions made for the 
nighttime are more accurate than daytime predictions. The 
difference in daytime and nighttime accuracies may be rel-
evant to MODIS LST estimations as LST data are closer to 
the surrounding air temperatures during the nighttime [15, 
66]. Especially in built-up urban environments and during 
the daytime, the relationship between air temperature and 
LST can be very complex due to various affecting param-
eters such as clouds, sky-view factor, sensor view angle, and 
solar insolation intensity [67–69]. The correlation between 
the Surface Urban Heat Island (SUHI) and the Canopy-
Layer Urban Heat Island (CLUHI) is recognized to be weak 
in the daytime. At nighttime, this can be reversed, and air 
temperature and remotely sensed LST can be more similar 
due to reduced solar shading and stability of the atmospheric 
boundary layer [70–72].

Regarding accuracy, WRF meteorological model pre-
dictions were the second and OK interpolation showed the 
worst performance. The overall calculated bias of the krig-
ing technique relative to the five stations was 1.81°C, while 
this value was − 0.7 °C for the WRF meteorological model. 
In terms of model preparation and speed of calculations, 
however, WRF was the worst based on our computational 
resources—12 cores and model size of 17 × 17 horizontal 
grids at the first domain, 35 × 35 horizontal grids at the 
second domain, and 27 × 33 grids horizontal at the third 
domain (domain with the Warsaw results) and 59 vertical 
levels (Supplementary Fig. 1); it took around four days to 
predict Ta for one year at an hourly resolution in Warsaw. 
The required run time for fitting the semi-variograms for 
each day was in between, lasting an overall two hours for 
semi-variogram model calculation, although finding the 
optimal parameters (e.g., a suitable number of lags or maxi-
mum lag distance) required for semi-variogram fitting was 
a tedious task. By a trade-off between speed and accuracy 
in our analysis, the ML approach was the most efficient for 
predicting mesoscale Ta in Warsaw.

4.2  Air Temperature Variability in Warsaw

We used the ML approach for the final mapping of the Ta in 
Warsaw. The spatial variation of Ta in Warsaw at ≈ 1-km2 
spatial resolution is visualized in Fig. 9 as an output of the 
trained ML models. The maps are created by averaging the 
ML model predictions for each MODIS Aqua/Terra over-
passing time. We used the trained models (based on 2021 
warm months data [Gregorian calendar days 150–270]) for 

Fig. 6  Predictor (feature) importance order for predicting 2-m air tem-
perature (Ta) using XGBoost ML algorithm. The results are reported 
for all trained models, based on input data at different MODIS Aqua/
Terra overpass times. In addition, the green color presents predictor 
importance for the ML model trained based on input data at the Aqua 
daytime overpass, excluding ERA5 land reanalysis Ta as a predictor
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making predictions in 2019 and 2020 as well as 2021 and 
calculated the average of predictions. The number of pre-
dictions participating in each map’s pixels is shown in Sup-
plementary Fig. 9. We made the predictions for the previ-
ous years to have at least 50 participating predictions in our 
analysis and increase the reliability of the mapped Ta vari-
ability. The cooling effect of the Vistula River passing the 
middle of Warsaw is observable for daytime predictions. The 
results also suggest the impact of land cover on the spatial 
distribution of the Ta. Although Warsaw is topographically 
flat and no effects of elevation can be assumed for the urban 
Ta variation, the role of large vegetation coverage located in 
the eastern and southern regions of the city (Supplemen-
tary Fig. 10) is noticeable in the spatial distribution of Ta 
in Warsaw during warm months of the three studies years. 
In addition to shading, vegetation can cool the air through 
latent heat exchange and transpiration [15, 67].

The urban-built material and structures absorb the 
radiation during the day and release it at night, leading to 
higher nighttime temperatures [15]. This effect can also 

be seen for the nighttime predictions (Fig. 9) when the 
Ta difference between the built environment and the sur-
rounding areas covered by vegetation is more noticeable. 
The relation between the Ta predictions made for each 
MODIS overpassing time and the building height is rep-
resented in Supplementary Fig. 15 (see Supplementary 
Information Appendix: Ta variability against land cover 
and building height). The impact of built environment 
structures and buildings on increasing nighttime Ta pre-
dictions is also evident. We further used warm month Ta 
averages predicted by ML models (including ERA Ta as a 
predictor) to analyze the variability of Ta within each land 
cover type in Warsaw (Supplementary Fig. 16). Overall, 
the lowest standard errors were calculated (Supplemen-
tary Tables 10 to 13) for urban fabrics and lands forests 
(SE ≈ 0.04 °C and SE ≈ 0.05 °C, respectively). In con-
trast, lands without current use and water bodies generally 
showed the highest standard errors (SE was calculated as 
the standard deviation divided by the square root of the 
number of samples).

Fig. 7  Comparing three approaches for predictions of 2-m air tem-
perature (Ta) against Ta data recorded by five meteorological reference 
stations across Warsaw at 12 pm, between 2021-05-30 and 2021-09-
27. Machine Learning (ML) models are trained based on input data 
(different MODIS Aqua daytime overpass), excluding ERA5 land 
reanalysis Ta as a predictor. The geographical location of the mete-

orological stations is represented on the right-bottom corner map. 
RMSE: Root Mean Squared Error. R2: coefficient of determination. 
As the outputs of the ML approach include some gaps due to cloud 
contamination, RMSE, and R2 values are calculated based on the days 
for which predictions of all three approaches were available
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4.3  Methodological Limitations

Cloud contamination is the main drawback of applying sat-
ellite remote sensing products for mapping Ta. Removing 
the cloud-contaminated pixels results in predictions biased 
toward clear-sky weather conditions, which can be mislead-
ing, especially for UHI quantification studies [51]. It was not 
possible to predict Ta for many days and locations. Although 
some studies have attempted to use statistical methods to fill 
the remotely sensed spatio-temporal gaps in LST [73, 74], 
applying LST for the gap-less prediction of Ta at high resolu-
tions remains a challenge [34]. Additionally, here we could 
make predictions four times per day at nearly 1  km2 spatial 
resolution. The release of more accurate remotely sensed 
LST products such as ECOSTRESS (https:// ecost ress. jpl. 
nasa. gov/, accessed in January 2023) or GOES-R (https:// 
www. goes-r. gov/, accessed in January 2023 https:// www. 
goes-r. gov/) at higher spatial and temporal resolution could 
be promising for improving the quality of Ta spatio-temporal 
mapping [15, 34]. Additionally, the following can be listed 
as the limitations of the methodology used in this study:

• We used only five stations that were geographically 
closer to the Warsaw center and/or its airport; the refer-
ence stations may be located near the stations used for 
ML and kriging and results in the ill-assessment of the 

three approaches’ performance. It is necessary to have 
an independent Ta dataset with a higher number of ade-
quately scattered stations over the study region.

• We used only the WRF meteorological model. In the 
future, it might be meaningful to compare other mes-
oscale urban energy-balance and climate/meteorological 
models with outputs of ML or kriging.

• It is important to acknowledge that the discrepancies 
observed in the model estimations could potentially stem 
from the inherent characteristics of the initial datasets 
employed as inputs for each model. Regarding the ML 
approach, the decision to exclude NCEP data for train-
ing/prediction was driven by practical considerations, 
as all five reference stations were located on the same 
0.25-degree grid. However, utilizing ERA5 outputs for 
the WRF simulations was a viable option. We evaluated 
the correlation and similarity between ERA5 and NCEP 
(the dataset used for WRF) covering the period from 
2018 to 2021 (Supplementary Fig. 17). During the sum-
mer of 2021, when we compare the estimates derived 
from the different approaches, the two reanalysis datasets 
exhibit similarities (mean bias = 0.04 °C and Pearson cor-
relation coefficient = 0.63). Since NCEP is utilized as a 
boundary for WRF simulations, we believe that substi-
tuting ERA5 as the boundary for WRF runs would not 
substantially alter the outcomes.

Fig. 8  Spatial distribution of 2-m air temperature (Ta) estimated using the three approaches at some sample times with high LST data availability 
(low cloud cover)

https://ecostress.jpl.nasa.gov/
https://ecostress.jpl.nasa.gov/
https://www.goes-r.gov/
https://www.goes-r.gov/
https://www.goes-r.gov/
https://www.goes-r.gov/
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• Particularly for evaluating the predictive performance of 
the urban meteorological models, an additional observa-
tional dataset is required, which is not used by the Global 
Circulation Models for assimilation.

• In addition to device and network malfunctioning, the 
crowd-sourced weather stations used in this analysis may 
be subject to misplacement, e.g., being in indoor con-
ditions or the proximity of hot surfaces. Note that the 
variations in the number of Netatmo station data may not 
accurately depict the actual station count. The metadata 
retrieved through the Getpublicdata() API method only 
includes IDs and locations for stations available at the 
time of the request. Consequently, this can impact the 
derivation of archive observations from stations that are 
not operational at the moment of the request.

• There are not yet standards for quality control of crowd-
sourced data of Ta measurement, even though the sta-
tistical method [52] we used here for quality control of 
the Netatmo station data has been used successfully in 
similar studies. For comparability of the results, still 
standard guidelines are required for the quality assess-
ment of the crowd-sourced weather station data.

• When it comes to interpolating into areas that are not 
adequately represented in the observational data, such 
as rivers and parks in the context of our study, the abil-
ity of statistical methods (OK and ML) to extrapolate 
might be limited when attempting to generate accurate 
maps. Varentsov et al. [72] found the main difficulty of 
the kriging methods without model input was water and 
plateau areas, where observational data are lacking.

Fig. 9  Spatial distribution of 2-m air temperature (Ta) across Warsaw, 
Poland, at different overpass times of MODIS Aqua/Terra satellites 
predicted by XGBoost Machine Learning approach. Maps are the pre-

dictions’ average over 2021-05-30 to 2021-09-27 in three consecutive 
years 2019, 2020, and 202
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5  Conclusions

Mesoscale (1 − 5  km2) mapping of the spatio-temporal vari-
ability in urban Ta has been challenging because of stand-
ard Ta measurements’ irregular/sparse spatial availability. 
In this study, we used the crowd-sourced, Netatmo weather 
station data to benchmark the performance of three popular 
approaches for spatio-temporal mapping of the urban Ta 
against observations of five meteorological reference sta-
tions in Warsaw. OK (Ordinary Kriging), as representative 
of approaches independent of external data and knowledge, 
ML (XGBoost), as representative of advance statistical pre-
dictive methods, and WRF meteorological model as rep-
resentative of urban fine-resolution weather models were 
employed to predict the spatio-temporal variability of Ta 
during the warm months in 2021. In comparison with ref-
erence meteorological measurements, here, ML approach 
outputs (RMSE = 1.06 °C, R2 = 0.94) outperformed OK 
(RMSE = 3 °C, R2 = 0.58) and WRF meteorological model 
(RMSE = 1.7 °C, R2 = 0.85), considering speed, interpret-
ability of outputs, accuracy, and methodological limits. So, 
we selected the ML approach as a parsimonious model to 
predict Ta in Warsaw. The output from the ML approach 
was used to map sub-daily (four times per day) variability 
in Ta for Warsaw at nearly 1  km2 spatial (0.008°) resolu-
tion. According to our results, Ta and 2-m dew temperature 
predicted by ERA5 land reanalysis were the most important 
predictor for the prediction of Ta using the ML approach. 
LST and Gregorian calendar day followed these predictors. 
Accordingly, we suggest including the Gregorian calen-
dar day as a predictor in similar studies. The methodology 
provided here has implications for urban management and 
devising sustainable adoption plans in response to over-
heating at urban scales.
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