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Abstract
Canopy cover is a primary attribute used in empirical wildfire models for certain fuel types. Accurate estimation of canopy 
cover is a key to ensuring accurate prediction of fire spread and behaviour in these fuels. Airborne Laser Scanning (ALS) is 
a promising active remote sensing technology for estimating canopy cover in natural ecosystems since it can penetrate and 
measure the vegetation canopy. Various methods have been developed to estimate canopy cover from ALS data. However, 
little attention has been given to the evaluation of algorithms used to calculate canopy cover and the subsequent influence 
these algorithms can have on wildfire behaviour models. In this study we evaluate the effect of using different algorithms to 
calculate canopy cover on the performance of the Australian Mallee-heath fire spread model. ALS data was used to derive 
five canopy cover models. Fire spread metrics including burned area, unburned area within the fire extent, and extent of 
fire were compared for different model run times. The results show that these metrics are strongly influenced by choice of 
algorithm used to calculate canopy cover. The results from this study may provide practical guidance for the optimal selec-
tion of estimation methods in canopy cover mapping.
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1  Introduction

Shrubland ecosystems are globally distributed and highly 
heterogeneous in structure and plant species composition. 
Under certain conditions, fires in shrubland ecosystems can 

spread fast with high intensity [1, 2]. These fires have the 
potential to burn extensive areas under extreme fire condi-
tions, threatening human life, property and a result in broad 
range of environmental impacts [3]. Recent advances in 
computational models have shown the potential to predict 
fire behaviour effectively [1, 4, 5]. These models are used to 
characterise fire behaviour under specific fuel and weather 
conditions and predict fire spread during a fire event [1].

In semi-arid environments, fuels are often organised 
in stratified layers and discrete clumps separated by bare 
ground [1, 6]. Discontinuities in the horizontal distribution 
of canopy fuels associated with large-scale heterogeneous 
fuel complexes cause discontinuous fire behaviour. For 
example Oak chaparral in California [7], sage brush in the 
interior Western US and Mallee-heath [8] and hummock 
grasslands [1, 9] in Australia. A small change in the drivers 
of the fire can lead to a large change in resulting fire behav-
iour, including transitions from surface to a crown fire, with 
a corresponding increase in the rate of spread [2].

Given the influence of fuel characteristics on the 
behaviour of fire, it is essential to explicitly account for 
the effects of vegetation structure when exploring the 
interaction between forest structure and fire behaviour [4, 
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10–15]. Parsons et al. [13] suggest that fine-scale canopy 
fuel spatial patterns can affect both mean and variability 
in fire behaviour outcomes and canopy cover is one of the 
strongest drivers of changes in fire metrics.

It is a time-consuming challenge for managers to col-
lect accurate field information throughout the lifecycle of  
wildfires. However, recent development in remote sens-
ing technology provides researchers with an opportu-
nity to quantify and map patterns of variation in forest  
cover and health assessment across space and time [16, 
17]. Satellites and aircraft are the main platforms used  
to collect such data. Satellites are suitable for covering a 
large area, and for conducting multi-temporal analysis. 
However, due to limited penetration capability of opti-
cal imagery in vegetated areas, satellite imagery is cur-
rently unable to provide detailed measurements of forest 
structure often required for use in fire simulation models  
[18], although space based laser ranging technologies, for 
example NASA’s Global Ecosystem Dynamics Investiga-
tion, ‘GEDI’ are progressively bridging this gap [19, 20].

Airborne Laser Scanning (ALS) is an active remote 
sensing technique which utilises reflections from laser 
pulses emitted at known locations to determine the 3D 
properties of the environment [21]. Ongoing research 
into the processing and analysis of ALS data has allowed 
for the development of an extensive range of ALS data 
products from which a wide range of forest metrics can 
be derived [22–24]. Studies have shown that ALS can 
provide reliable estimates of 3D forest canopy structure 
[21, 25–27]. Due to its ability to penetrate through forest 
canopy, ALS provides superior canopy cover estimates to 
airborne and satellite optical imagery [28, 29].

Traditionally, canopy cover was determined by field 
measurements such as Cajanus tube and line intersect sam-
pling method [30, 31]. However, these measurements are 
labour-intensive, highly time-consuming and expensive. 
Thus, it becomes difficult to collect sufficient field meas-
urements for estimating canopy cover over large areas [32]. 
Recently various algorithms have been developed to estimate 
canopy cover from ALS data based on both the geometry of 
the captured scene and the properties of the returns within 
that scene [21, 32–34]. Furthermore, previous studies have 
indicated that ALS based estimations of canopy cover can 
be affected by many factors, such as LiDAR scan angle [35], 
ALS point density [21], and forest composition [36]. How-
ever, we currently lack a thorough understanding of how the 
properties of these algorithms, data capture and forest struc-
ture across a range of different forest types influence canopy 
cover estimations. Any differences in canopy cover, due to 
the choice of algorithm, are likely to result in unknown vari-
ations of predicted fire behaviour from the empirical models 
which use this metric. Given the potential of ALS data and 
the ability to derive fuel maps at high spatial resolutions, a 

greater understanding of how different algorithms to derive 
canopy cover interact with existing fuel models is required.

For improving predictions of fire behaviour, it is critical 
to understand the sensitivity of fire behaviour models to the 
variation in canopy cover descriptions. The increasing avail-
ability and diversity of new methods for deriving canopy 
cover for consumption into fire behaviour models require an 
understanding of how different methods for estimating the 
same metric can affect model outputs as a first step towards 
improving predictions.

In this study, we investigate the effect of ALS-derived 
canopy cover estimates from different ALS processing algo-
rithms on the outcomes (burned area, unburned area ratio 
and fire extent) of a Mallee-heath fire spread model. To date, 
a generalised understanding of how algorithms to derive fuel 
related input data affect fire behaviour in this environment is 
lacking. This study therefore fills an essential knowledge gap 
by providing information on (1) how five different canopy 
cover estimate algorithms in Mallee-heath vegetation types 
produce cover estimates and (2) the impact of these different 
canopy cover estimates on fire behaviour model outputs such 
as burned area, unburned area ratio and fire extent.

2 � Materials and Methods

2.1 � Study Area

The study site for this experiment is located 25 km north 
of Renmark in South Australia on Calperum station (33◦

44′49′′ S, 140◦52′22′′ E) (Fig. 1). It is one of the supersites 
of the Australian Terrestrial Ecosystem Research Network 
(TERN). TERN is Australia’s land ecosystem observatory, 
where key terrestrial ecosystem attributes over time are 
measured from continental scale to field sites at hundreds 
of representative locations [37]. This site was chosen due to 
the availability of a published empirical fire spread model 
for the fuel type at the site (Section 2.6) and high-resolution 
remote sensing data (Section 2.2). The Calperum area is 
important because of presence of several threatened bird 
species, wetlands adjacent to the Murray river and intact 
Mallee vegetation [38].

The vegetation in the area is dominated by eucalypt trees 
of four species (Eucalyptus dumosa, Eucalyptus incrassata, 
Eucalyptus oleosa and Eucalyptus socialis). Their distribu-
tion is influenced by a number of factors, including rainfall, 
soil type and fire history, at different spatial and temporal 
scales. These multi-stem trees are typically sparsely dis-
tributed across the landscape and grow between 3.5 and 7 
m [38]. Eremophila, Hakea, Olearia, Senna and Melaleuca 
genera are sparsely distributed in the mid-storey. Across 
the site hummock and tussock grasses are also present as 
an understorey.
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The climate is semi-arid and characterised by extremely 
hot, dry summers and cool winters. The mean annual rain-
fall ranges between 200 and 340 mm (annual extremes are 
72–694 mm). Daily maximum temperatures can reach up 
to 40 ◦ C in the summer and winters are generally dry and 
mild with an average maximum of 16 ◦ C. The landscape is 
an extensive plain with the River Murray, its anabranches 
and floodplain wetlands forming the major topographic 
feature [38].

The central and southeast areas of the site are charac-
terised by sand dune and swale systems that run approx-
imately east-west, with undulation from swale to crest 
up to 8 m in elevation [38]. Dunes support a canopy of 
Mallee-heath with a Triodia understorey [39]. These 
areas present the greatest fire risk in Mallee-heath sys-
tems due to the extreme flammability of Triodia. This risk 
increases with seasonal conditions such as above-normal 
rainfall [1]. A strong response of ephemeral herbs and 
grasses to wet years creates continuous fuel conditions 
which can lead to extensive fires in this vegetation [6, 40]. 
Essentially, fire behaviour in Mallee-heath is a function 
of complex interactions between vegetation types and the 
seasonal conditions.

2.2 � ALS Data and Pre‑processing

The ALS data used in this study was obtained from TERN 
AusCover [37]. A Riegl LMS-Q560 full-waveform laser 
scanner was flown at a height of 300 m above ground level 
to capture small footprint data over 5 km × 5 km study site 
in February 2012. Data was captured using regular north-
south oriented flight lines with a spacing of approximately 
125 m. The swath overlap between flight lines was 50%. 
The scanner has a beam divergence of 0.5 mrad resulting 
in a laser footprint of 30 cm on the ground. The scan angle 
was limited to -22.5◦ to +22.5◦ in the across-track direction 
resulting in 45◦ field-of-view.

The full waveform data was processed by the data sup-
plier to produce a discrete return point cloud. This was 
achieved using Riegel RiAnalyze (version 4.1.2) to identify 
discrete peaks in the back-scattered signal using a Gaussian 
Pulse Estimation technique [41], resulting in a maximum of 
7 returns per output pulse.

Discrete returns were classified into either ground or non-
ground using the Cloth Simulation Filter (CSF). A complete 
description of the CSF algorithm and the various parameters 
can be found in [42]. In brief, this filter identifies points 

Fig. 1   Study area. a Location of the study area in southeast of 
the state of South Australia. b Vegetation present in the study area 
(Source: https://​super​sites.​tern.​org.​au/​super​sites/​clpm). c Plot design 
used for the study area showing the location of 10 ignition points in 

red superimposed on a canopy height map. The wind direction at 
each ignition point is shown as black arrows. The points were chosen 
to be 1.5  km from the centre of the area and at 36◦ intervals from 
each other

https://supersites.tern.org.au/supersites/clpm
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that are most likely belonging to the ground through the 
simulation of a rigid cloth draped over the point set. The 
filter is parameterised using class threshold, resolution, time 
step and rigidness parameters. In this case values of 0.02, 
5, 2 and 3 were applied for class threshold, resolution, time 
step and rigidness respectively. Once the ground points were 
identified, linear interpolation was used to generate a 1 m 
resolution Digital Elevation Model (DEM). Subsequently, 
the Above Ground Height (AGH) of all non-ground points 
was calculated by subtracting the value of the DEM eleva-
tion at each horizontal location.

2.3 � Canopy Metrics Derivation

The fire model described in Section 2.6 requires both canopy 
height and canopy cover as input. Both canopy cover and 
height metrics were derived at 10 m resolution grid. A scale 
of 10 m was used as Taneja et al. [43] showed that both 
canopy height and cover are spatially correlated up this dis-
tance in Mallee vegetation. Canopy height was calculated 
as the 95th percentile of the AGH of the non-ground points 
falling within each cell. Mahoney et al. [44] suggest that 
95th percentile is the logical height percentile for validating 
Australia-wide predictions of canopy height. Furthermore, 
the typical accuracies associated with ALS height informa-
tion with respect to ground estimates, 95th percentile is 
assumed to be an adequate estimate of true canopy height 
across Australia [45]. Canopy cover was calculated using the 
approaches described in the following section.

2.4 � Canopy Cover Calculation

Five different methods were used to calculate canopy cover 
from the ALS data. These were: 

1.	 First Cover Index (FCI)
2.	 Last Cover Index (LCI)
3.	 Solberg Cover Index (SCI)
4.	 Alpha Cover Index (ACI)
5.	 Grid Cover Index (GCI)

The details of these methods are described in the following 
section. These can be broadly grouped into two categories: 
(1) return-based metrics (FCI, SCI and LCI), where canopy 
cover is based on the height and type of return (i.e. first, only 
or last return from an outgoing pulse) and (2) geometric-
based metrics (ACI and GCI) where canopy cover is based 
on the geometry of the returns above a certain height. In all 
cases we consider canopy returns to be any returns that occur 
greater than 1.35 m above the ground (Fig. 2), as this height 
has been shown to efficiently separate the tree crowns from 
the understorey and ground vegetation [46].

2.4.1 � Return‑Based Metrics of Canopy Cover

Three return-based indices utilise the properties of laser 
pulses to determine a measure of canopy cover. These laser 
pulses are emitted from the ALS system and reflect from 
objects both on and above the ground surface including 
trees, other vegetation (grasses and shrubs), buildings and 
the ground. Pulses passing through the environment may be 
partially or fully intercepted by any objects it encounters. 
When only one return is triggered per pulse this is termed 
as single return, whereas multiple returns occur when sev-
eral objects reflect enough light back to the sensor from a 
single pulse. The returns from a multiple-return pulse can 
be categorised as first returns, intermediate returns and last 
returns as shown in Fig. 2. For example a pulse may reflect 
from upper canopy first (first return), then the lower tree 
canopy, stems, understorey vegetation (intermediate returns) 
as finally the ground (last return), resulting in multiple meas-
urable returns from that pulse.

The first return laser pulse is the most significant return 
and will be associated with the highest feature in the land-
scape like a treetop as shown in Fig. 2. The first return can 
also represent the ground in an area which has no vegeta-
tion or any other feature. In this case only single return will 
be detected by the ALS system. It is important to note that 
the last return will not always be from a ground return. For 
example, when a pulse hits a thick branch on its way to the 
ground and the pulse does not actually reach the ground, the 
last return is not from the ground but from the branch that 

Fig. 2   Diagram showing how returns used in the return-based cover 
estimates are generated from ALS pulses. The blue line shows a 
pulse that has been partially intercepted by the canopy. Generating a 
Firstcanopy return (used in the First Canopy index (FCI), this is also a 
Firstall return used in the Solberg Canopy Index (SCI)), a Lastcanopy 
return (used in the Last Canopy Index (LCI)), several intermedi-
ate returns and a Lastall return (used in LCI and SCI). The red line 
shows a pulse that was not intercepted by the canopy, which generates 
Firstall (used in FCI) and Lastall (used in LCI and SCI) returns
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reflected the entire laser pulse. The intermediate returns, in 
general, provide an indication of vegetation structure.

The first method, the First Cover Index (FCI) described in 
Morsdorf et al. [47], uses the proportion of first ( Firstcanopy ) 
and single ( Singlecanopy ) returns from the canopy to the total 
number of first ( Firstall ) and single ( Singleall ) returns within 
an area to provide an estimate of canopy cover as follows:

The second method, the Last Cover Index (LCI) given 
in Korhonen et al. [21] is based on the proportion of last 
return ( LastCanopy ) and single ( Singlecanopy ) returns from 
the canopy to the total number of last ( Lastall ) and single 
( Singleall ) returns within an area, to provide an estimate of 
canopy cover as follows:

The third method, the Solberg’s Cover Index (SCI) given in 
Solberg et al. [48], which takes into account both single first 
and last returns from the canopy and the ground as follows:

The coefficient 0.5 is a weight for pulses that produce 
both first and last echoes, and it can be adjusted if necessary 
[48]. For instance, a pulse that produces both canopy-first 
and ground-last echoes is assigned penetration of 0.5. For 
a single ground echo the penetration is 1, and for a single 
canopy echo it is 0.

2.4.2 � Geometric‑Based Metrics of Canopy Cover

The grid cover index (GCI) introduced by Korhonen 
et al. [21] uses the vertical projection of cover points 
defined across a 2D binary grid. Following Korhonen 
et al. [21] a binary 0.1 m resolution grid was created 
within cells containing a canopy return given a value of 
1, whilst others were labeled with 0. Morphological clos-
ing is then applied to the canopy map to remove small 
gaps in the data. This is followed by morphological open-
ing which allows any unnecessary detail and outliers to 
be removed. Cover is then calculated as the percentage 
of 1 m cells within each 10 m grid cell area containing 
labeled with a 1.

The alpha cover index (ACI) applied to ALS data [34] 
uses alpha shapes to map the crown area based on the 2D 
projection of crown strikes. The parameter � is used to tune 
the "tightness" of the shape around the points. For a very 

(1)FCI =

∑
Singlecanopy +

∑
Firstcanopy∑

Singleall +
∑

Firstall
.

(2)LCI =

∑
Singlecanopy +

∑
Lastcanopy∑

Singleall +
∑

Lastall
.

(3)

SCI = 1 −

∑
Singleground + 0.5(

∑
Firstground +

∑
Lastground)∑

Singleall + 0.5(
∑

Firstall +
∑

Lastall)
.

large value of � , the shape is equivalent to the convex hull. 
For a very small value of � , the �-shape forms holes and 
pockets with the shape clustering around the original points. 
Cover is then calculated as the percentage of area of the 
10 m grid cell covered by an alpha shape. To accurately 
capture the variations within the crown and eliminate any 
unnecessary noise, � was chosen as a function of the point 
density. As per the recommendation from [34], value of � 
was chosen to be 1 m and 0.5 m for this study. ACI1 repre-
sents alpha cover index with � as 1 m and ACI05 represents 
alpha cover index with � as 0.5 m.

2.5 � Ground Estimates of Canopy Cover

The ground estimates of canopy cover were downloaded 
from the TERN data portal [49] and compared with cover 
estimates derived from ALS data. These estimates were col-
lected following the TERN supersite monitoring protocols 
in May 2012.

The ground estimates of canopy cover were obtained 
using Digital Canopy Photography method (DCP) [50, 51] 
for a 100 by 100 m area immediately to the North-West of 
the flux tower present in the study area. Photographs were 
taken at the intercepts along ten 100 m east-west transects 
with transects at 10 m North-South intervals [49]. This 
approach was used to characterise canopy cover for a 1 ha 
area. At each point a single upward looking digital image 
was captured. The image was then classified into canopy and 
sky pixels. Sky pixels were further classified as those occur-
ring between crown elements and those occurring outside of 
the crown area. Canopy cover (fc) is defined as the fraction 
of canopy pixels including sky pixels that lie in between 
small crown gaps [50].

Ground observation data did not contain accurate loca-
tion coordinates therefore preventing direct comparison 
with ALS data. In lieu of direct comparison, a comparison 
between the properties of the population of canopy cover 
estimates from the field with ALS based estimates within 
the 140 × 140 m area directly North-West of the flux tower. 
A two-sample t-test was then made between each set of  
ALS metrics and the ground estimates to determine if mean 
of ground estimates is same or significantly different from 
mean of each ALS metrics.

2.6 � Fire Spread Model

Fire behaviour in semi-arid Mallee-heath is modelled by an 
empirical Mallee-heath fire spread model developed by Cruz 
et al. [1]. This model predicts the likelihood of fire propaga-
tion, type of fire (surface or crown fire), and forward rate 
of spread. The probability of successful fire spread ( Ps ) is 
given by
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where U10 is 10-m wind speed (kmh−1 ), Covo is the canopy 
cover percentage and MC is the moisture content (%) of the 
dead litter fuels given by [1]:

where RH is the relative humidity (%), T is the air tempera-
ture ( ◦ C) and Δ is solar radiation variable. Note Eq. (5) only 
holds during daytime hours ( Δ = 1 ) and 0 otherwise.

If Ps < 0.5 , then fire will be self-extinguishing. If 
Ps ≥ 0.5 , then fire will result in sustained fire spread and for  
spreading fires, the probability of crown fire propagation 
( Pc ) is given by

Rather than assuming the fire is a surface or crown, the 
model uses a probability of crowning, Pc , to determine over-
all rate of spread, R, (mmin−1 ) is given by

where Ṙs and Ṙc are rates of spread of surface fire and crown 
fire respectively. Ṙs (mmin−1 ) is given by

where H is canopy height (m) and Rc (mmin−1 ) is given by

Noting that from Eq. (8) the rate of spread of surface fire is 
independent of canopy cover.

2.7 � Fire Spread Modelling Environment 
and Parameterisation

The ‘Spark’ wildfire simulation framework was used for 
modelling hypothetical wildfires over our study area using 
the Mallee-heath rate-of-spread model [52]. Multiple  
rate-of-spread models can be implemented in Spark using 
user-defined scripts based on the different fuel types and 
conditions required for each model [53]. The framework 
supports standard geospatial data types for fuel layers and 
meteorological conditions. The system requires the ignition 
conditions of the fire in the form of points, lines or polygons.  
Typically, topography information is also required as the 
speed of a fire is dependent on the slope of the terrain.  
However, topography was held constant for the simulations 
as the focus of this study is to determine the impact of can-
opy cover calculations on the fire spread model.

(4)

Ps =
1

1 + exp[−(14.62 + 0.207U10 − 1.872MC − 0.304Covo)]
,

(5)MC = 4.79 + 0.173RH − 0.1(T − 25) − Δ(0.027RH),

(6)Pc =
1

1 + exp[−(11.138 + 1.4054U10 − 3.4217MC)]
.

(7)R = (1 − Pc)Ṙs + PcṘc,

(8)Ṙs = 3.337 U10 exp(−0.1284 MC) H−0.7073,

(9)Ṙc = 9.5751 U10 exp(−0.1795 MC) (Covo∕100)
0.3589.

The area for which the fire could be modelled was lim-
ited by the extent of the airborne ALS capture (5 km × 5 
km). As such, and in order to remove any spatial bias in 
the fuel distribution pattern (e.g. horizontal striations), 10 
ignition points were distributed evenly (at 36◦ intervals) 
around the edges of a 1.5 km radius circle centred within 
the data capture as shown in Fig. 1. At each ignition point, 
the wind direction was set such that the fire would pass 
through the centre of the study area. This allowed for a 
model duration of 1 h and ensured each simulated fire 
extent remained within the footprint of the ALS data. Fur-
thermore, this also served to remove any directional bias 
in the results as the fires originated from different start 
points spread equidistant around the study area for each 
of the 10 simulations.

To determine the effect of cover calculations on fire 
spread model, other parameters such as weather and topog-
raphy affecting fire propagation, were held constant for each 
simulation. Empirical models developed from experimental 
data with sound functional forms have been shown to work 
well for wildfire situations where the environmental drivers 
are well over the range of the experimental datasets [54]. 
In this study we simulate fire under following fire weather 
conditions: wind speed was set to 30 kmh−1 , temperature was 
fixed at 25 ◦ C and relative humidity was set to 10%. Under 
these conditions fire can transition from surface to crown in 
this fuel type [1].

The Spark simulations were run for each canopy cover 
grid as derived from each of the different canopy cover 
calculation methods, at each ignition point. The raster reso-
lution of the model simulations was set to 1 m × 1 m, with 
all input and output raster layers resampled to this resolu-
tion. Once the simulated fire reached the cell’s centroid, 
the cell was considered ignited (and burned by the end of 
the simulation) and the current time was recorded as the 
arrival time of fire at that particular location. After the 
simulation was complete, isochrones denoting fire spread 
over time were generated.

2.8 � Fire Behaviour Metrics

For this study, all simulations were summarised by the 
total area burned by fire and the unburned area ratio. Area 
burned is a commonly used metric when fire behaviour and 
effects are being examined. It has been used in address-
ing many ecological and Earth science challenges, includ-
ing characterising wildfires and evaluating their impacts 
[55–57]. However, area alone often ignores the existence 
of unburned area within a fire perimeter (depending on the 
level of detail in the observational data); discriminating 
between burned/unburned area is an important component 
of the burn mosaic [58–60]. The unburned area ratio is 
defined as the ratio between the unburned area within the 
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fire perimeter and the total area of the fire perimeter. The 
fire perimeter was defined by an alpha shape (alpha=1.5) 
created around the centre point of all burned cells and 
includes unburned areas inside this polygon. The area 
burned was estimated as the summed area of the grid cells 
burned at the end of the simulation.

For operationally predictive fire behaviour model, it 
is assumed that fuels are uniform and continuous for the 
period of application of the model [61]. A simulation 
was conducted for a homogeneous fuel distribution, in 
which canopy cover percentage and height were assumed 
to be constant. The canopy cover varies between coastal 
shrublands to sparse heathlands (10–30%) in semi-arid 
environments Cruz et al. [61]. Furthermore, whilst eval-
uating the impact of wind speed and moisture content 
on the likelihood of fire prediction in semi-arid Mallee-
heath model, Cruz et al. [61] assumed a canopy cover 
of 33%. With this in mind, canopy cover for homoge-
neous fuel distribution case was fixed at 30%. Canopy 
height was calculated by taking the average of canopy 
heights calculated as the 95th percentile of the AGH of 
the non-ground points falling within 10-m cell. These 
values have been selected to be representative of the fuel 
conditions only. The outcome of this simulation (referred 

to as ‘hom’ throughout this study) serves as a point of 
inter-comparison between the outcomes of simulations 
using the different cover methods.

The Jaccard Similarity Index (J) was used to compare 
the area burned for each simulation with area burned 
for homogeneous landscape simulation. Several studies 
have used J to compare actual fire events with simulated 
fires [62]. This index simply expresses the proportion of 
burned cells common between two fire simulations and 
is given by

where A = number of grid cells burned in simulations run-
ning with different cover methods and B = number of grid 
cells burned in homogeneous landscape.

3 � Results

3.1 � Canopy Cover Estimates

In comparison to the ground based field estimates only the 
ACI1 method was found to produce similar estimates within 

(10)Jaccard Similarity Index (J) =
|A ∩ B|
|A ∪ B|

,

Fig. 3   Boxplot showing canopy cover estimates obtained from different cover methods for (a) 5 km × 5 km study area and (b) 1 ha area. Canopy 
cover estimates from ground estimates are shown as fc 

Table 1   Summary statistics 
from the 10 simulations of 
canopy cover percentage and 
coefficient of correlation for 
the different methods to derive 
canopy cover from ALS data for 
5 km × 5 km study area

Canopy cover Cover (%) Pearson correlation coefficient t-test

methods � � GCI ACI1 ACI05 FCI LCI SCI p-value

GCI 60.26 21.66 1 0.93 0.88 0.85 0.46 0.78 < 0.01
ACI1 43.85 21.85 0.93 1 0.97 0.94 0.53 0.83 < 0.29
ACI05 34.93 18.48 0.88 0.97 1 0.97 0.59 0.85 < 0.01
FCI 21.5 12.64 0.85 0.94 0.97 1 0.69 0.89 < 0.01
LCI 2.77 2.89 0.46 0.53 0.59 0.69 1 0.73 < 0.01
SCI 16.34 7.58 0.78 0.83 0.85 0.89 0.73 1 < 0.01
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Fig. 4   Canopy cover maps produced from ALS data at 10 m grid resolution over 5 km × 5 km study area. Parts (d, e, f, k, l and m) show the 
zoomed-in portion (white rectangle) of a GCI, b ACI1, c ACI05, h FCI, i SCI and j LCI cover estimates obtained from different algorithms
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the 1 ha area (at a 5% significance level) (Fig. 3b). Within 
this area, the mean of the ground estimates of canopy cover, 
fc, was 54% ± 24%. In comparison, ACI1 estimated a mean 
cover of 51% ± 16%. The null hypothesis of the two-sample 
t-test at the 5% significance level was rejected for all ALS 
based cover calculation approaches. The grid-based approach 
overestimated the mean canopy cover in 1 ha area, whilst 
ACI05 and the return-based approaches underestimated 
canopy cover (Fig. 3b).

The 5 methods for deriving canopy cover from ALS data 
produced different estimates across the 5 km × 5 km study 
area (Fig. 3a). Geometric-based canopy cover estimates were 
found to be greater than the return-based canopy cover esti-
mates. With the GCI metric showing the highest mean cover 
estimate of 60.26% and the LCI metric shows the smallest 
mean cover estimate of 2.77% (Fig. 3). Geometric-based 
methods also show greater variation in cover estimates when 
compared to the return-based methods (reported in Table 1). 
The GCI is the only metric which reported maximum canopy 
cover percent (100%) (i.e. cells covered completely with 
vegetation). The canopy cover estimates from the LCI metric 
were found to be least correlated with other cover metrics. 
The correlation between different cover metrics with each 
other is reported in Table 1.

Despite the differences in magnitude of estimated cover 
the spatial distribution of canopy cover calculated using 

different methods is similar, as shown in Fig. 4. Fire bar-
riers such as roads are distinguishable in geometric-based 
methods (Fig. 4a–c) as compared to return-based methods 
(Fig. 4h–j).

In general, the trends shown by different cover estimates 
for 1ha area and 5 km × 5 km study area are same (Fig. 3a, 
b). Thus, we can hypothesise that these results can be repre-
sentative of vegetation present in this ecosystem.

3.2 � Effect of Canopy Cover Methods on Fire Simulations

The predicted fires from the model were affected by the 
methods used to calculate canopy cover estimates. Simula-
tions running with return-based cover estimates show slow 
progression of fire as compared to the simulations running 
with geometric-based cover estimates. In general, simula-
tions running with single canopy cover method and for all 
ignition points reported similar predictions irrespective 
of the wind direction and ignition point combination as 
shown in Fig. 1. This was observed for each of the canopy 
cover estimate method, and ignition point and wind direc-
tion combinations.

Figure 5 shows the progression of the fire over time for 
the canopy cover grids calculated using different methods 
at ignition point 1. Result (total area burned and unburned 
area ratio within the fire perimeter) from this ignition point 

Fig. 5   Isochrones and arrival 
time plot for simulations from 
fire spread model at ignition 
point 1 using different cover 
methods over a duration of 1 h. 
Black curve in each plot shows 
the fire simulated for a constant 
landscape. Whole area within 
black ellipse was burned. Grey 
contours shown in each plot 
represent the isochrones at 
6-min intervals (10 increments 
in total for each plot). North 
arrow shows the actual north 
direction

Table 2   Summary results 
showing Mean ( � ) and standard 
deviation ( � ) of burned area, 
unburned area ratio and Jaccard 
similarity index (J) for different 
cover methods aggregated for 
all ignition points

Canopy cover burned area (ha) Unburned area ratio (%) Jaccard Index (J)

methods � � � � � �

GCI 419.60 50.71 3.12 0.5 0.70 0.026
ACI1 340.66 33.15 3.91 0.60 0.84 0.060
ACI05 294.16 25.70 4.05 0.69 0.83 0.056
FCI 215.70 13.62 4.06 1.1 0.55 0.05
SCI 184.71 16.27 2.84 0.63 0.65 0.045
LCI 29.89 5.78 13.31 1.83 0.09 0.018
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follows the similar trend to all other ignition points figures  
provided in the Appendix. The patterns of burned area 
indicated in Fig. 5 are similar across all methods except 
LCI. A similar pattern for ratio of unburned area to total 
area in fire perimeter was observed. Notably each method 
showed the roads within the study area (seen as a linear 
feature at approximately half way through the burn) acting 
to slow the fire and resulting in areas being unburned. In 
return-based methods, the road appears to have a greater 
effect on the FCI method, despite a similar burned area 
estimate to that of SCI for all ignition points (#1 and igni-
tion points in the Appendix).

The progression of a sustained surface fire was 
observed for simulations running with geometric-based 
cover estimates and the return-based methods FCI and SCI 
at all ignition points (Fig. 5 and figures in the Appen-
dix). This is also evident in the probability maps shown 
in Fig. 6. These maps were generated using Eq. (4) and 
show the probability of surface fire for each cover method. 
Figure 6 shows that more than 80% of the area is predicted 
to carry (probability > 50%) a surface fire in simulations 
running using geometric-based cover estimates and the 
return-based methods FCI and SCI. Such conditions could 

result in a transition of surface fire to crown fires in this 
fuel type [1].

Simulations running with return-based cover estimates also 
show progression of sustained surface fire in some areas except 
the one running with LCI cover estimates (Fig. 5). Model simu-
lations running with LCI cover estimates result in slowing down 
or extinguishing of the fire spread. Failure to spread surface fire 
using LCI cover estimates is evident in probability maps (Fig. 6j) 
where only 8% of the area is predicted for surface fire.

From Table 2, it can be seen that J (= 0.84) is highest for 
simulations running with ACI1 metric, indicating that fires 
simulated with ACI1 metric become increasingly similar to 
the fire simulated for homogeneous landscape. Fire simula-
tions with the GCI approach result in a greater burn area and 
a lower J (Table 2). Whilst all return-based methods result 
in a lower burn area also resulting in a lower value of J. In 
general, once the fire had reached the same extent across the 
methods the shape of the burned area was similar, meaning 
that the interpretation of the Jaccard Index mostly relates to 
area burned in the simulated time.

3.3 � Modelled Burned Area

The total area simulated to be burned by fire is strongly affected 
by the method used to calculate canopy cover estimates. This 
is seen in Fig. 7 which shows the total area burned by fire over  
a period of 60 min for each canopy cover grid obtained from 
different methods (also reported in Table 2) aggregated for all 
10 ignition points, where the shading shows the 95% confidence 
interval. Simulations running with return-based cover estimates 

Fig. 6   Maps showing probability of surface fire over 5 km × 5 km study 
area. Zoomed-in portion (white rectangle) in parts (d, e, f, k, l and m) 
show probability of surface fire predicted from Mallee-heath fire spread 
model by using cover estimates obtained from a GCI, b ACI1, c ACI05, 
h FCI, i SCI and j LCI methods. Blue represent ‘self extinguishing/
no-go’, white represent transition from self-extinguishing to sustained 
fire spread and red represent sustained fire spread conditions

◂

Fig. 7   Area burned by fire 
simulated with canopy cover 
percentage grids obtained from 
different canopy cover methods 
over an hour. ‘hom’ shows area 
burned by fire for homogeneous 
landscape. Shaded area shows 
95% confidence interval for 
total burned area
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show less area covered by progression of fire as compared to 
the simulations run with geometric-based cover estimates. The 
cover estimates based on grid-based method show maximum 
mean area (419.60 ha) burned by fire and cover estimates based 
on LCI method show minimum mean area (29.89 ha) burned 
by fire. The confidence band is narrow for return-based cover 
estimates as compared to geometric-based cover estimates, 
although width of the band, representing the variation in the 
burned area, increases with time for all cover calculation algo-
rithms. The area burned by fire simulated with ACI1 cover 
estimates is close to the area burned by a fire for homogeneous 
landscape (Fig. 7).

3.4 � Unburned Area Ratio

The ratio of unburned area to total area in fire perimeter, 
aggregated for all of the ignition points (also reported in 
Table 2) is strongly affected by different cover calculation 
algorithms (Fig. 8). Simulations running with LCI method 
show maximum mean unburned area ratio and it could be 
attributed to the fact that roads were not encountered due 
to the low modelled fire extent. This ratio shows minimum 
variation in simulations running with grid-based methods. 
These minimum variations could be linked to the fact that 
irrespective of wind direction, simulations running with GCI 
method show maximum burned area for all ignition points.

4 � Discussion

Recent studies have shown the importance of incorporating 
high spatial resolution fuel datasets [43] and high-resolution 
fuel fidelity and heterogeneity information [4] to capture 

local features such as fire and fuel break that improve fire 
behaviour forecasts. However, to further improve prediction 
of fire behaviour it is important to understand how the preci-
sion and accuracy of different methods to estimate fuel input 
such as canopy cover impact the output from the fire behav-
iour models. In this study, we used five different published 
methods for deriving canopy cover estimates from ALS data. 
Our results indicate that different methods produce differ-
ent canopy cover estimates in the Mallee-heath environ-
ment and in turn affect the outcomes of fire simulations. 
Primarily, estimates of canopy cover from return-based 
algorithms were found to be lower than the estimates from 
geometric-based algorithms. However, geometric-based esti-
mates, particularly using the ACI1 approach, were found  
to be more similar to field based estimates of canopy cover 
in comparison to the return-based estimates. These results 
are consistent with results found in literature in other forest 
types [21, 34].

The geometric-based methods produce canopy cover 
estimates based on the 3D vegetation geometry represented 
within the point cloud and take into account all returns above 
1.35 m rather than the complex interactions between the 
laser and the canopy. These methods do, however, make use 
of parameters which can result in different canopy cover 
estimates. These parameters are selected to account for vari-
ations in the pulse density of the ALS data. For example, 
a lower value of � in the ACI method will result in more 
canopy gaps and therefore a lower estimate of canopy cover. 
This will be exacerbated when the pulse density of the ALS 
data is lower than the chosen value of � . In this case using 
an alpha value of 1 provided the similar estimates of cover 
to an infield digital canopy photography approach. Similarly, 
the GCI method relies on the resolution of the initial grid (in 
this case 1 × 1 m) and the size and shape of the kernel used 
in the opening and closing process. In this case, gaps which 
could be true canopy gaps or a result of low pulse density, 
are often neglected if they approach the grid size.

Of all the return-based canopy cover methods, the LCI 
method produces the lowest canopy cover estimates. As for 
all canopy cover metrics derived from ALS, it is a function 
of the complex interactions between canopy properties (i.e. 
canopy vegetation density, canopy length) and how returns 
are triggered in the scanner (i.e. the time between returns 
and amount of energy required to trigger a return). Within 
the Mallee-heath, trees are multi-stemmed and sparsely dis-
tributed across the landscape. The multi-stemmed structure 
of the trees contributes towards a number of last returns, 
with other last returns coming from the hummock and tus-
sock grasses present in this understorey layer, or the ground 
(Fig. 2). In such environments, most of the LiDAR pulses 
are expected to be able to penetrate through the canopy 
and reach the understorey components and/or the ground 
directly without interacting in intermediate or upper canopy 

Fig. 8   Boxplot showing the ratio between the unburned area within 
the fire perimeter and the total area within the fire perimeter for all 
cover methods



577Differences in Canopy Cover Estimations from ALS Data and Their Effect on Fire Prediction﻿	

1 3

components which contribute almost negligible last returns 
in canopy as shown in Fig. 2 within this study explaining the 
low canopy cover estimates produced using LCI.

In landscapes such as the Mallee-heath, which consist 
largely of discontinuous fuels in surface and canopy layers, 
with an absence of elevated and mid-storey fuel layers, the 
method used to compute canopy cover can result in signifi-
cantly different fire behaviours observed, and this is shown 
in results of this study. For example: simulations running 
with LCI based cover estimates show slow progression or 
extinguishing behaviour of fire. This is due to minimum 
canopy cover estimates obtained using the LCI method. In 
simulations running with LCI derived cover layers, local 
features of landscape where fuels are organised in discrete 
clumps separated by bare ground acted as fire breaks, effec-
tively stopping the fire, and resulting in small burned area 
and large unburned area ratio as reported in Table 2. Simula-
tions running with LCI cover estimates do not reach the road 
irrespective of location of ignition points shown in Figs. 9, 
10, 11, 12, 13, 14, 15, 16, and 17 in the Appendix. However, 
simulations running with geometric-based methods show 
progression of sustained surface fire (Fig. 6) with maxi-
mum area burned due to large estimation of canopy cover 
as shown in Fig. 7. GCI cover estimates neglect canopy gaps 
and provide connectivity between fuel elements used in the 
model allowing the fire to propagate. Surface fire spread 
can lead to crown fire propagation and resulting high rates 
of spread. For some ignition points the area covered by the 
fire becomes patchy due to the presence of roads and dis-
continuities in the canopy. These act as breaks in the canopy, 
resulting in unburned areas.

These results have two implications for simulating fires 
in a forest with heterogeneous fuels using empirical model-
ling: (1) there can be significant differences in representing 
the canopy fuel as a homogeneous layer for ecosystems that 
include gaps; and (2) The method used to derive fuel metrics 
for models also influences modelled fire behaviour. In this 
context there is clear indication that cover metrics derived 
from LCI method cause the fire to effectively stop. The sen-
sitivity of fire behaviour models to the variation in canopy 
cover descriptions highlighted in this study suggests the 
need to choose an appropriate method to derive input fuel 
data for fire behaviour models. Substantial gains in model-
ling fire behaviour could be made by incorporating a suit-
able method to derive inputs for fire behaviour models. Such 
developments could increase the application and accuracy 
of data-driven wildfire models [63, 64].

In addition to canopy cover estimates, the Mallee-heath 
empirical fire model requires other inputs that could also be 
derived from ALS data, such as canopy height and terrain. 
Careful consideration of how these metrics are calculated 
may also be required. For example, methods to calculate 
canopy height may include the percentile height, Lorey’s 

height, maximum height and mean height of points within 
an area. These will result in difference in height values both 
in absolute (across the modelled area) and relative (between 
nearby cells) that may also result in modelled differences in 
fire spread. Furthermore, the resolution at which inputs for  
fire models are calculated [43] and terrain properties that 
may affect fire behaviour and predicting models derived 
from geospatial data.

Canopy cover metrics based on different methods have 
been shown in this study to result in different results 
when modelling fire behaviour, and it is conceivable 
that different vegetation types may also produce differ-
ent results depending on the canopy cover method used. 
Consistent documentation of methods is recommended 
to prepare correct inputs for fire simulation models. 
Doing this would enable fire behaviour phenomena to 
be documented and analysed, and ensures that results are 
reproducible. Ideally, the method used to derive the cover 
metrics in a particular environment should be tested with 
field measurements to ensure the accuracy of observa-
tions and their description of structure, before using them 
in a fire behaviour model. The choice of method used 
should be guided by assessing the relative accuracy of 
derived data against reference data collected (using simi-
lar the infield approaches which were employed to meas-
ure the variable when developing the empirical model). 
For example, if a model was developed based on field 
measures of LAI or angular canopy cover, using vertical 
canopy cover derived from the ALS data as an input to 
fire model will not result in consistent results. As such it 
is important that the methods used to collect and describe 
fuel when developing a model are fully described and 
remotely sensed metrics are related to that physical attrib-
ute before using them as input into the model.

5 � Conclusions

Empirical fire models are routinely used in fire manage-
ment operations to predict fire spread and associated risks, 
and these models require fuel data. Whilst remote sens-
ing approaches such as ALS offer opportunities to provide 
input into these models, there are currently a wide variety of 
methods used to derive estimates of fuel attributes from such 
data. This study assessed the impact of different methods to 
calculate canopy cover estimates on the performance of an 
empirical fire behaviour model in a Mallee-heath. Our results 
show that different algorithms to derive cover from ALS data 
produce different canopy cover estimates and, in turn, differ-
ent fire behaviour predictions (including extent and pattern). 
Simulations running with geometric-based cover estimates 
resulted in higher estimates of burned area and maximum 
number of unburned patches as compared to simulations 
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running with return-based cover estimates. Grid-based cover 
estimates neglect canopy gaps and provide connectivity 
between fuel elements used in the model allowing the fire to 
propagate. When the canopy cover estimate was lower (for 
example in using the return-based approach) features such as 
gaps and patchy data in the fuel led to the predicted fire simu-
lations being slowed or stopped. These results demonstrate 
that methods for determining fuel inputs into fire behaviour 
models should be chosen based on the properties of the data, 
the vegetation structure present in an area and how the input 
was determined in developing the model. Without this level 
of rigour, the use of remote sensing data as inputs into a fire 

behaviour model will likely not provide the expected results 
or performance from that model.

Appendix

Isochrone and arrival time plots showing simulated fire 
spread computed from the different cover methods for 10 dif-
ferent ignition points for the duration of 1 h. The black poly-
gon in each plot represents the simulated area burned for a 
landscape with constant canopy cover. Grey linework shown  
in each plot represents the isochrones at 6-min intervals.

Fig. 9   Isochrones and arrival 
time plot for simulations from 
fire spread model at ignition 
point 2 using different cover 
methods over a duration of 1 h. 
Black curve in each plot shows 
the fire simulated for a constant 
landscape. Whole area within 
black ellipse was burned. Grey 
contours shown in each plot 
represent the isochrones at 
6-min intervals (10 increments 
in total for each plot). North 
arrow shows the actual north 
direction

Fig. 10   Isochrones and arrival 
time plot for simulations from 
fire spread model at ignition 
point 3 using different cover 
methods over a duration of 1 h. 
Black curve in each plot shows 
the fire simulated for a constant 
landscape. Whole area within 
black ellipse was burned. Grey 
contours shown in each plot 
represent the isochrones at 
6-min intervals (10 increments 
in total for each plot). North 
arrow shows the actual north 
direction
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Fig. 11   Isochrones and arrival 
time plot for simulations from 
fire spread model at ignition 
point 4 using different cover 
methods over a duration of 1 h. 
Black curve in each plot shows 
the fire simulated for a constant 
landscape. Whole area within 
black ellipse was burned. Grey 
contours shown in each plot 
represent the isochrones at 
6-min intervals (10 increments 
in total for each plot). North 
arrow shows the actual north 
direction

Fig. 12   Isochrones and arrival 
time plot for simulations from 
fire spread model at ignition 
point 5 using different cover 
methods over a duration of 1 h. 
Black curve in each plot shows 
the fire simulated for a constant 
landscape. Whole area within 
black ellipse was burned. Grey 
contours shown in each plot 
represent the isochrones at 
6-min intervals (10 increments 
in total for each plot). North 
arrow shows the actual north 
direction

Fig. 13   Isochrones and arrival 
time plot for simulations from 
fire spread model at ignition 
point 6 using different cover 
methods over a duration of 1 h. 
Black curve in each plot shows 
the fire simulated for a constant 
landscape. Whole area within 
black ellipse was burned. Grey 
contours shown in each plot 
represent the isochrones at 
6-min intervals (10 increments 
in total for each plot). North 
arrow shows the actual north 
direction
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Fig. 14   Isochrones and arrival 
time plot for simulations from 
fire spread model at ignition 
point 7 using different cover 
methods over a duration of 1 h. 
Black curve in each plot shows 
the fire simulated for a constant 
landscape. Whole area within 
black ellipse was burned. Grey 
contours shown in each plot  
represent the isochrones at 
6-min intervals (10 increments 
in total for each plot). North 
arrow shows the actual north 
direction

Fig. 15   Isochrones and arrival 
time plot for simulations from 
fire spread model at ignition 
point 8 using different cover 
methods over a duration of 1 h. 
Black curve in each plot shows 
the fire simulated for a constant 
landscape. Whole area within 
black ellipse was burned. Grey 
contours shown in each plot  
represent the isochrones at 
6-min intervals (10 increments 
in total for each plot). North 
arrow shows the actual north 
direction

Fig. 16   Isochrones and arrival 
time plot for simulations from 
fire spread model at ignition 
point 9 using different cover 
methods over a duration of 1 h. 
Black curve in each plot shows 
the fire simulated for a constant 
landscape. Whole area within 
black ellipse was burned. Grey 
contours shown in each plot  
represent the isochrones at 
6-min intervals (10 increments 
in total for each plot). North 
arrow shows the actual north 
direction
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