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Abstract
Extreme value theory has been widely applied to weather variables, and rigorous approaches have also been employed to 
investigate the seasonality and dependencies to extreme values of weather variables. To investigate the seasonal and station 
effects of daily maximum and minimum temperatures data, station and season specific effects model have been introduced 
in the parameters of general Pareto distribution. Then, the seasonality and station variations that are inherent in the data 
under consideration were assessed applying mainly the Bayesian approach. Non-informative and informative priors were 
used for estimation of the parameters. The seasonal and station effects parameters of the general Pareto distribution were 
estimated through the introduced models, allowing the sharing of information between stations and seasons. Simulation study 
was also carried out to investigate the precision of estimators for the GPD parameters with and without the effects, station 
and seasonal, to simulated data. The models employed improved precision of the station and seasonal effects parameter 
estimators at individual stations and in individual seasons. The study also depicted the significance of introducing seasonal 
and station variabilities when modelling extreme values using univariate method, which allows information to be pooled 
across stations and seasons. Results obtained in this study have essential scientific and practical applications. In an extreme 
temperature setting, designing a level without taking the station and seasonal effects into account could lead to significant 
under-protection. Hence, it is important to consider what is expected to be colder or warmer than usual by identifying the 
effects of stations and seasons in the analysis. This would benefit greatly local governments, researchers and farmers, which 
they can use to suggest adaptation and mitigation steps to improve resilience.
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1 � Background

A significant body of literatures have demonstrated that 
air and water temperatures increases globally over the past 
decades [1, 2]. Various studies have also showed similar 
trends in South Africa [3–8]. Much evidence exists for an 
increase in the variability of rainfall, as well as the number 
and size of extreme wet and dry spells in several parts of 
the southern African region [5, 9–12]. Climate change and 

global warming with its associated extreme temperatures 
characterised by heat and cold waves pose serious economic 
and health challenges. Increasing temperatures and changing 
weather conditions affect the heating and cooling systems 
consequently leading to increased electricity demand for air 
conditioning in summer and heating systems in winter [8].

Historical data have shown that temperature has been 
increasing over the past decades. According to Sunday times 
[13], Vioolsdrif, a village in the Northern Cape of South 
Africa, has recorded the highest daily maximum tempera-
ture of 46 ◦ C in 1995 and then it broke its own new record 
again for the highest temperature in the country reaching 
53.2 ◦ C in late 2019. Temperature extremes, which have 
been known to be caused by an increase in the concentra-
tion of greenhouse gases, are natural phenomena that affect 
our socio-economic activities. Extremely high temperatures 
also cause drought in the agricultural sector resulting in eco-
nomic hardships and loss of human lives and livestock [14].
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The weather conditions like extreme temperature have 
direct consequences on agricultural and energy generation 
sectors in South Africa. Moreover, it is highly expected 
that global temperatures will continue to rise for decades 
to come [15]. The rise could be largely due to greenhouse 
gases produced by human activities and the temperature 
rise has not been, and will not be, uniform or smooth 
across the country or over time [16]. For this reason, a 
realistic assessment of future behaviour of extreme tem-
peratures is fundamental in order to understand the chal-
lenges ahead. Most importantly, building future situations 
will provide important input for farmers, researchers and 
local governments, who can use this information to pro-
pose adaptation and mitigation measures to increase resil-
ience. In other words, appropriate policies and plans can 
be drawn to prepare the stake holders for changes due to 
extreme temperatures.

1.1 � Related Literature Reviews

Numerous studies have been conducted to investigate the 
non-stationarity and temporal dependence of extreme tem-
perature data in South Africa and other parts of the world 
e.g. [17–19]. Trends in extreme temperature over Nigeria 
from percentile-based threshold indices were analysed by 
[18]. The study focuses on spatial and temporal trends in 
extreme temperature for selected 21 weather stations in 
Nigeria over the years 1971–2012. It was concluded in [18] 
that although a majority of the stations have significant 
trends on warm days and warm nights, the annual trend is 
greatest on warm nights. The study done in Malaysia, using 
extreme value distribution to maximum temperature data 
of Penang weather station, suggested that the best model 
was one with a location parameter that increased linearly 
with time [17].

Extreme temperature was considered by [20] to see the 
influence on daily electricity demand in South Africa. The 
study established temperature as an important variable in 
explaining electricity demand; however, the impact varied 
over seasons. The empirical results showed that electricity 
demand in South Africa is highly sensitive to cold tempera-
tures. Nemukula and Sigauke [19] investigated the general 
Pareto distribution (GPD) modelling of average minimum 
daily temperature in South Africa and obtained that tempera-
ture data exhibit evidence of short-range dependence and 
high seasonality. More recently, the point process modelling 
approach is considered by [21] to model both the frequency 
and intensity rates of the occurrence of extreme temperature 
data. The results of the study based on the data for the years 
2000–2010 established temperature tends to be very high on 
consecutive days, but very hot spells tend not to last longer 
than 1 or 2 days.

Although temperature is an important weather variable in 
the energy and agricultural sector, it is important to study the 
impact of other climate variables such as rainfall and wind 
speed among others. For instance, Mason et al. [9] found 
evidence of significant increases in the annual extreme rain-
fall between 1931 and 1960 and between 1961 and 1990. 
Focusing on the eastern part of South Africa, Groisman et al. 
[12] found no significant change in the annual and summer 
rainfall totals for the region during the period 1906 to 1997, 
but they found a significant increase in the annual frequency 
of very heavy rainfall. Du Plessis and Burger [22] explored 
the magnitude and frequency of short duration rainfall events 
in Western Cape using extreme value distributions to non-
stationary sequences for both event maxima and peak over 
threshold (POT) modelling. They concluded that there was 
no evidence of trends or indications of changes in rainfall 
intensities. Recently, De Waal et al. [23] applied GPD and 
POT methods and their results indicated that the general 
assumption of stationarity in design rainfall assessments 
should be strongly questioned. A study closely related to 
the present study in EVT is that of [24] who used hierarchi-
cal model to hourly extreme wind speed data using GPD 
with non-informative prior. Their findings, which regard 
station and seasonal effects as random, showed that pool-
ing of information improved the precision of GPD model 
parameters fitted to the data.

On the other hand, various authors have reported that 
extreme value distributions have a wide range of appli-
cations to deal with extremal behaviour of weather data 
(see [20, 25–30]). For example, Stein [30] obtained nega-
tive shape parameter estimates for the GEV model fitted 
to annual temperature data at Belvedere Tower station in 
Central Park, New York City. Similarly, Huang et al. [29] 
also obtained negative shape parameter estimates for annual 
temperature data at the USA and some surrounding areas. 
However, negative shape parameter estimates for extreme 
value distributions may lead to underestimation of the most 
extreme quantiles [30]. Hence, the implications of negative 
shape parameter estimate for extreme temperatures should 
be interpreted carefully [29, 30].

1.2 � Motivation

Various literatures used a pragmatic way of bypassing the 
problem of variations and dependence within the extreme 
datasets of environmental variables [8, 21]. More recent 
application to extreme temperature in South Africa is con-
ducted by [8] to model dependences of high extreme tem-
perature and they found strong positive extremal depend-
ences between weather stations considered. Strong extreme 
dependencies were obtained, but the performance gains 
between the inference approaches are conflated with pos-
sible differences due to the inference paradigm used. The 
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occurrences of extreme observations lead to the use of 
extreme value theory (EVT) which comprises a rich family 
of techniques that are suitable for modelling tail behaviour 
using POT approach that is modelled using the GPD [31]. 
Extreme data time series may indicate that the observations 
show seasonal patterns and variations. Dealing with season-
ality is crucial to avoid the limiting argument for an extreme 
value analysis. This is because it can affect dependence on 
extreme events. The principal motivation of this paper is 
therefore to investigate and compare the GPD parameters 
and return levels which are estimated with and without sea-
sonal and station effects, and to show how the effects are 
applied to model dependences of extreme temperatures data 
in South Africa.

The interest in inferences combining the classical extreme 
value modelling with the Bayesian inference is another 
aspect of the current study that is worth emphasising. The 
posterior standard deviations for the parameters provided by 
a Bayesian framework are much easier to interpret than the 
standard deviations in a frequentist approach [32]. Extreme 
temperatures data were analysed applying the Bayesian 
method by various authors (see, e.g., [20, 28, 33]) to evalu-
ate the posterior distributions of the quantiles and the param-
eters of extreme value distributions. These authors showed 
that a Bayesian approach provided a complete representa-
tion over the frequentist approach, giving a full description 
of uncertainty in parameters and quantiles. However, they 
have not considered the seasonal and station effects on the 
prior formulation for their approaches linking with the per-
formances of the estimators. This motivates the authors to 
derive a full description of uncertainty in parameters and 
quantiles of EVDs.

1.3 � Contribution

From practical point of view, the authors attempt to quantify 
observable changes in extreme temperature for seasonally 
clustered months across selected weather stations considered 
in South Africa. Although various studies have been done 
across South Africa as a whole [6–8, 21], no similar stud-
ies have focused on the estimation of seasonal and station 
effects on GPD parameters, allowing the weather stations to 
vary seasonally, in order to determine similarities and differ-
ences in changes within and across stations from the Bayes-
ian perspective. A hierarchical model to hourly extreme 
wind speed data was used to model GPD by [24] using non-
informative prior only. The present study will adopt the GPD 
modelling approach of [24] to cater for seasonal and station 
effects in the minimum and maximum temperatures data. 
Also, the authors extend their approach to create cluster-
ing based on seasonal dependence to the GPD using both 
non-informative and informative priors where the later were 
formulated based on seasonally clustered historical data of 

surrounding weather stations. Therefore, the current study 
focuses on introducing seasonal and station effects to an 
extreme value distribution using the POT approach to under-
stand the behaviour pattern of extreme weather events. This 
quantifies changes due to extreme temperature events and 
helps to detect the changes that have already occurred for 
better preparedness.

1.4 � Paper Organisation

The rest of the paper is organised as follows. In Sect. 2, the 
materials and methods for the analyses are introduced. Some 
exploratory data analyses were also done in this section. 
Models for threshold exceedances are explained briefly in 
Sects. 2.2 and 2.3. In Sect. 2.4, models for seasonal and sta-
tion effects parameters for the GPD are briefly explained. 
The Bayesian estimation approach, which was employed 
using informative and non-informative priors, is explained 
in Sect. 2.5. The results and discussions for the seasonal 
and station effects modelling to daily maximum and mini-
mum temperatures data at selected weather stations across 
South Africa are reported in Sect. 3. In Sect. 3.3, simulated 
data was used to study the properties of estimators for the 
GPD parameters obtained with seasonal and station effects, 
in comparison without the effects. Concluding remarks and 
recommendations for future studies are given in Sect. 4.

2 � Methodology

For this study, the temperature data that correspond to a 
65-year spanning the period from 1949 to 2019 series of 
daily maximum and minimum temperatures measured from 
selected weather stations in South Africa were employed. 
The spatial plots of network of weather stations with their 
respective average minimum and maximum temperatures 
value are given in Fig. 1. Across South Africa, a wide range 
of activities are influenced by differences in seasonality 
and there is also little consensus on the timing of seasonal 
boundaries [34]. For instance, the boxplots in Fig. 2 indicate 
that the observations of extreme daily maximum and mini-
mum temperatures data of the weather stations may exhibit 
seasonal patterns and variations. It is therefore important to 
deal with seasonality, as this may affect the dependence of 
extreme events. The temperature data exhibit strong season-
ality, which changes periodically through time, and appro-
priate measures should be taken to account for this seasonal 
variation in the analyses of extreme weather datasets. The 
most widely adopted technique to deal with data that vary 
seasonally is to partition the data into seasons, within which 
the data are assumed to be homogeneous. These seasons 
might for example be ‘winter’ and ‘summer’, or ‘dry’ and 
‘wet’, where the seasonal variation is clearly understood 
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[34–36]. Therefore, in this paper the daily temperature data 
are statistically classified to create seasonal divisions of the 
daily maximum and minimum temperatures data.

A Euclidean cluster analysis was performed applying the 
Ward’s D method using cluster packages in R and the 
seasonal classifications in months for the weather stations 

Fig. 1   Spatial plots of network of weather stations with their respective average minimum and maximum temperatures value
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Fig. 2   Boxplots of daily minimum and maximum temperatures data for each month
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considered in this study are provided in Table 1. For the 
seasonal classifications, Euclidean cluster analysis was 
initially supervised at four seasonal divides. The seasonal 
divides are then validated by using average silhouette width 
(ASW) computation. The ASW value gauges the strength 
of within-group homogeneity and the degree of confidence 
in between-group distances. If the cluster was not signifi-
cant, two, three, five, and six seasonal divides were utilised 
sequentially until it was significant [34]. Two seasonal 
periods were selected for analysis, winter months and sum-
mer months for the minimum temperature and maximum 
temperature data, respectively. Statistically classified sea-
sonal periods are summer months that include November, 
December, January, February, March and April while winter 
months that include June, July, August and September for 
most of the weather stations. However, the seasonal classifi-
cations for the majority of the stations include from Decem-
ber to March for the maximum temperature and from June 
to August for the minimum temperature data.

2.1 � Methods for Extreme Events

To analyse the extreme values of temperature data statisti-
cally the POT method was used, where daily values above 
a pre-determined threshold value were modelled by GPD 
[37]. The GPD and estimation methods of its parameters 
are presented next.

2.2 � The Peak over Threshold Approach

Commonly used limit distributions for modelling extremal 
events can be summarised using the GPD to model high 

threshold exceedances [37, 38]. Suppose y1, y2,… is a 
sequence of independent and identically distributed (IID) 
random variables with a common distribution F(.). Let y 
denote an arbitrary term of the sequence. Then, for suffi-
ciently high threshold u, the distribution function of y condi-
tion on u, i.e. F(y|u) = P(y ≤ y − u|y > u) , follows approxi-
mately a GPD whose distribution function is of the form

where 𝜉(y − u)∕𝜎 > 0 provided 𝜎 > 0 and � are the scale 
and shape parameters, respectively, and y ∈ [0,∞) for 
� ≤ 0 while y ∈ [0, �∕�) for 𝜉 > 0  [39, 40]. The number 
of observations that exceed the threshold y − u is referred 
to as exceedances. The shape parameter � determines the 
nature of the tail of GPD. The GPD in expression (1) for 
� = 0 is an exponential distribution with parameter 1∕� (for 
limit � → 0 ). Heavy tailed Pareto distribution is attained 
when 𝜉 > 0 , while the Beta distribution with upper bound 
is attained when 𝜉 < 0 . The asymptotic results for the GPD 
depend on the choice of threshold value. The threshold 
should be high enough so that the assumptions for GPD are 
valid, but it also needs to be low enough so that there are 
sufficient data to make a good fit [41].

2.3 � Estimation of the Parameters and the Quantiles

The scale and shape parameter of the GPD in expression 
(1) can be estimated from a time series of the exceedances. 

(1)G(y;�, �) =

⎧
⎪⎨⎪⎩

1 −
�
1 + �

(y−u)

�

�−1∕�

, � ≠ 0

1 − exp
�
−

(y−u)

�

�
, � = 0,

Table 1   Seasonally clustered 
daily maximum and minimum 
temperatures data

Seasonal clusters

Stations Latitude Longitude Minimum Temp Max temp

Bisho -32.896 27.287 Jun-july-Aug-Sept Nov-Dec-Jan-Feb-Mar
Durban -29.965 30.947 Jun-july-Aug Dec-Jan-Feb-Mar
East London -33.030 27.800 Jun-july-Aug Dec-Jan-Feb-Mar
Fourt Beaufort -32.788 26.629 Jun-july-Aug Dec-Jan-Feb-Mar
George -34.000 22.383 Jun-july-Aug-Sept Dec-Jan-Feb-Mar
Hermanus -34.433 19.217 Jun-july-Aug Nov-Dec-Jan-Feb-Mar
Langebaan -34.433 19.217 Jun-july-Aug-Sept Nov-Dec-Jan-Feb-Mar-Apr
Paarl -33.720 18.970 Jun-july-Aug Nov-Dec-Jan-Feb-Mar-Apr
Plettenberg -34.090 23.330 Jun-july-Aug-Sept Nov-Dec-Jan-Feb-Mar
PortVille -33.010 18.980 Jun-july-Aug-Sept Nov-Dec-Jan-Feb-Mar
Prins Albertina -33.170 22.030 Jun-july-Aug Nov-Dec-Jan-Feb-Mar
Grahamstown -33.290 26.500 Jun-july-Aug Nov-Dec-Jan-Feb-Mar
Pietermaritzburg -29.628 30.403 Jun-july-Aug Nov-Dec-Jan-Feb-Mar-Apr
Joubertina -33.820 23.900 Jun-july-Aug Nov-Dec-Jan-Feb-Mar-Apr
Port Edward -31.070 30.230 Jun-july-Aug Dec-Jan-Feb-Mar-Apr
Richards bay -28.780 32.020 Jun-july-Aug Nov-Dec-Jan-Feb-Mar-Apr
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Several estimators are available; the most popular one is the 
maximum likelihood estimator (MLE) [42], which can be 
straightforwardly extended to the non-stationary case and 
thus is the method of choice for parameter estimation in 
this paper. The product of the probability density functions 
g(y; �, �) can be obtained by differentiating the expression (1) 
with respect to y, and given as

The joint likelihood, is therefore given by

As a function of the unknown parameters � and � with 
given observations yi , the above joint likelihood is not a 
probability density function itself, but proportional to the 
probability of observing a set of exceedances yi, i = 1, ...,m 
given the parameters � and � . The MLE for the unknown 
scale and shape parameters can now be obtained by max-
imising the likelihood L(�, �; yi, ..., ym):

In general, expression (4) can be solved by numeri-
cal optimisation, e.g. using a quasi-Newton method, to 
estimate the parameters. The standard errors of MLEs 
can be approximated asymptotically using the inverse of 
information matrix [43].

Once the parameter of the GPDs is obtained, the 
interest is on the application of the fitted model to esti-
mate other quantities. For example, prediction of future 
extreme temperature is important to make a proper plan 
to minimise its negative impact. The return level for GPD 
associated with the return period of 1/p, denoted by yp 
where 1 − G(y; �, �) = 1∕p and 0 < p < 1 , is obtained by 
inverting expression (1) [37] and is given by

The return level dp is therefore a quantile of the GPD 
corresponding to the upper tail probability p.

2.4 � Station and Seasonal Effects for the Parameters 
of Generalised Pareto Distribution

To allow the GPD scale, � and shape, � parameters vary 
across stations and seasons, station and seasonal effects were 
introduced in expression (1). Here, also the assumption was 

(2)g(y; �, �) =

⎧
⎪⎨⎪⎩

1

�

�
1 + �

(y−u)

�

�−
1

�
− 1

, � ≠ 0

1

�
exp

�
−

(y−u)

�

�
, � = 0.

(3)L(�, �; yi, ..., ym) =

m∏
i= 1

g(yi;�, �).

(4)𝜃̂ = (𝜎̂, 𝜉) = argmax
𝜎,𝜉

L(𝜎, 𝜉; yi, ..., ym).

(5)dp =

{
u +

�

�

[
p−� − 1

]
, � ≠ 0

u + � × log{p}, � = 0
.

made that the extremes between stations and between sea-
sons are independent. Let the station and seasonal effects for 
the GPD scale and shape parameters be denoted by �j,i and 
�j,i , respectively, for j = 1, 2, ..., 8 and i = 1, 2, ..., 6 , where j 
and i represent stations and seasons, respectively. The sea-
sonality was also partitioned into different cycles between 
January and December from 4 to 6 months for daily maxi-
mum temperature data while from 3 to 4 months for daily 
minimum temperature data.

Based on these assumptions, the following station and 
seasonal effects models were specified for GPD parameters:

for j = 1, 2, ..., 8; i = 1, 2..., 4, ..., 6 where �jand �i
�
 represent 

the jth station and ith seasonal effects for scale parameter, 
respectively, and �j and �i

�
 represent the jth station and ith 

seasonal effects for shape parameter, respectively. Further-
more, for the combined seasonal and station effects scale 
parameter, log(�j,i) was used to retain the positivity of the 
scale parameters and for computational convenience.

2.4.1 � Threshold Selection

For the GPD, the first step involved selection of appropri-
ate threshold value uj,i , for j = 1, 2, ..., 8; i = 1, 2..., 4, ..., 6 
and then fitting the GPD to the exceedances over uj,i values. 
It was also necessary to allow the threshold uj,i to vary for 
each combination of season and station. Therefore, it was 
important to choose appropriate thresholds for each season 
and station. For daily maximum and minimum temperatures 
data, the threshold values, uj,i , for each station j and season 
i, were chosen using the mean excess plot approach. The 
adequacy of selected threshold was also checked using plots 
of MLEs of the shape and modified scale parameters versus 
threshold values.

2.5 � Bayesian Inference for Station and Seasonal 
Effects Parameters

As in the likelihood approach, suppose y1, y2,… , ym are IID 
and their distribution fall within the GPD family. However, 
the parameters �j

, �i
�
, �j, �i

�
 are now treated as random vari-

ables for which we specify prior distributions. The specifica-
tion of priors enables us to supplement the information pro-
vided by the data. Let � = (�j

, �i
�
, �j, �i

�
) and suppose 

fΘ(�) denotes density of a prior distribution for � with no 
reference to the actual data. Then using the Bayes’ theorem 
the density of a posterior distribution for � has the form

(6)
log(�j,i) = �j + �i

�

�j,i = �j + �i
�
,
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where L(�|�) is the likelihood function of GPD given in 
expression (3) and the integral is taken over the parameter 
space Θ . Both non-informative and informative priors were 
used in this paper. The non-informative priors were constructed 
by assuming there was no additional information available 
about the parameters, apart from the data, whereas the inform-
ative priors were elicited in terms of extreme quantiles. The 
technique employed is briefly discussed in Sect. 2.5.1.

2.5.1 � Prior Formulation for the Station and Seasonal 
Effects GPD Parameters

The informative priors were formulated according to the 
approach used in [44–47], that is, eliciting prior informa-
tion in terms of extreme quantiles. Therefore, because of 
the natural ordering of the quantiles dpl , l = 1, 2 in expres-
sion (5), i.e. dp1 < dp2 , assumption of independent priors on 
dpl , l = 1, 2 would not be valid, therefore the authors used the 
quantile differences d̃pl = dpl − dpl−1 , l = 1, 2 where dp0 = 0 
is the physical lower end point of the process variable.

In the model proposed, only two quantiles are needed to 
specify the GPD parameters �j

, �i
�j
, �j and �i

�
 . Therefore, the 

quantile differences are assumed to be independent Gamma 
distributions with parameters ( �l, �l ), l = 1, 2 , that is

Based on the Gamma distribution we can also assume

Based on expression (9) and the quantile differences d̃pl , 
the joint prior for ( dp1 , dp2 ), assuming dp0 = 0 , has the form

provided that dp1 < dp2 . Then using expression (5) in expres-
sion (10) and multiplying by absolute value of the Jacobian 
of the transformation from ( dp1 , dp2 ) to � = ( �j

, �i
�j
, �j, �i

�
 ) 

leads to an expression for the prior in terms of the GPD sta-
tion and seasonal effects parameters, � , presented in 
Sect. 2.5.2.

2.5.2 � Formulation of Informative Priors for the Station 
and Seasonal Effects Parameters

For the GPD station and seasonal effects, the informative pri-
ors were formulated using historical records of daily maxi-
mum and minimum temperatures data, using each season and 

(7)f (�|�) = fΘ(�)L(�|�)
∫
Θ
fΘ(�)L(�|�)d� ∝ fΘ(�) L(�|�),

(8)d̃pl ∼ Γ(𝛼l, 𝛽l), 𝛼l > 0, 𝛽l > 0; l = 1, 2.

(9)d̃pl ∼ Γ(𝛼l, 𝛽l) ∝ (dpl−dpl− 1

)𝛼l − 1exp(−𝛽l(dpl − dpl− 1
)).

(10)
f (dp1 , dp2) ∝ d�1 − 1

p1
exp(−�1 dp1) × (dp2 − dp1 )

�2 − 1

× exp{−�2 (dp2 − dp1)}

station, of surrounding weather stations. The prior distribu-
tions were elicited using the method discussed in Sect. 2.5.1 
with quantiles pl = 10−l , for l = 1, 2 . The return level takes 
the form dplj and dpli for station and seasonal effects, respec-
tively, and the Jacobian ( � ) is obtained for each station and 
seasonal effects parameters as

and yield the following expressions

and

respectively, where j and i are indices of station and seasonal 
effects, respectively. The prior for the GPD station and sea-
sonal effects parameters, � , has the form

where d̃pks is the quantile differences for GPD station and 
seasonal effects model. Similarly, the posterior density 
f (�|�) is obtained by substituting the likelihood (where the 
GPD station and seasonal effects parameters in expression 
(6) are replaced in to the GPD likelihood in expression (3)) 
and prior density given in expression (11) in to expression 
(7). Then the MCMC technique employed with Metropolis-
Hastings (MH) algorithm to estimate the features of the 
posterior distribution f (�|�) of � . The joint prior for the 
informative GPD station and seasonal effects parameters 
has the form

where log(�j,i) = �j + �i
�
 and fΘ(�GPD) is obtained using 

expression (11).

2.5.3 � Non‑informative Priors for the Station and Seasonal 
Effects Parameters

The non-informative priors for GPD station and seasonal effects 
parameters, �GPD = ([�j, �i

�
], [�j, �i

�
]) were constructed by 

assuming there is no external information available to formulate 
prior distributions apart from the data. Therefore, flat marginal 
independent priors were employed. Similarly to the informative 

�station =

|||||||

�dp1j

��j

�dp1j

��j

�dp2j

��j

�dp2j

��j

|||||||
�seasonal =

|||||||

�dp1i

��i
�

�dp1i

��i
�

�dp2i

��i
�

�dp2i

��i
�

|||||||
,

�j = −
�j

�j
2
{(p1j p2j)

−�j (log p2j − log p1j) − p
−�j

2j
log p2j + p

−�j

1j
log p1j}

�i = −
�i
�

�i
�

2
{(p1i p2i)

−�i
� (log p2i − log p1i) − p

−�i
�

2i
log p2i + p

−�i
�

1i
log p1i},

(11)

fΘ(�GPD
) ∝ |�s| ×

2∏
l= 1

d̃𝛼l − 1
pls

× exp(−𝛽ld̃pls), for s = j or i,

(12)fΘ(�GPD) = f (�j, �i
�
, �j, �i

�
) = f (�j) f (�i

�
) f (�j) f (�i

�
),
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prior, the joint non-informative prior density for the GPD sta-
tion and seasonal effects model was then assumed to be

where log(�j,i) = �j + �i
�
.

2.5.4 � Posterior Distribution

The extreme value model for seasonal and station effects 
extremal behaviour is specified by a set of GPD parame-
ters for each component of the parameters. Therefore, the 
model for the seasonal and station effects would be speci-
fied by the vector (�j

, �i
�
, �j, �i

�
) in which each parameter 

with in the vector determines either the seasonal or the 
station effects that are inherent in the extreme environmen-
tal dataset. From Bayes’ theorem in expression (7), the 
posterior density of the seasonal and station effects GPD 
model can be formed by the product of the prior fΘ(�GPD) 
in expressions (12) and (13), and the likelihood function 
in expression (3). That is

where g(y1, ..., ym) is the density in expression (2) for the sea-
sonal and station effects GPD model and m is the number of 
observations. The prior is most naturally specified as a prod-
uct of the joint priors for (�j

, �i
�
, �j, �i

�
) . Then the joint prior 

for � is expressed as in the form in expressions (12) and (13) 
for the informative and non-informative priors, respectively.

3 � Results and Discussion

For the POT application on daily maximum and minimum 
temperatures data, a threshold has been chosen using the 
mean excess plot approach. The adequacy of the chosen 
threshold can be checked using parameter stability plots, i.e. 
plots of the MLEs for the seasonal and station effects shape 
and modified scale parameters ( �j

, �i
�
, �j, �i

�
 ) against a 

number of different thresholds. If the GPD is a reasonable 
model for the exceedances of a threshold u, then estimates 
of shape and modified scale parameters ( �j

, �i
�
, �j, �i

�
 ) 

should be approximately constant to all threshold greater 
than u. The MLEs of the shape and modified scale param-
eters versus threshold values indicate that the selected 
thresholds are adequate, because the estimates of the sea-
sonal and station effects shape and scale parameters are 
approximately constant for all thresholds greater than the 
threshold value for daily maximum and minimum tempera-
tures data. For the maximum temperature data, the exceed-
ances above the threshold value whereas for the minimum 

(13)fΘ(�GPD) = f (�j, �i
�
, �j, �i

�
) = f (�j) f (�i

�
) f (�j) f (�i

�
),

f (�
GPD

|yi) ∝ f (�j, �i
�
, �j, �i

�
)

m∏
i= 1

g(yi, ..., ym),

temperature data values below the threshold value were 
considered as extreme observations to fit the GPD.

The prior specifications for the complete parame-
ters vector � and estimation methods for the GPD using 
both informative and non-informative priors are given in 
Sects. 2.5.2 and 2.5.3, respectively. For the informative 
prior, priors were elicited based on seasonally clustered 
data of nearby weather stations, and the precision of the 
marginal parameters investigated was compared with the 
non-informative prior.

3.1 � Estimation of Model Parameters for the Stations 
and Seasonally Varied Temperatures Data

Here the GPD was fitted to deal with inferences about the 
station and seasonal effects on daily minimum and maxi-
mum temperatures data for selected weather stations in 
South Africa. First, the dependence was investigated visually 
using various plots to clarify the data series and introduce 
appropriately to the extreme value distributions. The season-
ally clustered daily maximum and minimum temperatures 
data are then investigated through the Bayesian analysis 
using the non-informative and informative priors. For the 
non-informative prior, the following prior distributions are 
employed for the GPD station and seasonal effects param-
eters, namely

The Gaussian distributions having zero mean and 
larger variances in expression (14) enforce the flat inde-
pendent marginal priors, also known as diffuse or vague 
priors, which exhibit the lack of external information [48, 
49].

The MCMC method with MH algorithm was applied for 
sampling from approximate posterior distributions for the 
station and seasonal effects parameters. The values gener-
ated by the iterations of the chains were checked for conver-
gence for all station and seasonal effects parameters of daily 
maximum and minimum temperatures data, and convergence 
was achieved. Similarly, MCMC yielded samples from the 
approximate posterior distributions for the 8 station effects 
parameters and 61 seasonal effects parameters, that is, for 
each of �j, �i

�
, �j and �i

�
 parameters. For simulation, differ-

ent starting values were considered to distinguish the chain 
convergence. Hence, all the chains had mixed well with the 
original data employed in the analysis. The posterior means 
associated with the standard deviations (in brackets) for the 

(14)
f (�j) ∼ N(0, 10000); f (�i

�
) ∼ N(0, 10000);

f (�j) ∼ N(0, 100); f (�i
�
) ∼ N(0, 100).

1  number of seasonal parameters may vary due to clustering effects
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GPD station and seasonal effects parameters using non-
informative priors are presented in Tables 2 and 3, respec-
tively, for the minimum and maximum temperatures data. 
The GPD shape parameter estimates that are considered 
using the sampling variations across seasons and stations 
were less than zero except for daily maximum temperature 
data of George and Plettenberg stations effects. The negative 
result for the shape parameter implies that the model, GPD 
station and seasonal effects, fitted to daily maximum tem-
perature data had bounded upper tails. Also for the minimum 
temperature data, the shape parameter estimates, from both 
seasonal and station effects, suggest bounded upper tails to 
the distributions of minimum temperature data.

On the other hand, the informative priors were formu-
lated based on seasonally clustered data of nearby daily 
minimum and maximum temperatures data. The posterior 
means and standard deviations for the GPD station and sea-
sonal effects parameters formulated from these priors are 
provided in Tables 2 and 3, respectively. The results show 
that the posterior means of daily maximum temperature data 
for the GPD station and seasonal effects parameters obtained 
using the informative priors are close to the posterior means 
of non-informative priors. The posterior standard deviations 
of the station and seasonal effects parameters are lower 
for the informative priors compared with that of the non-
informative priors. These show the benefit of using informa-
tive prior for the station and seasonal effects parameters. 
The station and seasonal effects parameter estimates with 
their standard deviations for the minimum temperature data 
are also given in Tables 2 and 3, respectively. In the same 
way, the posterior means for the GPD station and seasonal 
effects parameters from the informative priors are close to 

the posterior means of non-informative priors. All the pos-
terior standard deviations of the station and seasonal effects 
parameters for the informative priors are lower compared 
with the non-informative priors.

To investigate how GPD seasonal and station effects 
parameters were affected by the informative priors formu-
lated based on seasonally clustered historical data of nearby 
weather stations, the posterior densities of the seasonal and 
station effects parameters found through the elicited priors 
and the flat priors were compared. The estimated posterior 
densities of GPD seasonal and station effects parameters 
(�j

, �i
�
, �j, �i

�
) for stations and seasonally clustered daily 

maximum temperature data based on George station during 
summer period in March are plotted and displayed in Fig. 3. 
Notice that the distributions of seasonal and station effects 
parameters obtained based on the non-informative and 
informative priors are symmetric for this specific station and 
season given in Fig. 3. On the other hand, the posterior den-
sities of GPD seasonal and station effects parameters 
(�j

, �i
�
, �j, �i

�
) for the informative priors that were built 

based on information from seasonally clustered data of 
nearby weather stations resulted in high peaks compared 
with that of the non-informative priors. The posterior densi-
ties of the remaining seasonal and station effects parameters 
of the model also depicted high peaks for the informative 
priors compared with that of the non-informative priors.

Similarly, the estimated posterior densities of GPD sea-
sonal and station effects parameters (�j

, �i
�
, �j, �i

�
) for sta-

tions and seasonally clustered daily minimum temperature 
data based on Durban station during winter period in June 
are plotted and displayed in Fig. 4. The distributions of 

Table 2   Posterior means (standard 
deviations) for the station effect 
parameters using non-informative 
and informative priors

Non-info Info

Data Station effect �i �i �i �i

Max-Temp Paarl 3.684 (0.137) -0.261 (0.022) 3.706 (0.085) -0.266 (0.011)
Hermanus 2.172 (0.075) -0.059 (0.023) 2.177 (0.074) -0.061 (0.017)
George 2.723 (0.123) 0.024 (0.031) 2.725 (0.106) 0.024 (0.029)
Plettenberg 2.202 (0.098) 0.078 (0.033) 2.218 (0.087) 0.068 (0.023)
East London 6.029 (0.181) -0.333 (0.017) 6.058 (0.135) -0.337 (0.011)
Grahamstown 2.025 (0.062) -0.045 (0.021) 2.030 (0.048) -0.048 (0.015)
Durban 2.473 (0.065) -0.237 (0.013) 2.469 (0.049) -0.237 (0.009)
Richards Bay 4.034 (0.133) -0.231 (0.021) 4.042 (0.103) -0.233 (0.015)

Min-Temp Paarl 1.658 (0.093) -0.161 (0.030) 1.652 (0.069) -0.160 (0.022)
Hermanus 1.632 (0.075) -0.043 (0.025) 1.633 (0.054) 0.046 (0.019)
George 1.819 (0.067) -0.306 (0.019) 1.819 (0.058) -0.051 (0.016)
Plettenberg 1.622 (0.088) 0.300 (0.042) 1.624 (0.069) -0.146 (0.019)
East London 2.735 (0.176) -0.345 (0.028) 2.663 (0.102) -0.232 (0.016)
Grahamstown 1.786 (0.054) -0.146 (0.015) 1.789 (0.042) -0.148 (0.013)
Durban 2.021 (0.086) -0.233 (0.020) 2.014 (0.066) -0.232 (0.015)
Richards Bay 1.982 (0.108) -0.046 (0.032) 1.988 (0.108) -0.047 (0.023)
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seasonal and station effects parameters obtained based on 
the non-informative and informative priors are symmetric. 
Furthermore, the posterior densities of GPD seasonal and 
station effects parameters (�j

, �i
�
, �j, �i

�
) for the informative 

priors produced high peaks compared with that of the non-
informative priors. The fluctuations of the peaks for the 
posterior densities indicate that the posterior distributions 
are sensitive to the informative prior from which the prior 
information was shaped. In the current paper it is crucial to 
note that the informative priors were constructed through 
borrowing prior information from seasonally clustered data 
of nearby weather stations by considering the combinations 
of their means and quantiles of the data. The weather char-
acteristics of the minimum and maximum temperatures data 
of those stations used for model fitting as well as the nearby 
weather stations from which the data were acquired are 
assumed to be relatively homogeneous. For instance, the 
East London station was selected by assuming that the 
weather characteristics at Bisho is similar. Moreover, 
according to [44], the estimates of GPD parameters based 
on informative priors are susceptible to the choice of weather 
stations used to formulate the priors. Therefore, selecting 
appropriate nearby weather stations for the formulations of 
informative priors is also an important task in order to obtain 
valid and robust estimates of seasonal and station effects of 
the GPD parameters.

3.1.1 � Estimation of Combined Seasonal and Station Effects 
of the GPD Parameters

So far, the seasonal and station effects were investigated for 
the GPD parameters and the results are provided for each 
effect. To see the advantages of introduction of stations and 
seasonal effects in the GPD ( �j,i, �j,i ) models over the max-
imum likelihood (ML), each seasonal and stations daily 
maximum and minimum temperatures data were analysed 
separately using the ML, that is assuming the model param-
eters are not random. Comparison of the posterior means 
and standard deviations from the station and seasonal 
effects model with MLEs, and standard errors obtained 
from a maximum likelihood analysis, applied separately 
to each station and season, are provided in Tables 4, 5,  
6, 9, 10, and 11 in Appendix for seasonally clustered daily 
maximum and minimum temperatures data. The combined 
seasonal and station effects for the Bayesian GPD param-
eters are obtained using both non-informative and informa-
tive priors. For the combined effect of station and seasonal 
effects GPD parameters, the trace plots of the chain, for 
example, for daily maximum temperature data of East Lon-
don station during summer period in January and February 
are given in Fig. 11 in Appendix. The plots depicted the 
parameters converged well. Similarly, for all other seasons 
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and stations, convergence was checked and was achieved 
for all seasonal and station effects GPD parameters.

As can be seen from the results, the posterior standard 
deviations for the scale and shape parameters from informa-
tive priors are lower than the corresponding standard errors 
of MLEs and non-informative priors for both minimum and 
maximum temperatures data. The effect of using station and 
seasonal effects on the parameters of GPD can be assessed 

using the values of the standard deviations obtained from 
the three methods. This might illustrate one apparent advan-
tage of the introduction of station and seasonal effects into 
the parameters of GPD over the analysis employed using 
the standard likelihood approach. Hence, it appears that the 
pooling of information is seen to add the precision of the 
analysis for the parameters of GPD model considerably. 
Most importantly, the results revealed that the posterior 

Fig. 3   Posterior densities of the 
generalised Pareto distribution 
for station and seasonal effects 
parameters to daily maxi-
mum temperature data using 
non-informative (Non-inf) and 
informative priors (Inf)

Fig. 4   Posterior densities of the 
generalised Pareto distribution 
for station and seasonal effects 
parameters to daily minimum 
temperature data of Durban 
during winter period June using 
non-informative (Non-inf) and 
informative (Inf) priors
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standard deviations of both priors are smaller than the stand-
ard errors of the corresponding MLEs. The results are also 
consistent over all stations and seasons. However, the pre-
cision of the parameter estimates are obtained fully when 
MCMC standard errors are compared with the standard 
errors of the parameter estimates from MLEs. Note that the 
naive standard errors for the Bayesian estimates are given 
by dividing the actual standard deviations by the number 
of iterations [50]. This is because the Bayesian approach 
allows for an additional source of variation, which implies 

that the parameters have probability distributions with hyper 
parameters. Furthermore, it is also vital to visualise that all 
of the comparisons that were drawn relate to Bayesian infer-
ence applied to the station and seasonal effects model versus 
standard likelihood, MLEs, inferences are estimated from 
separate stations and seasons data. Any gain in performance 
and difference in the estimates that were attributed to the 
station and seasonal effects model were confounded with 
possible differences for the GPD model fitted to separate 
seasons and station for the likelihood method. Therefore, the 

Table 4   Posterior means (standard 
deviations) for station and 
seasonal effects using both priors

Non-informative Informative

Station January February January February

Paarl �i 2.292 (0.046) 2.328 (0.045) 2.290 (0.032) 2.326 (0.041)
�i -0.339 (0.028) -0.341 (0.027) -0.342 (0.020) -0.343 (0.022)

Hermanus �i 1.764 (0.044) 1.800 (0.043) 1.765 (0.039) 1.801 (0.040)
�i -0.138 (0.029) -0.141 (0.029) -0.141 (0.021) -0.142 (0.022)

George �i 1.986 (0.048) 2.022 (0.048) 1.992 (0.046) 2.029 (0.044)
�i -0.054 (0.036) -0.057 (0.035) -0.063 (0.027) -0.064 (0.026)

Plettenberg �i 1.776 (0.052) 1.813 (0.051) 1.770 (0.045) 1.806 (0.042)
�i 0.001 (0.038) -0.002 (0.037) 0.003 (0.031) 0.002 (0.032)

East London �i 2.782 (0.040) 2.818 (0.039) 2.787 (0.033) 2.824 (0.031)
�i -0.410 (0.026) -0.413 (0.025) -0.414 (0.018) -0.415 (0.020)

Grahamstown �i 1.692 (0.041) 1.728 (0.041) 1.693 (0.030) 1.729 (0.039)
�i -0.124 (0.033) -0.127 (0.030) -0.125 (0.019) -0.126 (0.021)

Durban �i 1.893 (0.038) 1.929 (0.038) 1.894 (0.029) 1.930 (0.038)
�i -0.315 (0.023) -0.317 (0.022) -0.314 (0.016) -0.315 (0.018)

Richards Bay �i 2.379 (0.045) 2.416 (0.045) 2.383 (0.030) 2.419 (0.038)
�i -0.307 (0.028) -0.309 (0.025) -0.308 (0.019) -0.309 (0.020)

Table 5   Posterior means 
(standard deviations) for station 
and seasonal effects using non-
informative priors

Non-informative Informative

Station June July June July

Paarl �i 1.034 (0.065) 1.108 (0.063) 1.109 (0.050) 1.092 (0.051)
�i -0.263 (0.033) -0.229 (0.034) -0.266 (0.023) -0.232 (0.026)

Hermanus �i 1.017 (0.055) 1.093 (0.054) 1.094 (0.043) 1.077 (0.044)
�i -0.147 (0.030) -0.113 (0.029) -0.150 (0.021) -0.116 (0.023)

George �i 1.127 (0.048) 1.202 (0.047) 1.129 (0.043) 1.203 (0.044)
�i -0.401 (0.022) -0.375 (0.024) -0.411 (0.014) -0.376 (0.016)

Plettenberg �i 1.011 (0.062) 1.087 (0.061) 1.014 (0.050) 1.089 (0.050)
�i -0.234 (0.030) -0.250 (0.031) -0.238 (0.022) -0.253 (0.024)

East London �i 1.533 (0.066) 1.608 (0.066) 1.585 (0.044) 1.568 (0.045)
�i -0.353 (0.025) -0.369 (0.026) -0.435 (0.025) -0.400 (0.021)

Grahamstown �i 1.109 (0.043) 1.184 (0.042) 1.109 (0.034) 1.183 (0.033)
�i -0.193 (0.027) -0.209 (0.027) -0.250 (0.016) -0.215 (0.023)

Durban �i 1.232 (0.051) 1.307 (0.051) 1.234 (0.041) 1.308 (0.040)
�i -0.335 (0.023) -0.301 (0.025) -0.339 (0.018) -0.304 (0.020)

Richards Bay �i 1.212 (0.063) 1.286 (0.062) 1.216 (0.061) 1.290 (0.058)
�i -0.148 (0.036) -0.114 (0.036) -0.151 (0.033) -0.116 (0.035)
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results of the present study support the findings of [24] that 
the introduction of station and seasonal effects in the param-
eters of extreme value distributions increases the precision 
of statistical inferences.

Additionally, to see the overall effects of the informa-
tive priors formulated based on seasonally clustered his-
torical data of nearby weather stations on the combined 
GPD seasonal and station effects parameters ( �j,i, �j,i ), the 
posterior densities of the combined seasonal and station 
effects parameters found through the elicited priors and 
the flat priors were compared. The estimated posterior 
densities of GPD ( �j,i, �j,i ) combined seasonal and station 
effects parameters for East London during summer period 
in January obtained from daily maximum temperature 
data and for Durban during winter period in June obtained 
from daily minimum temperature data are plotted and pre-
sented in Fig. 5. The posterior distributions of combined 
seasonal and station effects parameters obtained based on 
the non-informative and informative priors are symmetric 
for this specific station and seasonal period given in Fig. 5. 
On the other hand, the posterior densities of GPD ( �j,i, �j,i ) 
combined seasonal and station effects parameters for the 
informative priors that were built based on information from 
nearby weather stations of seasonally clustered data resulted 
in high peaks compared with that of the non-informative 
priors. Similar effects on the peaks of the posterior densi-
ties were observed for the GPD seasonal and station effects 
parameters across all stations and seasons for both separate 
and combined effects to daily maximum and minimum tem-
peratures data. These results corroborate [44, 51], for which 
the effect assessment made between the informative prior 
and non-informative priors.

3.2 � Estimation of Return Levels

The seasonal and station effects GPD parameters estimated 
in Sect. 3.1 by themselves provide little information on the 
occurrence probability of extreme events. A more meaning-
ful and also more relevant quantity for risk assessment is the 
probability of the observed variable (here, seasonally clus-
tered daily maximum and minimum temperatures data) 
exceeding a certain level. With the estimates of the param-
eter vector Θ = (�j

, �i
�
, �j, �i

�
) for every stations and sea-

sons, we can use the seasonal and station effects GPD scale 
and shape parameters to derive return levels. Hence, the vec-
tors of observations from the posterior densities of GPD 
seasonal and station effects parameters could be substituted 
into the return level dp in expression (5) to obtain realisations 
from the posterior distributions of return levels.

For instance, Fig. 6 shows a map of 50-year and 100-year 
return levels for seasonally clustered summer months across 
all stations. The return level for each station is represented in a 
colour scale, i.e. the continuous colour-scaled background. We 
show the interpolation only to illustrate regional patterns. The 
observed 50-year return levels range from about 30 ◦ C of daily 
maximum temperature to almost 35 to 48 ◦ C of daily maximum 
temperature. The highest 50-year and 100-year return levels 
were observed for stations in the Eastern and Western Cape 
province of South Africa, namely George, Plettenberg and Paarl 
during the summer months in December, January, February and 
March. Specifically, the highest daily maximum temperature 
that is exceeded on average once in 50 and 100 years period is 
more than 45 ◦ C and it is observed during summer period in 
March for George and Plettenberg weather stations.

Table 6   Maximum likelihood 
estimates (standard errors) for 
station and seasonal effects

Summer periods Winter period

Station January February June July

Paarl �i 3.534 (0.321) 3.203 (0.279) 1.424 (0.143) 1.816 (0.152)
�i -0.277 (0.059) -0.261 (0.043) -0.175 (0.053) -0.247 (0.045)

Hermanus �i 2.264 (0.168) 2.154 (0.196) 1.465 (0.139) 1.727 (0.130)
�i -0.105 (0.049) -0.176 (0.058) -0.029 (0.050) -0.114 (0.036)

George �i 2.476 (0.180) 2.576 (0.212) 2.295 (0.157) 1.507 (0.148)
�i -0.084 (0.049) 0.062 (0.062) -0.441 (0.043) -0.416 (0.065)

Plettenberg �i 2.056 (0.178) 2.152 (0.215) 1.617 (0.136) 1.561 (0.188)
�i -0.040 (0.059) 0.058 (0.077) -0.265 (0.046) 0.351 (0.098)

East London �i 2.023 (0.128) 1.953 (0.111) 1.496 (0.098) 2.004 (0.088)
�i -0.056 (0.046) -0.025 (0.037) -0.111 (0.032) -0.164 (0.022)

Grahamstown �i 5.979 (0.384) 6.473 (0.439) 2.787 (0.191) 2.435 (0.213)
�i -0.338 (0.035) -0.415 (0.043) -0.343 (0.038) -0.433 (0.058)

Durban �i 2.326 (0.126) 3.107 (0.135) 2.016 (0.172) 2.191 (0.146)
�i -0.273 (0.027) -0.309 (0.018) -0.362 (0.052) -0.306 (0.039)

Richards Bay �i 4.172 (0.267) 2.949 (0.236) 1.635 (0.163) 2.828 (0.242)
�i -0.327 (0.040) -0.161 (0.050) -0.002 (0.056) -0.418 (0.061)
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Similarly, map of 10- and 100-year return levels for sea-
sonally clustered winter months across all stations for daily 
minimum temperature data is provided in Fig. 7. The return 
levels of daily minimum temperature data for each station 
are represented in a colour scale, i.e. the continuous colour-
scaled background. The observed 10- and 100-year return 
levels range from about 6 ◦ C of daily minimum temperature 
to 30 ◦ C of daily minimum temperature. The highest 10- and 
100-year return levels were observed for Plettenberg station 
throughout all winter periods from June to August. The low-
est daily minimum temperature that is exceeded on average 
once in 10 and 100 years period is below 8 ◦ C and 10 ◦ C, 
respectively, and it is observed during winter period in June 
for Paarl weather station.

Furthermore, Figs. 8 and 9 display boxplots of the pos-
terior 100-year return levels for seasonally clustered daily 
maximum and minimum temperatures data, respectively. 
The return level predictions estimated for each station 
during summer and winter periods. The estimated return 
levels are visible, and the difference observed between sta-
tions and seasons appeared to be considerable. In general, 
the results observed from the plots indicated that the sea-
sonal and station effects for the GPD model predicted the 
return level well for daily maximum and minimum tem-
peratures data and provided important inferences involv-
ing the return levels across spaces over seasonally clus-
tered data. The station and seasonal effects obtained from 
fitting GPD model in the current study also supported 

Fig. 5   Posterior densities of 
the general Pareto distribution 
station and seasonal effects 
parameters to daily maxi-
mum temperature data using 
non-informative (Non-inf) and 
informative (Inf) priors
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(a) Minimum Temperature data
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Fig. 6   Posterior means of 50- and 100-year return levels for seasonally clustered daily maximum temperature data
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the weather stations over South Africa considered for 
the study received contrasting temperature patterns. For 
instance, the posterior 100-year return levels from the 

seasonal and station effects GPD model indicated that the 
most intense daily maximum temperature events tend to 
occur during the summer period in March for George and 

Fig. 7   10- and 100-year return levels for seasonally clustered daily minimum temperature data

Fig. 8   Boxplots for 100-year posterior return levels for seasonally clustered daily maximum temperature data
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Plettenberg stations. On the other hand, the minimum pos-
terior 100-year return levels for daily minimum tempera-
ture data are observed during winter period in June across 
all weather stations considered in the current paper except 
for Hermanus and George stations. The current finding is 
in accordance with the findings of [24, 44], in which the 
seasonal and station effects GPD model to extreme tem-
perature data enabled increased precision for inferences 
capturing station and seasonal variability.

Inferences for the quantities that are of most interest, 
return levels, obtained in this study revealed the frequency of 
occurrence of extremely high or low temperatures observed 
during summer and winter periods. The current results 
obtained may be useful to agricultural and energy sectors 
based on the fact that the frequency analysis of the occur-
rence of extremely high or low temperatures is directly rel-
evant to the modelling of electricity demand as well as agri-
cultural productivity in which the frequency and the duration 
of hot and cold temperatures are important aspects from the 
viewpoint of the disaster risk analysts. Hence, understanding 
seasonal characteristics of the temperature and its extremes 
forms part of preparedness and mitigation measures that can 
be put in place to reduce the impacts of extreme events. 
Over the majority of land regions, the projected intensity 
increases, and relative frequency increases tend to be larger 
for more extreme hot temperature than for weaker events 
[52]. This is also the case for the current paper in which 
the increase in extreme temperature is higher for maximum 
temperature than for the minimum temperature data. It is 

also important to emphasise that extreme events occurring 
during the summer period would have the most dramatic 
impact on plant productivity [53].

3.3 � Simulation to Study the Seasonal and Station 
Effects

The analysis of the extreme temperature data in Sect. 3.1 
showed clear discrepancies in precision for the estimation of 
GPD parameters between the estimation methods which con-
sider seasonal and station effects, and GPD fitted to extremes 
without considering the station and seasonal effects. The aim 
of this section is to use simulated data to compare and inves-
tigate the precision of estimators for the GPD parameters 
obtained under the two estimation approaches.

3.3.1 � Simulating Stations with Various Temporal 
Dependence Series

To generate a dataset for the GPD that consider station and 
seasonal effects, different simulated stations with various tem-
poral dependence structure between the series of observations 
were simulated. Then, the simulated data series were parti-
tioned into different cycles from 1 to 12 to form seasonality 
for all simulated stations. The seasonality was formed ensuring 
that the cycles from 1 to 12 are correctly identified as months 
and this was done using R packages Zoo, hydroTSM and 
SpatialExtremes. The real dataset that was considered in 
Sect. 3.1 exhibits strong seasonality, and only selected months 

Fig. 9   Boxplots for 100-year posterior return levels for seasonally clustered daily minimum temperature data
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were employed in the analysis. Similarly, selected consecutive 
cycles among the 12 seasonally partitioned simulated data are 
used to demonstrate the estimation approaches.

Therefore, to simulate temporally dependent extremes, a 
reasonable assumption for modelling is to form the series of 
observations x1, ..., xn a stationary first-order Markov chain 
[24]. This assumption provides a simple model for many 
serially correlated environmental variables [24]. The sto-
chastic properties of such a chain are completely determined 
by the joint distribution of successive pairs of observations. 
Given a model S(xi, xi+ 1;�); i = 1, 2, ..., n − 1 , where � is 
the vector of GPD parameters, the joint density function for 
x1, ..., xn is given by

where S(xi;�) is the limiting distribution of exceedances, 
GPD, given in expression (2), whereas the numerator, 
S(xi, xi+ 1;�) , in expression (15) is obtained by the bivari-
ate extreme value distribution (BEVD), thereby capturing 
the first-order Markov structure. The BEVD, using logistic 
model dependence function, is used to simulate temporally 
dependent series of observations. Logistic model is one of the  
most f lexible and accessible dependence model of 
BEVD. The dependence parameter denoted by � ∈ (0, 1)  
under the logistic model measures the strength of depend-
ence between consecutive extremes. Independence and com-
plete dependence for the pair (xi, xi+1) are obtained when 
� = 1 and in the limit as � → 0 , respectively (see [37, 44, 
54], for details on BEVD and logistic model).

To generate (xi, xi+ 1) from the limiting BEVD, various 
dependence structure between xi and xi+1 were contemplated 
to create simulated weather stations with different tempo-
ral dependence structures between a series of observations. 
Therefore, at the beginning � was set to have values between 
0 and 1, i.e. � = 0.05, 0.15, 0.3, 0.4, 0.5, 0.6, 0.8 . These val-
ues provide various simulated weather stations which consist 
of lower to higher degree of dependence between the series. 
The following procedure was used to simulate (xi, xi+ 1) ; 

1.	 For � = 0.05 , simulate the first observation, x1 , from 
the GPD marginal distribution with known � = 0.3 and 
� = −0.45.

2.	 To Simulate x2 , form the conditional distribution of x2|x1 
using the BEVD logistic model and the simulated obser-
vation, x1 , in step 1.

3.	 Use the simulated observation, x2 , to form the con-
ditional distribution of x3|x2 again using the logistic 
dependence model, to simulate x3 from this distribution.

4.	 Use the simulated observation, x3 , to form the condi-
tional distribution of x4|x3 using the logistic dependence 
model, and simulate x4 from this distribution.

(15)S(x1, ..., xn;�) =

∏n− 1

i= 1
S(xi, xi+ 1;�)∏n− 1

i= 2
S(xi;�)

,

5.	 Continue forming and sampling from new condition-
als until the required number of observations (length n) 
have been simulated.

6.	 Repeat steps (2–5) to simulate temporally dependent series 
from the second to last stations with � = 0.15, � = 0.30,

� = 0.40, � = 0.50, � = 0.60 and � = 0.80 , and with  
known constant � = 0.3 and � = −0.30,−0.20, 0.00,

0.10, 0.20, 0.45 , respectively.

The different values of the GPD shape parameter, � , were 
used to reflect the various tails which might be observed in 
a real-life dataset, whereas the GPD scale parameter � was 
held unit constant. Also, since the different criteria about 
what constitutes an extreme value for each combination 
of season and station are varying, the threshold value was 
allowed to vary across seasons and stations.

3.3.2 � Simulation Study Result

For the simulated chain (of length n), the GPD parameters 
were estimated with and without seasonal and station effects. 
The estimation procedure for the simulation was repeated 
N = 1000 times, with chains of length n = 40, 000 , to create 
sampling distributions for the GPD parameters. These sam-
pling distributions are then compared to the true parameter 
values used to simulate the chains in the first place.

The estimated values associated with the standard devia-
tions (in brackets) for the GPD parameters estimated with 
and without station and seasonal effects of the simulated 
data are presented in Tables 7 and 8. All the results from the 
simulated data in Tables 7 and 8 clearly show the pitfalls of 
simply considering station and seasonal effects. The esti-
mated standard deviations for each parameter are consider-
ably smaller than the standard deviation of the correspond-
ing parameters obtained without the effects. All the analyses 
using simulated data that were fitted considering the effects 
consistently underestimated the standard deviations as com-
pared to the models without the effects.

Similar to Table 7, Fig. 10 depicts the actual sampling 
distributions for the GPD parameters � and � , which were 
estimated with and without the effects when � is 0.15 and 
0.3, for simulated stations 2 and 3, respectively. The sam-
pling distributions obtained without the effect are located 
away from the true values, in contrast to the analysis that 
considered the effect, where the distributions are much 
more close to their target values. The 95% confidence inter-
vals (not shown here) for some of the GPD parameters that 
were estimated without the effect even fail to include the 
true parameter values, particularly for stations which were 
simulated with low temporal dependence. These indicate 
the inadequacy of the estimations approach without the 
effect relative to the approach which uses the effect. The 
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inadequacy of the estimations approach without the effect 
could have major practical implications.

In an extreme temperature setting, designing a level 
without specifying the station and seasonal effects in to 
the analysis could result in considerable under-protection. 
Average daily minimum temperatures are very rare in South 
Africa and only occur about 8 times in a year, and result in 
huge increases in electricity demand [20]. Specific to the 
current study, the lowest and highest daily minimum and 
maximum temperatures that exceeded on average once in 
10 and 50 years period are below 8 ◦ C and more than 45 ◦ C, 
respectively. These levels are observed during winter period 
in June for Paarl and during summer period in March for 
George and Plettenberg weather stations (see Figs. 6 and 7). 
Hence, an investigation of expected cooler or warmer than 
typical years by specifying the station and seasonal effects 
in to the analysis is important. All our findings support our 
main conclusion that the introduction of station and sea-
sonal effects in the parameters of extreme value distributions 
increases the precision of statistical inferences. This helps 
planners and decision-makers in the electricity sector.

4 � Conclusions and Recommendations

In this paper, the authors introduced the seasonal and station 
effects on the distributions of extreme values, i.e. GPD, for 
modelling extreme temperature data at selected weather sta-
tions in South Africa, applying mainly the Bayesian approach. 
The modelling of GPD to daily maximum and minimum tem-
peratures data has been employed here as a natural framework 
for modelling the station and seasonal effects on the param-
eters of GPD in terms of seasonality and station variations that 
are inherent in the data under consideration. The GPD mod-
els were fitted to the complex structures of the data and the 
parameters were estimated through the models, allowing the 
sharing of information between stations using seasonally clus-
tered data. Non-informative and informative priors were used 
for estimation of the parameters. This estimation resulted in 
apparent advantages in terms of improved precision obtained 
in the estimation of the parameters for the GPD station and 
seasonal effects models. However, the posterior means for 
these parameters, which were obtained using informative 

priors, are very close to the non-informative priors. The pos-
terior standard deviations of the station and seasonal effects 
parameter estimates were smaller for the informative priors 
compared with those from the non-informative priors.

Furthermore, the combined station and seasonal effects 
parameter estimates resulted in smaller standard deviations 
compared with the standard errors of MLEs fitted sepa-
rately to stations and seasons. This reduction in standard 
deviations reflects the decrease in uncertainty owing to the 
inclusion of the station and seasonal effects parameters in 
the model as well as the informative priors. In general, the 
expected benefit of Bayesian analysis and the station and 
seasonal effects approach is the improvement in precision 
of parameter estimates over the MLEs for daily maximum 
and minimum temperatures data. Overall, the results depict 
that the expected gain in precision was fully obtained for 
the station and seasonal effects parameters of GPD. This 
provided apparent benefits in estimating the predictions for 
the quantities that are of most interest, return levels, which 
incorporate both the randomness of the process and model 
uncertainty. All the results obtained in this study were found 
to be analogous with literature on the topic.

In general, the results of this work are particularly impor-
tant to quantify the seasonal and station effects of daily mini-
mum and maximum temperatures extremes among the vari-
ous meteorological stations. This was demonstrated using 
simulated data to compare and investigate the precision of 
estimators for the GPD parameters obtained with the effects 
relative to the estimation approach without the effect. All our 
findings support our main conclusion that the introduction 
of station and seasonal effects in the parameters of extreme 
value distributions increases the precision of statistical infer-
ences. Several developments in the extreme value theory 
were motivated by applying univariate method to environ-
mental datasets. Introducing seasonal and station variabili-
ties to the univariate method, which allows information to 
be pooled across stations and seasons, should be preferred 
over the standard method resulting in improved precision 
of the estimates. The recommendation here is thus to intro-
duce seasonal and station effects to the method in order to 
make proper inference when modelling the extremal process. 
The problems related to dependencies are relatively easy to 

Table 7   True value and 
Estimated value (standard 
deviations) of GPD parameters 
obtained with and without 
station effect, respectively

Estimated value

True value With effect Without effect

Data � �i �i �i �i �i �i

Stat1 � = 0.050 0.300 -0.450 0.129 (0.003) -0.481 (0.016) 0.073 (0.006) -0.555 (0.087)
Stat2 � = 0.150 0.300 -0.200 0.342 (0.010) -0.189 (0.020) 0.379 (0.017) -0.266 (0.025)
Stat3 � = 0.300 0.300 0.000 0.481 (0.009) -0.076 (0.014) 0.498 (0.024) -0.194 (0.037)
Stat4 � = 0.400 0.300 0.200 0.447 (0.011) 0.109 (0.020) 0.635 (0.040) 0.095 (0.047)
Stat5 � = 0.600 0.300 0.450 0.499 (0.013) 0.398 (0.021) 0.703 (0.029) 0.431 (0.034)



484	 T. A. Diriba, L. K. Debusho 

1 3

overcome using the method employed in the current paper. 
Also, the approach appears to work extremely well when 
estimating return levels for stations with contrasting patterns 
of extremes. The modelling approach proposed in the current 
paper will help to reveal some useful information needed for 
planning by climatologists, meteorologists, agriculturalists, 
decision-makers and planners.

Moreover, a number of recent developments in extremal 
methods have not yet been fully exploited in such applica-
tions. This information could also help to focus our attention 
on the multivariate and spatial modelling of extreme tempera-
ture data. The inference on the extremal behaviour of extreme 
temperature over several weather stations could be improved 
with these methods and this is the subject of future research.

Fig. 10   Density plots for GPD 
parameters with (in red) and 
without (in blue) station effect 
using simulated stations 2 (top) 
and 3 (bottom)
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Table 8   GPD parameters estimates (standard deviations) obtained 
with and without the seasonal effect

Season 1 Season 2 Season 3 Season 4

With �
j
�

0.334 
(0.008)

0.354 
(0.009)

0.294 
(0.011)

0.269 
(0.008)

effect �
j

�
0.364 

(0.021)
0.368 

(0.021)
0.423 

(0.027)
0.086 

(0.023)
Without �

j
�

0.353 
(0.013)

0.421 
(0.022)

0.401 
(0.021)

0.351 
(0.013)

effect �
j

�
0.439 

(0.035)
0.454 

(0.044)
0.453 

(0.043)
0.164 

(0.048)
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Fig. 11   Trace plots for daily maximum temperature data of East London station during summer period in January and February
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Table 9   Posterior means (standard deviations) for station and sea-
sonal effects using non-informative priors. Stations Paarl and Richards 
Bay estimated only in April; � =2.423 (0.074), � =-0.441 (0.037) & � 

=2.510 (0.074), � = -0.469 (0.041) for non-inf, while � =2.428 (0.052), 
� = - 0.509 (0.034) & � = 2.521 (0.052), � = -0.475 (0.028), respec-
tively, for informative prior, respectively

-indicate the parameters are not estimated for the stations due to clustering considered

Non-informative Informative

Station March November December March November December

Paarl �i 2.291 (0.046) 2.715 (0.054) 2.374 (0.047) 2.289 (0.037) 2.716 (0.039) 2.373 (0.032)
�i -0.268 (0.030) -0.434 (0.033) -0.303 (0.030) 0.269 (0.026) -0.440 (0.025) -0.308 (0.022)

Hermanus �i 1.763 (0.044) 2.186 (0.053) 1.845 (0.045) 1.765 (0.042) 2.191 (0.044) 1.848 (0.039)
�i -0.065 (0.031) -0.231 (0.034) -0.101 (0.032) -0.068 (0.024) -0.239 (0.025) -0.107 (0.022)

George �i 1.984 (0.049) - 2.067 (0.049) 1.992 (0.040) - 2.075 (0.047)
�i 0.019 (0.037) - -0.017 (0.038) 0.009 (0.029) - -0.028 (0.027)

Plettenberg �i 1.775 (0.052) 2.199 (0.059) 1.858 (0.053) 1.769 (0.049) 2.196 (0.052) 1.853 (0.046)
�i 0.074 (0.039) -0.092 (0.041) 0.038 (0.039) 0.076 (0.035) -0.095 (0.033) 0.037 (0.032)

East London �i 2.780 (0.042) - 2.863 (0.042) 2.787 (0.038) - 2.870 (0.034)
�i -0.337 (0.028) - -0.373 (0.028) -0.341 (0.022) - -0.379 (0.020)

Grahamstown �i 1.690 (0.043) 2.114 (0.049) 1.773 (0.043) 1.692 (0.036) 2.119 (0.038) 1.776 (0.031)
�i -0.050 (0.035) -0.217 (0.036) -0.087 (0.033) -0.052 (0.022) -0.223 (0.022) -0.091 (0.021)

Durban �i 1.892 (0.039) - 1.974 (0.039) 1.893 (0.034) - 1.977 (0.030)
�i -0.241 (0.025) - -0.278 (0.025) -0.241 (0.021) - -0.280 (0.019)

Richards Bay �i 2.378 (0.045) 2.802 (0.056) 2.461 (0.046) 2.382 (0.036) 2.809 (0.038) 2.466 (0.031)
�i -0.234 (0.030) -0.400 (0.034) -0.270 (0.028) -0.235 (0.023) -0.406 (0.023) -0.273 (0.019)

Table 10   Posterior means 
(standard deviations) for station 
and seasonal effects using non-
informative priors

- indicate the parameters are not estimated for the stations due to clustering considered

Non-informative Informative

Station August September August September

Paarl �i 1.091 (0.063) - 1.092 (0.051) -
�i -0.178 (0.035) - -0.181 (0.026) -

Hermanus �i 1.075 (0.055) - 1.077 (0.044) -
�i -0.062 (0.031) - -0.064 (0.024) -

George �i 1.184 (0.047) 1.171 (0.073) 1.186 (0.045) 1.174 (0.058)
�i -0.324 (0.025) -0.148 (0.045) -0.325 (0.016) -0.153 (0.038)

Plettenberg �i 1.069 (0.063) 1.056 (0.082) 1.071 (0.051) 1.059 (0.062)
�i -0.271 (0.028) -0.320 (0.037) -0.274 (0.022) -0.304 (0.028)

East London �i 1.591 (0.066) - 1.568 (0.045) -
�i -0.389 (0.023) - -0.349 (0.018) -

Grahamstown �i 1.166 (0.043) - 1.165 (0.035) -
�i -0.229 (0.025) - -0.164 (0.019) -

Durban �i 1.289 (0.052) - 1.290 (0.041) -
�i -0.250 (0.026) - -0.253 (0.021) -

Richards Bay �i 1.269 (0.063) - 1.273 (0.060) -
�i -0.063 (0.037) - -0.065 (0.035) -
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