

Green Closed-Loop Supply Chain Network Design During the Coronavirus (COVID-19) Pandemic: a Case Study in the Iranian Automotive Industry

Sina Abbasi¹ · Maryam Daneshmand-Mehr¹ · Armin Ghane Kanafi²

Received: 18 September 2021 / Accepted: 18 October 2022 / Published online: 16 December 2022 © The Author(s), under exclusive licence to Springer Nature Switzerland AG 2022

Abstract

This paper presents a new mathematical model of the green closed-loop supply chain network (GCLSCN) during the COVID-19 pandemic. The suggested model can explain the trade-offs between environmental (minimizing CO_2 emissions) and economic (minimizing total costs) aspects during the COVID-19 outbreak. Considering the guidelines for hygiene during the outbreak helps us design a new sustainable hygiene supply chain (SC). This model is sensitive to the cost structure. The cost includes two parts: the normal cost without considering the coronavirus pandemic and the cost with considering coronavirus. The economic novelty aspect of this paper is the hygiene costs. It includes disinfection and sanitizer costs, personal protective equipment (PPE) costs, COVID-19 tests, education, medicines, vaccines, and vaccination costs. This paper presents a multi-objective mixed-integer programming (MOMIP) problem for designing a GCLSCN during the pandemic. The optimization procedure uses the scalarization approach, namely the weighted sum method (WSM). The computational optimization process is conducted through Lingo software. Due to the recency of the COVID-19 pandemic, there are still many research gaps. Our contributions to this research are as follows: (i) designed a model of the green supply chain (GSC) and showed the better trade-offs between economic and environmental aspects during the COVID-19 pandemic and lockdowns, (ii) designed the hygiene supply chain, (iii) proposed the new indicators of economic aspects during the COVID-19 outbreak, and (iv) have found the positive (reducing CO2 emissions) and negative (increase in costs) impacts of COVID-19 and lockdowns. Therefore, this study designed a new hygiene model to fill this gap for the COVID-19 condition disaster. The findings of the proposed network illustrate the SC has become greener during the COVID-19 pandemic. The total cost of the network was increased during the COVID-19 pandemic, but the lockdowns had direct positive effects on emissions and air quality.

Keywords Supply chain management \cdot CO₂ emissions \cdot Logistic network \cdot Lockdowns \cdot Multi-objective optimization \cdot Weighted sum method

1 Introduction

It is possible to quickly transmit COVID-19 from one person to another [1]. As a result of pandemics, supply chains (SCs) worldwide can become chaotic [2]. Lockdown policies and reduced physical contact are among the basic principles of the World Health Organization (WHO) in the conflict over COVID-19 [3]. Closed-loop supply chains (CLSCs) provide an alternative logistical method for dealing with environmental destruction and resource scarcity. In CLSCs, materials are controlled, emissions and waste are reduced, and the production process is cost-effective. In a CLSC, the material can be stored to minimize the environmental impact of SC activities [4]. A green closed-loop supply chain network (GCLSCN) has been identified as an important issue given the growing attention paid to environmental problems [5]. COVID-19's continuing outbreak also impacts emissions in fundamental ways [6]. The emergence of environmental protection, client awareness, desire, and the development of carbon policies have all made reducing

Maryam Daneshmand-Mehr m.daneshmand@liau.ac.ir

¹ Department of Industrial Engineering, Lahijan Branch, Islamic Azad University, Lahijan, Iran

² Department of Mathematics, Lahijan Branch, Islamic Azad University, Lahijan, Iran

 CO_2 emissions one of the primary objectives of supply chain design (SCD) [7]. During the COVID-19 pandemic and intense lockdowns, China reported a 25% reduction in CO_2 emissions [8]. Virus infections can cause disease, so the best method is to prevent them [9]. Therefore, we have suggested the following hygiene protocols during the COVID-19 pandemic in SC:

- 1. In addition to the existing shower installations, all facilities must have water, soap, alcohol, hand sanitizer, tissues, and bins at the entry.
- 2. The personnel who engage in high-risk activities are assigned appropriate PPE, which may include medical masks, gloves, face shields, goggles, and gowns.
- 3. All cleaning staff should be trained and provided with the PPE suitable for the task.
- 4. Disposing of face masks and disposable tissues with closed bins hygienically.
- 5. Publishing brochures about personal hygiene instructions.
- 6. Wash your hands after sneezing or coughing, before caring for patients and preparing food, and after using the toilet, door buttons, bags, boot buttons, printers, keyboard and mouse, and tables.
- Handwashing procedures: (A) Use soap (liquid if possible) and running water (warm if possible). (B) Rub your hands with soap and water on your nails, fingers, and wrists for 20–30 s. (C) Rinse your hands carefully. (D) If possible, dry your hands with a paper towel. (E) Turn off the faucet with a paper towel and open the bathroom door. (F) Dispose of paper towels in the trash/closed trash.
- 8. If your hands are not contaminated with dirt or dust, you can use a gel or an alcohol-based hand sanitizer when you are not near the bath.
- 9. If you need to cough or sneeze, cover your face with your elbow or use a disposable tissue and instantly dispose it in a closed container. Wear masks to protect yourself and others. (Surgical masks are suggested).
- The Proper Procedure for Wearing Face Masks: (A) Wash your hands thoroughly before using the mask.
 (B) Make sure your nose and mouth are closed and correct openings or gaps between the face and mask.
 (C) Do not touch the face or mask without washing your hands or cleaning with an alcohol-based product.
 (D) When removing the face mask, clean your hands first. (E) Put your face mask in a basket/bag/container/ bin and immediately clean your hands with soap and water or a hand cleanser.
- 11. Do not share your personal belongings with other persons.
- 12. Observe social distancing (keep 2 m apart from others).
- $\underline{\textcircled{O}}$ Springer

- 13. Clean and disinfect the items and surfaces you are dealing with.
- 14. Avoid touching the money directly and replace cash payments with credit payments [10].¹
- 15. Avoid unnecessary travel.
- 16. Avoid physical meetings and hold online meetings.
- 17. Reduce working hours as much as possible.
- 18. Allow employees to work from home and reduce the number of employees working (if it is possible).
- 19. Reduce the number of employees working from offices [11, 12].

By incorporating economic and environmental performance indicators into the green supply chain network design (GSCND), the mathematical model of this paper aims to increase SC's efficiency. Therefore, this study designed a new and hygienic GSCND model focusing on CO₂ emissions. The model described above is considered to provide five types of facilities. The forward flow begins with the extraction of raw materials in supplier centers and consigning them to the factories for producing a new product. A new/remanufactured/refurbished product is transferred along the forward way to satisfy the customer's needs. In river logistics, the returned products are collected from customers and shipped to the collection/distribution centers. The returned products are examined and classified as suitable for remanufacturing and refurbishing, which are sent to the factories and the recycling/landfill centers. This article's novelty is presenting multi-objective mixed-integer programming (MOMIP) and COVID-19 pandemic issues in a CLSC framework.

2 Related Works and Contributions

The literature review section has divided the research into three groups. The first category deals with carbon policy in the SC, the second is the effect of COVID-19 limitations on CO_2 emissions, and the third is recent supply chain issues.

2.1 Carbon Policy in the SC

The role of the carbon tax in a SC is to encourage the producer and the retailer to reduce emissions [13]. Zeballos et al. [14] dealt with various shipping costs in connection with real needs in CLSC design. Mohammed et al. [15] consider producing, warehousing, disposing, and recycling

¹ This protocol was prepared by CEMEX based on the recommendations of the World Health Organization (WHO), external consultants, and the experience of the company itself.

Fig. 1 Change in the emission

of CO₂ during the pandemic [8]

Coronavirus could trigger the largest ever annual fall in CO2 emissions

Pre-crisis GDP estimates suggested CO2 would rise by more than 1% in 2020 (470MtCO2)

emissions in the CLSC. Different carbon rates are applied in each country, year, and analysis. According to Australia's environmental policy in 2015, Zakeri et al. [16] applied a tax rate for CO_2 emissions trading from SCD. At the same time, Fareeduddin et al. [17] mention how Australia's tax rate affects the supply chain network design (SCND). Paksoy et al. [18] offer a model for SCN with a bi-objective (BO) function that considers transport costs, greenhouse gas (GHG) emissions, and fuel consumption. To control for CO₂ emissions during transportation, determine the maximum CO₂ emissions for each manufacturing and recycling final product. Martí et al. [19] mention CO₂ emissions, including raw materials, production, storage, and transportation. Optimization and emission reduction in SC were based on carbon tax [20]. This policy is generally defined as the upper bound of carbon emission and must be enforced. The common carbon cap policy has been considered in some research for the GSCND. Many authors set a limitation in the manufacture, warehousing, transportation, and recycling [15, 17, 19, 21–24]. Other scholars consider the periodic or global carbon cap on the GSCND [25-29]. Coordination and decision-making in SC consider cap and trade [30]. The main source of GHG emissions is raw materials, considered by Abdallah et al. [31]. Kannan et al. [32] mention emissions in open facilities and transportation based on backward logistics, which minimizes the CO₂ footprint. Transport emissions, raw materials, open facilities, manufacturing, distribution centers, and electricity consumption are all included in articles on cap and trade. Chaabane et al.

[97] and Rezaee et al. present a linear programming (LP) model, which contacts the CO_2 of production and transportation with the production scale [,]. In the context of cap and trade, outsourcing issues should be considered in SC [24, 32–35, 35]. Green supply chain concerns CO_2 emissions for agricultural products [36]. Designing the GCLSCN model focuses on CO_2 emissions [37].

2.2 CO₂ Emissions During the COVID-19

Information from the WHO demonstrates that GHG emissions rose to another record a couple of years ago. CO_2 emissions were higher in the last 5 years than in the previous 5 years [38]. It is assessed that the emissions from the world's biggest carbon producer (China) over the last few days lowered by about 25% compared to the pre-COVID-19 outbreaks (nationalgeographic.com). The International Energy Agency (IEA) has anticipated that the CO₂ emission could fall by 8% during the lockdown days [39]. There is a possibility that emissions will fall by more than 5% in 2020, according to some estimates. It is the most significant yearly reduction so far [39]. Figure 1 analyzes the decrease in CO2 emissions during the current outbreak with pandemics' past significant events. The maximum reduction in CO_2 emissions during COVID-19 has been observed so far. In addition to reducing the spread of COVID-19, lockdowns also reduced human activity [40]. The new SC regarding hazardous gas emissions during the pandemic was proposed by Abbasi et al. [41]. As a result of the lockdown limitations,

the amount of CO_2 released into the atmosphere has temporarily decreased [42]. During this pandemic, many emissions may be reduced due to the current lockdown condition since all major transportation activities have been stopped.

2.3 Recent Supply Chain Issues

Abbasi et al. [43] recently focused on designing sustainable recovery networks during the COVID-19 outbreak. Mosallanezhad et al. [44] developed a multi-objective (MO) metaheuristics approach for personal protection during the COVID-19 outbreak. Relief supply chain network during the COVID-19 pandemic and using the Internet of things (IoT) optimize the developed approaches [45]. In designing a model, the social aspect in CLSC was considered for the avocado industry [46]. A metaheuristic method for a dual-channel CLSCD was used in the tire industry under uncertainty [47]. Abdi et al. [48] developed a new stochastic model using stochastic programming for a closed-loop supply chain network (CLSCN). The metaheuristic method was also used for sugarcane supply chain network [49]. Ivanov and Das [50] concentrate on supply chain managers (SCMs) and SC resilience during COVID-19. A model for disruption risk is managing the SC during COVID-19 [51]. Rowan and Laffey [52] researched the shortage of SC for PPE during the COVID-19 pandemic. Ivanov [53] determined the future effect of the COVID-19 pandemic on the global supply chain, with a risk management approach. A sustainable blood supply chain considers social and environmental impacts [54]. Mosallanezhad et al. [55] designed a NP-hard model for the shrimp supply chain. Hobbs [56] researched on food supply chains and SC resilience during the COVID-19 outbreak. Ivanov and Dolgui [57] analyzed intertwined supply networks during COVID-19. Hajiaghaei-Keshteli and Fathollahi Fard [58] designed the sustainable closed-loop supply chain network (SCLSCN) design with discount supposition in the transportation costs. Free and Hecimovic [59] researched on supply and demand during and after COVID-19. Liao et al. [60] designed a CLSCN new mixed linear mathematical model for citrus fruit crates considering environmental and economic issues. Abdi et al. [61] designed and solved a new model using the metaheuristic green supply chain (GSC) method with simultaneous pickup and split delivery. Cheraghalipour et al. [62] suggested and solved a model with metaheuristic algorithms for the rice SC. Samadi et al. [63] developed a new model for discount supposition considering metaheuristic approaches. Illahi and Mir [64] researched the efficient logistics and SCM during and after COVID-19. Chouhan et al. [65] suggested a CLSCN for handling uncertain demands. Salehi-Amiri et al. [66] designed a SCLSCN for the walnut industry by using mixed-integer linear programming. Nandi et al. [67] used blockchain for redesigning SC during COVID-19. Fasihi et al. [68]

designed a fish CLSC by developing a BO mathematical model. Zahedi et al. [69] designed a CLSCN, considering multi-option transportation and multi-task sales agencies. The uncertainty of MO model for SC design considers reliability [70]. Fathollahi-Fard et al. [71] developed an objective model for a green home healthcare supply chain. The position of this research compared to that of previous research is shown in Table 1.

2.4 Research Gap and Innovation

Due to the recency of the COVID-19 pandemic, there are still many research gaps. The research papers in Table 1 have not simultaneously considered CO_2 emission, hygienic cost, and COVID-19 pandemic issues in the CLSC framework. In this paper, we develop concepts of GSCND. In summary, the suggested paper shows some concerns that cover the literature gaps, and innovation can be categorized as follows:

- 1 Designinga hygienic SC.
- 2 Designing new GSC considering pandemics in two dimensions of sustainability:
 - Calculating COVID-19 hygiene costs in addition to the normal condition to develop economic aspects.
 - Developing the environmental aspects by considering the reduction of CO₂ emissions during the COVID-19 lockdowns.
- 3 In this paper, the distribution center is merged with the collection center to prevent physical contact with customers during the COVID-19 outbreak.
- 4 This paper presents a MOMIP model and COVID-19 pandemic issues in the CLSC framework.

Therefore, this study designed a new and hygienic GSC model to fill this gap in the COVID-19 disaster.

3 Mathematical Model

The GSC covers both aspects (economic and environmental) of sustainability. Recycling is an environmentally friendly process that can save costs and improve economic efficiency. CLSC integrates a forward supply chain (FSC) with a reverse supply chain (RSC). In this article, the distribution center (DC) is merged with the collection center (CC) during the COVID-19 pandemic for the following reasons: reducing building costs, reducing CO₂ emission, reducing environmental pollution, and preventing physical contact of customers (observance of social distancing). To increase the efficiency of SC, this mathematical model has been designed by incorporating economic and environmental performance indicators into the GSCND during the COVID-19 pandemic.

Table 1The recent researchcontribution of SC

Authors	Reference	Year	Focused CO ₂ emission	Focused hygienic cost	Focused closed- loop network	Focused COVID-19
Hajiaghaei-Keshteli and Fathollahi-Fard	[58]	2019			*	
Samadi et al.	[63]	2020			*	
Ivanov and Das	[50]	2020				*
Hobbs	[56]	2020				*
Liao et al.	[60]	2020	*		*	
Rowan and Laffey	[52]	2020				*
Ivanov	[53]	2020				*
Chouhan et al.	[65]	2020			*	
Ivanov and Dolgui	[57]	2020				*
Mosallanezhad et al.	[44]	2021				*
Zahedi et al.	[45]	2021				*
Fathollahi-Fard et al.	[47]	2021			*	
Abdi et al.	[48]	2021			*	
Chouhan et al.	[49]	2021			*	
Shahed et al.	[51]	2021				*
Mousavi et al.	[54]	2021	*			
Mosallanezhad et al.	[55]	2021			*	
Free and Hecimovic	[59]	2021				*
Illahi and Mir	[64]	2021				*
Salehi-Amiri et al.	[66]	2021			*	
Yachai et al.	[36]	2021	*			
Kazancoglu et al.	[37]	2022	*		*	
Nandi et al.	[67]	2021				*
Fasihi et al.	[68]	2021			*	
Zahedi et al.	[45]	2021				*
Salehi-Amiri et al.	[46]	2022			*	
Current research		2022	*	*	*	*

In addition to a total cost measure to calculate all the monetary expenditure in a specific SC design and environmental and social efficiency that are measured indexes used in a mathematical modeling method, multi-objective optimization (MOO) is fulfilled to create the GSC. The model will allow us to achieve the best design of the SC, determining which facilities (suppliers-factories-distribution/collection centers-recycling/landfill centers) should be included in the network, recognizing the flows of units of product among different echelons. This research provides useful information to DMs for helpful information, judgments, and ultimately creating more sustainable decisions during the pandemic. The explanation of the suggested mathematical model for GSC design is delineated in four subsections: problem statement and assumptions, model components, formulation process, and multi-objective (MO) approach.

3.1 Problem Statement and Assumptions

The mathematical model described above is considered to provide five types of facilities:

- Suppliers (S),
- Production/Remanufacturing/Refurbishing centers (Factories) (F),
- Collection/Distribution centers (CDC),
- Customers (C),
- Recycling/landfill centers (RLC).

In the forward flow, raw materials are extracted in supplier centers and consigned to factories for manufacture. To satisfy customer needs, new/remanufactured/refurbished products are transferred through the forward supply chain (from factories to CDCs and from CDCs to customers). Customer-returned products are collected by the reverse supply chain (RSC) and shipped to the CDCs. Those products that qualify for remanufacturing and refurbishing are sent to factories, while those that do not are sent to RLCs for landfilling and recycling. According to its specifications, this product is considered end of life (EOL). Figure 2 shows the designed schematic of the problem.

It is necessary to make certain assumptions to design a mathematical model:

- The COVID-19 outbreak is considered in the supply chain thoroughly.
- The cost of the model includes regular and hygienic.
- The DC is merged with the CC to observe social distancing during the COVID-19 pandemic.
- All customer demand was always satisfied during the COVID-19 pandemic and lockdowns with every factory through every CDC.
- It is assumed that a determined percentage of the total demand is disposed of.
- The COVID-19 hygiene protocol is followed for all returned products that enter RLCs for disposal.
- Customer demand and product returns are inevitable.
- The locations of Fs, CDCs, and RLCs are potential.
- The locations of suppliers and customers exist.
- There are several shipping alternatives for each connection (e.g., road/rail/air/sea).
- All shipping alternatives have unlimited capacities.
- Distances between network nodes should be feasible.
- The network consists of both forward and reverse flows (closed-loop).

3.2 Model Components

The SC model includes the sets, parameters, and variables described as follows: The sets S, F, I, B, and C contain the existing suppliers, the potential factories, the potential CDCs, the potential RLCs, and the existing customers, respectively. The sets TS, TF, TI, TC, and TB include the shipping options from suppliers, factories, CDCs, customers, and RLCs, respectively. The model's parameters are technical parameters, economic parameters, and environmental parameters. Binary and non-negative, continuous decision variables are applied to implement the goals of

the mathematical model, namely assign the GSC network and the number of units of products that flow through the network.

The hygiene costs for prevention and control of COVID-19 include the following:

- Disinfection costs,
- Hand sanitizer costs,
- The costs of PPE (Shield–Mask–Gown–Gloves)
- COVID-19 tests costs (Normal–Fast),
- COVID-19 education costs,
- The costs of COVID-19 medicines, vaccines, and vaccination [6, 72].

The following are positive impacts of COVID-19 and lockdown on the environment:

- Reducing CO₂ emissions and industrial activities
- Reducing CO₂ emissions and shipping activities

The negative impact of COVID-19 on the environment is as follows:

 Increased medical waste during the COVID-19 pandemic.

. IncreasedPPE waste disposal increased during the COVID-19 pandemic (plastic waste–soil and water pollution) [73–79, 95].

3.2.1 Notations

In this section, notations for the mathematical model are explained (Tables 2, 3, 4, 5, and 6).

Table 2 Indices	
$s = \{1, 2,, S\}$	Set of fixed locations for suppliers,
$f = \{1, 2,, F\}$	Set of potential locations for factories,
$i = \{1, 2,, I\}$	Set of potential locations for CDCs,
$c = \{1, 2,, C\}$	Set of fixed locations for customers,
$b = \{1, 2,, B\}$	Set of potential locations for RLCs,
$ts = \{1, 2,, TS\}$	Set of shipping alternatives from suppliers,
$f = \{1, 2,, TF\}$	Set of shipping alternatives from factories,
$ti = \{1, 2,, TI\}$	Set of shipping alternatives from CDCs,
$tc = \{1, 2,, TC\}$	Set of shipping alternatives from customers
$tb = \{1, 2,, TB\}$	Set of shipping alternatives from RLCs,

3.3 Formulation Process

Table 3

A mathematical optimization model consists of two parts: objective functions and constraints. The model's objectives are to minimize costs (economic aspect) and CO_2 emissions (environmental aspect) during COVID-19 lockdown days. The bi-objective design of the network during the pandemic and lockdown periods is formulated as follows: The mathematical formulation of the objective functions is described in Eqs.

(1)–(2), and the constraints of the mathematical model are given in Eqs. (3)–(18). The total cost is the summation of the total fixed cost (TF), the total variable cost (TV), the total hygiene cost (TH), and the total shipping cost (TS). The total emission of CO_2 is calculated by adding the total CO_2 due to working facilities (EM), such as extracting raw materials, producing, remanufacturing, refurbishing, recycling, and land-filling, and the total CO_2 due to shipping (ES). It is assumed that all emissions of CO_2 are in this model with the observance of hygienic protocol during the COVID-19 pandemic and lockdowns.

$$\operatorname{Min} Z_1 = TF + TV + TH + TS \tag{1}$$

$$TF = \sum_{f} F_{f} x_{f} + \sum_{i} F_{i} x_{i} + \sum_{b} F_{b} x_{b}$$
(1.1)

$$TV = \sum_{s} V_{s} \sum_{f} \sum_{ts} Y_{sf}^{ts} + \sum_{f} V_{f} \sum_{i} \sum_{tf} Y_{fi}^{tf}$$

+ $\sum_{i} V_{i} \sum_{c} \sum_{ti} Y_{ic}^{ti} + \sum_{i} Vr_{i} \sum_{c} \sum_{tc} Y_{ci}^{tc}$
+ $\sum_{f} Vr_{f} \sum_{i} \sum_{ti} Y_{if}^{ti} + \sum_{b} V_{b} \sum_{i} \sum_{ti} Y_{ib}^{ti}$ (1.2)

Technical parameters	$\overline{d_a}$	The demand of customer c,
	M	Maximum supplier extraction capacity,
	M_{f}	Maximum factory production capacity,
	M_i	Maximum CDC collection/distribution capacity,
	M_b	Maximum RLC recycling/landfilling capacity,
	Mr_f	Maximum factory remanufacturing and refurbishing capacity,
	MN _{dismantled}	Minimum percentage of the returned product to be remanufactured (unit),
	MN _{disposed}	Minimum percentage of the returned product to be recycled and landfilled (unit),
	γ_{sf}^{ts}	Shipping rate from the supplier s to factory f with shipping alternative ts ,
	γ_{fi}^{tf}	Shipping rate from factory f to CDC i with shipping alternative tf ,
	γ_{if}^{ti}	Shipping rate from CDC i to factory f with shipping alternative ti ,
	γ_{ic}^{ti}	Shipping rate from CDC i to customer c with shipping alternative ti ,
	γ_{ci}^{tc}	Shipping rate from customer c to CDC i with shipping alternative tc,
	γ_{ih}^{ti}	Shipping rate from CDC i to RLC b with shipping alternative ti ,
	γ_{hs}^{tb}	Shipping rate from RLC b to supplier s with shipping alternative tb,
	δ_{sf}	Distance between supplier <i>s</i> and factory <i>f</i> ,
	δ_{fi}	Distance between factory f and CDC i ,
	δ_{if}	Distance between CDC <i>i</i> and factory <i>f</i> ,
	δ_{ic}	Distance between CDC i and customer c ,
	δ_{ci}	Distance between customer c and CDC i ,
	δ_{ib}	Distance between CDC <i>i</i> and RLC <i>b</i> ,
	δ_{bs}	Distance between RLC b and supplier s,

 Table 4
 Economic parameters

- F_f Fixed cost for opening factory f during the COVID-19 pandemic,
- F_i Fixed cost for opening CDC *i* during the COVID-19 pandemic,
- F_b Fixed cost for opening RLC *b* during the COVID-19 pandemic,
- V_s The variable cost for extracting a unit of raw material from the supplier s,
- V_f The variable cost for producing a unit of product in the factory f,
- V_i The variable cost for distribution a unit of product in the CDC *i*,
- Vr_i The variable cost for collecting, inspecting, consolidating, and sorting a unit of the returned product in the CDC *i*,
- V_b The variable cost for recycling and landfilling a unit of the returned product in RLC b,
- Vr_f The variable cost for remanufacturing and refurbishing a unit of the returned product in the factory f,
- TCO_{sf}^{ts} The shipping cost of a unit of raw material from the supplier s to factory f with alternative shipping ts,
- TCO_c^{tf} The shipping cost of a unit product from factory f to CDC i with alternative shipping tf,
- TCO_{i}^{t} The shipping cost of a unit of product from CDC *i* to customer *c* with alternative shipping *ti*,
- TCO_{i}^{t} The shipping cost of a unit of the returned product that is collected from customer c to CDC i with alternative shipping tc,
- TCO_{if}^{ti} The shipping cost of a unit of the returned product that is available for remanufacturing and refurbishing from CDC *i* to factory *f* with alternative shipping *ti*,
- TCO_{ib}^{ti} The shipping cost of a unit of returned product that is unsuitable for remanufacturing and refurbishing, from CDC *i* to RLC *b* with alternative shipping *ti*,
- TCO_{br}^{b} The shipping cost of a unit of recycled product from RLC b to supplier s with alternative shipping tb,
- HV_s The cost of COVID-19 prevention and control while extracting a unit of raw material from the supplier s,
- HV_f The cost of COVID-19 prevention and control during production of a unit of product in the factory f,
- *HV_i* The cost of COVID-19 prevention and control for distributing a unit of product from the CDC *i*,
- *HVr_i* The cost of COVID-19 prevention and control for collecting, inspecting consolidation, and sorting a unit of the returned product in the CDC *i*,
- HV_b The cost of COVID-19 prevention and control for recycling and landfilling a unit of the returned product in the RLC b,
- HVr_f The cost of COVID-19 prevention and control for remanufacturing and refurbishing a unit of the returned product in the factory f,
- HTC_{sf}^{ts} The cost of COVID-19 prevention and control during the shipping of a unit of raw material from the supplier s to factory f with alternative shipping ts,
- HTC_{fi}^{tf} The cost of COVID-19 prevention and control during the shipping of a unit of product from factory f to CDC i with alternative shipping tf,
- HTC_{ic}^{ti} The cost of COVID-19 prevention and control during the shipping of a unit of product from CDC *i* to customer *c* with alternative shipping *ti*,
- HTC_{ci}^{tc} The cost of COVID-19 prevention and control during the shipping of a unit of returned product from customer c to CDC i with alternative shipping tc,
- HTC_{if}^{ti} The cost of COVID-19 prevention and control during the shipping of a unit of the returned product that is available for remanufacturing and refurbishing from CDC *i* to factory *f* with alternative shipping *ti*,
- HTC_{ib}^{ti} The cost of COVID-19 prevention and control during the shipping of a unit of returned product that is unsuitable for remanufacturing and refurbishing from CDC *i* to RLC *b* with alternative shipping *ti*,
- HTC_{bs}^{tb} The cost of COVID-19 prevention and control during the shipping of a unit of recycled product from RLC *b* to supplier *s* with alternative shipping *tb*,

$$TH = \sum_{s} HV_{s} \sum_{f} \sum_{ts} Y_{sf}^{ts} + \sum_{f} HV_{f} \sum_{i} \sum_{tf} Y_{fi}^{tf} + \sum_{i} HV_{i} \sum_{c} \sum_{ti} Y_{ic}^{ti} + \sum_{i} HVr_{i} \sum_{c} \sum_{tc} Y_{ci}^{tc} + \sum_{f} HVr_{f} \sum_{i} \sum_{ti} Y_{if}^{ti} + \sum_{b} HV_{b} \sum_{i} \sum_{ti} Y_{ib}^{ti} + \sum_{s} \sum_{f} \sum_{ts} HTC_{sf}^{ts} Y_{sf}^{ts} + \sum_{f} \sum_{i} \sum_{tf} HTC_{fi}^{tf} Y_{fi}^{tf} + \sum_{i} \sum_{c} \sum_{ti} HTC_{ic}^{ti} Y_{ic}^{tc} + \sum_{c} \sum_{i} \sum_{tc} HTC_{ci}^{tc} Y_{ci}^{tc} + \sum_{i} \sum_{f} \sum_{ti} HTC_{if}^{ti} Y_{if}^{tf}$$

$$+ \sum_{i} \sum_{b} \sum_{ti} HTC_{ib}^{ti} Y_{ib}^{ti} + \sum_{b} \sum_{s} \sum_{tb} HTC_{bs}^{tb} Y_{bs}^{tb}$$

$$(1.3)$$

$$TS = \sum_{s} \sum_{f} \sum_{ts} TCO_{sf}^{ts} Y_{sf}^{ts} + \sum_{f} \sum_{i} \sum_{tf} TCO_{fi}^{tf} Y_{fi}^{tf} + \sum_{i} \sum_{c} \sum_{ti} TCO_{ic}^{ti} Y_{ic}^{ti} + \sum_{c} \sum_{i} \sum_{tc} TCO_{ci}^{tc} Y_{ci}^{tc} + \sum_{i} \sum_{f} \sum_{ti} TCO_{if}^{ti} Y_{if}^{ti} + \sum_{i} \sum_{b} \sum_{ti} TCO_{ib}^{ti} Y_{ib}^{ti} + \sum_{b} \sum_{s} \sum_{tb} TCO_{bs}^{tb} Y_{bs}^{tb}$$

$$(1.4)$$

Table 5 Environmental parameters

- e_s The rate of CO₂ released to extract a unit of raw material in supplier s during the COVID-19 pandemic and lockdown days,
- e_f The rate of released CO₂ to produce a unit of product in factory f during the COVID-19 pandemic and lockdown days,
- e_i The rate of CO₂ released to handle and distribute 1 unit of product in the CDC *i* during the COVID-19 pandemic and lockdown days,
- *er*_i The rate of CO₂ released to collect, inspect, consolidate, and sort 1 unit of the returned product in the CDC *i* during the COVID-19 pandemic and lockdown days,
- er_f The rate of CO₂ released to remanufacture 1 unit of the returned product in the factory f during the COVID-19 pandemic and lockdown days,
- er_b The rate of CO₂ released to recycle and landfill 1 unit of the returned product in RLC *b* during the COVID-19 pandemic and lockdown days,
- ETC_{sf}^{ts} CO₂ released by shipping alternative *ts* to send a unit of raw material from supplier *s* to factory *f* for a unit distance during the COVID-19 pandemic and lockdown days,
- ETC_{fi}^{tf} CO₂ released by shipping alternative *tf* to send a unit of product from factory *f* to CDC *i* for a unit distance during the COVID-19 pandemic and lockdown days,
- ETC_{ic}^{ti} CO₂ released by shipping alternative *ti* to send a unit of product from CDC *i* to customer *c* for a unit distance during the COVID-19 pandemic and lockdown days,
- $ETCR_{ci}^{tc}$ CO₂ released by shipping alternative *tc* to collect a unit of returned production from customer *c* to CDC *i* for a unit distance during the COVID-19 pandemic and lockdown days,
- $ETCR_{if}^{ti}$ CO₂ released by shipping alternative *ti* to send a unit of the returned product to be remanufactured from CDC *i* to factory *f* for a unit distance during the COVID-19 pandemic and lockdown days,
- $ETCR_{ib}^{ti}$ CO₂ released by shipping alternative *ti* to send a unit of returned production from CDC *i* to RLC *b* for a unit distance during the COVID-19 pandemic and lockdown days,
- $ETCR_{bs}^{tb}$ CO₂ released by shipping alternative *tb* to send a unit of returned production from RLC *b* to supplier *s* for a unit distance during the COVID-19 pandemic and lockdown days,

Table 6 Variables

- x_f If factory f is open, equals 1; otherwise 0.
- x_i If CDC *i* is open, equals 1; otherwise 0.
- x_b If RLC b is open, equals 1; otherwise 0.
- Y_{sf}^{ts} Quantity of units of raw material sent from supplier s to factory f with shipping alternative ts,
- Y_{fi}^{tf} Quantity of units of product sent from factory f to CDC i with shipping alternative tf,
- Y_{ic}^{ti} Quantity of units of product sent from CDC *i* to customer *c* with shipping alternative *ti*,
- Y_{ci}^{tc} Quantity of units of returned product collected from customer c to CDC i with shipping alternative tc,
- Y_{it}^{ti} Quantity of units of returned product available for remanufacturing and refurbishing sent from CDC *i*
 - to factory f with shipping alternative ti,
- Y_{ib}^{ti} Quantity of units of returned product unsuitable for remanufacturing and refurbishing sent from CDC *i* to RLC *b* with shipping option *ti*,
- Y_{bs}^{tb} Quantity of units of recycled product sent from RLC b to supplier s with shipping option tb,

$$\operatorname{Min} Z_2 = EM + ES$$

(2)

$$EM = \sum_{s} e_{s} \sum_{f} \sum_{ts} Y_{sf}^{ts} + \sum_{f} e_{f} \sum_{i} \sum_{tf} Y_{fi}^{tf} + \sum_{i} e_{i} \sum_{c} \sum_{ti} Y_{ic}^{ti} + \sum_{i} e_{i} \sum_{c} \sum_{tc} Y_{ci}^{tc} + \sum_{f} e_{f} \sum_{i} \sum_{ti} Y_{if}^{ti} + \sum_{b} e_{f} \sum_{i} \sum_{ti} Y_{ib}^{ti}$$
(2.1)

$$ES = \sum_{s} \sum_{f} \sum_{ts} ETC_{sf}^{ts} Y_{sf}^{ts} \delta_{sf} \gamma_{sf}^{ts} + \sum_{f} \sum_{i} ETC_{fi}^{tf} Y_{fi}^{tf} \delta_{fi} \gamma_{fi}^{tf} + \sum_{i} \sum_{c} \sum_{ti} ETC_{ic}^{ti} Y_{ic}^{ti} \delta_{ic} \gamma_{ic}^{ti} + \sum_{i} \sum_{c} \sum_{ti} ETCR_{ci}^{tc} Y_{ci}^{tc} \delta_{ci} \gamma_{ci}^{tc} + \sum_{i} \sum_{f} \sum_{f} ETCR_{if}^{ti} Y_{if}^{ti} \delta_{if} \gamma_{if}^{ti} + \sum_{i} \sum_{b} \sum_{ti} ETCR_{ib}^{ti} Y_{ib}^{ti} \delta_{ib} \gamma_{ib}^{ti} + \sum_{b} \sum_{s} \sum_{ti} ETCR_{ib}^{ti} Y_{bs}^{tb} \delta_{bs} \gamma_{bs}^{tb}$$

$$(2.2)$$

Subject to:

$$\sum_{s \in S} \sum_{ts \in TS} Y_{sf}^{ts} \le M_f x_f \quad \forall f \in F$$
(3)

Constraint (3) describes the total number of row material units that enter a factory from any suppliers via any transportation options which should be lower or equal to the maximum capacity of the respective factory.

$$\sum_{f \in F} \sum_{tf \in TF} Y_{fi}^{tf} \le M_i x_i \quad \forall i \in I$$
(4)

Constraint (4) states that the total number of product units that enter a CDC from any factories via any transportation options should be lower or equal to the maximum capacity of the respective CDC.

$$\sum_{i \in I} \sum_{ti \in TI} Y_{ib}^{ti} \le M_b x_b \quad \forall b \in B$$
(5)

Constraint (5) shows that the total number of returned product units to be recycled, incinerated, and landfilled collected from any customers to an RLC via any transportation options should be lower or equal to the maximum capacity of the respective RLC.

$$\sum_{i \in I} \sum_{ti \in TI} Y_{if}^{ti} \le M r_f x_f \quad \forall f \in F$$
(6)

Constraint (6) presents the total number of returned product units shipped from a CDC to any factories via any transportation options which should be lower or equal to the respective factory's maximum remanufacturing and refurbishing capacity.

$$\sum_{c \in C} \sum_{tc \in TC} Y_{ci}^{tc} \le M r_i x_i \quad \forall i \in I$$
(7)

Constraint (7) describes the total number of returned product units shipped from a customer to any CDCs via any transportation options which should be lower or equal to the maximum collecting capacity of the respective CDC.

$$\sum_{i \in I} \sum_{tf \in TF} Y_{fi}^{tf} \le \sum_{f \in F} \sum_{ts \in TS} Y_{sf}^{ts} \forall_{f \in F}$$
(8)

Constraint (8) explains that the total number of product units shipping from a factory to any CDCs via any transportation options should be lower or equal to the total number of raw material units shipping from a supplier to any factories.

$$\sum_{c \in C} \sum_{ti \in TI} Y_{ic}^{ti} \le \sum_{i \in I} \sum_{tf \in TF} Y_{fi}^{tf} \quad \forall i \in I$$
(9)

Constraint (9) illustrates that the total number of product units shipping from a CDC to any customers via any transportation options should be lower or equal to the total number of products shipping from a factory to any CDCs.

$$\sum_{b \in B} \sum_{ti \in TI} Y_{ib}^{ti} \le \sum_{i \in I} \sum_{tf \in TF} Y_{fi}^{tf} \quad \forall i \in I$$

$$\tag{10}$$

Constraint (10) shows that the total number of product units shipping from a CDC to any RLCs via any transportation options should be lower or equal to the total number of products shipping from a factory to any CDCs.

$$\sum_{f \in F} \sum_{ti \in TI} Y_{if}^{ti} \le \sum_{i \in I} \sum_{f \in TF} Y_{fi}^{tf} \quad \forall i \in I, \forall f \in F$$

$$(11)$$

Constraint (11) describes that the total number of returned product units shipping from a CDC to any factories via any transportation options should be lower or equal to the total number of product units shipping from a factory to any CDCs.

$$\sum_{i \in I} \sum_{t c \in TC} Y_{ci}^{tc} \le \sum_{c \in C} \sum_{t i \in TI} Y_{ic}^{ti} \quad \forall i \in I, \forall c \in C$$
(12)

Constraint (12) states that the total number of returned product units shipping from a customer to any CDCs via any transportation options should be lower or equal to the total number of product units shipping from a CDC to any customers.

$$d_c \le \sum_i \sum_{ti} Y_{ic}^{ti} \forall_{c \in C}$$
(13)

Constraint (13) shows that the total number of product units distributed from any CDCs via any transportation options to satisfy a customer's demand should be higher or equal to the respective demand of the customer.

$$\sum_{c} \sum_{tc} Y_{ci}^{tc} \le d_c \quad \forall c \in C$$
(14)

Constraint (14) describes that the total number of returned product units collected from a customer to any CDCs via any transportation options should be lower than the respective customer demand.

$$MN_{\text{disposed}} \cdot d_c \le \sum_i \sum_{tc} Y_{ci}^{tc} \forall c \in C$$
(15)

Constraint (15) states that the total number of product units to be recycled, incinerated, and landfilled sent to any RLCs via any transportation options from a customer should be higher or equal to the minimum percentage of restitution from the total number of demands of the respective customer.

$$\sum_{f \in F} \sum_{ti \in TI} Y_{if}^{ti} \ge MN_{\text{dismantled}} \sum_{c \in C} \sum_{ti \in TI} Y_{ci}^{ti} \forall i \in I$$
(16)

Constraint (16) shows that the total number of products units to be refurbished and remanufactured delivered to any factories from a CDC via any transportation options should be greater or equal to the minimum percentage of product units to be remanufactured from the total amount of units of returned product.

$$Y_{sf}^{ts}, Y_{fi}^{tf}, Y_{ic}^{ti}, Y_{ci}^{tc}, Y_{if}^{ti}, Y_{ib}^{ti}, Y_{bs}^{tb} \ge 0 \quad \forall s \in S; \forall f \in F; \forall i \in I; \forall b \in B; \forall c \in C; \forall ts \in TS; \forall tf \in TF; \forall ti \in TI; \forall tb \in TB; \forall tc \in TC$$

$$(17)$$

Constraint (17) describes the total number of raw materials, products, and returned products that flowed from a supplier to a factory via transportation options, a factory to a CDC via transportation options, a CDC to a customer center via transportation options, a customer center to a CDC via transportation options, and a CDC to a RLC and a factory via transportation options should be higher or equal to zero.

$$X_f, X_i, X_b \in \{0, 1\}_{\forall f \in F; \forall i \in I; \forall b \in B}$$

$$(18)$$

Constraint (18) explains the binary numbers used to describe the potential of facilities (Factories, CDCs, and RLCs).

3.4 Multi-objective optimization problem (MOOP) Approach

The multi-objective optimization problems (MOOPs) consist of two or more objective functions that must be minimized or maximized. A set of solutions defines the best trade-offs between competing objectives in a single-objective optimization problem (SOOP). Considering a set of solutions, the nondominant solution set is the set of all solutions that the members of the solution group do not dominate. The non-dominant group of fully feasible decision space is called the Pareto-optimal set (POS). The boundary defined by the set of all mapped points in the POS is called the Pareto-optimal front (POF).

The aims of MOOP are as follows:

- To achieve a set of solutions as close to POF as possible.
- To achieve a set of solutions as diverse as possible [80].

3.4.1 Scalarization Methods

MOOP is traditionally solved by scalarization, which involves formulating a SOOP corresponding to the MOOP [81].

$$\operatorname{Min}\left(f1(\mathsf{X}),\ldots,fp(\mathsf{X})\right) \tag{19}$$

$$x \in X \tag{20}$$

The weighted sum method (WSM) uses the vector of weights $\lambda \in \mathbb{R}^{p} \ge as$ a parameter [81].

$$\operatorname{Min}\left(\sum_{k=1}^{p} \lambda_k f_k(x)\right) \tag{21}$$

$$x \in X \tag{22}$$

An approach to managing WSM is to weigh each aspect and minimize the weighted sum of all elements. The main advantage of this approach is to model and solve MOP with SO methods [82]. Figure 3 illustrates the Pareto concept in more detail. The mathematical model for solving with two objective functions (OFs) is shown in Sect. 3.4.2.

3.4.2 WSM

Minimize $w_1 f_1 + w_2 f_2$

Subject to:

Eqs. (3) to (18)

Where $w_1 \ge 0$ and $w_2 \ge 0$ are weights such that $w_1 + w_2 = 1$, and f_1 and f_2 are the OFs.

4 Implementation and Evaluation

4.1 Case Study

The first cases of COVID-19 were confirmed in Iran on February 19, 2020. The model's validity and the solution method's functionality are assessed through the data for the

Table 7 Sup _l	plier's data							
Supplier's locations (City)	Average variable cost before February 19, 20 (Rials) (100,000 units)	 Average variable a Average variable a hygiene cost durin COVID-19 pander (February 19, 2021 June 26, 2021) (Ri including: Disinfeu and sanitizer costs costs + COVID-19 cost + costs of CO¹ 19 education + Cos of COVID-19 vacc (100,000 units) 	und Specific net C g the before Februa mic (kg CO ₂ per tc 0– material) als), + PPE test vID- sts ;ine	O ₂ emission C ₁ ry 19, 2020 C onne of C	specific net CO ₂ emission luring the COVID-19 andemic (February 19, 2020-June 26, 2021) (kg 30 ₂ per tonne of material	 Average (emissions CO₂ relea distance >) rates befo 2020 (roa 	CO ₂ s = average ased x average x average shipping ore February 19, ad/rail/air, tonnes)	Average CO ₂ emissions = average CO ₂ released × Average distance × Average shipping rates during the COVID-19 pandemic (February 19, 2020-June 26, 2021) (road/ rail/air, tonnes)
Isfahan	11,000,000,000	13,000,000,000	486.7	4	170.2	7800		6905
Yazd Tehran	12,700,000,000 18 000 000 000	14,500,000,000 19 200 000 000	399.6 376.0		884.2 60 2	6500 8500		6070 7605
Table 8 Dati Factory location (City) (City)	a of factories Average fixed cost during the COVID-19 pandemic (February 19, 2020-June 26, 2021) (Rials)	Average variable cost before February 19, 2020 (Rials) (100,000 units)	Average variable and hygiene cost during the COVID-19 pandemic (February 19, 2020-June 26, 2021) (rials), including disinfection and sanitizer costs + PPE costs + COVID-19 test cost + costs of COVID- 19 education + costs of COVID-19 vaccine (100,000 units)	Specific net C(emission befor February 19, 2 (kg CO ₂ per to material)	D2 Specific net C ¹ e emission durit 020 COVID-19 pa nne of (February 19, June 26, 2021) per tonne of m	$\begin{array}{c c} O_{2} & A \\ P_{3} & P_{3} & P_{3} \\ P_{4} & P_{4} & P_{4} \\ P_{4} & P$	werage CO2 ₂ missions = average 20 ₂ released × average listance × average hipping rates before 'ebruary 19, 2020 road/rail/air; tonnes)	Average CO ₂ emissions = average ge CO ₂ released × average distance × average shipping rates during the COVID-19 pandemic (February 19, 2020–June 26, 2021) (road/rail/air; tonnes)
Tehran Saveh	500,000,000,000 190.000,000,000	18,000,000,000 10.000,000,000	22,000,000,000 13.000,000,000	686.7 596.2	670.2 574.1	1 = 8	0,400 600	9880 8763
Kashan	350,000,000,000	14,000,000,000	17,000,000,000	476.0	469.2	ŏŏ	820	7900

Table 9 Data of recycl	ling/landfilling						
Recycling/landfilling location (Tehran Province)	Average fixed cost during the COVID-19 pandemic (February 19, 2020-June 26, 2021) (rials)	Average variable cost before February 19, 2020 (rials) (100,000 units)	Average variable and hygiene costs during the COVID- 19 pandemic (February 19, 2020–June 26, 2021) (rials), including disinfection and asmitizer costs + PPE costs + COVID-19 test cost + costs of COVID-19 test cost + costs of education + costs of COVID-19 vaccine (100,000 units)	Specific net CO ₂ emission before February 19, 2020 (kg CO ₂ per tonne of material)	Specific net CO ₂ emission during the COVID-19 pandemic (February 19, 2020– June 26, 2021) (kg CO ₂ per tonne of material)	Average CO ₂ emissions = average CO ₂ released × average distance × average shipping rates before February 19, 2020 (road/rail/air; tonnes)	CO ₂ emissions = average CO ₂ released × average distance × average shipping rates during the COVID-19 pandemic (February 19, 2020-June 26, 2021) (road/rail/air; tonnes)
Damavand	25,000,000,000	10,000,000,000	12,900,000,000	286.7	160.3	7300	6201
Km 17 Jade Makhsous	16,070,000,000	8,000,000,000	11,500,000,000	496.2	374.1	5690	4080
Tehran	32,000,000,000	12,000,000,000	13,400,000,000	576.0	469.8	9401	0006

considered case study. The Iranian automotive industry will become the most critical industry in Iran over the years. We are collecting data from the company's SC. A real case study has evaluated the outcomes of the model. The accuracy of the created model and the solution method's functionality are assessed through the data for the considered case study. At last, it should be referenced that the proposed model is a dependable and responsive closed-loop SCND model. Tables 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, and 19 show the required data for modeling.

The software output of the case study is illustrated in Table 20 and Fig. 4.

4.2 Numerical Example

The efficiency of the mathematical model in small dimensions is demonstrated and analyzed through a numerical example. There are five types of facilities in the closed-loop network (CLN) in the numerical example, namely suppliers (S), factories (F), collection/distribution centers (CDC), recycling/landfill centers (RLC), and customers (C). There are three potential locations for supply chain facilities (F, CDC, RLC), and existing S and C are given. Tables 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, and 35 show the required data for modeling and the results, as follows:

- S, suppliers (s = 1, 2, 3, 4, 5, 6, 7)
- *F*, potential factories (f=1, 2, 3, 4, 5, 6, 7, 8, 9, 10)
- *I*, potential CDCs (i = 1, 2, 3, 4, 5, 6, 7, 8)
- *C*, customers (c = 1, 2, 3, 4, 5)
- *B*, potential RLCs (b = 1, 2, 3, 4)
- *TS*, shipping alternatives from suppliers (*ts* = 1, 2, 3, 4, 5, 6)
- *TF*, shipping alternatives from factories (*tf* = 1, 2, 3, 4, 5, 6, 7, 8, 9)
- *TI*, shipping alternatives from CDCs (ti = 1, 2)
- *TC*, shipping alternatives from customers (tc = 1, 2, 3)

Table 36 shows the results of solving the model with LINGO for different objective weights.

In Fig. 5, you can see the problem in the small dimension. Optimization values of numerical examples are illustrated in Figs. 6 and 7.

5 Discussion and Analysis

5.1 Sensitivity Analysis of w_i

Lingo software is used to conduct the computation. The WSM determines different approximations of the POF. In this case, two weights $(w_1 \text{ and } w_2)$ exist because of two objective functions. It is noticeable that w_1 and w_2 are ≥ 0 and $w_1 + w_2$

Table 10 Data of Saip	a collection/distribution						
Collection/ Distribution locations (Tehran Province)	Average fixed cost during the COVID-19 pandemic (February 19, 2020-June 26, 2021) (rials)	Average variable cost before February 19, 2020 (rials) (100,000 units)	Average variable and hygiene costs during the COVID- 19 pandemic (February 19, 2020-June 26, 2021) (rials), including disinfection and asanitizer costs + PPE costs + COVID-19 test cost + costs of covID-19 vaccine (100,000 units)	Specific net CO ₂ emission before February 19, 2020 (kg CO ₂ per tonne of material)	Specific net CO ₂ emission during the COVID-19 pandemic (February 19, 2020– June 26, 2021) (kg CO ₂ per tonne of material)	Average CO ₂ emissions = average CO ₂ released × average distance × average shipping rates before February 19, 2020 (road/rail/air; tonnes)	Average CO ₂ emissions = average CO ₂ released \times average distance \times average shipping rates during the COVID-19 pandemic (February 19, 2020–June 26, 2021) (road/rail/air; tonnes)
Damavand	40,000,000,000	8,000,000,000	10,000,000,000	296.7	100.9	5800	4905
Abali	99,000,000,000	19,000,000,000	22,000,000,000	200.0	180.0	3500	4100
Islamshahr	65,000,000,000	7,000,000,000	9,000,000,000	376.0	250.0	2500	3905
Baqershahr	45,000,000,000	2,000,000,000	4,000,000,000	586.7	400.1	1820	6002
Bumehen	99,000,000,000	3,000,000,000	3,800,000,000	396.2	301.3	7510	6040
Robat Karim	65,000,000,000	13,000,000,000	15,000,000,000	400.0	370.0	6506	7756
Pakdasht	48,000,000,000	4,500,000,000	9,500,000,000	776.4	676.4	5937	4999
Rudehen	99,000,000,000	15,000,000,000	17,000,000,000	296.7	201.7	6500	6020
Chahar Dangeh	65,000,000,000	4,000,000,000	8,000,000,000	200.0	187.0	8500	7805
Tehran	110,000,000,000	8,900,000,000	14,300,000,000	576.0	486.0	10,800	6668
Kahrizak	29,000,000,000	9,000,000,000	11,000,000,000	296.2	156.2	2200	1021
Lavasan	65,000,000,000	6,800,000,000	8,700,000,000	696.3	506.3	3570	2705
Pardis	40,000,000,000	10,000,000,000	12,000,000,000	340.0	300.0	5605	4936
Shahr-e Qods	99,000,000,000	12,000,000,000	14,600,000,000	390.0	376.5	7529	6001
Varamin	85,000,000,000	8,500,000,000	10,500,000,000	196.7	177.7	6692	6025
Fardis	70,000,000,000	5,600,000,000	7,700,000,000	220.0	179.0	5500	5009
Shahr-e Rey	49,000,000,000	11,000,000,000	14,000,000,000	479.0	379.8	4900	3000

Table 11 Shipping costs

	Average unit shipping cost before February 19, 2020 (road/rail/air/sea) (Rials/Ton)	Average unit shipping cost during the COVID-19 pandemic (February 19, 2020–June 26, 2021) (road/ rail/air) (Rials/Ton)
Tehran–Kashan	921,400	1,008,000
Tehran–Saveh	550,004	582,099
Isfahan–Kashan	701,300	812,000
Isfahan–Saveh	1,689,000	1,940,300
Isfahan–Tehran	2,886,000	2,997,030
Yazd–Kashan	1,759,007	2,000,001
Yazd–Saveh	3,571,060	3,762,080
Yazd–Tehran	4,589,005	5,589,900
Damavand–Tehran	370,010	391,500
Damavand–Saveh	801,300	853,040
Damavand–Kashan	1,255,000	1,307,999
Abali–Tehran	340,033	363,501
Abali–Saveh	700,000	800,000
Abali–Kashan	1,677,000	1,899,304
Islamshahr–Tehran	180,901	190,512
Islamshahr–Saveh	500,102	560,088
Islamshahr–Kashan	900,030	1,000.012
Bagershahr–Tehran	160,961	170,662
Bagershahr–Saveh	540.203	575.067
Bagershahr–Kashan	910.000	1.030.010
Bumehen–Tehran	310.035	332.009
Bumehen-Saveh	680,200	730,400
Bumehen–Kashan	1.507.070	1.820.900
Robat Karim–Tehran	270,739	282,011
Robat Karim–Saveh	450,122	472,077
Robat Karim–Kashan	870,040	920,033
Pakdasht–Tehran	280.032	292.001
Pakdasht–Saveh	590.003	622.033
Pakdasht–Kashan	890.033	940.088
Rudehen-Tehran	310.901	335.888
Rudehen-Saveh	690.300	744.000
Rudehen–Kashan	1.600.200	1.705.009
Chahar Dangeh–Tehran	121.700	142.287
Chahar Dangeh–Saveh	570.601	592.111
Chahar Dangeh–Kashan	920.200	1.140.090
Kahrizak–Tehran	180.900	190.500
Kahrizak–Saveh	520.101	544.013
Kahrizak–Kashan	870.012	990.077
Lavasan-Tehran	220,999	239,980
Lavasan–Saveh	620.202	720,501
Lavasan–Kashan	1.500.330	1 605 440
Pardis_Tehran	270,999	289.918
Pardis-Saveh	650.100	702.100
Pardis–Kashan	1.300.060	1.770.010
Shahr-e Oods-Tehran	180.988	190.555
Shahr-e Oods-Saveh	580,999	619.187
Shahr-e Oods-Kashan	1.400.280	1.420.477
Varamin–Tehran	320.035	333.014
	·	-

Table 11 (continued)

	Average unit shipping cost before February 19, 2020 (road/rail/air/sea) (Rials/Ton)	Average unit shipping cost during the COVID-19 pandemic (February 19, 2020–June 26, 2021) (road/ rail/air) (Rials/Ton)
Varamin–Saveh	610,204	700,203
Varamin–Kashan	700,098	771,695
Fardis–Tehran	280,012	299,977
Fardis–Saveh	490,302	521,016
Fardis–Kashan	890,150	935,222
Shahr-e Rey–Tehran	141,821	165,220
Shahr-e Rey–Saveh	585,024	598,080
Shahr-e Rey–Kashan	990,400	1,170,056
Tehran–Km 17 Jade Makhsous	141,722	162,222
Damavand–Km 17 Jade Makhsous	470,144	490,011
Abali–Km 17 Jade Makhsous	390,212	405,200
Abali–Damavand	150.856	170,999
Islamshahr–Km 17 Jade Makhsous	180,902	190,514
Islamshahr–Damavand	453.941	467,254
Bagershahr–Damayand	400.314	419.100
Bagershahr–Km 17 Jade Makhsous	240.213	259.315
Bumehen–Damavand	150.888	170.944
Bumehen–Km 17 Jade Makhsous	361.220	391.020
Robat Karim–Damavand	555.009	580.070
Robat Karim–Km 17 Jade Makhsous	241,999	254.987
Pakdasht–Damavand	430.212	450,200
Pakdasht–Km 17 Jade Makhsous	330,033	343.802
Rudehen–Damavand	150,759	171.216
Rudehen–Km 17 Jade Makhsous	376 870	399,600
Chahar Dangeh–Damayand	390.999	417.765
Chahar Dangeh–Km 17 Jade Makhsous	270.013	289.222
Kahrizak–Damavand	441.947	457.200
Kahrizak–Km 17 Jade Makhsous	240.249	259.329
Lavasan–Damavand	350.044	372.901
Lavasan–Km 17 Jade Makhsous	366.822	389.110
Pardis–Damavand	210,300	220.040
Pardis–Km 17 Jade Makhsous	470,100	489.012
Shahr-e Oods-Damayand	469 199	488,510
Shahr-e Oods-Km 17 Jade Makhsous	230.210	240 322
Varamin–Damavand	540.001	570.010
Varamin–Km 17 Jade Makhsous	350.033	372,522
Fardis–Damavand	585 109	590 570
Fardis–Km 17 Jade Makhsous	151 788	172 217
Shahr-e Rev_Damayand	368.021	389.990
Shahr-e Rey_Km 17 Jade Makhsous	220.210	229 920
Tehran_Tehran	101 222	120,000
Damayand_Damayand	70.012	80.015
Shemiranat–Tehran	180 923	190 533
Shemiranat-Damayand	360.020	481 148
Shemiranat-Abali	330.034	353 281
Shemiranat-Islamshahr	190 934	210 521
Shemiranat-Bagershahr	170 231	185,600
Shemiranat–Bumehen	324,044	342,777

Table 11 (continued)

	Average unit shipping cost before February 19, 2020 (road/rail/air/sea) (Rials/Ton)	Average unit shipping cost during the COVID-19 pandemic (February 19, 2020–June 26, 2021) (road/ rail/air) (Rials/Ton)
Shemiranat–Robat Karim	280,799	292,200
Shemiranat–Pakdasht	290,044	311,004
Shemiranat-Rudehen	320,888	346,877
Shemiranat–Chahar Dangeh	123,900	144,555
Shemiranat–Kahrizak	188,000	200,100
Shemiranat–Lavasan	220,000	229,080
Shemiranat–Pardis	270,000	280,000
Shemiranat–Shahr-e Qods	182,444	185,321
Shemiranat–Varamin	340,022	363,011
Shemiranat–Fardis	289,088	310,247
Shemiranat–Shahr-e Rey	144,679	170,000
Malard–Tehran	280,011	295,911
Malard–Damavand	585,222	591,364
Malard–Abali	470,238	490,666
Malard–Islamshahr	490,101	530,222
Malard–Baqershahr	230,944	348,960
Malard–Bumehen	470,208	490,019
Malard–Robat Karim	180,550	186,502
Malard–Pakdasht	390,127	417,744
Malard–Rudehen	470,121	492,023
Malard–Chahar Dangeh	271,711	283,019
Malard–Kahrizak	320,951	345,877
Malard–Lavasan	380,016	391,505
Malard–Pardis	430,122	442,000
Malard–Shahr-e Qods	170,700	180,201
Malard–Varamin	401,312	421,109
Malard–Fardis	80,200	88,201
Malard–Shahr-e Rey	310,022	320,800
Pishva–Tehran	340,248	369,711
Pishva–Damavand	480,120	502,011
Pishva–Abali	470,144	492,555
Pishva–Islamshahr	350,022	372,966
Pishva–Baqershahr	320,035	352,001
Pishva–Bumehen	450,140	480,015
Pishva–Robat Karim	390,280	411,255
Pishva–Pakdasht	210,990	229,911
Pishva–Rudehen	469,188	488,544
Pishva–Chahar Dangeh	331,031	351,211
Pishva–Kahrizak	320,901	355,800
Pishva–Lavasan	410,322	439,103
Pishva–Pardis	400,994	410,122
Pishva–Shahr-e Qods	430,814	419,101
Pishva–Varamin	50,824	60,813
Pishva–Fardis	440,814	479,101
Pishva–Shahr-e Rey	540,814	579,122

Table 12 Capacity of facilities

Suppliers	
Isfahan	500,000
Yazd	300,000
Tehran	600,000
Factories	
Tehran	1,000,000
Saveh	800,000
Kashan	500,000
Recycling/landfilling	
Damavand	300,000
Tehran	4,500,000
Km 17 Jade Makhsous	260,000

is equal to 1. The performances with different weights are shown in Table 37, and the Pareto frontier is illustrated in Fig. 8.

Table 13The capacity offacilities

Collection/Distribution				
Damavand	320,000			
Abali	100,000			
Islamshahr	300,000			
Baqershahr	500,000			
Bumehen	400,000			
Robat Karim	600,000			
Pakdasht	660,400			
Rudehen	370,000			
Chahar Dangeh	200,000			
Tehran	802,000			
Kahrizak	530,000			
Lavasan	570,000			
Pardis	609,000			
Shahr-e Qods	800,090			
Varamin	302,000			
Fardis	430,000			
Shahr-e Rey	505,800			
Damavand	779,000			

 Table 14 Distance between facilities (suppliers-factories)

Km	f_1 : Kashan	f ₂ : Saveh	<i>f</i> ₃ : Tehran
S ₁ : Tehran	246	135	14.8
S ₂ : Isfahan	209	310	437
S ₃ : Yazd	381	563	624

5.2 Comparison of Optimization Value

Economic and environmental aspects are compared separately for the optimization value (OV) of performance. Weights were assigned to other aspects in each step. The optimization value of the economic and environmental objectives is shown in Table 38.

Min $w_1 f_1 + w_2 f_2$

s. t. Eqs. (3)–(18)

Where $w_1 \ge 0$ and $w_2 \ge 0$ are weights such that $w_1 + w_2 = 1$, and f_1 and f_2 are the OFs.

 Table 15
 Distance between facilities (factories–CDCs)

Km	f ₁ : Kashan	f ₂ : Saveh	<i>f</i> ₃ : Tehran
CDC ₁ : Tehran	246	135	15.5
CDC ₂ : Damavand	313	209	73
CDC ₃ : Abali	302	200	64
CDC ₄ : Islamshahr	229	111	27
CDC ₅ : Baqershahr	230	130	24
CDC ₆ : Bumehen	293	189	52
CDC ₇ : Robat Karim	221	95	41
CDC ₈ : Pakdasht	230	146	43
CDC ₉ : Rudehen	295	191	54
CDC ₁₀ : Chahar Dangeh	239	122	14
CDC ₁₁ : Kahrizak	225	125	27
CDC ₁₂ : Lavasan	276	172	37
CDC ₁₃ : Pardis	288	183	46
CDC ₁₄ : Shahr-e Qods	264	127	28
CDC ₁₅ : Varamin	207	166	56
CDC ₁₆ : Fardis	254	124	47
CDC ₁₇ : Shahr-e Rey	243	139	17

(CDCs-Customers)
facilities (
Distance between
Table 16

Km	Customer 1, Tehran (Center)	Customer 2, Tehran (Center)	Customer 3, Tehran (Center)	Customer 4, Shemiranat (North)	Customer 5, Baqershahr (South)	Customer 6, Pardis (East)	Customer 7, Malard (West)	Customer 8, Pishva (Southeast)	Customer 9, Islamshahr (Southwest)	Customer 10, Lavasan (Northeast)
CDC ₁ : Tehran	9.6	20	2.5	16	24	45	44	64	26	45
CDC ₂ : Damavand	75	70.9	80	70	85	31.5	119	117	98	31
CDC ₃ : Abali	64	60	69	61	74	20	106	107	84.6	20
CDC ₄ : Islamshahr	32	41	26	41.5	25	73.6	37	68	9	73
CDC ₅ : Baqershahr	30	40.2	27.4	40	4.5	60	59	49	27.1	60
CDC ₆ : Bumehen	53.3	49	59	49	64	9.3	96	96	74	9.3
CDC_7 : Robat Karim	46	56	41	56	64	87	26	80	18	87
CDC ₈ : Pakdasht	43	52	45	52	38	69.2	80	32	53	69
CDC ₉ : Rudehen	57	53.2	62	53.4	68	13	103.4	100	78.7	13
CDC ₁₀ : Chahar Dangeh	18	27.9	13	32	18.3	59	40	60	12	59
CDC ₁₁ : Kahrizak	28	38	26	41	5.2	65	57	54	24	65
CDC ₁₂ : Lavasan	36	26	41	26	50	41	79	82	60	41
CDC ₁₃ : Pardis	45.2	41	50	40	55	5.1	87.2	87	66	3
CDC ₁₄ : Shahr-e Qods	33	38	25	38.2	42	76	22	84	35	76
CDC ₁₅ : Varamin	57	67.4	57	67	45	85	88	9.9	58	85
CDC ₁₆ : Fardis	49	55.4	44	55	58	93	8.4	100	39	93
CDC ₁₇ : Shahr-e Rey	22	31	20	31	10.7	52	51	47	25	52
We have selected ten c	customers as a sé	ample, among to	to many custome	IIS						

 Table 17 Distance between facilities (CDCs-RLCs)

Km	RLC ₁ : Damavand	RLC ₂ : Tehran	RLC ₃ : Km 17 Jade Makhsous
CDC ₁ : Tehran	71	10	17
CDC ₂ : Damavand	6.8	71	103
CDC ₃ : Abali	21	64	83
CDC ₄ : Islamshahr	96	27	27
CDC ₅ : Baqershahr	85	24	37
CDC ₆ : Bumehen	21	52	73
CDC ₇ : Robat Karim	111	41	39
CDC8: Pakdasht	94	43	61
CDC ₉ : Rudehen	21	54	77
CDC ₁₀ : Chahar Dangeh	84	14	44
CDC ₁₁ : Kahrizak	91	27	38
CDC ₁₂ : Lavasan	68	37	74
CDC ₁₃ : Pardis	31	46	69
CDC14: Shahr-e Qods	101	28	35
CDC ₁₅ : Varamin	110	56	68
CDC ₁₆ : Fardis	119	47	21
CDC ₁₇ : Shahr-e Rey	75	17	33

Table 18 Minimum percentage of units of the returned product to be remanufactured, recycled, and landfilled the second sec	$MN_{dismantled}$ $MN_{disposed}$	0.3 0.2
Table 19 Demand of customers		

Average demand of customers in a month 120

Fig. 4 Software output for economic and environment optimization values

• The first assumption:

If $w_1 = 1$, then:

 $\operatorname{Min} f_1$

s. t. Eqs. (3)–(18)

• The second assumption:

If $w_2 = 1$, then:

 $\operatorname{Min} f_2$

s. t. Eqs. (3)–(18)

Table 20 Weighted sum method outputs		Environment performance weight	Economic performance weight	Environment optimization value	Economic optimization value
	1	0.1	0.9	11.27E+13	1.08E+13
	2	0.2	0.8	9.44E+13	2.17E+13
	3	0.3	0.7	8.50E+13	3.25E+13
	4	0.4	0.6	7.20E+13	4.33E+13
	5	0.5	0.5	7.11E+13	5.41E+13
	6	0.6	0.4	6.02E+13	6.49E+13
	7	0.7	0.3	4.09E+13	7.58E+13
	8	0.8	0.2	3.17E+13	8.66E+13
	9	0.9	0.1	2.08E+13	9.74E+13

Table 21 Data sources

Data	Sources
Demand of customers, fixed costs, variable costs, capacity data, shipping costs, hygiene costs	Kartina Puji Nurjanni [96] Sherafati et al. [83]. Billal and Hossain [84]. This study.
Distance	Google Maps [85].
CO ₂ information	Bera et al. [86]. HeidelbergCement Group [87] This study

5.3 Sensitivity Analysis (Base Model/COVID-19 Model)

Optimal values have been compared between the COVID-19 condition model and the normal condition model. For more information, see Table 39. The mathematical model compared economic and environmental performances during the COVID-19 pandemic and under normal conditions. This paper presented a more realistic model. Figures 9, 10, 11, 12, and 13 show the relationships between COVID-19 and its environmental effects. The economic and environmental objective values are shown in Table 39 and Figs. 14 and 15.

5.4 Findings

The summary of the paper's findings is as follows:

- To determine the optimal trade-off between economic and environmental aspects during the COVID-19 pandemic and lockdowns, a mathematical model for GSC was designed.
- Incorporating hygiene into the SC design •
- In this study, we examined two aspects of sustainability that are negatively and positively affected by COVID-19 and lockdowns.

Table 22 The computationalprocess for optimizationpurposes is conducted throughLingo software	Lingo version Operating system Bit size CPU	19.0 Windows 64 ×64
	File size	40.3 MB
Table 23 The demand of customers	$\frac{1}{d_1}$	15
	<i>d</i> ₂	18
	<i>d</i> ₃	20
	d_4	25
	d_5	17

6 Implications for Managers and Practical **Suggestions**

This research can lead to valuable policies for disaster management, particularly in COVID-19 conditions, such as:

- i. The proposed model allows managers to make informed decisions and determine the cost/CO2 emission trade-off during the COVID-19 pandemic.
- ii. In making their COVID-19 cost estimates, SC managers should account for hygienic costs.
- When disasters or emergencies like COVID-19 occur, iii. managers should be able to replace tools and methods.

Table 24 Fixed costs foropening facility		In €
	f_1	60,000
	f_2	210,500
	f_3	100,000
	f_4	230,000
	f_5	190,000
	f_6	80,100
	f_7	200,400
	f_8	206,000
	f_9	50,500
	f_{10}	170,300
	i ₁	15,000
	i_2	16,500
	<i>i</i> ₃	17,000
	<i>i</i> ₄	18,000
	<i>i</i> ₅	20,000
	<i>i</i> ₆	19,100
	<i>i</i> ₇	14,400
	i ₈	18,000
	\boldsymbol{b}_1	10,000
	b_2	10,500
	<i>b</i> ₃	12,000
	b_4	13,500

Table	e 25 Variable a	and hygienic costs	S									
	V_s in ϵ /ton	HV_s in ϵ /ton	V_f in ϵ /ton	HV_f in ϵ /ton	Vr_f in ϵ /ton	HVr_f in ϵ /ton	V_i in ϵ /ton	HV_i in ϵ /ton	Vr_i in ϵ /ton	HVr_i in ϵ /ton	V_b in ϵ /ton	HV_b in ϵ /ton
<i>s</i> ₁	60.10	10.18								-		
S_2	75.12	12.18										
53	88.12	09.14										
s_4	47.98	06.18										
S5	97.18	06.18										
s_6	42.98	14.17										
s_7	55.19	13.15										
f_1			60.18	12.04	40.18	17.18						
f_2			30.08	14.19	57.22	09.87						
f_3			36.00	09.18	58.13	08.13						
f_4			82.19	08.18	32.19	12.29						
f_5			23.12	11.10	45.20	10.03						
f_6			32.18	10.09	42.17	11.28						
f_7			37.19	14.13	38.18	17.17						
f_8			66.18	15.10	31.14	13.18						
f_9			32.18	16.12	32.10	19.13						
f_{10}			70.18	18.32	33.18	10.92						
<i>i</i> 1							24.13	17.25	30.14	03.186		
i_2							27.18	16.08	42.11	07.107		
i ₃							50.17	10.11	52.16	00.08		
4							10.45	09.22	31.12	66.60		
i5							29.90	11.92	39.10	11.16		
i_6							30.00	08.18	40.10	13.88		
i_7							31.11	08.19	60.18	15.10		
81							23.72	10.00	29.78	16.10		
b_1											18.10	12.10
b_2											20.55	13.73
b_3											15.70	05.14
b_4											42.99	08.08

 $\underline{\textcircled{O}}$ Springer

Table 26 Unit shipping cost with a bygiene protocol Image: Cost of the state of t		In €/ton	Table 27 (Continued)		Emission in kg
with a hygiene protocol	ts.	11.24		erf ₉	312,139
	tsa	08.56		erf_{10}	508,205
	ts_	18.56		<i>i</i> ₁	612,235
	ts .	38.56		<i>i</i> ₂	508,205
	ts_	18 56		i_3	712,295
	ts -	28.56		<i>i</i> 4	500,205
	136 tf	20.56		i ₅	401,207
	91 #	20.50 50.56		i ₆	420,000
	ij ₂	58.56		i ₇	607,205
	из #	07.56		i ₈	618,805
	ij ₄ tf	18.56		eri ₁	212,239
	и ₅	10.50		eri ₂	204,405
	и ₆	19.30		eri,	213.395
	ர ₇	58.08		eri,	302.205
	<i>1</i> 78	14.98		eri-	101.207
	1 7 9	19.53		eri,	120,000
	ti ₁	/0.56		eri_	212 235
	ti_2	19.56		eri-	308 205
	tc_1	30.56		ен ₈ Ь	712 235
	tc_2	32.56		<i>b</i> ₁	860 203
	tc ₃	43.56		<i>b</i> ₂	610,203
				<i>b</i> ₃	012,212
This study's results cont	ribute to SC ma	nagement's per-		D ₄	/00,205

This study's results contribute to SC management's performance during the COVID-19 pandemic.

erf₈

518,805

Table 27 CO2 released due to		Emission in kg	T-LL-20 Shinging actor		
the activities of facilities	<u></u>	814.200	(Emission factors)	Transport mode	gCO ₂
	s ₁ s ₂	900,005			(tollies/
	s ₃	712,235			67.3
	<i>s</i> ₄	700,205		ts ₁	02.5
	\$ ₅	812,235		18 ₂	16.0
	s ₆	700,205		18 ₃	10.9
	\$ ₇	800,205		<i>ls</i> ₄	54.0 21.5
	f_1	794,185		18 ₅	21.2
	f_2	994,111			21.3
	f_3	854,182			80.3
	f_A	630,283			22.8
	f5	752,889		<i>ty</i> ₃	16.9
	fs fs	894,180		tf ₄	34.6
	f7	794.185		tf_5	31.5
	f.	792.889		tf ₆	100.3
	58 fo	994 185		tf ₇	62.4
	ју f	894 185		tf ₈	62.3
	J 10 orf	412 235		tf ₉	16.9
	orf	308 205		ti ₁	22.8
	orf	212 205		ti ₂	21.8
	erj ₃	500 205		tc ₁	34.6
	erj ₄	401 207		tc_2	18.8
	erj ₅	401,207		tc_3	21.3
	erj ₆	420,000			10 1
	erf ₇	407,205		CO_2 emissions = C	O_2 released

 CO_2 emissions = CO_2 released by shipping alternative × distance × shipping rates

Table 29 CO_2 released by ashipping alternative

Transport mode	Emission in tonnes
ts ₁	0.35
ts ₂	0.40
ts ₃	0.36
ts ₄	0.37
ts ₅	0.27
ts ₆	0.42
tf ₁	0.52
tf ₂	0.40
tf ₃	0.36
tf ₄	0.37
tf ₅	0.27
tf ₆	0.67
tf ₇	0.39
tf ₈	0.35
tf ₉	0.20
ti ₁	0.40
ti ₂	0.44
tc_1	0.37
tc_2	0.19
tc ₃	0.42

Table 30 Minimum percentof the returned product to beremanufactured, recycled, and	MN _{dismantled} MN _{disposed}	0.4
landfilled	uisposed	

economic and environmental aspects during the COVID-19 pandemic and lockdowns, designing the hygiene SC during the COVID-19 pandemic and lockdowns, and proposing the new indicators of economic aspects during the COVID-19 outbreak and lockdowns. At last, we find the impacts of

	Table 31 Maximum capacity	<u></u>	700
	limits of facilities	S ₁	800
		5- <u>2</u> Sa	720
		53 S4	670
		54 S-	700
		Sc.	780
		5 87	900
		Mf ₁	500
		Mf ₂	450
		Mf_2	630
		Mf₄	700
		Mf ₅	530
		Mf ₆	550
		Mf ₇	600
ot		Mf ₈	610
1at 1r		Mfg	500
		Mf_{10}	400
JW		i_1	590
ve ve		i_2	550
		i ₃	400
he		i ₄	620
on		<i>i</i> ₅	750
ete		i ₆	890
ne		i ₇	750
he		i ₈	480
110		b_1	290
w.		b_2	355
"i ed		<i>b</i> ₃	420
cu 79-		b_4	320
nd		Mrf ₁	400
nu ed		Mrf ₂	420
of		Mrf ₃	620
or er		Mrf ₄	680
SC		Mrf ₅	410
he		Mrf ₆	540
si-		Mrf ₇	520
nis		Mrf ₈	390
ne-		Mrf ₉	400
en		Mrf ₁₀	260

7 Conclusion and Outlook

COVID-19 is an exceptional and extraordinary event th impacts the SC. In this study, we proposed a GCLSCN du ing the COVID-19 pandemic. The MOMIP model can sho the trade-offs between total cost and total CO₂ emissio during the pandemic and lockdowns. This model is sensiti to the cost structure. The cost includes two parts: norm cost without considering the coronavirus pandemic and t cost with considering coronavirus, including disinfective and sanitizer costs, PPE costs, COVID-19 test costs, cost of COVID-19 education, and costs of COVID-19 vaccir A case study and numerical example have illustrated t validation of the presented model. The optimization val with different weight performances is calculated, and (weight) sensitivity analysis is also measured. The propos model is solved with Lingo 19.0 software. For the optimiz tion value of performance, we compare the economic a environmental aspects separately. In each step, we allocat the weight of the function to other aspects. The findings the proposed network illustrate the SC has become green during the COVID-19 pandemic. The total cost of new S was increased during the COVID-19 pandemic, but t lockdowns during the COVID-19 pandemic had direct pos tive effects on emissions and air quality. The findings of the paper included the following: designing the applied math matical model of GSC to show better the trade-offs between s_1

100

 s_2

210

*s*₃

350

 s_4

500

 s_5

620

Km

 f_1

 Table 32
 Distance between

facilities (Suppliers-Factories)

 s_7

700

s₆

650

	f_2	210)	90	500		49	410		109	69
	f_3	380	0	420	320		120	400		59	870
	f_4	422	2	80	320		950	610		520	300
	f_5	30		700	870		532	273		100	501
	f_6	670)	320	189		983	901		293	422
	f_7	220	C	100	540		623	600		187	610
	f_8	190	0	729	902		333	439		873	436
	f_9	550)	503	900		289	287		672	780
	f_{10}	32	1	444	198		302	624		290	910
Table 22 Distance between											
facilities (Factories–CDCs)	Km	f_1	f_2	f_3	f_4	f_5	f_6	f_7	f_8	<i>f</i> 9	f_{10}
	<i>i</i> ₁	327	629	102	320	211	155	114	320	210	765
	<i>i</i> ₂	134	219	199	160	140	140	320	410	420	346
	i ₃	325	382	134	560	610	167	605	204	211	211
	<i>i</i> 4	267	218	122	750	640	124	328	258	320	257
	<i>i</i> ₅	378	346	989	420	860	108	888	932	406	315
	i ₆	901	200	700	600	210	153	620	510	603	852
	<i>i</i> ₇	108	130	166	128	180	120	413	120	130	210
	i ₈	222	210	720	800	269	113	190	220	210	311
Table 34 Distance between	Km	<i>i</i> ₁	i	2	<i>i</i> ₃	<i>i</i> ₄	<i>i</i> ₅	<i>i</i> ₆		<i>i</i> ₇	<i>i</i> ₈
facilities (CDCs–Customers)		202		-	45		416		10		100
	<i>c</i> ₁	202		00	45	230	416	2	19	235	198
	<i>c</i> ₂	199	t c	08	110	219	255	1.	32 70	120	120
	<i>c</i> ₃	90	4	201	107	218	240	2	/9 00	33 80	05 110
	<i>c</i> ₄	207	-	70 70	208	140	240 107	1	20	200	05 05
	<u>c</u> 5				508	107	107				95
Table 35 Distance between fogilities (CDCs, BLCs)	Km	<i>i</i> ₁	i	2	<i>i</i> ₃	<i>i</i> 4	i 5	<i>i</i> ₆		<i>i</i> ₇	<i>i</i> ₈
Tacinues (CDC5-RLC5)	<i>h</i> .	102		55	45	230	319	2	19	325	98
	b_{2}	192	(58	210	219	155	- 1	32	120	120
	b_2	90	2	201	107	218	115	2	79	55	110
	b_A	280	1	100	114	340	400	4	00	90	70

 Table 36
 Results of solving the GSC model with Lingo during the COVID-19 pandemic (Different objective weights)

Objective	$\Sigma w_i = 1$	$\Sigma w_i = 1$
Economic performance	0.7030	0.2970
Environmental performance	0.2970	0.7030
Objective value	$Z_{1}^{*}=4,074,489,$	$Z_{1}^{*}=3,972,211,$
	$\dot{Z}_{2}^{*}=9,075,528$	$\dot{Z}_{2}^{*}=8,300,528$

w_i is generated randomly or determined by the DMs

COVID-19 and lockdowns on two aspects of sustainability. This paper presents a MOMIP model and COVID-19 pandemic issues in the CLSC framework. Therefore, this study designed a new and hygienic GSC model to fill this gap in the COVID-19 disaster. This is a mathematical article with a green approach aiming to propose guidelines for managers and scholars addressing SCM challenges during the COVID-19 disaster [12, 94, 95].

Fig. 5 A closed-loop network in small dimensions displayed

7.1 Limitations

We have some limitations in our work, which can be addressed by future research:

- Data from only one real company was available to us.
- Models are based on single-product networks.
- The network design is one-period.

7.2 Insights into Future Work

Perspectives for future work can be done:

Fig. 7 The comparison between economic and environmental performances of numerical examples based on the importance of environmental factors

Fig. 6 The comparison between

economic and environmental

performances of numerical examples based on the impor-

tance of economic factors

COMPARISON OF OPTIMIZATION VALUE OF TWO DIFFERENT PERFORMANCES

Table 37 Performances with different weights	Pareto point	Environment perfor- mance weights	Economic performance weights	Environment optimization value	Economic optimization value
	1	0.1	0.9	1,522,877	1.15E+07
	2	0.2	0.8	2,079,644	1.03E + 07
	3	0.3	0.7	4,018,883	9,038,574
	4	0.4	0.6	5,043,115	7,806,791
	5	0.5	0.5	6,775,999	6,575,008
	6	0.6	0.4	7,006,990	5,343,225
	7	0.7	0.3	9,432,224	4,111,443
	8	0.8	0.2	1.00E + 07	2,879,660
	9	0.9	0.1	1.19E+07	1,647,877

Fig.8 Sensitivity analysis for different weights of environment and economic aspects

Table 38 Economic and environmental aspects

Objective	$w_1 = 1$	$w_2 = 1$
Economic	1	0
Environmental	0	1
Optimization value	$Z_{1}^{*}=416,094.0$	$Z_{1}^{*}=451,170.0$
	$Z_{2}^{*}=0.1273392E+0$	$Z_{2}^{*}=0.1044302E+0$

- 1. In future research, consider supply chain agility concepts.
- 2. Add more environmental aspects to this model.
- 3. Add the social aspects to the model. It can lead to a sustainable supply chain.
- 4. For future research, upgrade the model to include the multi-products and multi-periods.
- 5. Add the stochastic parameters for this model.

Table 39	Basic and COVID-19 condition model	

Without considering COVID-19	Considering the COVID-19 (Current Research)		
Normal fixed, variable, and shipping costs	Fixed, variable, shipping, and hygienic costs concerning prevention and control of COVID-19 (disinfection and sanitizer costs, PPE costs, COVID-19 test costs, costs of COVID-19 education, <i>c</i> osts of COVID- 19 medicines, vaccine, and vaccination)		
Normal CO ₂ released	CO ₂ released concerning the lockdown days (reduction of CO ₂ emissions)		
Economic objective value = 5,008,119	Economic objective value = 6,575,008		
Environment objective value = 6,079,871	Environment objective value $=4,302,229$		

Fig. 9 a-i Relationship between gas emissions and COVID-19 [88]

Fig. 10 - Analysis of the relationship between total CO₂ emissions due to activities and COVID-19 [89]

Fig. 12 Change in activity during the COVID-19 pandemic [91, 92]

Fig. 13 Iran's average GHG emissions between March 21 and April 21, 2019 and 2020 [93]

Sensitivity analysis of environment objective value betwen basic (normal) model and COVID-19 model

Author Contribution Sina Abbasi: conceptualization, software, methodology, formal analysis, writing of original draft, and visualization; Maryam Daneshmand-Mehr: methodology, supervision, data curation, and validation; Armin Ghane Kanafi: software, formulation, validation, and editing.

Availability of Data and Materials Not applicable.

Code Availability Custom code by Lingo software was written for this study. It is available on request.

Declarations

Ethical Approval and Consent to Participate. Not applicable.

Consent for Publication Not applicable.

Competing Interests The authors declare no competing interests.

References

- 1. ECDC (2020). An overview of the rapid test situation for COVID-19 diagnosis in the EU/EEA.
- Farooq, M. U., Hussain, A., Masood, T., & Habib, M. S. (2021). Supply chain operations management in pandemics: A stateof-the-art review inspired by COVID-19. *Sustainability*, 13(5), 2504.
- Končar, J., Grubor, A., Marić, R., Vučenović, S., & Vukmirović, G. (2020). Setbacks to IoT implementation in the function of FMCG supply chain sustainability during COVID-19 pandemic. *Sustainability*, 12(18), 7391.
- Chiu, C. Y., Cheng, C. Y., & Wu, T. Y. (2021). Integrated operational model of green closed-loop supply chain. *Sustainability*, 13(11), 6041.
- Zhao, H., Zhang, H., Xu, Y., Lu, J., & He, W. (2018). Relation between awe and environmentalism: The role of social dominance orientation. *Frontiers in Psychology*, *9*, 2367.

- Klemeš, J. J., Van Fan, Y., & Jiang, P. (2020). The energy and environmental footprints of COVID-19 fighting measures – PPE, disinfection, supply chains. *Energy*, 211, 118701.
- Waltho, C. (2019). Green supply chain network design with emission sensitive demand.
- Myllyvirta, L. (2020) Analysis: Coronavirus temporarily reduced China's CO₂ emissions by a quarter. *CarbonBrief*. Retrieved from, https://www.carbonbrief.org/analysis-coronavirus-set-to-causelargest-ever-annual-fall-in-co2-emissions/https://www.carbonbrief. org/analysis-coronavirus-hastemporarily-reduced-chinas-CO2emissions-by-aquarter
- 9. National Center for Immunization and Respiratory Diseases (NCIRD). (2020). Division of Viral Diseases.
- CEMEX Innovation Holding AG. (2020). Guidance protocol for personal hygiene due to ongoing measures related to COVID-19 scenario. Copyright [©] CEMEX Innovation Holding AG.
- 11. Emerald Group. (2021). Avoiding unnecessary travel.
- Emerald Group. (2021). Covid-19 policy. Review date: June 2021 or following changes in legislation/guidance. https://www. emeraldgrouppublishing.com/sites/default/files/2021-01/Emeraldcovid-19-policy.pdf
- Yi, Y., & Li, J. (2018). Cost-sharing contracts for energy saving and emissions reduction of a supply chain under the conditions of government subsidies and a carbon tax. *Sustainability*, 10(3), 895.
- Zeballos, L. J., Méndez, C. A., Barbosa-Povoa, A. P., & Novais, A. Q. (2014). Multi-period design and planning of closed-loop supply chains with uncertain supply and demand. *Computers & Chemical Engineering*, 66, 151–164.
- Mohammed, F., Selim, S. Z., Hassan, A., & Syed, M. N. (2017). Multi-period planning of closed-loop supply chain with carbon policies under uncertainty. *Transportation Research Part D: Transport and Environment*, 51, 146–172.
- Zakeri, A., Dehghanian, F., Fahimnia, B., & Sarkis, J. (2015). Carbon pricing versus emissions trading: A supply chain planning perspective. *International Journal of Production Economics*, 164, 197–205.
- Fareeduddin, M., Hassan, A., Syed, M. N., & Selim, S. Z. (2015). The impact of carbon policies on closed-loop supply chain network design. *Procedia CIRP*, 26, 335–340.
- Paksoy, T., Bektas, T., & Özceylan, E. (2011). Operational and environmental performance measures in a multi-product closedloop supply chain. *Transportation Research Part E: Logistics and Transportation Review*, 47(4), 532–546.
- Martí, J. M. C., Tancrez, J. S., & Seifert, R. W. (2015). Carbon footprint and responsiveness trade-offs in supply chain network design. *International Journal of Production Economics*, 166, 129–142.
- Lang, L., Liu, Z., & Hu, B. (2021). Optimization decision of cooperative emission reduction of clothing supply chain based on the carbon tax. *Journal of Physics: Conference Series*, 1790(1):012092. IOP Publishing.
- Soleimani, H., Govindan, K., Saghafi, H., & Jafari, H. (2017). Fuzzy multi-objective sustainable and green closed-loop supply chain network design. *Computers & Industrial Engineering*, 109, 191–203.
- Mirzapour Al-e-hashem, S. M. J., Baboli, A., & Sazvar, Z. (2013). A stochastic aggregate production planning model in a green supply chain: Considering flexible lead times, nonlinear purchase and shortage cost functions. *European Journal of Operational Research*, 230(1), 26–41.
- Zhou, Y., Gong, D. C., Huang, B., & Peters, B. A. (2015). The impacts of carbon tariff on green supply chain design. *IEEE Transactions on Automation Science and Engineering*, 14(3), 1542–1555.

- Choudhary, A., Sarkar, S., Settur, S., & Tiwari, M. K. (2015). A carbon market sensitive optimization model for integrated forward-reverse logistics. *International Journal of Production Economics*, 164, 433–444.
- Xu, Z., Pokharel, S., Elomri, A., & Mutlu, F. (2017). Emission policies and their analysis for the design of hybrid and dedicated closed-loop supply chains. *Journal of Cleaner Production*, 142, 4152–4168.
- Tao, Z. G., Guang, Z. Y., Hao, S., & Song, H. J. (2015). Multiperiod closed-loop supply chain network equilibrium with carbon emission constraints. *Resources, Conservation and Recycling*, 104, 354–365.
- Benjaafar, S., Li, Y., & Daskin, M. (2012). Carbon footprint and the management of supply chains Insights from simple models. *IEEE Transactions on Automation Science and Engineering*, 10(1), 99–116.
- Zhang, G., Sun, H., Hu, J., & Dai, G. (2014). The closed-loop supply chain network equilibrium with products lifetime and carbon emission constraints in multiperiod planning horizon. *Discrete Dynamics in Nature and Society*.
- Hammami, R., Nouira, I., & Frein, Y. (2015). Carbon emissions in a multi-echelon production-inventory model with lead time constraints. *International Journal of Production Economics*, 164, 292–307.
- Xu, L., Wang, C., & Zhao, J. (2018). Decision and coordination in the dual-channel supply chain considering cap-and-trade regulation. *Journal of Cleaner Production*, 197, 551–561.
- Abdallah, T., Diabat, A., & Rigter, J. (2013). Investigating the option of installing small scale PVs on facility rooftops in a green supply chain. *International Journal of Production Economics*, 146(2), 465–477.
- Kannan, D., Diabat, A., Alrefaei, M., Govindan, K., & Yong, G. (2012). A carbon footprint based reverse logistics network design model. *Resources, Conservation and Recycling*, 67, 75–79.
- Diabat, A., Abdallah, T., Al-Refaie, A., Svetinovic, D., & Govindan, K. (2012). Strategic closed-loop facility location problem with carbon market trading. *IEEE Transactions on Engineering Management*, 60(2), 398–408.
- Rezaee, A., Dehghanian, F., Fahimnia, B., & Beamon, B. (2017). Green supply chain network design with stochastic demand and carbon price. *Annals of Operations Research*, 250(2), 463–485.
- Li, X., Peng, Y., & Zhang, J. (2017). A mathematical/physics carbon emission reduction strategy for building supply chain network based on carbon tax policy. *Open Physics*, 15(1), 97–107.
- Yachai, K., Kongboon, R., Gheewala, S. H., & Sampattagul, S. (2021). Carbon footprint adaptation on green supply chain and logistics of papaya in Yasothon Province using geographic information system. *Journal of Cleaner Production*, 281, 125214.
- Kazancoglu, Y., Yuksel, D., Sezer, M. D., Mangla, S. K., & Hua, L. (2022). A green dual-channel closed-loop supply chain network design model. *Journal of Cleaner Production*, 332, 130062.
- National Centers for Environmental Information (2019). Annual 2019 global climate report. Available at https://www.ncdc.noaa. gov/sotc/global/201913
- Zhongming, Z., Linong, L., Wangqiang, Z., & Wei, L. (2020). Why CO₂ isn't falling more during a global lockdown.
- Myllyvirta, L., & Dahiya, S. (2020). Analysis: India's CO₂ emissions fall for first time in four decades amid coronavirus. *CarbonBrief*. https://www.carbonbrief.org/analysis-indias-CO2emissions-fall-for-first-time-infourdecades-amid-coronavirus.
- Abbasi, S., Daneshmand-Mehr, M., & Ghane Kanafi, A. (2021). The sustainable supply chain of CO₂ emissions during the coronavirus disease (COVID-19) pandemic. *Journal of Industrial Engineering International*, 17(4), 83–108. https://doi.org/10. 30495/jiei.2022.1942784.1169

- Somani, M., Srivastava, A. N., Gummadivalli, S. K., & Sharma, A. (2020). Indirect implications of COVID-19 towards sustainable environment: An investigation in Indian context. *Bioresource Technology Reports*, 11, 100491.
- 43. Abbasi, S., Daneshmand-Mehr, M., & Ghane Kanafi, A. (2022). Designing sustainable recovery network of end-of-life product during the COVID-19 pandemic: A real and applied case study. *Discrete Dynamics in Nature and Society.*
- Mosallanezhad, B., Chouhan, V. K., Paydar, M. M., & Hajiaghaei-Keshteli, M. (2021). Disaster relief supply chain design for personal protection equipment during the COVID-19 pandemic. *Applied Soft Computing*, 112, 107809.
- Zahedi, A., Salehi-Amiri, A., Smith, N. R., & Hajiaghaei-Keshteli, M. (2021). Utilizing IoT to design a relief supply chain network for the SARS-COV-2 pandemic. *Applied Soft Computing*, 104, 107210.
- 46. Salehi-Amiri, A., Zahedi, A., Gholian-Jouybari, F., Calvo, E. Z. R., & Hajiaghaei-Keshteli, M. (2022). Designing a closed-loop supply chain network considering social factors; a case study on avocado industry. *Applied Mathematical Modelling*, 101, 600–631.
- 47. Fathollahi-Fard, A. M., Dulebenets, M. A., Hajiaghaei-Keshteli, M., Tavakkoli-Moghaddam, R., Safaeian, M., & Mirzahosseinian, H. (2021). Two-hybrid metaheuristic algorithms for a dual-channel closed-loop supply chain network design problem in the tire industry under uncertainty. *Advanced Engineering Informatics*, 50, 101418.
- Abdi, A., Abdi, A., Fathollahi-Fard, A. M., & Hajiaghaei-Keshteli, M. (2021). A set of calibrated metaheuristics to address a closedloop supply chain network design problem under uncertainty. *International Journal of Systems Science: Operations & Logistics*, 8(1), 23–40.
- Chouhan, V. K., Khan, S. H., & Hajiaghaei-Keshteli, M. (2021). Metaheuristic approaches to design and address multi-echelon sugarcane closed-loop supply chain network. *Soft Computing*, 25(16), 11377–11404.
- Ivanov, D., & Das, A. (2020). Coronavirus (COVID-19/SARS-CoV-2) and supply chain resilience: A research note. *International Journal of Integrated Supply Management*, 13(1), 90–102.
- Shahed, K. S., Azeem, A., Ali, S. M., & Moktadir, M. (2021). A supply chain disruption risk mitigation model to manage COVID-19 pandemic risk. *Environmental Science and Pollution Research*, 1–16.
- 52. Rowan, N. J., & Laffey, J. G. (2020). Challenges and solutions for addressing critical shortage of supply chain for personal and protective equipment (PPE) arising from coronavirus disease (COVID19) pandemic – Case study from the Republic of Ireland. *Science of the Total Environment*, 725, 138532.
- Ivanov, D. (2020). Predicting the impacts of epidemic outbreaks on global supply chains: A simulation-based analysis on the coronavirus outbreak (COVID-19/SARS-CoV-2) case. *Transportation Research Part E: Logistics and Transportation Review*, 136, 101922.
- Mousavi, R., Salehi-Amiri, A., Zahedi, A., & Hajiaghaei-Keshteli, M. (2021). Designing a supply chain network for blood decomposition by utilizing social and environmental factor. *Computers & Industrial Engineering, 160*, 107501.
- Mosallanezhad, B., Hajiaghaei-Keshteli, M., & Triki, C. (2021). Shrimp closed-loop supply chain network design. *Soft Computing*, 25(11), 7399–7422.
- Hobbs, J. E. (2020). Food supply chains during the COVID-19 pandemic. *Canadian Journal of Agricultural Economics/Revue* comedienne d'agroeconomie, 68(2), 171–176.
- Ivanov, D., & Dolgui, A. (2020). Viability of intertwined supply networks: Extending the supply chain resilience angles towards survivability. A position paper motivated by COVID-19

outbreak. International Journal of Production Research, 58(10), 2904–2915.

- Hajiaghaei-Keshteli, M., & Fathollahi Fard, A. M. (2019). Sustainable closed-loop supply chain network design with discount supposition. *Neural Computing and Applications*, 31(9), 5343–5377.
- 59. Free, C., & Hecimovic, A. (2021). Global supply chains after COVID-19: The end of the road for neoliberal globalisation? *Accounting, Auditing & Accountability Journal.*
- Liao, Y., Kaviyani-Charati, M., Hajiaghaei-Keshteli, M., & Diabat, A. (2020). Designing a closed-loop supply chain network for citrus fruits crates considering environmental and economic issues. *Journal of Manufacturing Systems*, 55, 199–220.
- Abdi, A., Abdi, A., Akbarpour, N., Amiri, A. S., & Hajiaghaei-Keshteli, M. (2020). Innovative approaches to design and address green supply chain network with simultaneous pick-up and split delivery. *Journal of Cleaner Production*, 250, 119437.
- 62. Cheraghalipour, A., Paydar, M. M., & Hajiaghaei-Keshteli, M. (2019). Designing and solving a bi-level model for rice supply chain using the evolutionary algorithms. *Computers and Electronics in Agriculture*, 162, 651–668.
- 63. Samadi, A., Hajiaghaei-Keshteli, M., & Tavakkoli-Moghaddam, R. (2020). Solving a discounted closed-loop supply chain network design problem by recent metaheuristics. In Fuzzy Information and Engineering-2019 (pp. 3–24). Springer, Singapore.
- Illahi, U., & Mir, M. S. (2021). Maintaining efficient logistics and supply chain management operations during and after coronavirus (COVID-19) pandemic: Learning from the past experiences. *Environment, Development and Sustainability, 23*(8), 11157–11178.
- Chouhan, V. K., Khan, S. H., Hajiaghaei-Keshteli, M., & Subramanian, S. (2020). Multi-facility-based improved closedloop supply chain network for handling uncertain demands. *Soft Computing*, 1–23
- 66. Salehi-Amiri, A., Zahedi, A., Akbapour, N., & Hajiaghaei-Keshteli, M. (2021). Designing a sustainable closed-loop supply chain network for the walnut industry. *Renewable and Sustainable Energy Reviews*, 141, 110821.
- Nandi, S., Sarkis, J., Hervani, A. A., & Helms, M. M. (2021). Redesigning supply chains using blockchain-enabled circular economy and COVID-19 experiences. *Sustainable Production* and Consumption, 27, 10.
- Fasihi, M., Tavakkoli-Moghaddam, R., Najafi, S. E., & Hajiaghaei-Keshteli, M. (2021). Developing a bi-objective mathematical model to design the fish closed-loop supply chain. *International Journal of Engineering*, 34(5), 1257–1268.
- Zahedi, A., Salehi-Amiri, A., Hajiaghaei-Keshteli, M., & Diabat, A. (2021). Designing a closed-loop supply chain network considering multi-task sales agencies and multi-mode transportation. *Soft Computing*, 25(8), 6203–6235.
- Gholami, F., Paydar, M. M., Hajiaghaei-Keshteli, M., & Cheraghalipour, A. (2019). A multi-objective robust supply chain design considering reliability. *Journal of Industrial and Production Engineering*, 36(6), 385–400.
- Fathollahi-Fard, A. M., Govindan, K., Hajiaghaei-Keshteli, M., & Ahmadi, A. (2019). A green home health care supply chain: New modified simulated annealing algorithms. *Journal of Cleaner Production, 240*, 118200.
- Güner, H. R., Hasanoğlu, İ, & Aktaş, F. (2020). COVID-19: Prevention and control measures in community. *Turkish Journal of Medical Sciences*, 50(9), 571–577.
- 73. Anser, M. K., Yousaf, Z., Khan, M. A., Voo, X. H., Nassani, A. A., Alotaibi, S. M., & Zaman, K. (2020). The impacts of COVID-19 measures on global environment and fertility rate: Double coincidence. *Air Quality, Atmosphere & Health*, 13(9), 1083–1092.

103

- Bashir, M. F., Benghoul, M., Numan, U., Shakoor, A., Komal, B., Bashir, M. A., & Tan, D. (2020). Environmental pollution and COVID-19 outbreak: Insights from Germany. *Air Quality, Atmosphere & Health*, 13(11), 1385–1394.
- Cheval, S., Mihai Adamescu, C., Georgiadis, T., Herrnegger, M., Piticar, A., & Legates, D. R. (2020). Observed and potential impacts of the COVID-19 pandemic on the environment. *International Journal of Environmental Research and Public Health*, *17*(11), 4140.
- Saadat, S., Rawtani, D., & Hussain, C. M. (2020). Environmental perspective of COVID-19. *Science of the Total environment*, 728, 138870.
- SanJuan-Reyes, S., Gómez-Oliván, L. M., & Islas-Flores, H. (2021). COVID-19 in the environment. *Chemosphere*, 263, 127973.
- Zambrano-Monserrate, M. A., Ruano, M. A., & Sanchez-Alcalde, L. (2020). Indirect effects of COVID-19 on the environment. *Science of the Total Environment*, 728, 138813.
- Rume, T., & Islam, S. D. U. (2020). Environmental effects of COVID-19 pandemic and potential strategies of sustainability. *Heliyon*, e04965.
- Kalyanmoy, D. (2001). Multi-objective optimization using evolutionary algorithms. John Wiley & Sons.
- Ehrgott, M. (2005). Multicriteria optimization (Vol. 491). Springer Science & Business Media.
- Emmerich, M. T. M., & Deutz, A. H. (2018). A tutorial on multiobjective optimization: Fundamentals and evolutionary methods. *Natural Computing*, 17, 585–609.
- Sherafati, M., Bashiri, M., Tavakkoli-Moghaddam, R., & Pishvaee, M. S. (2019). Supply chain network design considering sustainable development paradigm: A case study in cable industry. *Journal of Cleaner Production*, 234, 366–380.
- Billal, M. M., & Hossain, M. M. (Winter & Spring 2020). Multiobjective optimization for multi-product multi-period four echelon supply chain problems under uncertainty. *Journal of Optimization in Industrial Engineering*, *13*(11–17).https://doi.org/10.22094/ JOIE.2018.555578.15291
- 85. Google Maps. (2021). https://www.google.com/maps
- Bera, B., Bhattacharjee, S., Shit, P. K., Sengupta, N., & Saha, S. (2021). Significant impacts of COVID-19 lockdown on urban air pollution in Kolkata (India) and amelioration of environmental health. *Environment, Development and Sustainability*, 23(5), 6913–6940.
- HeidelbergCement Group. (2020). Castle cement sustainability. Report on the HeidelbergCement AG annual financial statements, https://www.heidelbergcement.com/en/reports-andpresentations

- Xie, M., Moore, J. C., Zhao, L., Wolovick, M., & Muri, H. (2022). Impacts of three types of solar geoengineering on the Atlantic Meridional Overturning Circulation. *Atmospheric Chemistry and Physics*, 22(7), 4581–4597.
- Wang, R., Xiong, Y., Xing, X., Yang, R., Li, J., Wang, Y., & Tao, S. (2020). Daily CO₂ emission reduction indicates the control of activities to contain COVID-19 in China. *The Innovation*, 1(3), 100062.
- Sarfraz, M., Mohsin, M., Naseem, S., & Kumar, A. (2021). Modeling the relationship between carbon emissions and environmental sustainability during COVID-19: A new evidence from asymmetric ARDL cointegration approach. *Environment, Development, and Sustainability, 23*(11), 16208–16226.
- 91. Le Quere et al. (2020). Global carbon project. Nature Climate Change.
- Le Quéré, C., Jackson, R. B., Jones, M. W., Smith, A. J., Abernethy, S., Andrew, R. M., & Peters, G. P. (2020). Temporary reduction in daily global CO₂ emissions during the COVID-19 forced confinement. *Nature Climate Change*, 10(7), 647–653.
- Broomandi, P., Karaca, F., Nikfal, A., Jahanbakhshi, A., Tamjidi, M., & Kim, J. R. (2020). Impact of COVID-19 event on the air quality in Iran. *Aerosol and Air Quality Research*, 20(8), 1793–1804.
- Wu, H., Xu, B., & Zhang, D. (2019). Closed-loop supply chain network equilibrium model with subsidy on green supply chain technology investment. *Sustainability*, *11*(16), 4403.
- Selvaranjan, K., Navaratnam, S., Rajeev, P., & Ravintherakumaran, N. (2021). Environmental challenges induced by extensive use of face masks during COVID-19: A review and potential solutions. *Environmental Challenges*, 100039.
- Nurjanni, K. P., Carvalho, M. S., & Costa, L. (2017). Green supply chain design: A mathematical modeling approach based on a multi-objective optimization model. *International Journal of Production Economics*, 183, 421–432.
- Chaabane, A., Ramudhin, A., & Paquet, M. (2012). Design of sustainable supply chains under the emission trading scheme. *International Journal of Production Economics*, 135(1), 37–49.

Publisher's Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.