
Vol.:(0123456789)1 3

Environmental Modeling & Assessment (2023) 28:1–14 
https://doi.org/10.1007/s10666-022-09854-1

Probabilistic Approach to Modelling, Identification and Prediction 
of Environmental Pollution

Magdalena Bogalecka1 

Received: 20 August 2020 / Accepted: 6 September 2022 / Published online: 16 September 2022 
© The Author(s) 2022

Abstract
The probabilistic general model of environmental pollution process based on the semi-Markov one is developed and pre-
sented in the paper. The semi-Markov chain model approach is based on using prior information to predict the characteristic 
of some systems. Now, the semi-Markov process is used for the environmental pollution assessment. The methods and 
procedures to estimate the environmental pollution process’s basic parameters such as the vector of initial probabilities and 
the matrix of probabilities of transition between the process’s states as well as the methods and procedures to identify the 
process conditional sojourn times’ distributions at the particular environmental pollution states and their mean values are 
proposed and defined. Next, the formulae to predict the main characteristics of the environmental pollution process such as 
the limit values of transient probabilities and mean total sojourn times in the particular states in the fixed time interval are 
given. Finally, the application of the presented model and methods for modelling, identification and prediction of the air 
environmental pollution process generated by sulphur dioxide within the exemplary industrial agglomeration is proposed.

Keywords Pollution · Air pollution · Sulphur dioxide · Semi-Markov process

1 Introduction

The air pollution is a phenomenon defined as a presence 
of harmful, toxic substances or their mixtures whose high 
concentration in the atmosphere is detrimental to the quality 
of life and causes health risks. The transport, industrialisa-
tion, agriculture and using chemicals in everyday life have 
become the main sources of pollution in urban and industrial 
areas. Some global and regional organisation as well as gov-
ernments identify the needs for monitoring and assessment 
the environment quality, established its standards and limits 
as well as providing information to the public.

According to the World Health Organization (WHO), 
the air pollution has become the world’s largest environ-
mental health risk [1]. The WHO points the air pollution 
as one of eight reasons of death in the world. Regard-
ing to the air pollution, there are known some air qual-
ity assessment methods based on one kind of pollutant 

concentration in air (commonly such as sulphur dioxide– 
SO2, carbon monoxide–CO, nitrogen dioxide–NO2, 
ozone–O3, and particulate matter with a diameter less 
than 2.5 µm or between 2.5 and 10 µm–PM2.5 and  PM10, 
respectively) or all together. There are also some meth-
ods for forecasting the air quality. These approaches are 
usually based on the historical statistical data that are 
the background for the prediction of the future pollutant 
concentration. Generally, the statistical forecasting meth-
ods, recently reviewed in [2], include linear or nonlinear 
(e.g. Gaussian) regression [3–6], dispersion [7–9], neural 
network [10–17], fuzzy logic [18–23] or hybrid systems 
[24–30].

The new approach, based on the semi-Markov process for 
the environmental pollution assessment is proposed in this 
research. The semi-Markov process theory was developed 
by Lévy [31] and Smith [32]. These processes are used for 
modelling real systems and are commonly applied in the 
queuing and reliability theories [33–38]. In this study, mod-
elling, identification and prediction procedures are adopted 
from [39] and [40, 41] where they are used related to the 
operation processes of complex technical systems and the 
critical infrastructure accident consequences for the marine 
environment, respectively.
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The semi-Markov model is considered in the paper as 
the approach more flexible in opposition to the traditional 
Markov model. In Markov model, it is assumed that the dis-
tributions of conditional sojourn times in particular states 
are only exponential. For the semi-Markov approach, the 
distributions of sojourn times do not necessarily have to be 
exponential. Thus, the model is possible to use for any distri-
bution of the operation process sojourn times at the particu-
lar operation states. This way the semi-Markov approach is 
more sensible, giving the better description of reality.

2  Theoretical Background of Modelling, 
Identification and Prediction 
of Environmental Pollution Process

2.1  Modelling Environmental Pollution Process

It is assumed that the pollutant’s concentration in the 
environment takes v, v ∈ N  different concentration states 
s1, s2,… , sv . Further, the environmental pollution process 
S(t), t ∈ ⟨0,+∞) with the pollutant’s concentration states 
from the set {s1, s2,… , sv} is defined. Moreover, a semi-
Markov model of the environmental pollution process S(t) is  
assumed. Its random conditional sojourn time at the pollut-
ant’s concentration state sk while the next transition will be 
done to the state sl, k, l = 1, 2,… , v, k ≠ l is denoted by �kl. 
In the paper, a state transition means that the environmental 
pollution process shifts from one state to another. If a state 
remains the same, there were no transitions, because the pro-
cess is still at the particular pollutant’s concentration state. 
For example there is no change from state 1 to state 1, but 
the process is still at state 1, under the condition it can shift 
to another state, except state 1. Thus, the state can transit to 
the next one or still stay in the first one.

Hence, the environmental pollution process S(t) is defined 
by the matrix of probabilities pkl, k, l = 1, 2,… , v, k ≠ l of 
the process S(t) transitions between the pollutant’s concen-
tration states sk and sl.

where by the formal agreement

Moreover, the environmental pollution process S(t) is 
described by the matrix of conditional distribution functions 
of sojourn times �kl at the state sk while its next transition 
will be done to the state sl, k, l = 1, 2,… , v, k ≠ l

(1)
�
pkl

�
vxv

=

⎡⎢⎢⎢⎣

p11 p12 … p1v

p21 p22 … p2v

⋮ ⋮ ⋱ ⋮

pv1 pv2 … pvv

⎤⎥⎥⎥⎦
,

∀k = 1, 2,… , v, pkk = 0.

where by the formal agreement

The matrix (Eq. (2)) corresponds to the matrix of con-
ditional densities of sojourn times �kl of the environmental 
pollution process S(t) at the state sk while its next transition 
will be done to the state sl, k, l = 1, 2,… , v, k ≠ l

where by the formal agreement

2.2  Identification of Environmental Pollution 
Process

Prior to estimating the unknown parameters of the envi-
ronmental pollution process S(t), its kinds and number v of 
states s1, s2,… , sv should be fixed and defined. The iden-
tification of environmental pollution process S(t) is based 
on its number of realisations.

The matrix of realisations nkl, k, l = 1, 2,… , v of the 
numbers of the process S(t) transitions between the states 
sk and sl during the experimental time is fixed

Taking into account the numbers given in the matrix 
(Eq. (4)), the matrix 

[
pkl

]
vxv

, k, l = 1, 2,… , v of realisations 
of probabilities of the process S(t) transitions between the 
states sk and sl during the experimental time is evaluated 
where

and

and

(2)
�
Hkl(t)

�
vxv

=

⎡⎢⎢⎢⎣

H11(t) H12(t) … H1v(t)

H21(t) H22(t) … H2v(t)

⋮ ⋮ ⋱ ⋮

Hv1(t) Hv2(t) … Hvv(t)

⎤⎥⎥⎥⎦
,

∀k = 1, 2,… , v, Hkk(t) = 0.

(3)
�
hkl(t)

�
vxv

=

⎡⎢⎢⎢⎣

h11(t) h12(t) … h1v(t)

h21(t) h22(t) … h2v(t)

⋮ ⋮ ⋱ ⋮

hv1(t) hv2(t) … hvv(t)

⎤⎥⎥⎥⎦
,

∀k = 1, 2,… , v, hkk(t) = 0.

(4)
�
nkl

�
vxv

=

⎡⎢⎢⎢⎣

n11 n12 … n1v

n21 n22 … n2v

⋮ ⋮ ⋱ ⋮

nv1 nv2 … nvv

⎤⎥⎥⎥⎦
.

(5)pkl =
nkl

nk
, k, l = 1, 2,… , v, k ≠ l,

∀k = 1, 2,… , v, pkk = 0,
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is the realisation of the total number of transitions of the 
process S(t) from the state sk during the experimental 
time.

Further, the hypotheses on the distribution func-
tions of the process S(t) conditional sojourn times �kl , 
k, l = 1, 2,… , v, k ≠ l at the state sk while the next transi-
tion is to the state sl are formulated and verified on the 
base of their realisations �kl

�
 , � = 1, 2,… , nkl.

In order to estimate the distribution parameters of con-
ditional sojourn times �kl , k, l = 1, 2,… , v, k ≠ l of the 
process S(t) at its particular states, the empirical char-
acteristics of their realisations at these states should be 
determined as follows:

• the realisations of empirical mean values �
kl

 of condi-
tional sojourn times �kl, k, l = 1, 2,… , v, k ≠ l at the 
state sk while the next transition is to the state sl on the 
base of their realisations �kl

�
 , � = 1, 2,… , nkl, according 

to the formula

• the number rkl of disjoint intervals Ij = ⟨akl
j
, bkl

j

�
,

j = 1,2,… , r
kl
, including the realisations �kl

�
 , � = 1,2,

… , n
kl of conditional sojourn times �kl, k, l = 1,2,… ,

v, k ≠ l at the state sk while the next transition is to the 
state sl, according to the formula

• the length dkl of intervals Ij = ⟨akl
j
, bkl

j

�
, j = 1, 2,… , r

kl
, 

according to the formula

where

• the ends akl
j
, bkl

j
, j = 1, 2,… , r

kl of intervals Ij = ⟨akl
j
, bkl

j

�
,

j = 1,2,… , r
kl
, according to the formulae

in such a way that

(6)nk =
v∑
l≠k

nkl, k = 1, 2,… , v

(7)�
kl
=

1

nkl

∑nkl

�=1
�kl
�
, k, l = 1, 2,… , v, k ≠ l

(8)r
kl
≅
√
nkl

(9)dkl =
R
kl

r
kl
− 1

(10)R
kl
= max

1≤�≤n��
�kl
�
− min

1≤�≤n��
�kl
�

(11)

akl
1
= max{ min

1≤�≤n��
�kl
�
−

dkl

2
, 0},

bkl
j
= akl

1
+ jdkl, j = 1, 2,… , r

kl
,

akl
j
= bkl

j−1
, j = 2, 3,… , r

kl
,

and

• the numbers nkl
j

 of realisations �kl
�

 , � = 1, 2,… , nkl in  
the intervals Ij = ⟨akl

j
, bkl

j

�
, j = 1, 2,… , r

kl
, according to  

the formula

where

(the number of elements of the set is expressed with the 
symbol #).

In order to formulate and further to verify the non-
parametric hypothesis relating to the distribution form of 
the environmental pollution process’s conditional sojourn 
time �kl, k, l = 1, 2,… , v, k ≠ l at the state sk while the next 
transition is to the state sl, on the base of its realisations 
�kl
�

 , � = 1, 2,… , nkl, the procedure adopted from [39] is 
applied as follows:

• to construct and to plot the realisation of the histogram 
of the environmental pollution process’s conditional 
sojourn time �kl, k, l = 1, 2,… , v, k ≠ l at the state sk, 
defined by the formula

• to compare the histogram h
nkl

(t) with the graphs of the  
density functions given in Chapter 2 in [39], and next 
to select one of them and to formulate the following 
hypothesis H , relating to the unknown form of the con-
ditional sojourn time �kl, k, l = 1, 2,… , v, k ≠ l distribu-
tion: the environmental pollution process’s conditional  
sojourn time �kl at the state sk while the next transition 
is to the state sl has the distribution expressed with the 
density function hkl(t)

• to join the intervals Ij having the number nkl
j
 of realisations 

less than 4 with the neighbour ones Ij+1 or Ij−1 to obtain 
the numbers of realisations not less than 4 in all intervals

• to fix a new number of intervals r
kl

• to determine new intervals

I1 ∪ I2 ∪…∪Inkl = ⟨akl
1
, bkl

nkl

�
,

Ii ∩ Ij = ∅ for all i ≠ j, i, j = 1, 2,… , r
kl

(12)
nkl
j
= #{� ∶ �kl

�
∈ Ij, � ∈

{
1, 2,… , nkl

}
}, j = 1, 2,… , r

kl
,

r
kl∑

j=1

nkl
j
= nkl

(13)h
nkl

(t) =
nkl
j

nkl
for t ∈ Ij

Ij = ⟨akl
j
, b

kl

j

�
, j = 1, 2,… , r

kl
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• to fix the numbers nkl
j

 of realisations in the new inter-

vals Ij, j = 1, 2,… , r
kl

• under the assumption that the hypothesis H is true, to 
calculate the hypothetical probabilities that the condi-
tional sojourn time �kl takes values from the new inter-
val Ij according to the formula

where Hkl
(
b
kl

j

)
 and Hkl

(
a
kl

j

)
 are the values of the distri-

bution function Hkl(t) of the random conditional sojourn 
time �kl corresponding to the density function hkl(t) 
assumed in the hypothesis H

• to calculate the realisation of the �2− Pearson’s statis-
tics Unkl , according to the formula

• to assume the significance level � of the test (for 
instance � = 0.05)

• to fix the number r
kl

− z − 1 of degrees of freedom 
where, according to [39], z = 0 for the chimney distri-
bution function Hkl(t), z = 1 for the exponential distri-
bution function Hkl(t), and z = 2 for Gamma distribu-
tion function Hkl(t)

• to read the value u� from tables of the �2− Pearson’s 
distribution for the fixed values of the significance  
level � and the number of degrees of freedom r

kl

− z − 1 
such that the equality holds

• to determine the acceptance and critical domains in the 
form of the intervals ⟨0, u�⟩ and (u� ,+∞) , respectively

• to compare the critical value u� read from tables of the 
�2− Pearson’s distribution with the obtained value unkl 
of the realisation of the statistics Unkl and to decide on 
the formulated hypothesis H in the following way: if 
the value unkl does not belong to the critical domain, i.e. 
when unkl ≤ u� then the hypothesis H is not rejected, 
otherwise if the value unkl belongs to the critical domain, 
i.e. when unkl > u𝛼 then the hypothesis H is rejected

Finally, the mean values Mkl of the conditional sojourn 
times �kl are determined as follows [39]:

(14)
pj = P

(
𝜃kl ∈ Ij

)
= P

(
a
kl

j
≤ 𝜃kl < b

kl

j

)

= Hkl
(
b
kl

j

)
− Hkl

(
a
kl

j

)
, j = 1, 2,… , r

kl

(15)un
kl

=
∑r

kl

j=1

(n
kl

j
− nklpj)

2

nklpj

(16)P
(
Unkl > u𝛼

)
= 𝛼

(17)
Mkl = E

[
�kl

]
= ∫ +∞

0
tdHkl(t) = ∫ +∞

0
thkl(t)dt, k, l = 1, 2,… , v, k ≠ l.

2.3  Prediction of Environmental Pollution Process

It is assumed, that the unknown parameters of the environ-
mental pollution process S(t) are identified using the proce-
dure given in “Sect. 2.2”. Now, the main characteristics of 
the environmental pollution process S(t) can be predicted. 
Namely, taking into account the formula for the total prob-
ability, the unconditional distribution functions of sojourn 
times �k, k = 1, 2,… , v at particular states sk of the process 
S(t) are determined by

that are complied with the density functions given by

Hence, the expected values E
[
�k
]
 of variables �k are given 

by

where pkl are defined by (Eq. (5)) and Mkl are defined by 
(Eq. (17)).

The limit values of the transient probabilities of the pro-
cess S(t) at its particular states

are calculated according to the formula

The probabilities �k satisfy the system of following 
equations:

where

and 
[
pkl

]
 is given by Eq. (1).

The asymptotic distribution of the sojourn total time �̂k 
at the state sk, k = 1, 2,… , v of the process S(t) in the time 
interval ⟨0, 𝜃⟩, 𝜃 > 0 is normal with the expected value

where pk are given by Eq. (21).

(18)Hk(t) =
∑v

l=1
pklHkl(t), k = 1, 2,… , v,

(19)hk(t) =
∑v

l=1
pklhkl(t), k = 1, 2,… , v.

(20)Mk = E
�
�k
�
=
∑v

l=1
pklMkl

, k = 1, 2,… , v,

pk(t) = P
�
S(t) = sk

�
, t ∈ ⟨0,+∞), k = 1, 2,… , v,

(21)pk = lim
t→+∞

pk(t) =
�kMk

∑v

l=1
�lMl

, k = 1, 2,… , v.

(22)
� �

�k
�
=
�
�k
��
pkl

�
∑v

l=1
�l = 1

[
�k
]
=
[
�1,�2,… ,�v

]
,

(23)M̂k = E
[
�̂k
]
≅ pk�,
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3  Application–Preliminary Analysis 
of (Air) Environmental Pollution Process 
Generated by Sulphur Dioxide

Sulphur dioxide  (SO2) is an invisible gas that has a nasty and 
pungent odour. It reacts easily with other substances to form 
harmful compounds, such as sulphuric acid, sulphurous acid 
and sulphate particles.

Sulphur dioxide is formed in the urbanised and indus-
trial areas by burning coal in domestic fireplaces and the 
combustion of fossil fuels containing sulphur or sulphur 
compounds. Then the flue gas is the major anthropogenic 
source of sulphur dioxide in the air. The fossil fuels have 
different concentrations of sulphur and sulphur compounds. 
The coal and oil may contain up to 3% of these substances, 
whereas a natural gas may be completely free of them. Some 
chemical reactions in the air transforms  SO2 into sulphuric 

acid  (H2SO4) that is condensed into droplets, dissolved in 
the moisture of air (drops of rain, snow, clouds) and as a so-
called acid rain reaches the surface of earth and rivers, seas, 
oceans and other water areas as well.

Sulphur dioxide affects both health and the environ-
ment. It harms the human respiratory system, reduces the 
lung function and makes breathing difficult. Therefore, 
people with asthma and chronic lung diseases are more 
sensitive to these effects than normal individuals. The  SO2 
deposition implicates the destruction of vegetation, the 
degradation of soils and building materials. Due to the 
harmful properties of  SO2, its limit values for the ambient 
concentration that correspond to different levels of health 
concern are distinguished (Table 1). These values are also 
used as a component of the air quality indicators. The 
pollution levels presented in Table 1 correspond to Polish 
ones published by Main Inspectorate for Environmental 
Protection.

In the experiment, the  SO2 concentration data comes from 
the monitoring station AM3 located in Gdańsk-Nowy Port 
(Fig. 1) and free-accessible through https:// powie trze. gios. 
gov. pl/. The AM3 is one of nine stations belonging to the 
ARMAAG monitoring network of Tri-City (Gdynia, Sopot 
and Gdańsk) agglomeration in Poland. This agglomeration 
is situated in Pomerania–the north and seaside part of Poland 
and has a population of over 1 million people. The area is 
affected by the pollution coming from industrial sectors 
as well as transport and domestic sources. Within the air 
ARMAAG monitoring system continuous measurements 
(counted every hour) of the air quality are taken at several 

Table 1  Air quality according to  SO2 concentration

Based on Main Inspectorate for Environmental Protection (http:// 
powie trze. gios. gov. pl/ pjp/ curre nt? lang= en)

Pollution level SO2 concentration (µg/m3) Air quality

1 0–50 Very good
2 50.1–100 Good
3 100.1–200 Moderate
4 200.1–350 Sufficient
5 350.1–500 Bad
6  > 500 Very bad

Fig. 1  Location of monitoring 
station AM3 in Gdańsk-Nowy 
Port (based on ARMAAG)

https://powietrze.gios.gov.pl/
https://powietrze.gios.gov.pl/
http://powietrze.gios.gov.pl/pjp/current?lang=en
http://powietrze.gios.gov.pl/pjp/current?lang=en
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representative points, where the concentrations of pollutants 
are the highest ones.

3.1  Modelling (Air) Environmental Pollution Process 
Generated by Sulphur Dioxide

Under the assumption that the sulphur dioxide concentration 
in the air is changing in time, taking into account data from 
Table 1, the following v = 9 sulphur dioxide concentration 
states sk, k = 1, 2,… , 9 of the environmental pollution pro-
cess S(t) are arbitrarily distinguished (level 1 from Table 1 
is divided into four additional sublevels expressed with state 
s1 , s2 , s3 and s4 , respectively):

• a concentration state s1–SO2 concentration in the air 
belongs to the interval (0, 3.5⟩ µg/m3.

• a concentration state s2–SO2 concentration in the air 
belongs to the interval (3.6, 17.5⟩ µg/m3.

• a concentration state s3–SO2 concentration in the air 
belongs to the interval (17.6, 35.0⟩ µg/m3.

• a concentration state s4–SO2 concentration in the air 
belongs to the interval (35.1, 50.0⟩ µg/m3.

• a concentration state s5–SO2 concentration in the air 
belongs to the interval (50.1, 100.0⟩ µg/m3.

• a concentration state s6–SO2 concentration in the air 
belongs to the interval (100.1, 200.0⟩ µg/m3.

• a concentration state s7–SO2 concentration in the air 
belongs to the interval (200.1, 350.0⟩ µg/m3.

• a concentration state s8–SO2 concentration in the air 
belongs to the interval (350.1, 500.0⟩ µg/m3.

• a concentration state s9–SO2 concentration in the air 
belongs to the interval (500.1, +∞) µg/m3.

Then, according to Eqs. (1)–(3), the environmental pollu-
tion process S(t) is expressed by the matrix of probabilities [
pkl

]
9x9

 of transitions between the particular states and the 
matrix of distribution functions 

[
Hkl(t)

]
9x9

 or equivalently 
by the matrix of corresponding to them density functions [
hkl(t)

]
9x9

 of conditional sojourn times at the particular states.

3.2  Identification of (Air) Environmental Pollution 
Process Generated by Sulphur Dioxide

The experiment is performed in Gdańsk-Nowy Port 
(Fig. 1) during the 120-day period (8th Oct 2019–4th 
Feb 2020) and the statistical data coming from the real 
realisation are collected and given in Appendix. Through 
this experiment, there are not observed realisations 
in states s6, s7, s8 and s9 , then the matrix of realisations 
nkl, k, l = 1, 2,… , 5, k ≠ l of numbers of the process S(t) 
transitions between the states sk and sl during the experi-
mental time are fixed and expressed according to Eq. (4).

Hence, according to Eq. (6), the realisation of the total 
numbers of the process S(t) transitions from the state 
sk, k = 1, 2,… , 5 during the experimental time is

Further, applying Eq. (5), the matrix 
[
pkl

]
5x5

, k, l = 1,2,

… , 5, k ≠ l of realisations of probabilities of the process 
S(t) transitions between the states sk and sl during the 
experimental time is fixed as follows:

Applying the procedure and formulae given in 
“Sect. 2.2”, and based on the data given in Appendix, 
the empirical parameters of the conditional sojourn times 
�kl, k, l = 1, 2,… , 5, k ≠ l of the process S(t) can be deter-
mined. The conditional sojourn time �21 is an example of 
this procedure application presented below. The condi-
tional sojourn time �21 is one having sufficient populous 
set of its realisations, that is it assumed n = 143 values 
presented in Appendix.

The results for the conditional sojourn time �21 are:

• the realisation �
21

 of the defined by Eq. (7) mean value 
of the conditional sojourn time �21 of the environmental 
pollution process’s state s2 when the next transition is 
to the state s1

• the number r21 of disjoint intervals Ij = ⟨a21
j
, b21

j

�
,

j = 1,2,… , r
21 including the real isat ions �21

�
 , 

� = 1, 2,… , 143

 of the conditional sojourn time �21 at 
the environmental pollution process’s state s2 when the 
next transition is to the state s1, defined by Eq. (8)

• the length d12 of intervals Ij = ⟨a21
j
, b21

j

�
, j = 1, 2,… , 12, 

defined by Eq. (9), after considering Eq. (10)

�
nkl

�
5x5

=

⎡
⎢⎢⎢⎢⎢⎣

0 142 1 0 1

143 0 52 15 2

0 56 0 28 7

0 15 34 0 12

0 0 4 18 0

⎤
⎥⎥⎥⎥⎥⎦

.

[
nk
]
1x5

= [144, 212, 91, 61, 22].

(24)
�
pkl

�
5x5

=

⎡
⎢⎢⎢⎢⎢⎣

0 0.986 0.007 0 0.007

0.675 0 0.245 0.071 0.009

0 0.615 0 0.308 0.077

0 0.246 0.557 0 0.197

0 0 0.182 0.818 0

⎤
⎥⎥⎥⎥⎥⎦

.

(25)�
21

=
1

143

∑
143

�=1
�21
�

= 5.503

r
21

≅
√
143 ≅ 12
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is

• the ends a21
j
, b21

j
 of intervals Ij = ⟨a21

j
, b21

j

�
, j = 1,2,

… , 12, defined by Eq. (11), after considering

are

• the numbers n21
j

 of realisations �21�  in particular intervals 

Ij = ⟨a21
j
, b21

j

�
, j = 1, 2,… , 12 defined by Eq. (12) are as 

follows:

Using the procedure given in “Sect. 2.2” as well as the data 
given in Appendix and the above results, the hypotheses con-
cerning the distribution forms of the environmental pollution 
process’s conditional sojourn times �kl, k, l = 1, 2,… , 5, k ≠ l 
at the particular states may be verified. To do this, a suffi-
ciently numerous set of these variables realisations is needed.  
It means that the sets of particular realisations coming from 
the experiment should contain at least 30 ones (see Appendix). 
The conditional sojourn time �21 is the one having the most 

R
21

= max
1≤�≤143

�21
�

− min
1≤�≤143

�21
�

= 42 − 1 = 41,

d21 =
R
21

r
21
− 1

=
41

11
= 3.7

min
1≤�≤143

�21
�

−
d21

2
= 1 −

3.7

2
= −0.8636,

(26)

a
21

1
= max{−0.8636,0} = 0 b

21

1
= a

21

1
+ 1d21 = 0 + 3.7 = 3.7

a
21

2
= b

21

1
= 3.7 b

21

2
= a

21

1
+ 2d21 = 0 + 2 ⋅ 3.7 = 7.4

a
21

3
= b

21

2
= 7.4 b

21

3
= a

21

1
+ 3d21 = 0 + 3 ⋅ 3.7 = 11.1

a
21

4
= b

21

3
= 11.1 b

21

4
= a

21

1
+ 4d21 = 0 + 4 ⋅ 3.7 = 14.8

a
21

5
= b

21

4
= 14.8 b

21

5
= a

21

1
+ 5d21 = 0 + 5 ⋅ 3.7 = 18.5

a
21

6
= b

21

5
= 18.5 b

21

6
= a

21

1
+ 6d21 = 0 + 6 ⋅ 3.7 = 22.2

a
21

7
= b

21

6
= 22.2 b

21

7
= a

21

1
+ 7d21 = 0 + 7 ⋅ 3.7 = 25.9

a
21

8
= b

21

7
= 25.9 b

21

8
= a

21

1
+ 8d21 = 0 + 8 ⋅ 3.7 = 29.6

a
21

9
= b

21

8
= 29.6 b

21

9
= a

21

1
+ 9d21 = 0 + 9 ⋅ 3.7 = 33.3

a
21

10
= b

21

9
= 33.3 b

21

10
= a

21

1
+ 10d21 = 0 + 10 ⋅ 3.7 = 37.0

a
21

11
= b

21

10
= 37.0 b

21

11
= a

21

1
+ 11d21 = 0 + 11 ⋅ 3.7 = 40.7

a
21

12
= b

21

11
= 40.7 b

21

12
= a

21

1
+ 12d21 = 0 + 12 ⋅ 3.7 = 44.4

(27)

n21
1

= 87, n21
2

= 25, n21
3

= 14, n21
4

= 7, n21
5

= 4, n21
6

= 1,

n21
7

= 2, n21
8

= 0, n21
9

= 1, n21
10

= 0, n21
11

= 0, n21
12

= 2.

numerous set of its realisations and preliminarily analysed 
above in this section.

The histogram h
21

(t) of the environmental pollution process’s 
conditional sojourn time �21 realisation defined by Eq. (13) is 
presented and illustrated in Table 2 and Fig. 2, respectively.

After analysing and comparing the realisation of histogram 
h
21

(t) with the graphs of the density function of distributions 
distinguished in Chapter 2 in [39], the following hypothesis 
H is formulated: the environmental pollution process’s condi-
tional sojourn time �21 at the state s2 when the next transition 
is to the state s1 has the exponential distribution expressed with 
the density function of the form

The unknown parameters of the hypothetical density func-
tion Eq. (28) are estimated using (4.13) in [39], and the results 
are as follows:

Next, substituting Eq. (29) into Eq. (28), the hypothetical 
density function takes the form

Taking the integral of the hypothetical density function 
h21(t) of the conditional sojourn time �21 expressed by Eq. (30), 
the hypothetical distribution function H21(t) takes the form.

Next, the intervals of the histogram h
21

(t) having the 
numbers n21

j
 of realisations less than 4 are jointed into new 

ones and the following steps are performed:

• the new number of intervals are fixed

(28)h21(t) =

{
0 t < x21

𝛼21exp
[
−𝛼21

(
t − x21

)]
t ≥ x21.

(29)
x21 = a21

1
= 0,

�21 =
1

�
21

−x21
=

1

5.2028−0
= 0.192204.

(30)
h
21(t) =

{
0 t < 0

0.192204 exp[−0.192204(t − 0)] t ≥ 0

=

{
0 t < 0

0.192204 exp(−0.192204t) t ≥ 0.

(31)H21(t) =

t

�
0

h21(t)dt =

{
0 t < 0

1 − exp(−0.192204t) t ≥ 0.

r
21

= 6

Table 2  The realisation of the histogram of the environmental pollution process’s conditional sojourn time �21

Ij = ⟨a21
j
, b21

j

�
0–3.7 3.7–7.4 7.4–11.1 11.1–14.8 14.8–18.5 18.5–22.2 22.2–25.9 25.9–29.6 29.6–33.3 33.3–37 37–40.7 40.7–44.4

n21
j

87 25 14 7 4 1 2 0 1 0 0 2

h
21

(t) =
n21
j

n21

87

143

25

143

14

143

7

143

4

143

1

143

2

143

0

143

1

143

0

143

0

143

2

143
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• the new intervals are determined

• the numbers of realisations in the new intervals are 
fixed

• the hypothetical probabilities that the conditional 
sojourn time �21 takes values from the new intervals 
are calculated using Eq. (14)

• the realisation of the �2− Pearson’s statistics are calcu-
lated using Eq. (15)

I
1

= ⟨0, 3.7), I
2

= ⟨3.7, 7.4), I
3

= ⟨7.4, 11.1), I
4

= ⟨11.1, 14.8),
I
5

= ⟨14.8, 18.5), I
6

= ⟨18.5, +∞)

n
21

1
= 87, n

21

2
= 25, n

21

3
= 14, n

21

4
= 7, n

21

5
= 4, n

21

6
= 6

p1 = P
(
𝜃21 ∈ I1

)
= P

(
0 ≤ 𝜃21 < 3.7

)
= H21(3.7)

− H21(0) ≅ 0.5089 − 0 = 0.5089,

p2 = P
(
𝜃21 ∈ I2

)
= P

(
3.7 ≤ 𝜃21 < 7.4

)
= H21(7.4)

− H21(3.7) ≅ 0.7588 − 0.5089 = 0.2499,

p3 = P
(
𝜃21 ∈ I3

)
= P

(
7.4 ≤ 𝜃21 < 11.1

)
= H21(11.1)

− H21(7.4) ≅ 0.8816 − 0.7588 = 0.1227,

p4 = P
(
𝜃21 ∈ I4

)
= P

(
11.1 ≤ 𝜃21 < 14.8

)
= H21(14.8)

−H21(11.1) ≅ 0.9418 − 0.8816 = 0.0603,

p5 = P
(
𝜃21 ∈ I5

)
= P

(
14.8 ≤ 𝜃21 < 18.5

)
= H21(18.5)

− H21(14.8) ≅ 0.9714 − 0.9418 = 0.0296,

p6 = P
(
𝜃21 ∈ I6

)
= P

(
18.5 ≤ 𝜃21 < +∞

)
= 1

−H21(18.5) ≅ 1 − 0.9714 = 0.0286

• the significance level � = 0.05
 is assumed

• the number of degrees of freedom for the hypothetical 
exponential distribution ( z = 1 ) is fixed

• the value u� for the fixed values of the significance level 
� = 0.05 and the number of degrees of freedom r

21

= 4 
is read from tables of the �2− Pearson’s distribution, 
that according to Eq. (16), amounts u� = 9.49

 , there-
fore the acceptance domain in the form of the interval 
⟨0, 9.49⟩ and the critical domain in the form of the inter-
val (9.49,+∞) are determined as presented in Fig. 3

• the obtained value u21 = 7.94 of the realisation of 
the statistics U21 and the critical value u� = 9.49 read 
from tables of �2− Pearson’s distribution are compared 
and the hypothesis H is not rejected since the value 
u21 = 7.94

 belongs to the acceptance domain, i.e.

Proceeding in the analogous way, based on the data given 
in Appendix, the forms of the particular density function 
hkl(t) of the environmental pollution process’s conditional 
sojourn times �kl, k, l = 1, 2,… , 5, k ≠ l that have a suffi-
cient number of their realisation at the particular states are 
identified. The results are as follows:

u21 =
6∑
j=1

�
n
21

j
−n21pj

�2

n21pj

≅
(87−143⋅0.5089)2

143⋅0.5089
+

(25−143⋅0.2499)2

143⋅0.2499

+
(14−143⋅0.1227)2

143⋅0.1227
+

(7−143⋅0.0603)2

143⋅0.0603

+
(4−143⋅0.0296)2

143⋅0.0296
+

(6−143⋅0.0286)2

143⋅0.0286

≅ 2.78 + 3.23 + 0.72 + 0.30 + 0.01 + 0.90 = 7.94

r
21

− z − 1 = 6 − 1 − 1 = 4

u21 = 7.94 ≤ u� = 9.49.

Fig. 2  The graph of the his-
togram of the environmental 
pollution process’s conditional 
sojourn time �21
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• the conditional sojourn time �12 has Gamma distribution 
expressed by the density function

• the conditional sojourn time �23 has the chimney distribu-
tion expressed by the density function

• the conditional sojourn time �32 has the exponential dis-
tribution expressed by the density function

• the conditional sojourn time �34 has the exponential dis-
tribution expressed by the density function

• the conditional sojourn time �43 has the exponential dis-
tribution expressed by the density function

When there are less than 30 realisations of the environ-
mental pollution process S(t), it is assumed that such con-
ditional sojourn time �kl, k, l = 1, 2,… , 5, k ≠ l has the 
empirical density function given by

(32)h12(t) =

{
0 t < 0
t−0.5092exp(−

t

19.5997
)

4.3076⋅Γ(0.4908)
t ≥ 0

(33)h23(t) =

⎧⎪⎨⎪⎩

0 t < 0

0.0723077 0 ≤ t < 12.5

0.0012821 12.5 < 87.5

0 t ≥ 87.5

(34)

h
32(t) =

{
0 t < 0.1667

0.5853659 exp(−0.5853659t + 0.0975610) t ≥ 0.1667

(35)

h
34(t) =

{
0 t < 0.375

0.6153846 exp(−0.6153846t + 0.2307692) t ≥ 0.375

(36)

h43(t) =

{
0 t < 0.5

0.9189189exp(−0.9189189t + 0.4594594) t ≥ 0.5.

(37)
hkl(t) =

1

nkl
#

{
� ∶ �kl

�
∈ Ij, � ∈

{
1, 2,… , nkl

}}
, j = 1, 2,… , r

kl

that complies with the following distribution function:

for t ≥ 0, k, l = 1, 2,… , 5, k ≠ l (the number of elements of 
the set is expressed with the symbol #).

For instance, the environmental pollution process’s con-
ditional sojourn time �24 assumed n = 15 values given in 
Appendix. The order sample realisations �24 is 1, 1, 1, 1, 1, 
2, 2, 3, 5, 6, 9, 14, 18, 21, 21. Thus the conditional sojourn 
time �24 has the empirical density function and the distribu-
tion function respectively given by

Proceeding in the analogous way, based on the data given 
in Appendix, it is assumed that the conditional sojourn times 
�42 , �45, �53 and �54 have also the empirical density function 
in the following forms:

(38)Hkl(t) =
1

nkl
#

{
𝛾 ∶ 𝜃kl

𝛾
< t, 𝛾 ∈

{
1, 2,… , nkl

}}

(39)

h24(t) =

⎧
⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

0 t < 1

5∕15 1 ≤ t < 2

2∕15 2 ≤ t < 3

1∕15 3 ≤ t < 5

1∕15 5 ≤ t < 6

1∕15 6 ≤ t < 9

1∕15 9 ≤ t < 14

1∕15 14 ≤ t < 18

1∕15 18 ≤ t < 21

2∕15 t ≥ 21

H24(t) =
t

∫
0

h24(t)dt =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

0 t < 1

5∕15 t < 2

7∕15 t < 3

8∕15 t < 5

9∕15 t < 6

10∕15 t < 9

11∕15 t < 14

12∕15 t < 18

13∕15 t < 21

1 t ≥ 21.

(40)h42(t) =

⎧⎪⎨⎪⎩

0 t < 1

13∕15 1 ≤ t < 2

1∕15 2 ≤ t < 3

1∕15 t ≥ 3

(41)h45(t) =

⎧
⎪⎪⎨⎪⎪⎩

0 t < 1

7∕12 1 ≤ t < 2

3∕12 2 ≤ t < 3

1∕12 3 ≤ t < 4

1∕12 t ≥ 4

Fig. 3  The graphical interpretation of acceptance and critical inter-
vals for the chi-square goodness-of-fit test
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When only the number of realisations of process S(t) is 
known and all these realisations are equal to an approxi-
mate value, it is assumed that such conditional sojourn time 
�kl, k, l = 1, 2,… , 5, k ≠ l has the uniform distribution in the  
interval between this value minus to this value plus its half 
(Bogalecka, 2020). For instance, the environmental pollution 
process’s conditional time �35 assumed n35 = 7 values given 
in Appendix. All of them equal to 1. Thus the conditional 
sojourn time �35 has the uniform density function and the 
distribution function respectively given by

Proceeding in the analogous way, based on the data given 
in Appendix, it is assumed that the conditional sojourn times 
�13 , �15 and �25 have also the uniform density function in the 
following forms:

After accepting the density functions of the particular 
conditional sojourn times �kl, k, l = 1, 2,… , 5, k ≠ l of the 

(42)h53(t) =

⎧⎪⎨⎪⎩

0 t < 1

2∕4 1 ≤ t < 2

1∕4 2 ≤ t < 3

1∕4 t ≥ 3

(43)h54(t) =

⎧
⎪⎪⎨⎪⎪⎩

0 t < 1

12∕18 1 ≤ t < 2

3∕18 2 ≤ t < 3

2∕18 3 ≤ t < 5

1∕18 t ≥ 5.

(44)

h35(t) =

⎧
⎪⎨⎪⎩

0 t < 0.5

1 0.5 ≤ t < 1.5

0 t ≥ 1.5

H35(t) = ∫ t

0

h35(t)dt =

⎧⎪⎨⎪⎩

0 t < 0.5

t 0.5 ≤ t < 1.5

1 t ≥ 1.5.

(45)h13(t) =

⎧⎪⎨⎪⎩

0 t < 6.5

1 6.5 ≤ t < 19.5

0 t ≥ 19.5

(46)h15(t) =

⎧⎪⎨⎪⎩

0 t < 2

1 2 ≤ t < 6

0 t ≥ 6

(47)h25(t) =

⎧⎪⎨⎪⎩

0 t < 0.5

1 0.5 ≤ t < 1.5

0 t ≥ 1.5.

environmental pollution process S(t) given by Eq. (30) and 
Eqs. (32)–(36), the general formula Eq. (17) is applied to 
find their mean value Mkl = E

[
�kl

]
 . In other cases, when 

the statistical identification of the environmental pollu-
tion process’s conditional sojourn times distributions at 
the particular states is not possible because of the lack of 
sufficient numbers of their realisations, the approximate 
empirical values of mean values Mkl = E

[
�kl

]
 of the condi-

tional sojourn times at the particular states are calculated 
using the formula (7). The results are given in the matrix 
below

3.3  Prediction of (Air) Environmental Pollution 
Process Generated by Sulphur Dioxide

The process the environmental pollution process S(t) 
is identified in “Sect. 3.2”. Now, its main characteris-
tics may be predicted using the procedure presented in 
“Sect. 2.3”.

Applying Eq. (20) and considering Eqs. (24) and (48), 
the approximate mean values Mk, k = 1, 2,… , 5 of uncon-
ditional sojourn times of variables �k, k = 1, 2,… , 5 can be 
evaluated. The values that are not equal to 0 are presented 
only, and they are as follows:

To find the limit values of the transient probabilities 
pk, k = 1, 2,… , 5 at particular states of the process S(t) , the 
system of equations (Eq. (22)) has to be solved that here it 
takes the following form:

(48)
�
Mkl

�
5x5

=

⎡
⎢⎢⎢⎢⎢⎣

0 9.620 13 0 4

5.203 0 10.456 7.067 1

0 1.875 0 2 1

0 1.2 1.588 0 1.667

0 0 2.25 1.556 0

⎤
⎥⎥⎥⎥⎥⎦

.

(49)

M1 = M12p12 +M13p13 +M15p15 = 9.620 ⋅ 0.986 + 13

⋅ 0.007 + 4 ⋅ 0.007 = 9.486 + 0.090 + 0.028 = 9.604,

M2 = M21p21 +M23p23 +M24p24 +M25p25 = 5.203

⋅ 0.675 + 10.456 ⋅ 0.245 + 7.067 ⋅ 0.071 + 1 ⋅ 0.009

= 3.509 + 2.565 + 0.500 + 0.009 = 6.583,

M3 = M32p32 +M34p34 +M35p35 = 1.875

⋅ 0.615 + 2 ⋅ 0.308 + 1 ⋅ 0.077

= 1.154 + 0.615 + 0.077 = 1.846,

M4 = M42p42 +M43p43 +M45p45 = 1.200

⋅ 0.246 + 1.588 ⋅ 0.557 + 1.667 ⋅ 0.197

= 0.295 + 0.885 + 0.328 = 1.508,

M5 = M53p53 +M54p54 = 2.250

⋅ 0.182 + 1.556 ⋅ 0.818

= 0.409 + 1.272 = 1.681.
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This system of equations solution is

Hence, according to Eq. (21) and considering Eq. (49), 
the approximate limit values of the transient probabilities 
pk, k = 1, 2,… , 5 at the particular states sk of the process 
S(t) are

Further, by Eq. (23) and considering Eq. (51), the approx-
imate mean values of the sojourn total time �̂k of the process 
S(t) in the fixed time interval � = 1 month = 720 h at the 
particular states sk, k = 1, 2,… , 5 expressed in hours are

According to Eq. (51), states s2 and s1 reach the highest 
value of the transient probabilities equal to p2 = 0.455 and 
p1 = 0.448 , respectively. Similarly, according to Eq. (52), 
states s2 and s1 reach the highest value of the sojourn total 
times equal to M̂2 = 327.7 h and M̂1 = 322.7

 h per 720 h of 
the fixed time, respectively. The states s6, s7, s8 and s9 have 
never occurred during the experimental time; thus, their 
values of transient probabilities and the values of sojourn 
total times equal to zero. Nevertheless, the values Eqs. 

(50)

⎧
⎪⎪⎪⎨⎪⎪⎪⎩

�1 = 0.675�2

�2 = 0.986�1 + 0.615�3 + 0.246�4

�3 = 0.007�1 + 0.245�2 + 0.557�4 + 0.182�5

�4 = 0.071�2 + 0.308�3 + 0.818�5

�5 = 0.007�1 + 0.009�2 + 0.077�3 + 0.197�4

�1 + �2 + �3 + �4 + �5 = 1.

�1 = 0.271, �2 = 0.401, �3 = 0.172, �4 = 0.115, �5 = 0.041.

(51)
p1 = 0.448, p2 = 0.455, p3 = 0.055, p4 = 0.030, p5 = 0.012.

(52)

M̂1 = E
[
�̂1
]
= 322.7, M̂2 = E

[
�̂2
]
= 327.7, M̂3 = E

[
�̂3
]
= 39.4,

M̂4 = E
[
�̂4
]
= 21.6, M̂5 = E

[
�̂5
]
= 8.6.

(51)–(52) are evaluated based on the experiment and the 
real statistical data; therefore, the values (Eqs. (51)–(52)) 
may change and being more precise if the experiment 
duration is longer.

Moreover, the last results (Eqs. (51)–(52)) can play a 
practically role in the minimisation of air pollution caused 
by sulphur dioxide and its losses mitigation what is the 
subject of future research.

4  Conclusion

The model of the environmental pollution process based 
on the semi-Markov process designed and presented in 
the paper is a novel approach. The procedure of its practi-
cal application is illustrated in the modelling, identifica-
tion and prediction of the environmental pollution pro-
cess caused by the air pollutant, i.e. sulphur dioxide. The 
proposed method provides to establish the limit values 
of transient probabilities and the mean values of sojourn 
total times staying at particular pollution states indicating 
the concentration of pollutant (Table 3). There is the first 
approach to usage of this method; therefore, the obtained 
results should be treated just as an illustration of the pro-
posed method.

The developed general model of the environmental pol-
lution process is a universal tool. It can be used success-
fully in regard to other environmental pollutants existing 
in air or water and soil [42]. Moreover, the model allows 
to consider two or more pollutants in parallel. It means 
that the next stage of research will consider the air envi-
ronmental pollution process generated jointly by  SO2, CO, 
 NO2,  O3,  PM2.5 and  PM10 commonly used in determination 
of air quality index (AQI) that is based on these pollutants 
concentration and describes the air pollution levels.

Table 3  Main characteristics 
of the environmental pollution 
process–final results of 
application to sulphur dioxide

Environmental pollution state 
sk, k = 1, 2,… , 9

SO2 concentration (µg/
m3)

Transient probability Sojourn time at state 
sk, k = 1, 2,… , 9 (h/
month)

s1 0–3.5 0.448 322.7
s2 3.6–17.5 0.455 327.7
s3 17.6–35 0.055 39.4
s4 35.1–50 0.030 21.6

s5
50.1–100 0.012 8.6

s6
100.1–200 0 0

s7
200.1–350 0 0

s8
350.1–500 0 0

s9
> 500 0 0
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Appendix. Realisations of conditional 
sojourn times �kl at states 
of the environmental pollution process S(t)

Transitions sk → sl Transition time �kl (min) Number of 
transitions 
nkl

s1 → s2 7, 21, 3, 32, 2, 4, 34, 44, 1, 2, 1, 1, 
11, 2, 1, 5, 1, 10, 7, 1, 6, 5, 15, 
10, 2, 1, 7, 1, 1, 1, 1, 1, 15, 3, 23, 
26, 5, 2, 4, 3, 5, 10, 1, 3, 1, 7, 9, 
1, 45, 1, 6, 1, 1, 3, 6, 1, 2, 9, 1, 
4, 1, 40, 67, 2, 32, 1, 2, 1, 8, 1, 
1, 22, 2, 17, 18, 2, 2, 1, 1, 1, 6, 
9, 1, 2, 1, 2, 10, 29, 18, 47, 30, 
7, 1, 1, 1, 2, 1, 1, 1, 35, 26, 5, 3, 
5, 1, 40, 6, 3, 17, 7, 2, 2, 1, 1, 
18, 1, 15, 8, 1, 4, 1, 6, 1, 10, 16, 
2, 7, 1, 4, 4, 16, 59, 7, 70, 12, 5, 
20, 1, 16, 1, 45, 30
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s1 → s3 13 1
s1 → s5 4 1
s2 → s1 2, 5, 1, 2, 5, 2, 2, 2, 8, 2, 1, 20, 1, 

9, 10, 15, 1, 17, 1, 1, 8, 3, 6, 32, 
8, 2, 1, 9, 1, 1, 6, 11, 1, 3, 4, 1, 6, 
1, 2, 2, 2, 9, 2, 3, 23, 3, 1, 1, 12, 
1, 6, 1, 1, 2, 24, 1, 1, 42, 1, 4, 4, 
1, 1, 1, 1, 1, 13, 8, 4, 2, 8, 6, 3, 
12, 11, 1, 3, 5, 4, 2, 10, 1, 4, 16, 
3, 2, 10, 1, 1, 1, 5, 1, 6, 2, 3, 2, 5, 
2, 2, 2, 2, 2, 2, 1, 14, 1, 6, 1, 2, 
2, 3, 1, 1, 2, 4, 5, 2, 18, 3, 1, 2, 
2, 1, 1, 2, 1, 42, 2, 7, 11, 3, 13, 
3, 2, 1, 7, 1, 7, 14, 1, 13, 6, 4

143

s2 → s3 6, 5, 2, 7, 11, 3, 3, 4, 2, 1, 2, 7, 46, 
25, 4, 76, 2, 1, 1, 1, 1, 1, 1, 6, 5, 
1, 22, 11, 3, 6, 5, 3, 3, 18, 4, 1, 
9, 4, 10, 2, 1, 1, 3, 12, 9, 3, 2, 1, 
3, 1, 4, 5

52

s2 → s4 6, 21, 1, 2, 3, 9, 14, 1, 18, 5, 1, 1, 
1, 2, 21

15

s2 → s5 1, 1 2
s3 → s2 1, 1, 1, 7, 4, 1, 1, 3, 1, 1, 1, 3, 1, 3, 

1, 2, 1, 2, 2, 1, 1, 1, 2, 1, 1, 1, 5, 
2, 3, 1, 2, 1, 2, 1, 2, 3, 11, 1, 1, 
1, 1, 1, 1, 1, 1, 1, 3, 1, 4, 1, 2, 2, 
2, 1, 1, 1

56

s3 → s4 1, 2, 1, 3, 6, 4, 4, 1, 3, 1, 1, 2, 4, 
1, 2, 1, 1, 2, 1, 1, 1, 2, 1, 4, 1, 
2, 1, 2

28

s3 → s5 1, 1, 1, 1, 1, 1, 1 7
s4 → s2 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 

3, 1
15

s4 → s3 1, 1, 2, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 1, 
2, 1, 1, 2, 1, 2, 3, 1, 1, 6, 3, 1, 1, 
1, 1, 1, 2, 4, 2, 1

34

s4 → s5 2, 2, 3, 1, 1, 1, 1, 1, 4, 1, 1, 2 12
s5 → s3 3, 1, 1, 4 4

Transitions sk → sl Transition time �kl (min) Number of 
transitions 
nkl

s5 → s4 1, 1, 1, 1, 1, 1, 2, 4, 2, 3, 3, 1, 1, 1, 
1, 2, 1, 1
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