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Abstract
Our study quantifies the impact of climate change on the income of corn farms in Ontario, at the 2068 horizon, under several 
warming scenarios. It is articulated around a discrete-time dynamic model of corn farm income with an annual time-step, 
corresponding to one agricultural cycle from planting to harvest. At each period, we compute the income of a farm given 
the corn yield, which is highly dependent on weather variables: temperature and rainfall. We also provide a reproducible 
forecast of the yearly distribution of corn yield for the regions around ten cities in Ontario, located where most of the corn 
growing activity takes place in the province. The price of corn futures at harvest time is taken into account and we fit our 
model by using 49 years of county-level historical climate and corn yield data. We then conduct out-of-sample Monte-Carlo 
simulations in order to obtain the farm income forecasts under a given climate change scenario, from 0 ◦ C to + 4 ◦C.

Keywords Climate change · Corn futures · Generalized extreme value distributions · Linear regressions · Multi-linear 
regressions · Monte-Carlo simulations

1 Introduction

Climate change is now an accepted scientific fact and its 
denial is increasingly becoming an intellectually untenable 
position, as described in Björnberg et al. [1]. In his famous 
speech given at Lloyd’s of London in 2015,1 Bank of Can-
ada and later Bank of England governor Mark Carney has 
encouraged worldwide banking and financial regulators 
to disclose their climate-relate risks. All sectors of the 
economy are affected, but agriculture is naturally among 
the most exposed. The literature focusing on the economic 
and financial aspect of climate change is extensive, with 
numerous papers like Tol [2] focusing on how the global 
economy should adapt and how climate change will impact 
the stability of the global financial system. For instance, 
Kolk and Pinkse [3] explore how companies in many dif-
ferent sectors of activity adapt their financial and corpo-
rate strategy with respect to climate change, both from a 
purely operational point of view, since climate change is 
expected to directly or indirectly influence their business, 

and from the perspective of government policies and the 
regulatory response. Dafermos et al. [4] studied from a 
macro-economic point of view how climate change will 
impact global financial stability and monetary policy. How 
to hedge climate risk in a long-term investment strategy is 
also a much discussed topic, as detailed in Andersson, Bol-
ton and Samama [5]. The influence of climate change on 
farming from the point of view of agronomy and agricul-
tural yields is well studied, for instance in Bootsma et al. 
[6], in Deryng et al. [7] or in Lobell and Field [8]. The 
impact of climate change on food production, though its 
influence on crop yields, has also been discussed in many 
research papers, as in Katz [9] or Almaraz et al. [10]. On 
the other hand, the question of how climate change will 
impact the financial situation of farmers is still a relatively 
unexplored topic. Kaiser et al. [11] developed a farm-level 
analysis of a gradual climate warming on the economic 
situation of grain farmers in southern Minnesota under var-
ious climate scenarios and we took inspiration from their 
discrete-time dynamic model. Wang et al. [12] created a 
multinomial logit model to study how farmers in China 
choose the optimal crop under several warming scenarios 
and use that model to make previsions at the 2100 horizon.  * Antoine Kornprobst 
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Our own novel approach is focused on the financial health 
of corn farms in Ontario from a credit risk point of view. 
We study the income of farms, which directly impacts the 
owners’ ability to repay their loans. In our whole study, we 
limit ourselves to grain corn, excluding fodder varieties. 
We study how several climate change scenarios, from no 
warming at all (+0◦ C) to +4◦ C over the next 49 years at 
the horizon 2068, might impact the probability of default 
on loans granted to a corn farmers in Ontario. Our model 
is fitted using available historical data between 1970 and 
2019. We consider the temperature, in order to compute 
the corn heat units, and rainfall, that enables us to deter-
mine the start and the end of the corn growing season 
for each year. We took our inspiration from the work of 
McDermid et al. [13] for the climate change scenarios. The 
price of corn futures is assumed to be constant and equal 
to the average price between 2009 and 2019 of a generic 
corn price future. This approximation is made in order to 
focus exclusively on the influence of climate change in 
our model. We then conduct Monte-Carlo simulations at 
the 2068 horizon in order to estimate the average income 
forecasts of the corn farms in the regions surrounding ten 
Ontario cities. This new approach mixes both climate vari-
ables and financial aspects. Our results are expected to be 
of great interest to both the financial institutions providing 
the loans and to the farmers receiving them, as well as 
to government planners at the local, national and interna-
tional levels who are tasked with mitigating the harmful 
effects of climate change on the agricultural sector. While 
our numerical study is focused on corn farming in Ontario, 
our farm income model and Monte-Carlo techniques could 
be applied to any region and any crop, provided that the 
needed data is available.

2  Simulated Climate Change Paths

We articulate our corn farm income simulations study 
around Brockville, Cornwall, Fergus, Kapuskasing, Kings-
ville, North Bay, Ottawa, Toronto, Trenton and Woodstock. 
Those ten cities, shown on the map in Fig. 1, are representa-
tive of the corn farming regions in Ontario according to the 
Ontario Ministry of Agriculture, Food and Rural Affairs 
(OMAFRA) census of land use conducted in 2011.2 The 
first step is to create, for each city, simulated daily tempera-
ture and rainfall paths under a given climate change scenario 
between 2019 and 2068. We need to simulate the daily maxi-
mum temperature, the daily minimum temperature and the 
daily rainfall. The temperature values enable us to compute 
the corn heat units, which in turn give us the simulated corn 
yield. The rainfall value enable us to decide, through a set of 
rules explained later in Section 3, the dates for the start and 
the end of the corn growing season on a given year. All our 
historical weather data is obtained from the Global Histori-
cal Climatology Network Daily (GHCND) database of the 
National Oceanic and Atmospheric Administration (NOAA). 
The global identification number and precise location of the 
weather stations which have created the data used in our 
study is provided as supplementary online material. For a 
given climate change scenario, we create 1500 paths. We 
will see later that this number is sufficient to obtain a stable 
and reproducible distribution of the corn yield for a given 
city and a given year of the simulation. To create an indi-
vidual climate path, we adopt the block bootstrap method 

Fig. 1  Cities representative of 
corn farming in Ontario

2 http:// www. omafra. gov. on. ca/ engli sh/ landu se/ gis/ maps/ Censu s2011/ 
corn_ cd. png

400

http://www.omafra.gov.on.ca/english/landuse/gis/maps/Census2011/corn_cd.png
http://www.omafra.gov.on.ca/english/landuse/gis/maps/Census2011/corn_cd.png


Climate Change Influence On Ontario Corn Farms’ Income  

1 3

detailed below. This technique is inspired from Lahiri [14] 
and more advanced results on boostrapping can be found in 
Härdle et al. [15].

1. The 49 years of historical temperature and rainfall 
data are sliced by blocks of one year, from January 
1st to December 31st. We consider that every year is 
constituted of 365 days, disregarding leap years. For 
each of the ten cities (Brockville: j=1; Cornwall: j=2; 
Fergus: j=3; Kapuskasing: j=4; Kingsville: j=5; North 
Bay: j=6; Ottawa: j=7; Toronto: j=8; Trenton: j=9 and 
Woodstock: j=10), the blocks are called TMAXj(i) , 
TMINj(i) , RAINj(i) , for i ∈ [[1, 49]] . The year 1970 cor-
responds to i = 1 and the year 2019 corresponds to 
i = 49.

2. For each city j and for each year i of the historical data, 
the average maximum daily temperature, minimum daily 
temperature and daily rainfall is computed. We call them 
TMAXj(i) , TMINj(i) , RAINj(i) . We then perform, for 
each city, a linear regression by the least squares method 
on the 49 values of TMAXj(i) , TMINj(i) , RAINj(i) . The 
independent variable for the linear regression is the year. 
We assume all historical climate trends to be linear pro-
gressions. We therefore obtain yearly trends T j

tmax
 , T j

tmin
 

and T j

rain
 for the minimum daily temperature, maximum 

daily temperature and daily rainfall, respectively. Those 
trends from 1970 to 2019 represent the historical cli-
mate change. We assume that they continue unchanged 
for rainfall and they are replaced by our climate change 
scenarios, from 0 ◦ C to +4◦ C, for the maximum and 
the minimum temperature in the future between 2019 
and 2068. The values we obtained for the historical cli-
mate trends and the variance V j

tmax
 , V j

tmin
 and V j

rain
 of the 

series of TMAXj(i) , TMINj(i) , RAINj(i) are displayed in 
Table 1 and Table 2. Those values for our ten cities in 
Ontario are consistent with the findings of an April 2019 

report by the Canadian Government3. They underline the 
scale of climate change in Canada, with warming trends 
as high as three times the global average. 

3. For each city j, the 49 years of a simulated climate path, 
under a given climate change scenario that assumes a 
warming of +W  ◦ C ( W ∈ [[0, 4]] ) and no extra rainfall 
besides the historical trend over the next 49 years, are 
sliced by blocks of one year from January 1st to December 
31st. The new blocks are called TMAX_Sj(i) , TMIN_Sj(i) , 
RAIN_Sj(i) , i ∈ [[1, 49]] . The year 2020 corresponds to 
i = 1 and the year 2068 corresponds to i = 49 . We per-
form a random permutation P of the integers between 
1 and 49 and choose TMAX_Sj(i) = TMAXj(P(i)) ; 
TMIN_Sj(i) = TMINj(P(i)) and RAIN_Sj(i) = RAINj(P(i)).

4. We remove the historical trend, to be replaced by our 
scenarios in the next step, for the temperatures from 
each block, according to its former place in the histori-
cal data: TMAX_Sj(i) = TMAXj(P(i)) −T

j

tmax
×P(i) ; 

TMIN_Sj(i) = TMINj(P(i)) −T
j

tmin
×P(i) . For the rain, 

we add to each block the historical trend according to 
its place in the simulation, as shown in the following 
formula: 

5. For the maximum and minimum temperature, we add 
to each block a random Gaussian perturbation term 
N(m, v) , with mean m and variance v, according to our 
chosen climate scenario and the block’s position in the 
simulation. We added this noise to account for the vari-
ability of annual climate around the trend. Failing to do 
so would have left the climate paths with an unrealistic 
lack of variability. We lastly add a corrective term to 
account for the realized warming trends in the historical 

(1)
RAIN_Sj(i) = RAINj(P(i)) +T

j

rain
× (49 −P(i) + i).

Table 1  Historical climate trends per year in Ontario (1970-2019), 
expressed in tenth of degree Celsius for the temperatures and in tenth 
of millimeter for the rainfall

T
j

tmax T
j

tmin
T

j

rain

Brockville 0.456 0.457 -0.116
Cornwall 0.547 0.433 0.052
Fergus 0.246 0.784 0.072
Kapuskasing 0.291 0.348 0.078
Kingsville 0.219 0.364 0.020
North Bay 0.472 0.255 -0.139
Ottawa 0.402 0.415 0.114
Toronto 0.450 0.617 0.033
Trenton 0.264 0.326 0.132
Woodstock 0.323 0.245 0.143

Table 2  Historical climate variance in Ontario (1970-2019)

V
j

tmax V
j

tmin
V

j

rain

Brockville 91.6 106.4 13.2
Cornwall 97.0 91.3 12.3
Fergus 100.2 103.8 13.1
Kapuskasing 111.5 137.5 7.4
Kingsville 75.5 169.5 18.3
North Bay 106.9 124.5 19.9
Ottawa 92.0 83.7 10.2
Toronto 114.3 158.7 9.9
Trenton 81.0 81.7 11.4
Woodstock 98.6 86.3 21.1

3 Canada’s Changing Climate Report. https:// chang ingcl imate. ca/ 
CCCR2 019/
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data. This is done in order to avoid a discontinuity in our 
climate paths at the interface between the historical and 
simulated parts. We obtain the following equations: 

It is important to note that the blocks, corresponding to 
one year of climate data, that we use in our bootstrapping 
method are de-trended, which means that the historical cli-
mate change is removed from them, before any innovation is 
added. Indeed, stationarity of the data is essential when con-
sidering bootstrapping methods, as explained in Härdle et al. 
[15]. For the temperatures, the historical trend is removed 
at the fourth step of the method detailed above, before the 
normal perturbation term is added at the fifth step in Eqs. (2) 
and (3). For the rainfall, since we assumed that the historical 
trend is continuing in the future, we remove at the fourth step 
the historical trend corresponding to a block’s former posi-
tion in the historical data and then add the correct trend cor-
responding to the block’s current position in the simulation, 
as detailed in Eq. (1). While the data is rendered stationary 
on a yearly scale through the removal of the climate change 
trends before any innovation is added to them, we do intend 
to preserve the seasonal trends inside the blocks themselves. 
Those are indeed essential to our simulated climate paths, 
but their presence does not jeopardize the validity of our 
approach since the data is stationary on a yearly scale before 
the innovations are added. Our climate scenarios assume 
the value of the variable W to be an integer between 0 and 
4 degrees Celsius. According to the values in Table 1, the 
historical realized maximum temperature warming for the 49 
years between 1970 and 2019 is between 1.2 ◦ C for Fergus 
and almost 2.7 ◦ C for Cornwall with an average of 1.8 ◦ C 
for the whole province. The historical realized minimum 
temperature warming for the 49 years is generally higher, 
from 1.2 ◦ C for Woodstock to more than 3.8 ◦ C for Fergus 
with an average of 2 ◦ C for the province. Roughly speaking, 
we can say that our historical climate data shows that, on 
average, the corn growing regions of Ontario have experi-
ence a 2 ◦ C warming over the past five decades. Since we 
have removed the historical trend between 1970 and 2019 
at the fourth step of the climate path creation method, a cli-
mate scenario at the 2068 horizon defined by W = 0 ◦ C in 
our framework corresponds to a break of the historical trend 
and no warming at all over the length of the simulations. It is 

(2)
TMAX_Sj(i) =TMAXj(P(i)) −T

j

tmax
×P(i)

+N(
W × i

49
,

√

V
j

tmax
) +T

j

tmax
× 49,

(3)
TMIN_Sj(i) =TMINj(P(i)) −T

j

tmin
×P(i)

+N(
W × i

49
,

√

V
j

tmin
) +T

j

tmin
× 49.

obviously not meant to be a realistic depiction of a possible 
future for the climate in Ontario but it will provide us with 
a useful limit case. Similarly, the climate scenario defined 
by W = 1 ◦ C corresponds to a slowing down of the climate 
warming trend, possibly through climate change mitigation 
programs. The climate scenario defined by W = 2 ◦ C rep-
resents a continuation of the warming trend that has been 
going on since 1970 and the climate scenarios corresponding 
to W = 3 ◦ C and W = 4 ◦ C describe an accelerating warming 
of the climate. The rainfall aspect of a climate scenario is 
modeled differently since we always assume a continuation 
of the historical trend, which is very small for all cities con-
sidered. All our climate simulation results, for each of the 
ten cities and each of the five values of W, are available as 
supplementary online material as well as the computer code 
in MATLAB language.

3  Simulated Corn Yield Paths

Now that we have simulated paths for the climate variables, 
we switch our attention to creating corn yield paths. The 
first step is to compute, for each year in the future and for 
each city, the sum over the growing season of the daily corn 
heat units (CHU). Let us consider one climate path, consti-
tuted of the daily maximum temperature, the daily minimum 
temperature and the daily rainfall. For each year i ∈ [[1, 49]] 
of the simulation and for each city j ∈ [[1, 10]] , we can com-
pute the daily CHU. The corn heat units depend only on the 
temperature maximum and minimum. We call Hj

i
 the sum of 

the daily corn heat units over the corn growing season. The 
computation of Hj

i
 is achieved by using a well-established 

method, given in the following formula:

It is used both in academic papers like Kwabiah et al. [16] 
as well as in industry reports and handbooks like Brinkman 
et al. [17]. The numerical coefficients in the formula are 
computed for corn farming in Ontario, but as explained in 
Kwabiah et al. [16], we believe that the formula would still be 
valid for corn farming in similar cool climate ecosystems. In 
Eq. (4), the sum is over each day k of the growing season of 
length Nj

i
 . The length of the growing season has been studied 

as an important indicator of climate change for agriculture, 
as explained in Brinkmann [18]. According to Cabas et al. 
[19], the length of the growing season, which depends only 
on rainfall in our framework, has a very strong impact on 
several crop yields, especially corn, in southwestern Ontario. 
The effects of climate change on crop yields in Ontario are 

(4)
H

j

i
=
∑N

j

i

k=1

1

2
[1.8(Tmin

j

k
− 4.4) + 3.3(Tmax

j

k
− 10))

− 0.084(Tmax
j

k
− 10)2].
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also studied in details in Smit et al. [20]. Again, the length of 
the growing season is one of the determining factors.

Since precise county level historical data was not avail-
able to us for the growing seasons in Ontario, we adopted an 
approach that is based on published agronomic studies that 
we modified to include the influence of our climate change 
scenarios through a set of rules based on rainfall. We do 
not claim that this model is very realistic, but it serves our 
purposes for this study and it relies on the common sense 
consideration that corn farmers need a relatively wet soil to 
plant their seeds at the end of Spring and a firm ground to 
harvest their relatively dry crop at the beginning of Autumn. 
We grounded our approach in average historical planting 
and harvesting dates for corn discussed in Sacks et al. [21]. 
In this wide ranging paper about planting and harvesting 
patterns for a variety of crops, the authors state that corn 
planting in the northern hemisphere generally occurs in 
April and May, while harvesting takes place in mid to late 
October. They also found that soil moisture often determines 
the length of the growing season, much more than tempera-
ture related considerations. The work of Kucharik [22] about 
corn planting trends in the USA was also inspirational to us. 
To determine the length of the growing on a given year of 
the simulated path for one of our ten cities in Ontario, we 
started from the time-averaged historical corn planting and 
harvesting dates provided by Sacks et al. [21]. We used the 
online database associated with the paper as well.4. That is 
June 1st ( D1 ) for planting and October 25th ( D2 ) for harvest. 
This is a simplification of the author’s work for the purpose 
of our study. Sacks et al. [21] differentiate between the date 
when planting (resp, harvesting) start and the date when 
planting (resp, harvesting) stops, making the boundaries of 
the growing season more complicated, as it is of course in 

real life. We chose D1 and D2 as the average of the start and 
end dates provided in Sacks et al. [21]. Starting from those 
dates that we use to anchor our simulated growing seasons, 
we add the following rules based on our simulated rainfall 
data:

• The growing season starts (planting) ±15 days around D1 , 
after the first occurrence of three consecutive days with 
a strictly positive rainfall, or at D1 + 15.

• The growing season ends (harvest) ±15 days around D2 , 
after the first occurrence of three consecutive days with 
zero rainfall, or at D2 + 15.

The length of the growing season, which drives the size 
of the Hj

i
 and therefore the corn yield, upon which the farm 

income depends, has a large influence. Rainfall is essential 
in order to properly model the impact of climate change on 
the income of corn farms in Ontario. That is a very interest-
ing result. Indeed, even though one could be tempted to draw 
the simplistic conclusion that a warming climate is purely 
beneficial for corn crops, the equation in Eq. (4) is a quad-
ratic relation. While it is true that CHU generally increases 
with heat, and the corn yield in turn increases with CHU, 
extreme heat events will have the opposing effect. Also, 
another influence of climate change is expressed through 
shorter growing seasons due to extreme rainfall events, 
which could be much more unpredictable and detrimental 
to corn crops. In Fig. 2, we represented the histogram of 
CHU for Cornwall in the last year of the simulation under 
the +4◦ C scenario. The coefficient of variation is 5.51% and 
reflects the variability of our climate paths. Now that we 
know how to compute the CHU, we move to the computation 
of the corn yield Y itself.

• For any year i ∈ [[1, 49]] of the historical data, the yield 
for the city j is given by the following formula : 

Fig. 2  Distribution of CHU 
for Cornwall in 2068 under the 
+4◦ C scenario

4 https:// nelson. wisc. edu/ sage/ data- and- models/ crop- calen dar- datas et/ 
index. php
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 The coefficients Cj

0
 , Cj

1
 and Cj

2
 are obtained by multi-

linear regression of the historical county-level yield data 

(5)Y
j

i
= C

j

0
+ C

j

1
× i + C

j

2
× H

j

i
.

against the year and the CHU. The constant Cj

1
 repre-

sents the technology improvement trend, responsible 
for most of the increase in corn yield over the last five 
decades. The influence of the warming climate on the 
corn yield since 1970, as we have seen with the tempera-
ture trends contained in Table 1, is realized through the 
CHU. The database of historical corn yields at county 
level in Ontario, expressed in bushel per acre and con-
verted to tonnes per hectare in our study, is available as 
supplementary online material. The coefficients that we 
obtained for each city and the goodness of fit are con-
tained in Table 3. In order to visualize the pertinence of 
the chosen regression model and the goodness of its fit, 
we provide Figs. 3 and 4. They show the regressed hyper-
plane and the historical corn yield data for Brockville and 
allow us to intuitively verify the validity of our approach. 

   The goodness of fit is excellent for all cities, which 
validates our approach, except for the two northern ones. 
It was to be expected given the gaps in the historical data, 
which produced plateaus once we carried over the last 

Table 3  Regressed coefficients for the historical yields (tonnes per 
hectare) and goodness of fit

C
j

0
C
j

1
C
j

2
gof

Brockville 1.19 1.21E-01 8.68E-04 82.86%
Cornwall 0.64 1.44E-01 1.18E-03 88.22%
Fergus 0.57 1.19E-01 1.44E-03 82.07%
Kapuskasing 3.00 8.60E-02 4.68E-06 42.03%
Kingsville 4.36 1.48E-01 -4.00E-05 62.32%
North Bay 1.59 7.67E-02 8.13E-04 43.44%
Ottawa 4.26 1.45E-01 -1.50E-04 82.26%
Toronto 3.90 1.14E-01 7.33E-05 76.75%
Trenton 2.81 1.08E-01 3.30E-04 67.85%
Woodstock 3.49 1.36E-01 5.91E-04 86.45%

Fig. 3  Historical corn yield regression for Brockville against time and CHU (side view)
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valid entry. As expected, the technological trend Cj

1
 domi-

nates the influence of climate change: The coefficient Cj

2
 

is always small relative to Cj

1
 . More surprisingly, C2 is 

negative for Kingsville and Ottawa. This shows that in 
our study, the yield does not necessarily always increase 
with the CHU, which may sound strange at first but does 
reflects the fact that we have included both temperature 
and rainfall in our framework. More heat, within reason 
since Eq. (4) is quadratic, tends to help corn crops, but 
increased variability of rainfall, accompanied by the pos-
sibility of more frequent extreme events, may shorten the 
growing season. These competing effects of temperature 
and rainfall on corn farming in Ontario renders the real 
influence of climate change difficult to predict for the 
province as a whole. The choice of Eq. (5) as a bilin-
ear function of the CHU and time was not the only one 
available to us. Liang et al. [23] propose a more elabo-
rate model of corn yield that explicitly includes rainfall, 

while our approach keeps the influence of rainfall limited 
to the computation of the CHU, through the length of 
the growing season. Their model for the corn yield does 
not feature a technology trend however. Fitting it to our 
historical data over the last five decades would there-
fore have implied that the large increase of corn yield 
in Ontario was due only to climate variables, which was 
clearly unreasonable.

• For any year i ∈ [[1, 49]] in the future, given a climate path 
under a chosen climate scenario of +W ◦ C ( W ∈ [[0, 4]] ), 
the yield, expressed in tonnes per hectare, for the city j 
is given by the formula 

 While Eq. (6) may seem simplistic, modeling the corn 
yield as a linear function of CHU is often used in agro-
nomic studies, particularly in the context of climate 
change. This is for example the case in the reports from 

(6)Y
j

i
= C

j

0
+ C

j

1
× 49 + C

j

2
× H

j

i
.

Fig. 4  Historical corn yield regression for Brockville against time and CHU (orthogonal view)
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Agriculture and Agri-Food Canada (AAFC) about cli-
mate change scenarios for agriculture5. Our purpose in 
this study is to measure the influence of climate change 
only. We therefore assume that the technology will not 
improve after 2019 and thus we made constant the term 
containing the technology trend Cj

1
 in Eq. (6). In order to  

avoid any discontinuity at the interface between historical  
and simulated yield data, a simulated corn yield path is 
given at its start all the accumulated technology trend 
since 1970. This is of course a simplification. Indeed, 
while the corn yield will necessarily tend to plateau 
in the future because the big technological changes in 
agriculture, like the advent of pesticides, fertilizers and 
machines, are in the past, it is very conceivable that tech-
nological advances will still drive a large increase of 
farms efficiency for many years. The coefficients Cj

0
 and 

C
j

2
 are those that were computed for a given city j by fit-

ting Eq. (5) to the historical county level corn yield data.

4  Corn Yield Distributions and Farm Income

We now have successfully created corn yield paths from our 
temperature and rainfall paths under a given climate change 
scenario. Given one of our ten cities in Ontario and a warm-
ing factor W, we now wonder how many climate paths are 
needed in order to obtain stable and reproducible results. 
More precisely, we need a stable and reproducible distribu-
tion of the simulated corn yield for each year between 2020 
and 2068. In our framework, we have chosen to use 1500 
climate paths for one realization of the model and we will 
show that this number of paths is enough for our purposes 
and demonstrate that fact by studying 200 independent reali-
zations of the model for a given city j ∈ [[1, 10]] and a given 
scenario W ∈ [[0, 4]] . We decided to work with generalized 
extreme value distributions (GEV). We initially consid-
ered fitting our simulated data to a Gaussian distribution 
for simplicity, however even though the log-likelihood of a 
Gaussian fit was of the same order of magnitude as the one 
obtained for a GEV fit, the versatility of this latter type of 
densities and its ability to fit data with heavy shifting skew 
and fat tails made us decide to abandon a normal approach. 
The probability density function Ψ of a GEV is provided in 
the following formula,

(7)
Ψ(x) = (1 + k

x − �

�
)
(−1−

1

k
) 1

�
e
−(1+k

x − �

�
)

−

1

k
,

where the parameter � is the mean, � is the scale and k is the 
shape. We assume k ≠ 0 and (1 + k

x − 𝜇

𝜎
) > 0 . For each of 

our ten cities in Ontario under a given climate scenario and 
for each of the 49 years of the simulation at the 2068 hori-
zon, we look at the evolution of those three coefficients and 
the reproducibility of the results over the 200 distinct inde-
pendent realizations of our model, consisting of 1500 cli-
mate paths.

Under a given climate scenario, for each year of the simu-
lation, for each city and for each of the 200 realizations, we 
fit a GEV distribution to our simulated data constituted of 
1500 points. We obtain 200 sets of three coefficients (k, � , 
� ) each year in the future, for each city under each climate 
scenario. We compute the coefficient of variation, defined 
as the quotient of the standard deviation by the mean and 
expressed in percentage, of the 200 values at hand for each 
of the three coefficients. We finally take the average of the 
49 coefficients of variation over the whole simulation in the 
future and obtain a measure of the stability and reproduc-
ibility of the GEV fit for the corn yield in our framework. 
The results are presented in Table 4 and they are excellent 
for each of the ten cities under every climate scenario. Dur-
ing our computations, we also noticed that the values of 
the coefficients of variation became stable after only around 
100 independent realizations, so our choice to conduct 200 
independent realizations appears to be more than sufficient 
to demonstrate the stability and reproducibility of our GEV 
fits. The average variability of the mean is very small, in 
the order of magnitude of a few hundredth of a percent. 
The mean of the yield is the most important parameter from 
the point of view of the study of farm income. The aver-
age variability of the shape and scale of the fitted GEV is 
always below 10%, which is remarkable given the natural 
unpredictability of agricultural yields and weather patterns. 
This underlines the quality of the simulated weather paths 
within our framework. Given that the 200 realizations lead 
to stable fits of a GEV density to the simulated yield paths, 
we are confident that limiting ourselves to 1500 paths per 
realization is indeed a valid approach. In the following of 
this study, we will therefore consider only one realization 
constituted of 1500 yield paths.

We are now in a position to compute the income I j

i
 of a 

typical corn farm in the region around the city j ∈ [[1, 10]] 
at each step i ∈ [[1, 49]] in the future. The computation of the 
farm income is given in the following formula:

• A is a constant scale factor representing the size of the 
farm in hectares. We assume that it does not change over 
time. A is chosen as the average farm size in Ontario. 

(8)I
j

i
= A × Y

j

i
× P.

5 Climate Change Scenarios for Agriculture www. mcgill. ca/ brace/ 
files/ brace/ Gameda. pdf
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According to Statistics Canada in a report entitled Farm 
and Farm Operator Data, 2016 Census of Agriculture6, 
the average farm size in Ontario is presently 249 acres, 
which is approximately 100 hectares. Assuming that 
the typical size of a corn farm in Ontario matches the 
provincial average, which is a reasonable assumption 
given that corn is the dominant crop in the province, we 
choose A = 100 for the duration of our study. While this 
is an approximation, the statistical study of Eastwood, 
Lipton and Newell [24] shows that, in North America, 
the mean farm size, despite a slight trend toward larger 
values over the years, has not dramatically changed since 
1970.

• Y
j

i
 is the simulated corn yield (in tonnes per hectare) for 

the city j at the year i of a given path among the 1500 
constituting a realization of the model.

• The value of P, expressed in Canadian Dollars, is derived 
from the historical price of the Generic First Corn Future 
(C1 Comdty) corresponding to one metric tonne of grain 
corn. First we obtained from Bloomberg a time series 
of C1 Comdty in U.S Dollars between 2009 and 2019. 
We compensated for the effects of inflation by using 
a time series of Inflation GDP Deflator (IFGDPUSA) 
provided by the World Bank as an annual percentage. 
We then used a time series of the exchange rate of the 
U.S Dollar versus the Canadian Dollar (USDCAD), 
also obtained from Bloomberg, to convert the original 
C1 Comdty time series into inflation adjusted Canadian 
Dollars between 2009 and 2019. We computed for each 
city j ∈ [[1, 10]] the starting (planting) and ending (har-

Table 4  Average coefficients of 
variation (in %), for the three 
GEV parameters, for each city 
and each climate scenario, 
over 49 years in the future, 
considering 200 independent 
realizations of our model, each 
consisting of 1500 corn yield 
paths

W = 0 ◦C k � � W = 1 ◦C k � �

Brockville 7.4975 2.0869 0.0715 Brockville 7.7290 2.0796 0.0724
Cornwall 8.2333 2.0830 0.0669 Cornwall 8.3916 2.1192 0.0654
Fergus 7.9664 2.1905 0.1112 Fergus 7.8532 2.1804 0.1044
Kapuskasing 7.4003 2.1769 0.0006 Kapuskasing 7.4052 2.1741 0.0006
Kingsville 8.6566 2.0859 0.0026 Kingsville 8.4763 2.0332 0.0026
North Bay 8.0984 2.0468 0.1069 North Bay 8.0699 2.0544 0.1034
Ottawa 8.4624 2.0447 0.0084 Ottawa 8.7273 2.0494 0.0082
Toronto 8.3390 2.1186 0.0057 Toronto 8.1789 2.1272 0.0055
Trenton 7.8473 2.1197 0.0237 Trenton 7.8075 2.1305 0.0232
Woodstock 7.4121 2.0736 0.0345 Woodstock 7.4579 2.0520 0.0333
W = 2 ◦C k � � W = 2 ◦C k � �

Brockville 7.8044 2.0696 0.0699 Brockville 7.8840 2.0790 0.0703
Cornwall 8.2863 2.1094 0.0624 Cornwall 8.3009 2.0884 0.0610
Fergus 7.9139 2.1691 0.1008 Fergus 7.8716 2.1946 0.0959
Kapuskasing 7.5246 2.2139 0.0006 Kapuskasing 7.6792 2.1791 0.0006
Kingsville 8.5421 2.0730 0.0025 Kingsville 8.4920 2.0953 0.0025
North Bay 8.1685 2.0946 0.1006 North Bay 7.9811 2.0994 0.0995
Ottawa 8.6767 2.0407 0.0078 Ottawa 8.4875 2.0251 0.0079
Toronto 8.2536 2.0966 0.0053 Toronto 8.2343 2.1202 0.0053
Trenton 7.8170 2.0997 0.0224 Trenton 7.8464 2.1427 0.0214
Woodstock 7.5972 2.0602 0.0325 Woodstock 7.5331 2.0454 0.0315
W = 4 ◦C k � �

Brockville 8.2291 2.0936 0.0687
Cornwall 8.2129 2.1418 0.0585
Fergus 7.8428 2.1683 0.0945
Kapuskasing 7.6367 2.2221 0.0006
Kingsville 8.5895 2.0276 0.0024
North Bay 8.0870 2.0668 0.0965
Ottawa 8.6664 2.0452 0.0077
Toronto 8.2753 2.0659 0.0051
Trenton 8.0455 2.1669 0.0208
Woodstock 7.6665 2.0586 0.0304

6 www. statc an. gc. ca/ eng/ ca2016
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vest) dates of the historical growing seasons between 
2009 and 2019. Those dates are obtained by using the 
same method as described before for the future years in 
the simulations, except of course that there is only one 
climate path, which is the realized historical data from 
NOAA. For each city j and for each year i, we compute 
a local price p j

i
 as the average of the inflation adjusted 

C1 Comdty expressed in Canadian Dollars over the two 
weeks located around the middle of the growing season. 
This is the time when corn farmers will sell their crop on 
the futures market and plan for storage. Since we thought 
that it was unrealistic to keep local prices for each city, 
we then defined the price of corn future pi in Ontario at 
year i as the mean of the values of p j

i
 for j ∈ [[1, 10]] . 

Finally, P as it appears in Eq. (8), is computed as the 
mean of the values of pi for i ∈ [[1, 10]] , between 2009 
and 2019. We found P = $186.12 CAN. We chose to 
work with a constant corn price in our study in order to 
focus exclusively on the impact of several climate change 
scenarios.

The histogram of farm income for Cornwall in 2068 under 
the +4◦ C scenario is represented in Fig. 5. The coefficient of 
variation is 1.92%. As we expected, there is much less varia-
bility in income than in CHU. Indeed, in Eq. (6) the value of 
C2

0
 is much larger than the value of C2

2
 , according to Table 3. 

By computing I j

i
 for W = 4 ◦ C and taking the average over 

the 1500 paths that constitute a realization of the model, we 
obtain Fig. 6. The x-axis represents the years of the simu-
lation in the future, from 2020 to 2068 and the y-axis the 
farm income in Canadian Dollars. Figure 7 shows how the 
income of farms in the regions around Cornwall, Ottawa and 
Woodstock is modified when considering W ∈ [[0, 4]] . The 
influence of climate change on corn farm income is subtle 
but very measurable. The farm income of most cities suffers 

under the scenarios W = 0 ◦ C and W = 1 ◦ C, because they, 
respectively, represent a disappearance and a slowing down 
of the historical warning trend since 1970. Corn needs heat 
to grow and the CHU is an increasing function of heat so 
this result is not surprising. This is however not true for 
Ottawa and Kingsville where, unexpectedly, farm income 
benefits in those cases. The scenario W = 2 ◦ C represents a 
continuation of the historical climate trend, so farm income 
in most cities is stable. Since we have eliminated the tech-
nology trend in our computation of the yield paths for the 
future years, this result is not surprising. In the absence of 
a technology trend, the only way for the CHU, and thus the 
yield, to increase is to get more heat and no extreme rainfall 
events that would interfere with the length of the growing 
season. For the scenarios W = 3 ◦ C and W = 4 ◦ C, repre-
senting an acceleration of climate change, the farm income 
in most cities benefits from the extra heat that boosts the 
CHU and thus the yield. Ottawa and Kingsville however 
do see a degradation of their income. This underlines the 
reality that the impact of climate change on corn farming is 
more complex than merely increased average minimum and 
maximum temperatures. It also includes the possibility of 
extreme temperature and rainfall events (see Figs. 6 and 7).

In order to better understand the impact of climate 
change under our five scenarios on each city, we compute 
in Table 5 the difference between averaged income over 
1500 paths at the first year of the simulation (2020) and 
at the last year of the simulation (2068). The influence of 
rainfall and extreme temperature events on the growing 
season makes it so some cities see their farms suffer a 
loss of expected income under the more extreme climate 
change scenarios. There are obvious gains under a scenario 
that includes more warming for North Bay. Kapuskasing, 
on the other hand, does not seem to benefit much, but 
its corn industry is very small and there were gaps in its 

Fig. 5  Distribution of farm 
income (Canadian Dollars) for 
Cornwall in 2068 under the 
+4◦ C scenario
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historical time series for the yield. Brockville and Corn-
wall to the East benefit as well in a spectacular fashion 
under the scenarios corresponding to the larger values of 
W, and so do Woodstock and Fergus to the West. Toronto 
and Trenton in the center of the province see increased 
income for their corn farms under more extreme climate 
change scenarios but Toronto seems to benefit less. Corn 
farming in Ontario seems to generally benefit from a 
warmer climate, but there are notable exceptions. Kings-
ville to the West sees a clear fall in the revenue as we con-
sider more extreme climate scenarios and so does Ottawa 
to the East. The loss for Kingsville is modest as the cli-
mate gets warmer but Ottawa seems to follow the opposite 
trend as the rest of the province. Those geographical dis-
parities in the way that local ecosystems in Ontario react 

Fig. 6  Farm income (Canadian 
Dollars) for W = 4 ◦C

Fig. 7  Evolution of farm 
income for Ottawa, Cornwall 
and Woodstock

Table 5  Yearly income variation forecasts at the 2068 horizon (Cana-
dian Dollar)

W = 0 ◦C W = 1 ◦C W = 2 ◦C W = 3 ◦C W = 4 ◦C

Brockville  -6277.18  -1952.15  1553.14  5017.80  8130.28
Cornwall  -8398.41  -3359.17  1220.74  5979.81  9556.66
Fergus  -9687.55  -3678.77  2657.68  8264.18  13898.55
Kapuskas-

ing
 -47.18  -22.94  0.95  22.40  43.34

Kingsville  248.43  84.37  -75.36  -205.79  -369.43
North Bay  -5893.04  -2041.14  2160.78  5535.98  9095.75
Ottawa  1177.21  486.73  -95.18  -718.34  -1270.15
Toronto  -447.98  -159.29  120.37  378.84  635.45
Trenton  -2266.69  -788.77  507.70  1847.96  3072.64
Woodstock  -3963.35  -1262.66  938.82  2992.10  5345.16
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to climate change have also been demonstrated in Alberta 
in the work of Dan and Williams [25]. They underline the 
financial risks associated with climate change.

5  Conclusions

As a conclusion, we see that even a simple model of corn 
farm income can produce very interesting results underlining 
the financial risks associated with climate change. Our model 
is not meant to be a comprehensive depiction of the finan-
cial challenges encountered by corn farms in Ontario, but it 
shows that climate change means uncertainty of income. It 
shows that the naive expectations (more heat equals more 
CHU and thus a better yield) are not always true. Indeed, 
other factors like rainfall, which determines the length of the 
growing season, and extreme temperature events, since Eq. 
(4) is a quadratic relation, are at play. In Ontario, while more 
heat under a climate scenario that assumes an acceleration of 
the historical warming trends, tends to benefit corn farming 
and results in increased income for the corn farms in most 
areas, there are notable exceptions. Those exceptions, like 
the region around Ottawa and Kingsville, have no obvious 
geographical explanation and seem to find their roots in the 
characteristics of the local climate. This demonstrates that 
climate change brings uncertainty in corn farm income and 
uncertainty means risk, which is expensive to handle from 
a financial point of view. Our simple model could be used 
as a first step toward developing a more extensive credit 
risk framework. Such an extended framework could include 
modeling of corn future prices and interest rates. This would 
open the possibility of computing the default probability of 
a farm recipient of a loan. Our future research will build 
upon the simple model presented in this study and attempt 
to refine our understanding of the financial implications of 
climate change on the agricultural sector.
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