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The sustainable management of our planet’s natural resources
is perhaps the greatest problem of this century. Many
millennia ago, Homo sapiens roamed the earth as part of a
balanced ecosystem. However, with the onset of agriculture
and, much more recently, industrialisation, we are now
exploiting our natural resources at unprecedented rates.
Every minute, nearly ten football pitches worth of forest are
destroyed for forestry and the production of food and com-
modities to satisfy a growing population [1]. Many of our fish
stocks are declining, and environmental disturbances are on
the rise due to human-caused climate change [2]. Arguably,
we have realised that much of our consumption is unsustain-
able, yet balancing sustainable resource use and a healthy
environment, while still providing eight billion people with
economic opportunities and adequate lifestyles is challenging.

From optimisation to dynamic modelling to data analysis,
mathematics, nowadays, plays a central role in tackling this
grand challenge. It is this recognition that led to the
“Workshop on Natural Resource Mathematics” held at the
University of Queensland in 2017, and would later seed this
special issue of the Journal of Environmental Modeling and
Assessment. Topics at the workshop highlighted both a wide
range of natural resource management problems and the var-
ious kinds of mathematics used to tackle them. The main
theme running through all the talks was balancing sustainable
use of natural resources while simultaneously reducing threats
to the environment, such as overexploitation, climate change,
habitat disturbance, and invasive species [3–12]. Along the
way, we were exposed to several new developments in eco-
logical theory and new methodologies in optimisation, con-
trol, dynamical systems, and statistics [13–24].

Among the important works presented were several new find-
ings yet to make their way into the literature, and hence, we
decided a special issue in Environmental Modeling and
Assessment could provide an ideal venue to highlight them.
These were complemented by selected submissions to the journal
that best fitted with the former. In the workshop itself, three sub-
themes naturally arose. The first addressed the optimal manage-
ment of natural resources given extreme system complexity and
uncertainty. In the first paper [25] of this issue, the authors present
the problem of managing wildfires with controlled burns to not
only protect the environment but also limit accumulating fuel load
that can spark massive wildfires with major economic conse-
quences. The work is representative of the types of competing
objectives one must often consider in nearly all natural resource
management problems. From fires to fisheries, the authors in [26]
consider managers facing multiple objectives by presenting a
framework for incorporating social objectives in fishery harvest
decisions. However, complexities not only occur in the form of
multiple objectives; the natural systems themselves are often
governed by many nonlinear interactions that can also make re-
source management problems mathematically challenging. Such
complexities are considered in [27], where the authors illustrate
optimal harvest strategies for several interacting fish species
governed by complex, dynamic, multispecies ecosystem models.

Populations of species that we need to manage are often
heavily influenced by species interactions, and while Tromeur
and Doyen [27] provides methods for incorporating these into
decision-making, we still do not fully understand the rich phe-
nomena such types of complex mathematical models can ex-
pose. In [28, 29], the authors emphasise the role of mutualism
(positive species interactions) and mixotrophy (organisms that
use multiple sources of energy and carbon) to understand spe-
cies population dynamics. Such theoretical advances in mul-
tispecies modelling can, ultimately, improve natural resource
management by providing more accurate models for decision-
makers to use on the ground.

The final paper [30] of this special issue is focussed on
comparing quantitative tools for natural resource mathe-
matics. The authors investigate empirical mode decompo-
sition (EMD) of nonlinear and nonstationary time series
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tools and assess the sensitivities of EMD to different types
and levels of nonlinear and nonstationary environmental
data.
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